
Towards Efficient Provable Data Possession in Cloud Storage

Jia Xu1, Ee-Chien Chang2, and Jianying Zhou1

1 Insitute for Infocomm Research
{xuj,jyzhou}@i2r.a-star.edu.sg
2 National University of Singapore

changec@comp.nus.edu.sg

Abstract. Provable Data Possession (PDP) allows data owner to periodically and remotely audit
integrity of their data stored in a cloud storage, without retrieving the file and without keeping a
local copy. Ateniese et al. (CCS 07, ACM TISS ’11) proposed the first PDP scheme, which is very
efficient in communication and storage. However their scheme requires a lot of group exponentiation
operations: In the setup, one group exponentiation is required to generate a tag per each data block.
In each verification, (equivalently) (m+ `) group exponentiations are required to generate a proof,
where m is the size of a data block and ` is the number of blocks accessed during a verification.
This paper proposed an efficient PDP scheme. Compared to Ateniese et al. (CCS 07, ACM TISS
’11), the proposed scheme has the same complexities in communication and storage, but is much
more efficient in computation: In the setup, no expensive group exponentiations are required. In
each verification, only m group exponentiations are required to generate a proof. Our experiment
shows that our scheme is about 400 times faster than Ateniese et al. (CCS 07, ACM TISS ’11)
in the setup phase. The security of the proposed scheme is proved under Knowledge of Exponent
Assumption and Factorization Assumption.

Keywords: Cloud Storage, Remote Integrity Check, Provable Data Possession, Homomorphic Au-
thentication Tag

1 Introduction

Cloud storage service (e.g. Dropbox, Skydrive, Google Drive, and Amazon S3) is becoming more
and more popular in recent years. How to resolve people’s concern on integrity of their data stored
in cloud storage server is one of major challenge to boost the adoption of cloud storage service
for the public and organizations. Ateniese et al. [5], together with Juels and Kaliski [33], starts
the new trend of research on remote data integrity check in cloud computing environment. Due
to the new cloud computing setting, this line of research has distinctive features compare to the
previous works [3,8,36,12]: (1) without trusting the cloud storage server (in both data integrity
and integrity check); (2) without downloading the target file during verification; (3) without
keeping a local copy of the target file. This new remote data integrity check tool will help to
build ultimate data integrity protection solution for cloud storage service (e.g. [14,19]).

Ateniese et al. [5,4] proposed the first Provable Data Possession (PDP for short) scheme.
Their scheme is very efficient in communication and storage: the size of a proof is independent
on the number of blocks accessed during a verification and the storage overhead due to authen-
tication tags is a fraction3 of the size of the original data. However, their scheme requires a
large number of modular exponentiation in both setup phase and verification phase, and is thus
relative expensive in computation.

In this paper, we will propose a new PDP construction named EPOS, which requires no
modular exponentiation in the setup phase and a smaller number of group exponentiations in

3 This fraction is a configurable system parameter.

verification phase, without sacrificing in communication or storage aspects. We prove the security
of the proposed scheme EPOS under Knowledge of Exponent Assumption [20]. We remark that
both Ateniese et al. [5,4] 4 and the proposed scheme EPOS support only private key verification.

1.1 A Brief Description of EPOS

b b b

b b b

Linear Homomorphism

b b b

b b b

Predicate Homomorphism

pu
bl

ic
to

ke
n

pt

(pt,st)

Verifier

Accept or Reject

Fig. 1. An Efficient PDP scheme EPOS

Setup Phase. Suppose Alice wants to backup her file
F into a cloud storage server provided by Bob. Alice
encodes file F with some error erasure code to obtain
data blocks (F0, . . . , Fn−1). Alice chooses a RSA modu-
lus N = pq, a secret seed, denoted as seed, of a pseu-
dorandom function PRF, and a secret number τ . Let
φ(N) = (p − 1)(q − 1). With the secret private key
sk = (φ(N), seed, τ), Alice produces an authentication
tag σi for each block Fi:

σi := τFi + PRFseed(i) mod φ(N). (1)

We emphasize that the generated authentication tag
σi is much shorter than a data block Fi. At the end of
setup, Alice sends data blocks and tags {(i, Fi, σi) : i ∈
[0, n− 1]} together with a public key pk = (N) to Bob.

Audit. Later, Alice may remotely verify the integrity
of her data file stored with Bob periodically. In each
verification session, Alice randomly selects a subset
C ⊂ [0, n−1] of indices and selects a random weights νi
for each i ∈ C. Alice sends {(i, νi) : i ∈ C} as challenge
to Bob. Bob then finds all data blocks Fi’s and authen-
tication tags σi’s with index i ∈ C, and apply the linear
homomorphism to compute an aggregated message-tag
pair (M, σ) as below:

M :=
∑
i∈C

νiFi; (2)

σ :=
∑
i∈C

νiσi. (3)

We emphasize that the above two equations are com-
puted over integer domain, and thus the bit-length of
the linear combination M (the aggregated authentication
tag σ, respectively) is slightly larger than a data block
Fi (an authentication tag σi, respectively).

Instead of sending the large message block M together with authentication tag σ directly to
the verifier Alice, Bob is able to produce a shorter data-tag pair with the help of Alice. Alice
generates a pair of public token pt and secret token st per each verification, where the public

4 See the erratra in their full version http://eprint.iacr.org/2007/202 by Ateniese et al.

2

token pt is sent to the prover Bob and the secret token st is kept private. With pt and (M, σ),
Bob is able to generate a shorter message-tag pair, which can be verified by the verifier Alice
with the private key and the secret token st.

Illustration Picture Figure 1 illustrates the scheme EPOS briefed above. In Figure 1, a rect-
angle and the circle beneath it, represents a pair of data block and authentication tag. Those
shaded rectangles represent data blocks that are generated by the error erasure code. In our
scheme EPOS, a data block is treated as a single large integer (much larger than the RSA mod-
ulus N). Figure 1 shows an example where a data block is about three times larger than a tag,
by dividing each rectangle with dashed lines.

In a verification, a subset of three pairs of blocks and tags are selected, which are aggregated
into a single pair of block and tag through linear homomorphism. Since the linear combination
is computed over integer domain, the aggregated block (tag, respectively) is slightly larger than
an original data block (tag, respectively). With the help of the public token pt provided by the
verifier, a shorter block-tag pair can be generated from the long aggregated block-tag pair. The
verifier can verify the short block-tag pair using a secret token st.

1.2 Contributions

Our contributions can be summarized below.

– We propose a new PDP scheme, called EPOS. This scheme significantly improves the effi-
ciency of Ateniese et al. [5,4]. A detailed comparison with existing works is given in Table 1
and Table 2 in Section 5 (on page 9).

– We give a rigorous proof on the security of the proposed scheme, based on Knowledge of
Exponent Assumption (KEA).

1.3 Organization

The rest of this paper is organized as below. Section 2 reviews related works. Section 3 describes
the syntactic definition of PDP. Section 4 presents the construction of our PDP scheme EPOS.
Then we analyze the performance of proposed scheme in Section 5 and security in Section 6. At
the end, Section 7 closes this paper.

2 Related Works

2.1 Early Approaches

Our research is motivated by applications in remote-backup and peer-to-peer back-up [3,8,36].
Peer-to-peer backup system requires a mechanism to maintain the availability and integrity of
data stored in peer nodes. Li and Dabek [36] proposed to choose neighboring nodes based on the
social relationships and relies on the heuristic assumption that people are more likely cooperative
with friends.

