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Abstract. In TCC 2006, Garay et al. introduced the notion of "commit-prove-fair-open" 

functionality in order to achieve what they called "resource fairness" of secure multi-party 

computation(MPC) with corrupted majority. The protocol realizing this notion of fairness 

follows the gradual release approach and, further, it can be proven secure in the simulation 

paradigm and enjoys composition properties. 

In this paper, we show a more efficient resource-fair protocol of FCPFO based on a new 

variant of Garay et al. time-lines and simplified Camenisch-Shoup(sCS) commitment,whose 

communication and computation complexity are less than 1/5 of Garay et al. construction. In 

addition, our new protocol allows commitment to value 0, which is not possible in the plain 

Garay et al. construction. 

Keywords: commit-prove-fair-open functionality, resource fairness, time-lines, secure 

multi-party computation 

1 Introduction 

In TCC 2006, Garay et al.[1] introduced the notion of resource-fair secure multi-party 

computation(MPC) [2] with corrupted majority, which essentially means that if one party 

learns the output of the protocol ,then so can all other parties, as long as they expend roughly 

the same amount of resources. Their approach follows the gradual release approach[3,4,5] and, 

further, it can be proven secure in the simulation paradigm and enjoys composition properties. 

Turning to constructions of resource-fair secure MPC protocol, they defined the 

“commit-prove-fair-open”(FCPFO) functionality and designed a resource-fair protocol 

GradRel that securely realizes it using a new variant of Garay and Jakobsson’s “time-lines” 

[4].With this functionality, they constructed resource-fair secure MPC protocols based on the 

Canetti et al.[6] and Cramer et al.[7] MPC protocols, and 2008, Kiraz and Schoenmakers[8] 

showed a resource-fair secure two-party computation(2PC) protocol.  

However, the plain GradRel construction is very expensive and doesn’t allow 

commitment to value 0. First, in GradRel construction, when commit to a value x, it need 

make five timed commitments to x1, x2, x3, x4 and y, where{x1, x2, x3, x4} is a random 

permutation of { x,-x,xV,-xV }( one of the four elements is a quadratic residue. V is an 

arbitrary element in 
*

NZ  with Jacobi symbol -1) and {1,4,9,16}y  indicates which xi is 

the x (y = i2 means that xi = x), and it also need prove these commitments are consistent. 

mailto:12695133@qq.com
mailto:stand_fucai@126.com


 

 

Second, in GradRel construction the committed value couldn’t be equal to 0, because the 

commitment ( [ ])z u x  (=0) if x=0. 

In this paper, we show a more efficient protocol securely realizing FCPFO functionality 

based on a new variant of Garay et al. time-lines and simplified Camenisch-Shoup(sCS) 

commitment[9]. 

Our Contribution. First, in our construction, when commit to a value x, we only need make 

one commitment to x, instead of making five commitments. So the communication and 

computation complexity of our protocol are less than 1/5 of  Garay et al. construction. 

Second, our construction allows commitment to value 0.  

Related works on fairness of secure MPC. Fairness is a very desirable property for secure 

MPC protocols.Informally,a protocol is fair if either all the parties learn their (private) outputs, 

or none of them learns anything.However,1986, Cleve[10] has proved that there doesn’t exist 

fair MPC protocols with corrupted majority. Then, many researchers turn to achieve some 

form of fairness. The first approach is the optimistic model which adds to the model a third 

party, where if fairness is breached the third party may be contacted to restore fairness. 2000, 

Cachin and Camenisch [11] designed an efficient optimistic fair secure 2PC protocol. The 

second approach uses a mechanism known as “gradual release”. In this approach, the output 

is released gradually with the property that if an abort occurs, then the adversary has not 

learned much more about the output than the honest parties. 2003,Pinkas[5] first presented a 

fair secure 2PC protocol based on a variant of Boneh and Naor timed commitment[3] that 

could be gradually opening. However, it couldn’t be proven secure according to the 

simulation paradigm. In order to resolve this problem of gradual release approach, 2006, 

Garay et al.[1] introduced the notion of resource-fair secure MPC protocol. The third 

approach is 1/p-secure computation[12],which requires only 1/p-indistinguishability rather 

than indistinguishability. 2009,Moran et al.[13] constructed an 1/p-secure two-party 

coin-flipping protocol. 2010,Beimel et al.[14] extended Moran et al. results to multi-party 

model when less than 2/3 of the parties are malicious. The same year，Gordon and J. Katz[15] 

constructed an 1/p-secure 2PC protocol. 

