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Abstract

In this paper, we present a new class of multivariate
public-key cryptosystems, K(XIII)SE(2)PKC realizing the
coding rate of exactly 1.0, based on random pseudo cyclic
codes. The K(XIII)SE(2)PKC is constructed on the basis of
K(IX)SE(1)PKC, formerly presented by the author. We show
that K(XIII)SE(2)PKC is secure against the various attacks
including the attack based on the Gröbner bases calculaion
(GB attack) and the rank attack.
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1 Introduction

Extensive studies have been made of the Public Key Cryp-
tosystem(PKC). The security of most PKC’s depends on the
difficulty of discrete logarithm problem or factorization prob-
lem. Thus it is desired to investigate another classes of PKC
that do not rely on the difficulty of these two problems.

Sof far extensive studies have been made of the PKC con-
structed based on the simultaneous equations of degree g
(SE(g)PKC, g ≥ 2)[1-10]. All these proposed schemes are
very interesting and important. However unfortunately, some
of these schemes have been proved not necessarily secure
against the conventional attacks such as Patarin’s attack[3],
Kipnis-Schamir attack[11], Gröbner basis attack[12,13] and
Braeken-Wolf-Preneel(BWP) attack[14].

The present author recently proposed several classes of mul-
tivariate PKC’s that are constructed by many sets of linear
equations[15-20]. It should be noted that McEliece PKC[21]
presented in 1978 can be regarded as a member of the class
of linear multivariate PKC.

In this paper we present a new class of multivariate pub-
lic key cryptosystem, K(XIII)SE(2)PKC based on the ran-

dom error-correcting codes, realizing the coding rate of ex-
actly 1.0. The K(XIII)SE(2)PKC is constructed on the basis
of K(IX)SE(1)PKC[20], a member of the linear multivariate
PKC. We show that K(XIII)SE(2)PKC is secure against the
various excellent attacks including the attack based on the
Gröbner bases calculaion (GB attack)[12,13] and the rank at-
tack[14].

Throughout this paper, when the variable vi takes on
a value ṽi, we shall denote the corresponding vector v =
(v1, v2, · · · , vn) as

ṽ = (ṽ1, ṽ2, · · · , ṽn). (1)

The vector v = (v1, v2, · · · , vn) will be represented by the
polynomial as

v(x) = v1 + v2x + · · · + vnxn−1. (2)

The ũ, ũ(x) et al. will be defined in a similar manner.

2 K(XIII)SE(2)PKC over F2m

2.1 Construction

Let us define a few symbols :
G(x): Random polynomial for generating

random pseudo cyclic code over F2m ,
R0 + R1x + · · · + Rg−1x

g−1 + Rgx
g,

where Ri (i = 1, · · · , g − 1), R0 ̸= 0
and Rg ̸= 0 take on an element of F2m

equally likely in a random manner.
eY : Exponent(period, order) of Y (x).

♯{Ai} : Order of the set {Ai}.
H(Ai) : Ambiguity of Ai, log2 ♯{Ai} (bit).

[Rij ]a×b: Random matrix, where Rij (i =
1, · · · , a; j = 1, · · · , b) takes on 0 or 1
equally likely in a random manner.

H
(
[Rij ]a×b

)
: Ambiguity of [Rij ]a×b, ab bit.

C : Ciphertext, (CI , CII).
CI : First ciphertext.
CII : Second ciphertext.
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NV : Total number of variables.
NE : Total number of equations.

Let the message vector A over F2 be represented by

A = (A1, A2, · · · , AN ). (3)

Throughout this paper we assume that the messages
A1, A2, · · · , AN are mutually independent and equally likely.
Let A be transformed into

A · HI = a = (a1, a2, · · · , aN ), (4)

where HI is an N × N non-singular random matrix over F2.
Letting N = nm, a is partitioned into

a = (m1,m2, · · · , mn), (5)

where mi is given by

mi = (ai1, ai2, · · · , aim). (6)

In the followings let us regard mi as an element of F2m .
Let a be partitoned into

mA = (mg+1,mg+2, · · · ,mg+f ), (7)

mB = (mg+f+1,mg+f+2, · · · ,mn), (8)

and

mC = (m1,m2, · · · ,mg), (9)

respectively, where n is given by

n = g + 2f. (10)

From mA and mB , we obtain

(mA(x)mB(x))α ≡ p(x) mod P (x), (11)

where P (x) is a primitive polynomial of degree f over F2m ,
and α is given by

α = 1 + 2 + 22 + · · · + 2B < 2fm − 1. (12)

Let p(x) be represented by the vector :

p = (p1, p2, · · · , pf ). (13)

Remark 1 : Given mA(x) = m̃A(x) and mB(x) = m̃B(x),
the components of p over F2m are calculated from
Eq.(11), at the sending end. 2

The first ciphertext CI(x) over F2m is then given by

CI(x) = p(x). (14)

Let mA(x) over F2m be transformed into

mA(x)3 ≡ m′
A(x) mod F (x)

= m′
g+1 + m′

g+2x + · · · + m′
g+fxf−1,

(15)

where F (x) is a random polynomial over F2m of degree f .
Let mC(x) over F2m be transformed into

mC(x)3 ≡ m′
C(x) mod H(x). (16)

where H(x) is a random polynomial over F2m of degree f .
Let r(x) be given by

(m′
A(x) + m′

C(x))xg ≡ r(x) mod G(x)

= r1 + r2x + · · · + rgx
g−1.

