
ACCELERATING THE SCALAR MULTIPLICATION ON

GENUS 2 HYPERELLIPTIC CURVE CRYPTOSYSTEMS

by

Balasingham Balamohan

A thesis submitted to

the Faculty of Graduate and Postdoctoral Studies

in partial fulfillment of

the requirements for the degree of

MASTER OF COMPUTER SCIENCE

School of Information Technology and Engineering

at

UNIVERSITY OF OTTAWA

Ottawa, Ontario

December, 2009

c© Copyright by Balasingham Balamohan, 2009

Table of Contents

List of Tables v

List of Algorithms vii

Abstract viii

Acknowledgements ix

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Hyperelliptic Curve Scalar Multiplication 2

1.3 Contributions . 2

1.4 Overview of Results . 3

1.5 Organization of the Thesis . 3

Chapter 2 Background on Hyperelliptic Curves 5

2.1 Groups . 5

2.2 Finite Fields . 6

2.3 Hyperelliptic Curves . 7

2.3.1 Technical Point on Point at Infinity 8

2.4 Divisors on Hyperelliptic Curves . 8

2.5 Rational Function . 10

2.6 Semi-reduced and Reduced Divisors 11

2.7 Polynomial Representation of a Reduced Divisor 12

2.8 Genus 2 Hyperelliptic Curves over Prime Fields in Cryptography . . . 12

2.9 Different Cases . 14

2.10 Explicit Formulae from Harley’s Algorithms 14

2.10.1 Doubling Formula . 14

2.10.2 Addition Formula . 15

ii

2.11 Summary . 16

Chapter 3 Number Representations for Efficient Scalar Multiplica-

tion 19

3.1 Binary Representation . 19

3.2 Non Adjacent Form (NAF) and Multibase Representations 19

3.3 Different Systems of Coordinates . 21

3.4 Summary . 22

Chapter 4 Description of Techniques Used In Deriving the Formu-

lae 23

4.1 Existing Techniques . 23

4.1.1 Karatsuba Multiplication . 23

4.1.2 Montgomery’s Simultaneous Inversions 24

4.1.3 Exact Division by a Polynomial 24

4.1.4 Computation of Double-Add and Tripling without Computing

Intermediate V . 25

4.2 Techniques Introduced In This Thesis 26

4.2.1 Computation of Fraction of Polynomials Modulo another Monic

Polynomial . 26

4.2.2 Computing V with a weight 27

4.2.3 Computing U3 modulo U1 and adjusting U3 27

4.3 Summary . 28

Chapter 5 Scalar Multiplication on Semi-Affine Coordinates 29

5.1 Doubling . 29

5.2 Mixed Addition . 31

5.3 Double-Add Operation . 32

5.3.1 Double-Add Operation with Two Inversions 33

5.3.2 Double-Add Operation with One Inversion 35

5.4 Tripling . 37

iii

5.4.1 Tripling with Two Inversions 38

5.4.2 Tripling with One Inversion 40

5.5 Precomputation Schemes and the Cost of Scalar Multiplication Using

the New Formulae . 43

5.5.1 Comparison of Costs of Formulae 43

5.5.2 Precomputation . 43

5.5.3 Cost of Main Phase and Total Cost 45

5.6 Summary . 47

Chapter 6 Formulae in Inversion-Free Coordinates 48

6.1 Doubling . 48

6.1.1 Lange’s New Coordinates . 49

6.1.2 Projective Coordinates . 52

6.2 Mixed Addition . 55

6.2.1 Mixed Addition for Lange’s New Coordinates 55

6.2.2 Mixed Addition for Projective Coordinates 57

6.3 Double-Add Operation for Lange’s New Coordinates 59

6.4 Tripling . 63

6.4.1 Lange’s New Coordinates . 64

6.4.2 Projective Coordinates . 69

6.5 Precomputation Schemes and Comparison of Performance Against Ex-

isting Methods . 74

6.5.1 Lange’s New Coordinates . 76

6.5.2 Projective Coordinates . 77

Chapter 7 Conclusions and Future Work 79

Appendix A 82

Bibliography 103

iv

List of Tables

Table 2.1 Doubling Formula for Affine Coordinates 17

Table 2.2 Addition Formula for Affine Coordinates 18

Table 3.1 Number of Different Operations for 256-Bit Scalar using (2, 3)−
wmbNAFw . 22