2 Cryptographic Tools  

2.1 Simplified Camenisch-Shoup (sCS) Commitment Scheme 

sCS encryption scheme is a homomorphic variant of Camenisch-Shoup(CS) cryptosystem[16], 

which uses shorter keys and can be used as a commitment scheme(sCS commiments). 

Setup:A trusted third party generates a safe RSA modulus N= pq, where p and q are safe 

primes such that p=q 3 mod 4 , 2 ' 1, 2 ' 1, ,p p q q p q p q      , and , , ', 'p q p q  

are all primes, picks a random element 2

*'
N

g Z  and an element  
2

'
N

g g . The common 

reference string is (N, g), which also implicitly defines the element 1 N   . In the 

following of this paper, we treat all multiplications and exponentiations as operations in 2

*

N
Z , 

unless stated otherwise. 

Commit phase. Consider message m as an integer in [0, N]. Committer picks a random value 



 

 

[0, / 4]r N , and computes c= ( ) m rsCSCom m g , then sends c to verifier. 

Open phase: Committer sends verifier (m,r).Verifier accepts if 
m rc g . 

2.2 Time-lines 

In Crypto 2000,Boneh and Naor [3] first constructed a timed commitments scheme under 

generalized Blum-Blum-Shub(GBBS)[3] assumption. 2002.Garay and Jakobsson [4] 

introduced the notion of reusable time-lines which allow an amortization of the generation 

costs, and constructed time-lines by reusing the Boneh-Naor’s commitments. 2006,Garay et al. 

[1] gave a more efficient time-lines based on Garay and Jakobsson’s time-lines construction. 

Our time-lines follows Garay et al. construction, but has different modulus(mod N2). 

Setup: Let   be a positive integer representing a certain security parameter. For 80-bit 

security, one can take  =80. A trusted third party chooses (N, g) like sCS commitment and 

does: 

1.Compute the master time-line 

(1) Compute 
-i2 22 2

iu =g mod N
 

= 2 ,
ReqSq (2 2 )i

N g

  for 0 i   . This computation 

can be performed by computing 
-i2 2 2a 2 mod ( )N

 

 and then 
a

iu g . 

(2) Generate a proof that
iu 0 )i  ( are well-formedness, which we assume is 

non-interactive. For details of the proof, we refer to [5]. 

(3) Output L=(N, g, u ) (the master time-line), along with the above proof.  

2.Compute the derived time-line 

(1) Pick a random value [0, /4]N .  

(2) Set h=g
, and compute a derived time-line L'=(N, h, v ),where [ ] ( [ ])v i u i  for 

0 i   . 

Lemma 1 (Strong Pseudorandomness)[1] :Let L=(N, g, u ), L'=(N, h, v ) and  be as the 

above. Let be as in the GBBS assumption. Let w  be the vector containing the last ( l + 1) 

elements in v , i.e., w = ( [ ], [ 1], , [ ]v l v l v     ). Let A be a algorithm whose running 

time is bounded by 2l  and R be a random element in 2

*

N
Z . Then, assuming the composite 

decisional Diffie-Hellman assumption(CDDH)[17] and GBBS hold, there exists a negligible 

function ( )   such that, for any A, 

2 2 2Pr ( , , , , , [ 1]) 1 Pr ( , , , , , ) 1 ( )A N g u h w v l A N g u h w R          
   
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3 A new protocol for FCPFO functionality 

3.1 The Commit-prove-fair-open Functionality 

The formal definition of FCPFO functionality is given in Figure 1,which combine the commit 

phase and prove phase of the FCPFO functionality in [1]. 

Functionality 
R

CPFOF  

R

CPFOF is parameterized by a polynomial-time computable binary relation R. It proceeds as 

follows, running with parties P1, P2, ..., Pn and an adversary S. 

Commit and prove phase: Receive message (commit, sid, xi, iw ) from every party Pi, if 

R(
iw , xi) = 1, broadcast (RECEIPT &PROOF, sid, Pi, iw ) to all parties and S. 

Open phase: Wait to receive message (open, sid) from party Pi, 1 ≤ i ≤ n, and a message 

(deliverat, sid, s) from S. As soon as all n open messages and the deliverat message are 

received, output (fairdeliver, sid, 0, {((DATA, (x1, x2, ..., xn)), Pi)}1≤i≤n∪{((DATA, (x1, 

x2, ..., xn)), S)}, s). 

Figure 1: The commit-prove-fair-open functionality 
CPFOF with relation R. 