3

2.2 Online Memory Checker and Sublinear Authenticator

Remote integrity verification has a close relationship with memory integrity verification [12,44,38,24].
The notion of authenticator proposed by Naor and Rothblum [38] is formulated for memory in-
tegrity checker. There is an essential difference between memory checker and proofs of storage
problem studied in this paper: in the memory checker problem, an honest prover will follow the
specified protocol to verify its storage, where the storage is untrusted and could be altered by
outside attackers or random hardware failure; in the proofs of storage problem, both the prover
and its storage are untrusted, such that the prover could do anything5 during a verification and
the storage could be altered carefully by the dishonest prover. Consequently, any solution to a
proofs of storage problem is also a solution to the memory checker problem. Thus, the lower
bound on complexity of memory checker discovered by Naor and Rothblum [38] also applies to
proofs of storage. Additionally, the idea of introducing redundancy to tradeoff resources is useful
in proofs of storage.

2.3 Proofs of Retrievability and Provable Data Possession

Recently, there is a growing interest in the cryptographic aspects of cloud storage problem.
Perhaps Filho and Barreto [26] first studied the scenario where the verifier does not have the
original. They described two potential applications: uncheatable data transfer and demonstrat-
ing data possession, and proposed the RSA-based scheme. Juels and Kaliski [33] proposed a
formulation called Proofs of Retrievability POR for the proofs of storage problem. Essentially,
in a POR scheme, if the cloud storage server can pass verification with a noticeable probability,
then the verifier can retrieve the original data from messages collected during polynomially many
verification interactions between the verifier and the cloud storage server. So POR formulation
allows a user to ensure whether his/her file is indeed in the cloud storage in an intact form
without actually downloading the file. However, the POR construction in Juels and Kaliski [33]
can support only a predefined constant number of verifications. A refined security formulation
is given in [15] .

Ateniese et al. [5] gave an alternative formulation called Provable Data Possession for proofs
of storage problem, and proposed an efficient construction. Their method can be viewed as an
extension of the RSA-based scheme. The scheme EPOS proposed in this paper exploits similar
idea, which is much more efficient than Ateniese et al. [5].

Shacham and Waters [42] proposed two efficient constructions of POR, where one scheme
supports private key verification and the other supports public key verification.

Ateniese and Kamara and Katz [7] studied how to utilize homomorphic linear identification
scheme to construct proofs of storage scheme. Dodis and Vadhan and Wichs [23] studied how
to construct proofs of retrievability scheme through hardness application. All of schemes in
[5,17,42,7] utilize some underlying linear homomorphic authentication methods, which also has
applications in network coding [2,13]. Several proofs of storage schemes with pre-defined number
of verifications have been proposed in works [33,6,23]. A survey of proofs of storage is given by
Yang and Jia [48].

2.4 Proofs of Storage with More Features

Very recently, several works [19,14,25,46,45] have devoted to extend proofs of storage to support
more features. In [19], verifier checks whether the cloud storage server indeed keeps multiple

5 The only limitation is that the prover’s computation resource is polynomially bounded.

4

intact copies of a user’s file. Dynamic-PDP [25] allows insertion and deletion of data blocks
on the fly after setup. Proofs of storage schemes supporting public verifiability are proposed in
Shacham and Waters [42] and Wang [46] and the privacy issue in public verification is studied
in Wang [45]. Very recently, dynamic POR is studied by Cash et al. [16] and Shi [43].

2.5 More General Delegated Computation and Proofs of Storage

Kate and Zaverucha and Goldberg [34] proposed an efficient commitment scheme for polynomial
and Benabbas and Gennaro and Vahlis [11] proposed a secure delegation scheme for polynomial
evaluation. Both schemes can be extended to support POR easily but with limitations: the
POR scheme implied in Kate and Zaverucha and Goldberg [34] has large storage cost on client
side and the POR scheme implied in Benabbas and Gennaro and Vahlis [11] has large storage
and computation cost on the server side.

The two solutions [27,18] to verifiable delegation of generic computation task based on fully
homomorphic encryption [28], also imply a secure proofs of storage scheme. However, the effi-
ciency overheads in communication, storage and computation on the server side are too large,
rendering the resulting proofs of storage schemes impractical.

3 Provable Data Possession: Definition

We will give the syntactic definition of Provable Data Possession scheme below, and leave the
security formulation to Section 6 where we will analyze the security feature of the proposed
scheme.

A PDP scheme consists of five polynomial algorithms (KeyGen,DEncode,Challenge, Prove,Verify),
which are described as below.

– KeyGen(1λ) → (pk, sk): Given security parameter λ, the randomized key generating algo-
rithm outputs a public-private key pair (pk, sk).

– DEncode(sk, F) → (idF, n, F̂): Given the private key sk and a data file F, the data encoding
algorithm DEncode produces a unique identifier idF, file size n (in term of number of blocks)
and the encoded file F̂.

– Challenge(sk, id, n)→ (pt, st,Chall): The probabilistic algorithm Challenge takes as input the
private key sk, a file identifier id and the file size n (in term of number of blocks), and outputs
a public token pt, a private token st and a query Chall.
Note: (1) The public/secret token pair (pt, st) is generated independently per each verifica-
tion. (2) In both [5] and the scheme EPOS that will be presented later in this paper, Chall is
just a subset of indices (in the range [0, n− 1]) and weights (from some group), and has no
secret information involved.

– Prove(pk, idF, F̂, pt,Chall)→ ψ: Given the public key pk, an identifier idF, an encoded file F̂, a
public token pt and a challenge query Chall, the prover algorithm Prove produces a proof ψ.

– Verify(sk, idF, st,Chall, ψ)→ accept or reject: Given the private key sk, an identifier idF, the
secret token st, a challenge query Chall, and a proof ψ, the deterministic verifying algorithm
Verify will output either accept or reject.

Remark 1 Compared to the POR formulation [33,42], in the above description for PDP, the
prover algorithm Prover takes as an additional input a public token pt and the verifier algorithm
Verify takes a corresponding secret token st as an additional input, where the public/secret token
pair (pt, st) is generated online by the verifier for each verification session.

5

4 EPOS: An Efficient PDP Scheme

4.1 Scheme Description

Ateniese [5,4]’s PDP scheme requires the data owner to compute an expensive modular expo-
nentiation for each data block to generate an authentication tag in the setup. Now we present
an efficient PDP scheme, which removes the demand of expensive exponentiation operations in
the setup.

The description of scheme EPOS = (KeyGen, DEncode, Challenge, Prove, Verify) is as below.

KeyGen(1λ)→ (pk, sk)

Choose at random a λ bits RSA modulus N = pq, such that all of p, q, p′ = (p − 1)/2, q′ =
(q−1)/2 are primes and the bit-lengths of p and q are the same. Let φ(N) = (p−1)(q−1) =
4p′q′. Let QRN denote the subgroup of quadratic residues modulo N . Choose at random a

generator g of the subgroup QRN . Choose at random τ
$←− Zφ(N). Choose at random a seed,

denoted as seed, from the key space of the pseudorandom function PRF : {0, 1}2λ → Zφ(N).
The public key is pk := (N, g) and the private key is sk := (g, p, q, τ, seed).
Note: (1) Without loss of generality, assume p′ < q′. (2) Then size of subgroup QRN equals
to 1

4φ(N) = p′q′.

DEncode(sk, F)→ (id, {(i, Fi, σi) : i ∈ [0, n− 1]})

Let ρ ∈ (0, 1) be a system parameter. Apply rate-ρ error erasure code on data file F to
generate blocks (F0, . . . , Fn−1), such that each block Fi ∈ {0, 1}mλ and any ρ-fraction of
blocks Fi’s can recover the original file F. Choose a unique identifier id for the file F. For each
data block Fi, i ∈ [0, n− 1], the data owner computes an authentication tag σi:

σi := τFi + PRFseed(id‖i) mod φ(N). (4)

Output (id, {(i, Fi, σi) : i ∈ [0, n− 1]}).