Table 5.1 Costs of Formulae for Semi-Affine Coordinates 46

Table 5.2 Costs of Precomputations for Semi-Affine Coordinates 46

Table 5.3 Costs per Bit Scalar of main phase of scalar multiplication using

double-add with two inversions for Semi-Affine Coordinates . . 46

Table 5.4 Costs per Bit Scalar of main phase of scalar multiplication using

double-add with one inversion for Semi-Affine Coordinates . . . 46

Table 5.5 Costs for Scalar Multiplications using double-add with one inver-

sion for 256-Bit Scalar in Semi-Affine Coordinates using Binary

Methods . 46

Table 5.6 Costs for Scalar Multiplications using double-add and tripling

with one inversion for 256-Bit Scalar in Affine Coordinates Using

(2, 3)− wmbNAFw Methods 47

Table 6.1 Costs of Precomputations on Projective Coordinates 77

Table 6.2 Costs of Formulae for Lange’s New Coordinates 77

Table 6.3 Costs of Main Phase per Bit Scalar using binary methods for

Lange’s New coordinates . 77

Table 6.4 Costs for Scalar Multiplications on Lange’s New Coordinates

Using Binary Methods for 256-Bit Scalar 78

Table 6.5 Costs for Scalar Multiplications on Lange’s New Coordinates

Using (2,3)-wmbNAFw methods for 256-Bit Scalar 78

Table 6.6 Costs of Formulae for Projective Coordinates 78

Table 6.7 Costs per Bit Scalar for Projective Coordinates 78

v

Table A.1 Doubling for Semi-Affine Coordinates 82

Table A.2 Mixed Addition for Semi-Affine Coordinates 83

Table A.3 Double-Add with Two Inversions for Semi-Affine Coordinates-

Part 1 . 84

Table A.4 Double-Add with Two Inversions for Semi-Affine Coordinates-

Part 2 . 85

Table A.5 Double-Add with One Inversion for Semi-Affine Coordinates-

Part 1 . 86

Table A.6 Double-Add with One Inversion for Semi-Affine Coordinates-

Part 2 . 87

Table A.7 Tripling with Two Inversions for Semi-Affine Coordinates-Part 1 88

Table A.8 Tripling with Two Inversions for Semi-Affine Coordinates-Part 2 89

Table A.9 Tripling with One Inversion for Semi-Affine Coordinates-Part 1 90

Table A.10 Tripling with One Inversion for Semi-Affine Coordinates-Part 2 91

Table A.11 Doubling In Lange’s New Coordinates 92

Table A.12 Mixed Addition for Lange’s New Coordinates 93

Table A.13 Double-Add for Lange’s New Coordinates-Part 1 94

Table A.14 Double-Add for Lange’s New Coordinates-Part 2 95

Table A.15 Tripling for Lange’s New Coordinates-Part 1 96

Table A.16 Tripling for Lange’s New Coordinates-Part 2 97

Table A.17 Doubling for Projective Coordinates 98

Table A.18 Mixed Addition for Projective Coordinates 99

Table A.19 Tripling for Projective Coordinates-Part 1 100

Table A.20 Tripling for Projective Coordinates-Part 2 101

Table A.21 Special Addition for Projective Coordinates 102

vi

List of Algorithms

1 Cantor’s Algorithm for Group Law (arbitrary genus g, Fp) 13

2 Harley’s Algorithm for Group Addition (g = 2, Fp, p > 2 a prime, h = 0) 16

3 Harley’s Algorithm for Group Doubling (g = 2, Fp, p > 2 a prime, h = 0) 16

4 Left-to-Right Binary Scalar Multiplication 19

5 Right-to-Left Binary Scalar Multiplication 20

6 Algorithm For ex-wmbNAF Multibase Recoding 21

7 Algorithm for Extended wmbNAF Method for Scalar Multiplication . 21

vii

Abstract

Elliptic Curve Cryptography (ECC) was independently introduced by Koblitz and

Miller in the eighties. ECC requires shorter sizes of underlying finite fields in com-