(17)

The code word, w(x), generated by the generator polyno-
mial G(x), can be represented by

w(x) = r(x) + (m′
A(x) + m′

C(x))xg ≡ 0 mod G(x). (18)

The message mC(x) is transformed into

mC(x)3 = τ(x), (19)

where we assume that the degree of τ(x) is less than or equal
to f + g − 1.

With this τ(x), the word u(x) is constructed by

u(x) = w(x) + τ(x)

= u1 + u2x + · · · + ug+fxg+f−1.
(20)

Regarding the word u as a (g+f)m-tuple over F2, the word
u is transformed into

uHII = v, (21)

where HII is a (g + f)m × (g + f)m random non-singular
matrix over F2.

We see that the ambiguity of HII over F2 is given approxi-
mately by

|HII | ∼= (g + f)2m2 (bit), (22)

an extremely large value for

(g + f)m >∼ 80. (23)

Were it not for the tranformation by HII , the generator
polynomial G(x) would be easily desclosed. Let us discuss on
this matter in the followings.
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Let us define several symbols :

Ã
(0)
i : Non-zero message sequence that

make m̃c(x) be zero; i = 1,2.
ũ

(0)
i (x) : Word corresponding to Ã

(0)
i ;

i = 1, 2.
(ũ(0)

1 (x), ũ(0)
2 (x)) : Largest common divisor of ũ1(x)

and ũ2(x).
w̃

(0)
i (x) : Code word corresponding to Ã

(0)
i

; i = 1, 2.

It is evident that ũ
(0)
1 and ũ

(0)
2 satisfy

ũ
(0)
1 (x) = w̃

(0)
1 (x) for Ã

(0)
1

(24)

and

ũ
(0)
2 (x) = w̃

(0)
2 (x) for Ã

(0)
2 , (25)

hence(
ũ

(0)
1 (x), ũ(0)

2 (x)
)
≡ 0 mod G(x). (26)

The Eq.(26) implies that G(x) can be disclosed from
(ũ(0)

1 (x), ũ(0)
2 (x)).

In general, for J non-zero message sequences
Ã

(0)
1 , Ã

(0)
2 , · · · , Ã

(0)
J , the largest common divisor of

ũ
(0)
1 (x), ũ(0)

2 (x), · · · , ũ
(0)
J (x) rapidly approaches to G(x)

as J increases.

Remark 2 : The word u is transformed to v by Eq.(21).
The large ambiguity of the transformation matrix HII

would much strengthen the hiding of the structure of the
code word w. 2

The second ciphertext CII(x) is given by

CII(x) = v(x). (27)

Remark 3 : The components of v over F2 constitute a set
of simultaneous equations of degree 2 in the variables
A1, A2, · · · , AN . 2

We have the following set of keys.

Public key : mA, mB , v, P (x), α.
Secret key : HI , HII , F (x), H(x), G(x), τ(x).

2.2 Encryption and decryption

[Encryption]

Step 1: Given m̃A(x) and m̃B(x), the vector p̃(x) is calcu-
lated by Eq.(11).

Step 2: The ciphertext C̃I(x) is given by p̃(x) from Eq.(14).

Step 3: The ciphertext C̃II(x) is given by ṽ(x) from Eq.(27).

[Decryption]

Step 1: The ciphertext C̃II(x) = ṽ(x) is inverse transformed
to ũ(x) by ṽ · H−1

II , yielding w̃(x) + m̃C(x)3.

Step 2: The message m̃C(x) is decoded by

C̃II(x)dG =
{

w̃(x) + m̃C(x)3
}dG

≡ m̃C(x) mod G(x),
(28)

where dG is the inverse element of 3 modulo eG, the ex-
ponent of G(x), yielding w̃(x).

Step 3: From w̃(x), the transformed message m̃′
A(x)+m′

C(x)
is decoded.

Step 4: The m̃′
C(x) is given by m̃C(x)3 mod H(x) from

Eq.(16), yielding m′
A(x).

Step 5: The message m̃A(x) is obtained by

{m̃′
A(x)}dF ≡ m̃A(x) mod F (x), (29)

where dF is the inverse element of 3 mod eF , the expo-
nent of F (x).

Step 6: Letting eP be the exponent of P (x), the message
m̃B(x) is obtained by

m̃B(x) ≡ p̃(x)βm̃−1
A (x) mod P (x), (30)

where β is given by

αβ ≡ 1 mod eP . (31)

Step 7: From m̃A, m̃B and m̃C , the original message, Ã, is
decoded by

(m̃A, m̃B , m̃C)H−1
I = Ã

=
(
Ã1, Ã2, · · · , ÃN

)
.

(32)

3



Table 1: Example of K(XIII)SE(2)PKC(ρ = 1.0).