Challenge(sk, id, n)→ (pt, st, {(i, νi) : i ∈ C})

Find at random a secret value d
$←− Zφ(N), and computes gd := gd mod N . The public token

is pt := gd and the secret token is st := d. Chooses a subset C ⊂ [0, n − 1] at random and

choose weight νi
$←− Zφ(N) at random for each i ∈ C. Output (pt, st, {(i, νi) : i ∈ C}).

Prove(pk, id, F̂, pt, {(i, νi) : i ∈ C})→ (ψ1, ψ2)

Find all selected blocks Fi’s and tags σi’s, and compute (π1, π2) as below over integer domain
(instead of finite field):

π1 :=
∑
i∈C

νiFi; (5)

π2 :=
∑
i∈C

νiσi. (6)

6

Compute (ψ1, ψ2) as below

ψ1 := gπ1d mod N ; (7)

ψ2 := gπ2 mod N. (8)

Send (ψ1, ψ2) to the verifier.
Note: Alternatively, the prover can just send (π1, π2) as response to the verifier. In this
alternative way, the computation in Eq (7) is saved, at the cost of larger proof size, since the
bit-length of (π1, π2) is much longer than (ψ1, ψ2).

Verify(sk, id, st, {(i, νi)}i∈C , ψ1, ψ2)→ accept/reject

With the private key sk = (g, p, q, τ, seed) and the secret token st = d, check whether
ψ1 ∈ QRN is a quadratic residue modulo N and the following equality holds.

(ψ1)
τ ?

=

(
ψ2

g
∑
i∈C νiPRFseed(id‖i)

)d
mod N (9)

If both verifications succeed, then output accept; otherwise output reject.

We remark that in the above scheme, we can change6 the proof from (ψ1, ψ2) to (ψ1, SHA256(ψ2))
to reduce the size from 2λ bits to (λ+256) bits using a secure hash function SHA256 [39], similar
to Ateniese et al. [5].

4.2 Discussions on Possible Extensions

4.2.1 Dynamic PDP. It is easy to see that, similar to Ateniese et al. [5] and SW scheme [42],
our proposed PDP scheme naturally supports a simple dynamic operation: Append a new
block at the end. A generic approach can help us to support other dynamic operations (i.e.
insertion,edition and deletion): (1) Modification Step—Data owner treats the difference7

between any two consecutive version of the file as new data block(s)8. The data owner generates
authentication tags for these new bocks, and appends them at the end of original file stored
in the cloud. We assume the data owner has marked the end of original data file. (2) Refresh
Step—When the amount of modifications exceed some threshold, the data owner downloads
original file and new data blocks from the cloud storage server, and check their integrity. If all
data are intact, the data owner recovers the latest version of file by applying all “diff” on the
original file, then chooses a new set of keys, and outsources the latest version of file to the cloud
storage server by applying our PDP scheme.

We remark that, in the above Modification Step, the storage for the file always grows, even
if the operation is deletion. So we require “Refresh Step” to reduce storage overhead after a
amount of deletion operations. With proper setting on the frequency of the expensive “Refresh
Step”, the proposed dynamic PDP scheme can achieve a good amortized complexity.

The above approach is generic, and can also apply to existing works (e.g [5,42,47]). Fur-
thermore, the above approach supports dynamic operation on various data units—bit, byte,
character, and data block. In contrast, previous dynamic PDP schemes [25,46] only support
dynamic operations on blocks, i.e. insert/edit/delete a data block.

6 Meantime, change the range of the secret token d from Zφ(N) to Z∗φ(N), in order to recover ψ2 from ψ1 through
Equation (9).

7 In fact, the dynamic operation itself can be considered as the “diff”.
8 This is called “belta encoding”.

7

4.2.2 Hardware Implementation. Our EPOS scheme requires pseudorandom function and
large integer addition, multiplication and exponentiation. We notice that: (1) RSA encryption
method also requires large integer operations. (2) It is a common practice to use hash func-
tion (e.g. SHA256) or AES encryption function to simulate pseudorandom function: that is
PRFk(x) := SHA256(k‖x) or PRFk(x) := AESk(x). Therefore, based on the existing hardware
implementations of RSA method and SHA256 hash function (or AES method) in the literature,
we could implement our EPOS scheme using hardware in the near future.

It is much easier to implement our scheme in hardware than the EPOR scheme [47].

5 Performance Analysis

The proposed scheme is efficient in storage, communication and computation. The storage over-
head due to authentication tags is 1/m of the file size (after error erasure encoding). The proof
size in a verification is 2λ bits. In the setup, the data encoding algorithm DEncode requires n num-
ber of pseudorandom function evaluations, modular additions/multiplications. In a verification
session, the computation of the prover algorithm Prove is dominated by the exponentiation with
large integer exponent in Equation (7), which is equivalent to m number of group exponentiation
in Z∗N . The verifier algorithm Verify requires one modular division, three modular exponentiation
in Z∗N , ` number of additions/multiplications in Zφ(N), and ` number of pseudorandom function
evaluations, where ` = |C| is the number of indices selected during a verification.

5.1 Comparison

We compared the performance of the proposed scheme EPOS with existing schemes in Table 1
on page 9.

Furthermore, in table 2 on page 9, we give a concrete comparison with respect to the setting
specified in the below example. We remark that both Ateniese et al. [5,4] and the proposed
scheme supports only private key verification.

Example 1 After erasure encoding, the file size is 1GB, block size is m = 100, and storage
overhead due to authentication tags is about 10MB for all schemes. For all schemes, we assume
that, during a verification, the challenge query {(i, νi) : i ∈ C} is represented by two 80 bits
PRF seeds9. System parameter ` represents the size of set C. All computation times are repre-
sented by the corresponding dominant factor. exp and mul denote the group exponentiation and
group multiplication respectively in the corresponding group. Note that one 1024 bits modular
exponentiation takes roughly 5 millisecond in a standard PC.

5.2 Experiment

We implement a prototype of our scheme in C language and using GMP [29] library version 5.02.
We run the prototype in a Laptop PC with a 2.5GHz Intel Core 2 Duo mobile CPU (model
T9300, released in 2008). We achieve a throughput of data preprocessing at speed 24 megabytes
per second, which is about 400 times faster than Atenesis et al. [5,4], which achieves throughput
of data preprocessing at speed 0.05 megabytes per second with a 3.0GHz desktop CPU [5]. This
empirical result agrees with our previous analysis.

9 Alternatively, one may use “hitter sampler” [30]

8

Table 1. Performance Comparison. All schemes support private verification only. In each scheme (except the first
two in the table), a challenge set C ⊂ [0, n − 1] contains ` block indices and can be compactly represented with
280 bits due to results of [23,30]. In the table, “exp”, “mul” and “add” represent exponentiation, multiplication
and addition in the corresponding groups/fields; “samp” represents the sample method given by Goldreich [30];
notation |F| denotes the file size in bits. Here λ denotes the bit-length of group element size, s (= m) denotes
the block size, and ` denotes the number of data blocks accessed during on verification. Note: In Ateniese et
al. [5,4]’s PDP scheme, exponentiation with a large integer exponent of size sλ is required. We represent such
exponentiation as a number of s normal group exponentiation exp, where the exponent is λ bits long. Similar for
the RSA based scheme.