3.2 Realizing  CPFOW F : Protocol NewGradRel 

Our new protocol, NewGradRel, securely realizes wrapped functionality W(FCPFO) in the 

(
CRSF ,

ZKF )-hybrid model,which is a new variant of Garay et al. construction[1] based on 

sCS commitment and the previous section time-lines. The gereral wrapper functionality W() 

[1] provides an interface to any functionality and W(F) is the resource fairness model of 

functionality F. For the protocol construction,we need the 
ZKF  functionality[1] for the 

following relations. 

Diffie-hellman quadruple:DH={ 
2 2 2(( , , , , ), ) | mod modN g h x y h g N y x N     |} 

sCS commitment equal: 

ComEq= {
2 2 2(( , , , , ),( , )) | mod / modmN g h u c m h g N c u N     } 

The detailed protocol is as follow. 

Setup: Compute the common reference string L=(N, g,  iuu



1

) as the previous section 

time-lines. 

Round 1(Commit and Prove phase). For each party Pi,1 i n  ,upon receiving input 

(commit,sid,xi) from the environment, performs the following steps: 

(1) Pick a random value [0, /4]i N  .  



 

 

(2) Set h =g i

i


, and compute a derived time-line Li=(N, hi, iv ),where 

[ ] =u[j] i

iv j


,1 j   . 

(3)Commit to  0,ix N ,  ( ) [ ] [ ] ii ix x

i i ic sCSCom x v u


        .Broadcast message 

(COMMIT,sid, Pi,hi,ci). 

(4)Send message (zk-prove, sid,0, Pi, (N
2,g,hi, [ ]u  ,ci),( ,i ix ) ) to the 

ComEq

ZKF  functionality. 

(5)After receiving messages (ZK-PROVE, sid,0, Pi,(N
2,g,hi, [ ]u  ,ci)) from

ComEq

ZKF ,broadcast 

(RECEIPT&PROOF, sid, Pi,hi,ci). 

Round 2, , 1r   (Open phase). Let 1l r  . For each party Pi, 1 i n  ,does: 

(1) Broadcast (RELEASE,sid, [ ]iv l ) and send message  (zk-prove, sid,r, (N2,g,hi,u[l], 

vi[l]), 
i ) to the functionality

DH

ZKF . 

(2) After receiving all n RELEASE and ZK-PROOF messages, proceed to the next 

round.Otherwise,if any of the broadcast messages is missing,go to panic mode. 

At the end of round( +1), compute xj as 
1 2( ( [ ]) )j j jm c v    ,  

'

1 /j jm m N  (over 

the integers),
'

/ 2 modjjx m N , for1 j n  .Output(DATA, sid, 
1, , nx x ) and terminate. 

Panic mode: For each party Pi, 1 i n  ,does: 

- Send (dealoffer, sid, 
1, 2 ln      ) to the environment. 

- If the environment responds with (dealaccept, sid, ), use [ 1]jv l  from the previous round 

to compute  [ ]jv   as 2

1

, [ 1]
[ ] RepSq (2 1)

j

l

j N v l
v   


  ,then compute xj as the above 

method, for 1 j n  .Output(DATA, sid, 
1, , nx x ) in round( +1) and terminate. 

- Otherwise,output   in round( +1) and terminate. 

Theorem 2. Under the decision composite residuosity(DCR)[18], strong RSA and GBBS 

assumption, the above protocol NewGradRel securely realizes the ideal functionality 

W(FCPFO) in the ( CRSF ,
DH

ZKF ,
ComEq

ZKF )–hybrid model,assuming static corruptions. 

Proof. 

Let A be a t-bounded adversary that operates against protocol NewGradRel. We construct an 

ideal adversary S with access to W(FCPFO),which simulates a real execution of protocol 

NewGradRel with A such that for all t-bounded environment Z and adversary A, we have 

 
( , , )

Re , , ( ), ( ),

ComEqDH
CRS ZK ZK

A
CPFO

F F F

NewGrad l A Z W F S t Z
HYB IDEAL . 



 

 

First,we assume that W(FCPFO) uses the same relation ComEq of NewGradRel  as its 

parameterized relation R,and it has access to FCRS. 

Recall that S interacts with the ideal functionality W(FCPFO) and with the environment Z. 