Example m N dA, dB dC g SPK(KB)

I 8 168 7 4 5 187.2
II 16 176 3 2 3 220.9
III 32 192 1 1 2 299.5

Figure 1: Schematic diagram of K(XIII)SE(2)PKC over F2m

(Example II in Table 1).

2.3 Examples

An example of a schematic diagram of K(XIII)SE(2)PKC over
F2m is given in Fig.1.

Let us show the size of the public key for K(XIII)SE(2)PKC
over F2m by an example, for simplicity.

Let the degree of mY (x) be denoted by dY . In the follow-
ings, we assume that dA, dB and dC are chosen so that the
relation,

dA = dB (33)
dA = 2dC − 1 (34)

may hold.
The total number of variables, NV , is given by

NV = N = (dA + dB + dC + 3)m. (35)

The total number of linear equations, NE1, is given by

NE1 = (dA + dB + 2)m. (36)

The total number of quadratic equations, NE2, is given by

NE2 = (dA + dC + 2)m. (37)

The size of the public key is given by

SPK = NE1 · N + NE2 · NH2 (bit). (38)

It should be noted that the sizes of the public keys P (x)
and α can be disregarged.

In Table 1, we present three examples of K(XIII)SE(2)PKC
over F2m .

2.4 Security considerations

Let us consider several possible attacks on K(XIII)SE(2)PKC.

Attack 1: Disclosing the code word w(x) by exhaus-
tively estimating G(x)

The probability of estimating random polynomial G(x) over
F2m , in an exhaustive manner, is given by

PC [Ĝ(x)] ∼= 2−(g+1)m, (39)

not a sufficiently small value for Example I in Table 1.
However, even if G(x) can be estimated correctly with prob-

ability 2−(g+1)m, it would still be hard to disclose the struc-
ture of w(x) exactly, i.e., m′

A(x), m′
C(x), and r(x) due to the

following reasons:

R1 : Addition of τ(x) on the code word w(x).

R2 : The word u(x) = w(x) + τ(x) is further transformed
into v(x) using random non-singular matrix HII , whose
ambiguity takes on an extremely large value of approx-
imately 104 bit for the examples in Table 1(Please refer
to Remark 2).

We conclude that K(XIII)SE(2)PKC would be secure against
the Attack 1. 2

Attack 2: Exhaustive attack on m̃A

Let an estimated value of m̃A be denoted by ˆ̃mA and the
set of all possible ˆ̃mA, by

{
ˆ̃mA

}
. The order of

{
ˆ̃mA

}
can

be given by

♯
{

ˆ̃mA

}
= 2fm. (40)

The average number of the trials required for correctly es-
timating mA(x), N̄(m̂A) is given by

N̄(m̂A) =
1

2fm

(
1 + 2 + 3 + · · · + 2fm

)
∼= 2fm−1.

(41)
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For the examples in Table 1, N̄(m̂A) is given by

N̄(m̂A) ∼= 263 ∼= 9.22 × 1018. (42)

When m̃A is estimated correctly in an exhaustive manner,
the m̃B is accordingly given correctly from Eq.(11).

For correctly estimated m̃A and m̃B , in order to disclose
the messages Ã1, Ã2, · · · , ÃN , the GB attack should solve the
following sets of simultaneous equations :

SE(I) : The 2fm linear equations in the variables
A1, A2, · · · , AN .

SE(II) : The (f + g)m quadratic equations in the variables
A1, A2, · · · , AN .

For a given ciphertext C̃, in order to disclose the messages
Ã1, Ã2, · · · , ÃN , GB attack should solve the above simulta-
neous equations, SE(I) and SE(II) in 2fm−1 times given by
Eq.(41). Besides, the number of variables N takes on a large
value of 168 ∼ 192 for the examples in Table 1. This would
be a hard task for GB attack.

We conclude that K(XIII)SE(2)PKC would be secure against
Attack 2. 2

Attack 3: GB attack on ciphertext by representing
p(x) by a set of simultaneous equations

The p(x) can be represented by the following simultaneous
equations :

SE(III) : The f equations of degree B in the variables

A1, A2, · · · , AN . (43)

For Examples I, II and III given in Table 1, the degree B takes
on 63, a large value.

For a given ciphertext C̃, in order to disclose the messages
Ã1, Ã2, · · · , ÃN , GB attack should solve the two sets of simul-
taneous equations, SE(II), and SE(III).

We conclude that K(XIII)SE(2)PKC would be secure against
Attack 3. 2

Attack 4: Rank attack
K(XIII)SE(2)PKC would be secure against the rank attack

as K(XIII)SE(2)PKC has no STS(Step-wise Trianglar Struc-
ture). Furthermore the transformations by Eq.(11), Eq.(15)
and Eq.(16) would much strengthen the security against the
rank attack.

3 Conclusion

In this paper we have presented K(XIII)SE(2)PKC on the basis
of K(IX)SE(1)PKC[20] using random pseudo cyclic codes. We
have shown that our proposed K(XIII)SE(2)PKC can be made
sufficiently secure against the various attacks including the
attack based on Gröbner bases calculation(GB attack).
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