Scheme Group
element
size (bits)

Communica-
tion (bits)

Storage
Over-
head

Computation (Prover) Computation (Veri-
fier)

Computation (Data Pre-
process)

RSA-based scheme [22] λ = 1024 2λ Zero |F|/λ exp 1 exp 1 exp

PolyCommit [34] λ = 160 3λ Zero |F|/λ exp + 2|F|/λ (mul
+ add)

2 pairing |F|/λ (mul + add) + 1
exp

PolyDelgegation [11] λ = 160 2λ+ 440 |F| |F|/λ (exp + mul + add) 2 exp |F|/λ (exp + mul + add)

Ateniese [4][5] λ = 1024 2λ+ 520 |F|/s (`+ s) exp + 2` mult. +
` add + 1 hash + 1 samp

` (exp + mult.) + 1
hash + 1 samp

|F|/λ exp + n hash

S.W. [42] λ = 80 (s + 1)λ +
360

|F|/s s` (add + mult) + 1 samp (` + s) (add + mult)
+ ` PRF + 1 samp

|F|/λ (mul + add) +
|F|/(λs) PRF

EPOR(E.C.) [47] λ = 160 3λ+ 440 |F|/s (s− 1) exp + (s`+ s+ `)
(add + mul) + 1 samp

2 exp + ` (add +
mult) + ` PRF + 1
samp

|F|/λ (mul + add) +
|F|/(λs) PRF

EPOR(Z∗q) [47] λ = 1024 3λ+ 440 |F|/s (s− 1) exp + (s`+ s+ `)
(add + mul) + 1 samp

2 exp + ` (add +
mult) + ` PRF + 1
samp

|F|/λ (mul + add) +
|F|/(λs) PRF

EPOS (This work) λ = 1024 2λ+ 416 |F|/s (s+ 1) exp + (s`+ s+ `)
(add + mul) + 1 samp

2 exp + ` (add +
mult) + ` PRF + 1
samp

|F|/λ (mul + add) +
|F|/(λs) PRF

Table 2. Comparison with an example among the PDP scheme by Ateniese et al. [5], the POR scheme by
Shacham and Waters [42], the POR scheme named EPOR proposed by Xu and Chang [47], and PDP scheme EPOS
proposed in this paper. After erasure encoding, the file size is 1GB, block size is s = 100, and storage overhead
due to authentication tags is about 10MB for all schemes. For all schemes listed below, we assume that, during a
verification, the (part of) challenge {(i, νi) : i ∈ C} are represented compactly with 280 bits due to results of [23,30].
System parameter ` represents the size of set C. All computation times are represented by the corresponding
dominant factor. “exp” and “mul” denote the group exponentiation and group multiplication respectively in the
corresponding group. Note: (1) In Ateniese et al. PDP scheme, exponentiation with a large integer exponent of
size sλ is required. We represent such exponentiation as a number of s normal group exponentiation exp, where
the exponent is λ bits long. (2) One 1024 bits modular exponentiation or one 160 bits elliptic curve exponentiation
takes roughly 5 millisecond in a standard PC.

Scheme Group element
size (bits)

Communication bits Computation (Data Preprocess) Computation (Prove)

Ateniese [4][5] λ = 1024 2λ+ 520 = 2568 223 exp over Z∗N (100 + `) exp over Z∗N
Shacham and Water [42] λ = 80 (s+ 1)λ+ 360 = 8440 227 mul over Zp 100` mul over Zp

EPOR(E.C.) [47] λ = 160 3λ+ 440 = 920 226 mul over Zp 100 exp over Elliptic Curve

EPOR(Z∗q) [47] λ = 1024 3λ+ 440 = 3512 223 mul over Zp 100 exp over Z∗q
EPOS (This work) λ = 1024 2λ+ 160 + 256 = 2464 223 mul. over Z∗N 102 exp. over Z∗N

9

6 Security Analysis of Scheme EPOS

6.1 Security Formulation

We review the Provable Data Possession formulation proposed by Ateniese et al. [5,4]. The PDP
security game between a probabilistic polynomial time (PPT) adversary A and a PPT challenger
C w.r.t. a PDP scheme E = (KeyGen, DEncode, Challenge, Prove, Verify) is as below.

Setup: The challenger C runs the key generating algorithm KeyGen to obtain public-private key
pair (pk, sk). The challenger C gives the public key pk to the adversary A and keeps the private
key sk securely.

Learning: The adversary A adaptively makes queries, where each query is one of the following:

– Store-query (F): Given a data file F chosen by A, the challenger C responses by running data
encoding algorithm (id, F̂) ← DEncode(sk, F) and sending the encoded data file F̂ together
with its identifier id to A.

– Verification-query (id): Given a file identifier id chosen by A, if id is the (partial) output of
some previous store-query thatA has made, then the challenger C initiates a PDP verification
with A w.r.t. the data file F associated to the identifier id in this way:

• C runs the algorithm Challenge to generate a pair of public-secret tokens (pt, st) and the
a challenge query Chall, and sends (pt,Chall) to the adversary A and keeps st safely. The
secret token st will be used in the verifier Verify algorithm.

• A produces a proof ψ w.r.t. the challenge Chall;
Note: adversary A may generate the proof in an arbitrary method rather than applying
the algorithm Prove.

• C verifies the proof ψ by running algorithm Verify(sk, id, Chall, ψ). Denote the output as
b.

C sends the decision bit b ∈ {accept, reject} to A as feedback. Otherwise, if id is not the
(partial) output of any previous store-query that A has made, C does nothing.

Commit: Adversary A chooses a file identifier id∗ among all file identifiers she obtains from C
by making store queries in Learning phase, and commit id∗ to C. Let F∗ denote the data file
associated to identifier id∗.

Retrieve: The challenger C initiates one PDP verifications with A w.r.t. the data file F∗, where
C plays the role of verifier and A plays the role of prover, as in the Learning phase. Suppose the
challenger C asks A to check all data blocks Fi of F∗ with index i ∈ C. The challenger C extracts
file blocks {F′i : i ∈ C} from A’s storage by applying a PPT knowledge extractor. The adversary
A wins this PDP security game, if the challenger C accepts A’s response in the verification. The
challenger C wins this game, if the extracted blocks {(i, F′i) : i ∈ C} are identical to the original
{(i, Fi) : i ∈ C}.

Definition 1 ([5]) A PDP scheme is sound if for any PPT adversary A, the probability that
A wins the above PDP security game is negligibly close to the probability that C wins the same
security game. That is

Pr[A wins PDP game] ≤ Pr[C wins PDP game] + negl. (10)

10

6.2 KEA Assumption

The Knowledge of Exponent Assumption (KEA) is introduced by Damg̊ard [20] and subsequently
appears in many works [32,9,10,35,21]. The below is a variant version of KEA in the RSA ring
given by Ateniese et al. [5].

Assumption 1 (Knowledge of Exponent Assumption [20,9]) Let N = pq be a RSA modulus,
g ∈ Z∗N and s be an positive integer. For any PPT algorithm A that takes (N, g, gs) as input and
r as random coin and returns (C, Y) such that Y = Cs mod N , there exists a PPT extractor
algorithm Ā which, given (N, g, gs, r) as input, outputs x such that gx = C mod N .

Remark 2

– Note that the extractor Ā has access to A’s input (N, g, gs) and A’s random coin r, thus Ā
can replay step by step the process how A computes (C, Y) from (N, g, gs).

– This assumption has been shown to hold in generic group by Abe and Fehr [1].

Assumption 2 (Factorization Assumption [40]) We say an integer N is a RSA modulus,
if N = pq and all of p, q, p−12 , q−12 are prime numbers and bit-lengths of p and q are equal. Then
for any PPT adversary A, the probability that A can factorize a randomly chosen λ bits RSA
modulus, is negligible in λ.