The ideal adversary S starts by invoking a copy of A and running a simulated interaction of A 

with the environment Z and parties running the protocol. Messages received from Z are 

forwarded to the simulated A, and messages sent by the simulated A to its environment are 

forwarded to Z. Furthermore, S also plays the roles of the ideal
DH

ZKF and
ComEq

ZKF  

functionalities. S proceeds as follows: 

Initialization step: S simulates FCRS,i.e., S chooses the common reference string L=(N, g, 

 iuu



1

) as in the real protocol. Then S sets 
2( )N  ( since S generates N, it knows 

the factorization of N).  

Commitment and Proof by an uncorrupted party: When S sees a broadcast message 

(RECEIPT&PROOF, sid, Pi,hi,ci) From W(FCPFO), it means that an uncorrupted party P i has 

committed to a value. S then simulates the two broadcast message in the real world: 

(COMMIT,sid, Pi,hi,ci)from Pi,and (ZK-PROVE, sid,0, Pi,( N
2,g,hi,u[ ],ci)) From

ComEq

ZKF . 

Commitment and Proof by a corrupted party: When S sees a broadcast message 

(COMMIT,sid, Pi,hi,ci) from a corrupted party Pi (controlled by A), it means that Pi is 

committing to a value. Then, S acts as the
ComEq

ZKF  functionality and expects the message 

((zk-prove,sid,0,(N2,g,hi, u[ ], ci), ( i , xi) ).If it is received and verified,S sends message 

(commit, sid, xi,hi,ci) to W(FCPFO) on behalf of Pi. 

Simulating the open phase: In the open phase, S first sends message (deliverat, sid, ( +1)) 

to W(FCPFO). Then,S simulates the gradual opening of the uncorrupted parties.Let 

2log ( ) 1
t

m 


 
   

 
. S behaves differently in the first m−1 rounds of the open phase from 

the last  −m+1 rounds; the difference lies in the release value used in simulating the 

uncorrupted parties (i.e., the value x in the message (RELEASE, sid, Pi, x) sent by the 

uncorrupted parties). 

 In the first m−1 rounds of the open phase, S simply uses a random value each time 

for the value being released. For each uncorrupted party Pi, S randomly generates 

2[ ]i N
v l QN ( 2N

QN denotes the quadratic residues modulo N2) and fakes two broadcast 

messages: (RELEASE,sid, Pi, [ ]iv l ) from Pi and  (ZK-PROVE, sid,r, Pi,( N
2,g,hi,u[l], vi[l])) 

from ideal functionality
DH

ZKF .Then, S waits to receive the release messages from all the 

corrupted parties, as well as their zk-prove messages. S proceeds to the next round if all the 

anticipated messages are received and verified. If any of the messages is missing, or any of 

the proofs is incorrect, S sends (noinvest, sid, 0) to W(FCPFO) and goes to panic mode. 



 

 

 At round m of the open phase, S switches its strategy. S needs to produce a correct 

commitment because from this round on the adversary may be able to force open the 

commitment.So S should find the openings in this round. First, S sends the messages (open, 

sid) to W(FCPFO) on behalf of every corrupted party Pj , and then sends (invest, sid, 0, 

12 mn   ) to W(FCPFO). It then immediately receives the opening of all the committed values 

in the message (DATA, sid, x1, x2, ..., xn) from W(FCPFO). Once S knows the committed value 

xi from uncorrupted Pi, S can now produce a “real” derived time-line for Pi backward,which is 

consistent with xi. We know that the end point of the time-line must be / ix

ic   which is a 

quadratioc residue(the proof is shown in the Appendix A), and thus the other points should be 

the roots of it. So, for each uncorrupted party Pi, S can compute  
1 2(2 )mod

/

m

ix

i iw c




 

 , 

which is the 
2 12

m 
th root of / ix

ic  . Then S fakes broadcast messages (RELEASE, sid, 

Pi,wi) from Pi and  (ZK-PROVE, sid,m, Pi,( N2,g,hi, u[l], wi))from
DH

ZKF .Then, S waits to 

receive the release messages from all the corrupted parties, as well as their zk-prove 

messages. As in the previous rounds, it proceeds to the next round if all the messages are 

received and verified. Otherwise S goes to the panic round. 

 From round m on, S simulates the gradual opening using the time-line generated in 

round m,i.e., S sends the message (RELEASE, sid, Pi, 2 ,
ReqSq (2 2 )

i

m l

N w

   )) from Pi, 

and simulates the corresponding messages from
DH

ZKF  in the lth round.Then, S acts as in the 

previous rounds. 

 Panic mode: Here S simulates each uncorrupted party asking for a deal. For an 

uncorrupted party Pi, S sends (dealoffer, sid, Pi, 0, 
12 1mn    ) to W(FCPFO). After this, S 

simply forwards messages appropriately between W(FCPFO), Pi, and the environment. 