6.3 Security Proof

Theorem 1 (EPOS is Sound) If the Knowledge of Exponent Assumption 1 holds and the pseu-
dorandom function PRF is secure, then the proposed scheme EPOS is sound.

The proof below is similar to the proof of Ateniese et al. [5] in the high level : If an adversary
A wins the security game, then a knowledge extractor (as in the assumption KEA) can find a
linear combination of data blocks (See Equation 5). Then each individual block can be obtained
by solving a linear equation system.

In details, our proof are very different from Ateniese et al. [5]. For ease of exposition, we
clarify two related but distinct concepts: valid proof and genuine proof. A proof is valid, if it
is accepted by the verifier. A proof is genuine, if it is the same as the one generated by an
honest (deterministic) prover on the same query. In our scheme, for each query, there is only
one genuine proof, and there are many valid proofs.

At first in Lemma 2, we prove Theorem 1 in a simplified no-feedback setting, where
all decisions (acceptance or rejection) are kept secret from the adversary in the PDP security
game. Then we will lift the security to the feedback setting, where all decisions (acceptance or
rejection) are given to the adversary in the PDP security game—this is the exactly the original
PDP securty game setting in Sec 6.1.

Lemma 2 Suppose the Factorization Assumption 2 holds and the pseudorandom function PRF
is secure. Then the proof (ψ1, ψ2) in the proposed scheme EPOS is unforgeable in the no-feedback
setting, where all acceptance or rejection decisions are kept secure from the adversary in the PDP
security game. More precisely, let (ψ̂1, ψ̂2) denote the adversary A’s response in the Retrieve
phase of the PDP security game w.r.t. EPOS. The probability

Pr[Verifier accepts (ψ̂1, ψ̂2) ∧ (ψ̂1, ψ̂2) 6= (ψ1, ψ2)]

≤ negl(λ) (11)

11

is negligible.

The proof of the above Lemma 2 is in Appendix A.

Lemma 3 Suppose the Factorization Assumption 2 holds and the pseudorandom function PRF
is secure. Then the proof (ψ1, ψ2) in the proposed scheme EPOS is unforgeable in the feedback
setting, where all acceptance or rejection decisions are provided to the adversary in the PDP
security game. (The full detailed proof of this lemma is in Appendix B.)

Proof ((Proof Sketch of Lemma 3)). In the simulated security game, the challenger does not
have all information of private key and thus cannot answer verification queries.

However, the challenger can construct a simulated verifier: The challenger can consistently
keep a local copy of all files and tags and computes the genuine proof by himself/herself in each
verification session. The challenger accepts a proof provided by the adversary, if and only if the
received proof is identical to the genuine proof. Thus, this simulated verifier will accept only
genuine proof and will reject valid but no genuine proof. Therefore, the simulated verifier and
the real verifier will output different decisions, if and only if the adversary can output valid but
not genuine proof.

Next, we can show that, the probability that the adversary can output valid but not genuine
proof is negligible, using mathematical induction proof. The induction is taken on the number
(denoted as k) of verification queries made in the learning phase in the PDP security game.
We notice that, the standard PDP security game in the case k = 0, where adversary makes no
verification-query in the learning phase, is equivalent to the modified PDP security game in the
no-feedback-setting, where adversary can make many verification queries in the learning phase
but the adversary did not get any feedback on these queries—Asking many queries without
feedback is equivalent to asking no query. Therefore Lemma 2 just proves the basic case with
k = 0. We will prove the inductive step from k to k + 1 using conditional probability analysis.
The full detailed proof of this lemma is in Appendix B. ut

Now it is the time to prove the main Theorem 1 in this paper.

Proof (of Theorem 1). Lemma 3 states that the proof in the scheme EPOS is unforgeable. Since
for random value d ∈ Zφ(N), A can win PDP security game with non-negligible probability. Then
for many values di’s, A can compute (ψi,1 = gπ1di , ψi,2 = gπ2) correctly. Let us just consider d1

and d2 among these di’s. Let c = d2
d1

mod φ(N). Given input (gd1 , gd2 =
(
gd1
)c

), the adversary

A can output (gd1π1 , gd2π1 =
(
gd1π1

)c
). By Knowledge of Exponent Assumption (KEA [20]),

there exists an extractor that can find M , such that gd1π1 = gd1M mod N .

Case 1: M 6= π1 If the two integers M and π1 are distinct (Caution: Here we treat M , π1 as
large integer instead of group elements from Zφ(N)), then the difference M − π1 has to be a

multiple of 1
4φ(N), from which the factorization of N can be found using Miller’s result [37].

Case 2: M = π1 In this case, the extractor finds π1, as desired. Recall that the large integer
π1 =

∑
i∈C νiFi (Yes, integer, not group element) is linear equation of file blocks Fi’s. Similar to

the proof in Ateniese’s PDP [5], by choose independent weights νi’s in |C| number of executions
of the protocol, we obtain |C| independent linear equations in the unknowns Fi, i ∈ C. Thus these
file blocks Fi, i ∈ C, can be found by solving the linear equation system over integer domain.

Thus, Theorem 1 is proved.

12

7 Conclusion

In this paper, we proposed a PDP scheme EPOS which is very efficient in communication, storage
and computation. Compared to Ateniese et al. [5], EPOS is much more efficient in computation
(400 times faster in setup), and equally efficient in communication and storage.

References

1. Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In TCC ’07: Theory of Cryptography
Conference, pages 118–136, 2007.

2. Shweta Agrawal and Dan Boneh. Homomorphic MACs: MAC-Based Integrity for Network Coding. In ACNS
’09: International Conference on Applied Cryptography and Network Security, pages 292–305, 2009.

3. Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-to-peer content distribution
technologies. ACM Computing Surveys, 36(4):335–371, 2004.

4. Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Osama Khan, Lea Kissner, Zachary
Peterson, and Dawn Song. Remote data checking using provable data possession. ACM Transactions on
Information and System Security, 14:12:1–12:34, 2011.

5. Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary Peterson, and
Dawn Song. Provable data possession at untrusted stores. In CCS ’07: ACM conference on Computer and
communications security, pages 598–609, 2007.

6. Giuseppe Ateniese, Roberto Di Pietro, Luigi Mancini, and Gene Tsudik. Scalable and efficient provable data
possession. In SecureComm ’08: International conference on Security and privacy in communication netowrks,
pages 9:1–9:10, 2008.

7. Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. Proofs of Storage from Homomorphic Identification
Protocols. In ASIACRYPT ’09: International Conference on the Theory and Application of Cryptology and
Information Security: Advances in Cryptology, pages 319–333, 2009.

8. Christopher Batten, Kenneth Barr, Arvind Saraf, and Stanley Trepetin. pStore: A Secure Peer-to-Peer Backup
System. Technical Report MIT-LCS-TM-632, MIT, 2002.

9. Mihir Bellare and Adriana Palacio. The Knowledge-of-Exponent Assumptions and 3-Round Zero-Knowledge
Protocols. In CRYPTO ’04: Annual International Cryptology Conference on Advances in Cryptology, pages
273–289, 2004.

10. Mihir Bellare and Adriana Palacio. Towards Plaintext-Aware Public-Key Encryption Without Random
Oracles. In ASIACRYPT ’04: International Conference on the Theory and Application of Cryptology and
Information Security, pages 48–62, 2004.

11. Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable Delegation of Computation over Large
Datasets. In CRYPTO ’11: Annual International Cryptology Conference on Advances in Cryptology, pages
111–131, 2011.