Finally, S outputs what the simulated A outputs. 

We now prove that Z cannot distinguish an interaction of Protocol NewGradRel with A 

from an interaction in the ideal process with W(FCPFO) and S. In order to show this, we 

examine several hybrid experiments: 

(I) Real interaction: This is the interaction of Z with A and Protocol NewGradRel. 

(II) Real interaction with the simulated ZK functionalities:This is the interaction of Z 

with S, as described above, except that: (1)it does not simulate the CRS functionality, but 

instead has access to FCRS;(2)it also emulates the W(FCPFO) functionality;(3)Finally, it behaves 

differently from S when simulating the commit and open phases for an uncorrupted 

party.When an uncorrupted party Pi sends a message (commit, sid, xi ,hi,ci) on to W(FCPFO), it 

simulates the actual NewGradRel protocol for Pi. In the open phase, it sends release 

messages as in the real-world experiment (instead of revealing random values). 

(III) Simulated interaction with access to FCRS :This is the same as (II), except that it 

differs from (II) in that it behaves like (I) in the commit phase, and also in the open phase 



 

 

until step m. That is, it commits to random numbers until step m, and then commits to the 

“correct” values as in the real-world experiment. 

(IV) Simulated interaction: This is the interaction of Z with S, as described above. 

Our aim is to show that interactions (I) and (IV) are indistinguishable to Z, or in other 

words that Z’s output at the end of interaction (I) deviates only negligibly from Z’s output at 

the end of interaction (IV). We prove this by showing that each consecutive pair of 

interactions are indistinguishable to Z. (We use the term “distribution i” to denote both 

“interaction i”, and “Z”s output from “interaction i”.) 

 The fact that distributions (I) and (II) are identical. This follows from the fact that the 

simulated ZK functionalities behave exactly the same as the actual ZK functionalities; and 

given perfect ZK functionalities, the outputs of the honest parties in (II) are exactly what they 

would be in (I), since the committed values that are opened in (I) must be exactly the same as 

what was extracted from the ZK functionalities (II).  

Next, we consider the hybrid experiments (II) and (III). The difference between these 

experiments is as follows. In the (III) experiment, the first (m − 1) points of each uncorrupted 

party’s time-line are chosen by random quadratic residues,the last ( − m + 1) points of each 

time-line are real and consistent with the committed value of each uncorrupted party.In the (II) 

experiment, the produced points of time-line are real.So the difference lies in the prefixes of 

the first (m − 1) points of time-lines of the uncorrupted parties. Then one can easily reduce 

the indistinguishability between the two experiments to the strong pseudorandomness of 

time-lines (Lemma 1) via a standard hybrid argument. 

Finally, distributions (III) and (IV) are identical. This follows from the fact that the 

distributions of FCRS and the simulated CRS functionality are the same, the distribution of hi,ci 

values produced by simulated honest parties is the same, and that the values produced in the 

open phase are the same.  ■ 

4 Conclusion 

Based on the time-lines and sCS commitment, we show a more efficient resource-fair 

protocol securely realizing FCPFO functionality, which improves Garay et al. construction and 

allows commitment to value 0. 

References 

[1] J. Garay, P. MacKenzie, M. Prabhakaran, K. Yang,Resource Fairness and Composability of 

Cryptographic Protocols, in: S. Halevi and T. Rabin (Eds.), TCC 2006. LNCS,vol. 3876, 

Springer, Heidelberg ,2006, pp. 404-428. 

[2] R. Canetti, Security and Composition of Multiparty Cryptographic Protocols, J 

CRYPTOL.13(1)(2000) 143-202. 

[3] D. Boneh, M. Naor, Timed Commitments, in: Bellare M.(Ed.), CRYPTO 2000, LNCS,vol. 1880, 

Springer, Heidelberg,2000, pp. 236-254. 

[4] J. Garay, M. Jakobsson, Timed-Release of Standard Digital Signatures, in: M. Blaze(Ed.), Financial 

Crypto’02. LNCS, vol.2357, Springer, Heidelberg,2002, pp. 168-182. 

[5] Pinkas, B., Fair Secure Two-Party Computation, in: Biham, E. (Ed.), EUROCRYPT 2003, LNCS, 

vol. 2656, Springer, Heidelberg ,2003, pp. 87-105. 

[6]  R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai, Universally Composable Two-party and 



 

 

Multi-party Secure Computation, in: John H. Reif (Ed.) ,34th ACM Symposium on the Theory 

of Computing, ACM Press, New York, 2002, pp.494–503. 