12. Manuel Blum, Will Evans, Peter Gemmell, Sampath Kannan, and Moni Naor. Checking the correctness of
memories. In FOCS ’91: Annual Symposium on Foundations of Computer Science, pages 90–99, 1991.

13. Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. Signing a Linear Subspace: Signature Schemes
for Network Coding. In PKC ’09: International Conference on Practice and Theory in Public Key Cryptog-
raphy, pages 68–87, 2009.

14. Kevin Bowers, Ari Juels, and Alina Oprea. HAIL: a high-availability and integrity layer for cloud storage. In
CCS ’09: ACM conference on Computer and communications security, pages 187–198, 2009.

15. Kevin Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability: theory and implementation. In CCSW
’09: ACM workshop on Cloud computing security, pages 43–54, 2009.

16. David Cash, Alptekin Kupcu, and Daniel Wichs. Dynamic Proofs of Retrievability via Oblivious RAM.
volume 7881 of EUROCRYPT ’13: Advances in Cryptology, pages 279–295. 2013. http://eprint.iacr.org/
2012/550.

17. Ee-Chien Chang and Jia Xu. Remote Integrity Check with Dishonest Storage Server. In ESORICS ’08:
European Symposium on Research in Computer Security, pages 223–237, 2008.

18. Kai-Min Chung, Yael Kalai, and Salil Vadhan. Improved Delegation of Computation Using Fully Homomor-
phic Encryption. In CRYPTO ’10: Annual International Cryptology Conference on Advances in Cryptology,
pages 483–501, 2010.

19. Reza Curtmola, Osama Khan, Randal Burns, and Giuseppe Ateniese. MR-PDP: Multiple-Replica Provable
Data Possession. In ICDCS ’08: International Conference on Distributed Computing Systems, pages 411–420,
2008.

13

http://eprint.iacr.org/2012/550
http://eprint.iacr.org/2012/550

20. Ivan Damg̊ard. Towards Practical Public Key Systems Secure Against Chosen Ciphertext Attacks. In
CRYPTO ’91: Annual International Cryptology Conference on Advances in Cryptology, pages 445–456, 1992.

21. Alexander W. Dent. The Cramer-Shoup Encryption Scheme Is Plaintext Aware in the Standard Model. In
EUROCRYPT ’06: Annual International Conference on Advances in Cryptology, pages 289–307, 2006.

22. Yves Deswarte, Jean-Jacques Quisquater, and Ayda Säıdane. Remote Integrity Checking: How to Trust Files
Stored on Untrusted Servers . In Conference on Integrity and Internal Control in Information Systems, pages
1–11, 2003.

23. Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. Proofs of Retrievability via Hardness Amplification. In
TCC ’09: Theory of Cryptography Conference on Theory of Cryptography, pages 109–127, 2009.

24. Cynthia Dwork, Moni Naor, Guy Rothblum, and Vinod Vaikuntanathan. How Efficient Can Memory Checking
Be?. In TCC ’09: Theory of Cryptography Conference, pages 503–520, 2009.

25. Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, and Roberto Tamassia. Dynamic provable data
possession. In CCS ’09: ACM conference on Computer and communications security, pages 213–222, 2009.

26. Décio Filho and Paulo Barreto. Demonstrating data possession and uncheatable data transfer. Cryptology
ePrint Archive, Report 2006/150, 2006. http://eprint.iacr.org/.

27. Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive Verifiable Computing: Outsourcing Com-
putation to Untrusted Workers. In CRYPTO ’10: Annual International Cryptology Conference on Advances
in Cryptology, pages 465–482, 2010.

28. Craig Gentry. Fully Homomorphic Encryption using Ideal Lattices. In STOC ’09: ACM Symposium on
Theory of Computing, pages 169–178, 2009.

29. GMP. The GNU Multiple Precision Arithmetic Library. http://www.gmplib.org/.
30. Oded Goldreich. A Sample of Samplers - A Computational Perspective on Sampling (survey). Electronic

Colloquium on Computational Complexity (ECCC), 4(20), 1997.
31. Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University Press, New

York, NY, USA, 2006.
32. Satoshi Hada and Toshiaki Tanaka. On the Existence of 3-Round Zero-Knowledge Protocols. In CRYPTO

’98: Annual International Cryptology Conference on Advances in Cryptology, pages 408–423, 1998.
33. Ari Juels and Burton Kaliski, Jr. Pors: proofs of retrievability for large files. In CCS ’07: ACM conference

on Computer and communications security, pages 584–597, 2007.
34. Aniket Kate, Gregory Zaverucha, and Ian Goldberg. Constant-Size Commitments to Polynomials and Their

Applications. In ASIACRYPT ’10: International Conference on the Theory and Application of Cryptology
and Information Security, pages 177–194, 2010.

35. Hugo Krawczyk. HMQV: A High-Performance Secure Diffie-Hellman Protocol. In CRYPTO ’05: Annual
International Cryptology Conference on Advances in Cryptology, pages 546–566, 2005.

36. Jinyang Li and Frank Dabek. F2F: Reliable Storage in Open Networks. In IPTPS ’06: International Workshop
on Peer-to-Peer Systems, 2006.

37. Gary Miller. Riemann’s hypothesis and tests for primality. In STOC ’75: ACM Symposium on Theory of
Computing, pages 234–239, 1975.

38. Moni Naor and Guy Rothblum. The Complexity of Online Memory Checking. In FOCS ’05: Symposium on
Foundations of Computer Science, pages 573–584, 2005.

39. NIST. National Institute of Standards and Technology. Secure hash standard (SHS). FIPS 180-2, August
2002.

40. Ronald Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM, 21(2):120–126, 1978.

41. Amit Sahai and Salil Vadhan. A Complete Problem for Statistical Zero Knowledge. Journal of the ACM,
50:196–249, 2003.

42. Hovav Shacham and Brent Waters. Compact Proofs of Retrievability. In ASIACRYPT ’08: International
Conference on the Theory and Application of Cryptology and Information Security, pages 90–107, 2008.

43. Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. Practical Dynamic Proofs of Retrievability. (will
appear in) CCS ’13: ACM Conference on Computer and Communications Security.

44. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas Devadas. Efficient Memory
Integrity Verification and Encryption for Secure Processors. In MICRO ’03: Annual IEEE/ACM International
Symposium on Microarchitecture, pages 339–350, 2003.

45. Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-Preserving Public Auditing for Data Storage
Security in Cloud Computing. In INFOCOM ’10: Annual IEEE International Conference on Computer
Communications, pages 525–533, 2010.

46. Qian Wang, Cong Wang, Jin Li, Kui Ren, and Wenjing Lou. Enabling public verifiability and data dynamics
for storage security in cloud computing. In ESORICS’09: European conference on Research in computer
security, pages 355–370, 2009.

14

http://eprint.iacr.org/
http://www.gmplib.org/

47. Jia Xu and Ee-Chien Chang. Towards Efficient Proofs of Retrievability. In (Full Paper) AsiaCCS ’12: ACM
Symposium on Information, Computer and Communications Security, 2012. http://eprint.iacr.org/2011/
362.

48. Kan Yang and Xiaohua Jia. Data storage auditing service in cloud computing: challenges, methods and
opportunities. Journal of World Wide Web, 2011.

A Proof of Lemma 2

Proof (of Lemma 2).
Game 1 The first game is the same as the PDP security game described in Section 6.1, except
that

– All acceptance or rejection decisions are kept secure from the adversary A. Essentially, the
challenger in the PDP security game does not answer verification queries made by the
adversary.

– Adversary A wins in Game 1, if A’s forgery proof (ψ̂1, ψ̂2) is accepted and it is different
from the genuine proof. Formally, let id, {(i, νi) : i ∈ C} and (pt, st) denote the file identifier,
challenge query, and public-secret tokens respectively in the Retrieve phase of the PDP
security game, let (ψ1, ψ2) denote the corresponding genuine proof and (pk, sk) be the public-
private key pair. Adversary A wins in Game 1, if

Verify(sk, id, st, {(i, νi) : i ∈ C}, ψ̂1, ψ̂2) = accept

and (ψ̂1, ψ̂2) 6= (ψ1, ψ2). (12)

Game 2 The second game is the same as Game 1, except that the pseudorandom function
PRF outputs true randomness. Precisely, the function PRFseed is evaluated in the following way:

– The challenger keeps a table to store all previous encountered input-output pairs (v,PRFseed(v)).
– Given an input v, the challenger lookups the table for v, if there exists an entry (v, u),

then return u as output. Otherwise, choose u at random from the range of PRFseed, insert
(v,PRFseed(v) := u) into the table and return u as output.

Game 3 The third game is the same as Game 2, except that:

– The range of the function PRF is changed from Zφ(N) to ZN . Note that in this game, PRF is
evaluated in the same way as in Game 2;

– The range of the authentication tag is also changed from Zφ(N) to ZN . More precisely, the
Equation (4) (on page 6) is replaced by the following equations

σi := τFi + PRFseed(id‖i) mod N. (13)

We remark that in Game 3, the challenger is not able to verify adversary’s response, and the
challenger does not need to do verification either, since in the no-feedback setting, the challenger
will not answer verification queries made by the adversary.

Claim 1 If there is a non-negligible difference in a PPT adversary A’s success probability be-
tween Game 1 and Game 2, then there exists another PPT adversary B that can break the
security of the pseudorandom function PRF. More precisely,

|Pr[A wins Game 1]− Pr[A wins Game 2]| ≤ NPRF · AdvPRFB ,

where NPRF is the number of distinct evaluations of pseudorandom function PRF required and
AdvPRFB denotes the probability that B can distinguish the output of PRF from true randomness.

15

http://eprint.iacr.org/2011/362
http://eprint.iacr.org/2011/362

The above Claim 1 can be proved using a standard hybrid argument [31]. Here we save the
details.

Claim 2 For any computationally unbounded adversary A, the probability that A can find the
secret value τ after interacting in Game 2, is 1

φ(N) .

Proof ((Proof Sketch of Claim 2)). In Game 2, the function PRF outputs true random numbers
in Zφ(N) and thus the secret value τ is hidden perfectly. Therefore, the probability that an

(computationally unbounded) adversary A can find τ is 1
φ(N) . Recall that τ is chosen at random

from group Zφ(N).

Claim 3 For any PPT adversary A, the probability that A can factorize N after interacting in
Game 3 is negligible.

Proof ((Proof Sketch of Claim 3)). Recall that in Game 3, the authentication tag σi for each
block is a group element chosen at random from ZN . Suppose a PPT adversary A factorizes the
RSA modulus N after interacting in Game 3.

Based on A, we construct a PPT adversary B to factorize N . Given only the RSA modulus
N , the adversary B can play the role of challenger to setup10 the PDP security game w.r.t.
scheme EPOS, and answer store queries made by the adversary A by sampling uniform random
number from ZN as the authentication tag σi. Thus,

Pr[A factorizes N in Game 3]

≤Pr[B factorizes N]

=AdvFactB . (14)

Claim 4 For any PPT adversary A, the probability that A can factorize N after interacting in
Game 2 is negligible.

Proof (of Claim 4). We will show that any PPT adversary cannot distinguish between Game
2 and Game 3. As a result, Claim 3 can imply Claim 4.

Now we study the statistical difference [41] between uniform random variables over Zφ(N)

and over ZN .

10 From the input N , B can generate the public key and simulate the algorithm DEncode. In the no-feedback
setting, B does not need to do verification, so secret key is not be necessary.

16

Let X be a uniform random variable over Zφ(N) and Y be a uniform random variable over
ZN . The statistical difference [41] between X and Y is

SD(X,Y)
def
=

1

2

∑
a

|Pr[X = a]− Pr[Y = a]|

=
1

2

∑
a∈Zφ(N)

|Pr[X = a]− Pr[Y = a]| +

1

2

∑
a∈ZN\Zφ(N)

|Pr[X = a]− Pr[Y = a]|

=
1

2

(
1

φ(N)
− 1

N

)
× φ(N) +

1

2

(
1

N
− 0

)
× (N − φ(N))

= 1− φ(N)

N

= 1− (1− 1

p
)(1− 1

q
)

=
1

p
+

1

q
− 1

pq
.

Let N0 be a positive integer. Let Xi, i = 1, 2, . . . , N0, be independently and identically
distributed uniform random variables over Zφ(N), and Yi, i = 1, 2, . . . , N0, be independently and
identically distributed uniform random variables over ZN . According to Fact 2.1 and Fact 2.3
of Sahai and Vadhan [41], we have

SD((X1, . . . , XN0), (Y1, . . . , YN0))

≤
∑

i∈[1,N0]

SD(Xi, Yi). (15)

The right hand side of the above Equation (15) is∑
i∈[1,N0]

SD(Xi, Yi) = N0 × SD(X, Y)

= N0

(
1

p
+

1

q
− 1

pq

)
. (16)

Suppose the adversary A obtains exactly NPRF authentication tags σi (σ′i respectively) for
NPRF different indices i’s in Game 2 (Game 3 respectively). Since σi’s are independently
and identically distributed uniform random variables over Zφ(N) and σ′is are independently
and identically distributed uniform random variables over ZN , the difference of the adversary’s
views11 in Game 2 and Game 3 is bounded as below

SD(ViewGame 2
A , ViewGame 3

A) ≤ NPRF

(
1

p
+

1

q
− 1

pq

)
. (17)

11 Adversary’s view is a transcript of all messages received.

17

The adversary A is polynomially bounded, which implies NPRF is polynomially bounded. There-
fore, the statistical difference SD(ViewGame 2

A , ViewGame 3
A) is negligible in λ ≈ logN ≈

2 log p ≈ 2 log q, and there is no adversary can distinguish between Game 2 and Game 3.

Combining with Claim 3, we conclude that the probability

Pr[A factorizes N in Game 2]

≤ Pr[A factorizes N in Game 3] +NPRF

(
1

p
+

1

q
− 1

pq

)
is negligible in λ ≈ logN . The proof for Claim 4 is complete.