[7] R. Cramer, I. Damg°ard, J. Nielsen, Multiparty Computation from Threshold Homomorphic 

Encryption, in: Pfitzmann B. (Ed.), EUROCRYPT 2001, LNCS,vol.2045, Springer, 

Heidelberg ,2001, pp. 280–300. 

[8] Mehmet S.Kiraz,Berry Schoenmakers,An Efficient Protocol for Fair Secure Two-Party 

Computation, in: T. Malkin (Ed.), CT-RSA 2008, LNCS, vol. 4964, Springer, Heidelberg,2008, 

pp.88-105. 

[9] Stanisław Jarecki,Vitaly Shmatikov, Efficient Two-Party Secure Computation on Committed Inputs, 

in: Naor M. (Ed.), EUROCRYPT 2007,LNCS,vol.4515, Springer, Heidelberg ,2007, pp. 97-114. 

[10] R. Cleve, Limits on the security of coin flips when half the processors are faulty, in: Juris 

Hartmanis (Ed.),Proceedings of the 18thAnnual ACM Symposium on Theory of Computing, , 

ACM Press, New York, 1986,pp. 364-369.  

[11] Cachin C., Camenisch J.,Optimistic Fair Secure Computation, in: Bellare M.(Ed.), CRYPTO 2000. 

LNCS, vol. 1880, Springer, Heidelberg ,2000, pp. 93-111. 

[12]  J. Katz, On achieving the “best of both worlds” in secure multiparty computation, in: D.S. 

Johnson, U. Feige(Eds.), Proceedings of the 39 annual ACM symposium on Theory of computing. 

ACM Press,New York,2007,pp.11-20. 

[13] T. Moran, M. Naor, G. Segev, An optimally fair coin toss, in:O. Reingold(Ed.), TCC 2009, LNCS, 

vol. 5444, Springer Heidelberg ,2009,pp.1-18. 

[14] Amos Beimel,Eran Omri,Ilan Orlov, Protocols for Multiparty Coin Toss With Dishonest Majority, 

in: T. Rabin(Ed.), Crypto 2010, LNCS,vol. 6223, Springer, Heidelberg,2010,pp. 538-557. 

[15] D.Gordon, J. Katz, Partial Fairness in Secure Two-Party Computation, in: H. Gilbert(Ed.), 

EUROCRYPT 2010, LNCS,vol.6110, Springer ,Heidelberg ,2010,pp.157-176. 

[16] J. Camenisch , V. Shoup, Practical verifiable encryption and decryption of discrete logarithms, in: 

D. Boneh (Ed.),CRYPTO 2003. LNCS,vol. 2729,  Springer, Heidelberg,2003, pp. 126-144. 

[17] D. Boneh, The decision Diffie-Hellman problem, in: Buhler JP (Ed.),Proceedings of the Third 

Algorithmic Number Theory Symposium,LNCS,vol.1423, Springer, Heidelberg, 1998,pp.48–63. 

[18] Paillier P,Public-key cryptosystema based on composite degree residue classes,in:Michael 

Wiener(Ed.),EuroCrypt’99, LNCS, vol. 1592,Springer, Heidelberg,1999,pp.223-238. 

A.  Proof of 2/ ix

i N
c QR   

Note that N = pq, 2 ' 1p p  , 2 ' 1q q  ( , , ', 'p q p q are all primes),and  =1+N. 

(1) We know that 1ix

ix N   . 

(a) 
( 1) / 2( ) modix p p 

=
'((2 1) 1)/2(1 ) p

ix N   =
'

(1 ) p

ix pq =1mod p , So,
x

pQR  . 

(b) The same way, we can learn ix

qQR  . 

Then,we get that 2
ix

N
QR  (

2 2 2N p q  ). 

(2) ci which S gets from W(FCPFO) is the commitment of an uncorrupted party Pi computes 

 [ ] [ ] ii ix x

i ic v u


       . 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Reif:John_H=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hartmanis:Juris.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hartmanis:Juris.html
http://www.springerlink.com/content/978-3-642-13189-9/
http://www.springerlink.com/content/978-3-642-13189-9/


 

 

(a)  
2 1 2 22 2 2[ ] ( ) (( ) )i i iu g g
 

  
 

  ,so   2[ ] i

N
u QR


   

From (a) and (1),we get that 2i N
c QR . 

From (1) and (2),we get the conclusion that 2/ ix

i N
c QR  .■ 