Claim 5 Let (ψ̂1, ψ̂2) denote the adversary A’s output in the Game 2 and (ψ1, ψ2) be the
corresponding genuine output which shares the same values {(i, νi) : i ∈ C} with the forgery
output. Then,

Pr[A wins Game 2 ∧ (ψ̂1, ψ̂2) 6= (ψ1, ψ2)] ≤
1

p′
. (18)

Pr[A wins Game 2] ≤ 1

p′
. (19)

Proof (of Cliam 5). Suppose the adversary A wins Game 2, then A’s forged proof (ψ̂1, ψ̂2) is
accepted and is different from the genuine output (ψ1, ψ2): (ψ̂1, ψ̂2) 6= (ψ1, ψ2). Since both the
forged proof and genuine proof are accepted by the verifier w.r.t. {(i, νi) : i ∈ C} and satisfy the
Equation (9) (on page 7), we have

(
ψ̂1

)τ
=

(
ψ̂2

g
∑
i∈C νiPRFseed(id‖i)

)d
mod N (20)

(ψ1)
τ =

(
ψ2

g
∑
i∈C νiPRFseed(id‖i)

)d
mod N (21)

Dividing Equation (20) with Equation (21), we have(
ψ̂1

ψ1

)τ
=

(
ψ̂2

ψ2

)d
mod N (22)

Recall that the verifier algorithm Verify accepts only if ψ1, ψ̂1 ∈ QRN . Thus ψ̂1

ψ1
∈ QRN is also

a quadratic residue. For any element x ∈ QRN , x
1
4
φ(N) = 1, and the multiplicative order of x

modulo N will be a factor of 1
4φ(N) = p′q′. Since ψ̂1

ψ1
6= 1, the multiplicative order, denoted with

ϕ, of ψ̂1

ψ1
modulo N is at least min{p′, q′} = p′. Thus a computationally unbounded adversary B

can invoke the adversary A to obtain the above Equation (22) and find the value (τ mod ϕ)

from Equation (22) by solving a discrete log problem with ψ̂1

ψ1
as base. The probability that (τ

mod ϕ) = τ is

Pr[(τ mod ϕ) = τ] = Pr[τ ∈ Zϕ] =
ϕ

φ(N)
. (23)

18

By Claim 2, we have the probability

Pr[A wins Game 2 ∧ (ψ̂1, ψ̂2) 6= (ψ1, ψ2)]

≤ Pr[B finds τ in Game 2]

Pr[(τ mod ϕ) = τ]

=

1
φ(N)
ϕ

φ(N)

=
1

ϕ
≤ 1

p′

is negligible in λ ≈ logN ≈ 2 + 2 log p′. The proof of Claim 5 is complete.

Thus, Lemma 2 is proved.

B Proof of Lemma 3

Proof (of Lemma 3).
Game 1. The first game is just a simplified version of the PDP security game as described in
Section 6.1 (on page 10), such that all acceptance or rejection decisions are kept secret from
the adversary. Recall that we refer to such simplified version as PDP security game in the
no-feedback setting. This Game 1 is identical to the Game 1 in the proof of Lemma 2 (on
page 11).

For each integer k ≥ 0, we define the following game:
Game 2.k. This game is the same as Game 1, except that, A adaptively makes k verification-
queries in the Learning phase and all acceptance or rejection decisions are provided to A at
the end of each query.

We describe two different verification strategies as below, where the first one is adopted by
the challenger of the security game Game 2.k and the second one serves as the reference:

– SimulatedVerifier: The challenger keeps a local copy of all data files and authentication
tags, where data files are chosen by the adversary in a store-query and authentication tags
are generated by the challenger in response to that store-query. For each verification-query,
the challenger computes the corresponding genuine proof (ψ1, ψ2) from the challenger’s local
copy of data files and authentication tags. If the adversary’s proof (ψ′1, ψ

′
2) is the same as the

genuine proof (ψ1, ψ2), i.e. (ψ′1, ψ
′
2) = (ψ1, ψ2), then the challenger outputs accept; otherwise

outputs reject.
– ImaginaryVerifier: An imaginary verification oracle OEPOS.Verify(sk;·) which somehow has

access to the private key sk.

Note that (1) the simulated verifier accepts only genuine proof while the imaginary verifier
oracle accepts all valid proofs which include the genuine proof; (2) the simulated verifier provides
absolutely no new information to the adversary A, since A itself can simulate such verifier by
keeping an intact copy of the data files and authentication tags from the very beginning.

Let us code accept with the bit ‘1’ and code reject with the bit ‘0’, and denote with
ai ∈ {0, 1} be the decision bit output by the imaginary verification oracle for the i-th verification-
query made by the adversary A in Game 2.k; bi ∈ {0, 1} be the corresponding decision bit out-
put by the simulated verifier. Furthermore, let Ak := a1a2 . . . ak ∈ {0, 1}k and Bk := b1b2 . . . bk ∈
{0, 1}k. We notice that

19

– ak+1 6= bk+1 indicates the event that the adversary wins Game 2.k (Note that the (k+1)-th
query is made in the retrieve phase in the Game 2.k).
• (ak+1 = 1, bk+1 = 0) indicates the event that the adversary wins Game 2.k, since

the adversary’s proof is valid (accepted by ImaginaryVerifier), but different from the
genuine proof (rejected by SimulatedVerifier).
• (ak+1 = 0, bk+1 = 1) is impossible, since in our EPOS scheme, the genuine proof is valid

certainly.
– ak+1 = bk+1 indicates the event that the adversary loses Game 2.k.

Claim 6 Game 1 is equivalent to Game 2.0 to the view of the adversary. (Intuitively, asking
many queries without feedback is equivalent to asking no queries.)

Claim 7 Let ξ be a negligible function implied in Lemma 2, such that for any PPT adversary
A, Pr[A wins Game 1] ≤ ξ. Then Pr[A wins Game 2.0] ≤ ξ.

Claim 8 If Pr[Ak = Bk] ≥ X, then Pr[Ak+1 = Bk+1] ≥ X(1− ξ).

Proof (of Claim 8).

Pr[Ak+1 = Bk+1] = Pr[Ak = Bk ∧ ak+1 = bk+1] (24)

= Pr[Ak = Bk]× Pr[ak+1 = bk+1 | Ak = Bk] (25)

≥ Pr[Ak = Bk]× Pr[A loses Game 1] (26)

≥ X(1− ξ). (27)

Claim 9 Pr[Ak = Bk] ≥ (1− ξ)k.

Proof (of Claim 9). We prove the above claim using mathematical induction.
Base Case: k = 1. Pr[A1 = B1] = Pr[a1 = b1] = Pr[A loses Game 2.0] ≥ (1− ξ).
Induction Step: from k to k + 1. This is just Claim 8.

Claim 10 Pr[A wins Game 2.k] ≤ ξ +
(
1− (1− ξ)k

)
= (k + 1)ξ + o(ξ).

Notice that here o(·) denote the little-O notation.

Proof (of Claim 10).

Pr[A wins Game 2.k]

= Pr[A wins Game 2.k ∧Ak = Bk] + Pr[A wins Game 2.k ∧Ak 6= Bk]

≤ Pr[A wins Game 2.k | Ak = Bk]× Pr[Ak = Bk] + Pr[Ak 6= Bk]

≤ Pr[A wins Game 2.k | Ak = Bk] + Pr[Ak 6= Bk]

≤ Pr[A wins Game 1] + Pr[Ak 6= Bk]

≤ ξ +
(

1− (1− ξ)k
)

= (k + 1)ξ + o(ξ).

Notice that Pr[A wins Game 2.k | Ak = Bk] ≤ Pr[A wins Game 1], since in Game 2.k, Ak =
Bk indicates that the adversary gains absolutely no new information from the k verification-
queries in the Learning phase, thus equivalent to the no-feedback setting.

Therefore, Lemma 3 is concluded from Claim 10. ut

20

	Towards Efficient Provable Data Possession in Cloud Storage
	Introduction
	A Brief Description of EPOS
	Contributions
	Organization

	Related Works
	Early Approaches
	Online Memory Checker and Sublinear Authenticator
	Proofs of Retrievability and Provable Data Possession
	Proofs of Storage with More Features
	More General Delegated Computation and Proofs of Storage

	Provable Data Possession: Definition
	EPOS: An Efficient PDP Scheme
	Scheme Description
	Discussions on Possible Extensions
	Dynamic PDP.
	Hardware Implementation.

	Performance Analysis
	Comparison
	Experiment

	Security Analysis of Scheme EPOS
	Security Formulation
	KEA Assumption
	Security Proof

	Conclusion
	Proof of Lemma 2
	Proof of Lemma 3