parison to other public key cryptosystems such as RSA, introduced by Rivest, Shamir

and Adleman. Hyperelliptic curves, a generalization of elliptic curves, require decreas-

ing field size as genus increases. Hyperelliptic curves of genus g achieve equivalent

security of ECC with field size 1/g times the size of field of ECC for g ≤ 4. Recently,

a lot of research is being focused on increasing the efficiency of hyperelliptic curve

cryptosystems (HECC). The most time consuming operation in HECC is the scalar

multiplication. At present, scalar multiplication on HECC over prime fields under

performs in terms of computational time compared to ECC of equivalent security.

This thesis focuses on optimizing HECC scalar multiplication at the point arithmetic

level. At the point arithmetic level we obtain more efficient doubling and mixed addi-

tion operations to decrease the computational time in the scalar multiplication using

binary expansions of scalars. In addition, we introduce tripling operations for the

Jacobians of hyperelliptic curves to make use of multibase representations of scalars

that are being used effectively in ECC. We also develop double-add operations for

semi-affine coordinates and Lange’s new coordinates. We use these double-add opera-

tions to improve the computational cost of precomputation for semi-affine coordinates

and that of more important main phase of scalar multiplication for semi-affine coor-

dinates and Lange’s new coordinates. We derive special addition to improve the cost

of precomputation for Lange’s new coordinates and projective coordinates.

viii

Acknowledgements

I would like to thank my supervisor Prof. Ali Miri for guidance, encouragement and

faith in me. Special gratitude is to Computational Algebra Group of Department

of Mathematics and Statistics, University of Sydney for making available an online

version of Magma Computational Algebra System [4]. Testing the formulae derived

in this paper has increased the confidence in the correctness of the formulae obtained.

ix

Chapter 1

Introduction

In this chapter first we provide the motivation for the problem studied by the thesis

and then present a summary of the contributions made and a brief description of

contents of the thesis.

1.1 Motivation

With ever increasing use of myriads of versatile communication capable digital de-

vices there is a need for efficient but secure communication. Often two or more

parties have to communicate without recourse to a secure channel for exchanging

keys. This was not possible until late 1970’s when Diffie and Hellman proposed a key

exchange protocol [12]. Before this secure communication over electronic channels

was possible only when parties to the communication agreed on a key beforehand.

In the scheme proposed by Diffie and Hellman, Alice and Bob, wanting to share a

key over an insecure channel, agree on group G of prime order p and a generator g

for the group. Alice chooses x ∈ Zp and computes gx and sends it to Bob over the

insecure channel. Bob chooses y ∈ Zp and computes gy and sends it to Alice over

the insecure channel. Now both Alice and Bob can compute gxy = (gx)y = (gy)x.

They share a secure key if it is computationally difficult to compute gxy given gx,

gy and g in the group G. The problem of finding gxy with non negligible probability

given gx and gy is known as computational Diffie-Hellman problem. A closely re-

lated problem which is known as discrete logarithm problem and at least as difficult

as the computational Diffie-Hellman problem is the computation of x given g and

gx in a group G. Since the introduction of public key cryptography many schemes

were proposed to realize it in practice. One of the earliest systems to have been

introduced is RSA scheme due to Rivest, Shamir and Adleman [33]. It is being used

successfully for secure communication, ever since the introduction of it. Koblitz [20]

1

2

and Miller [26] independently proposed use of elliptic curves for public cryptography

in 1985. Hyperelliptic curves are generalizations of elliptic curves. Cryptosystems

based on difficulty of Diffie-Hellman problem and discrete logarithm problem can be

built based on suitably chosen hyperelliptic curves. In those cryptosystems most time

consuming operation is scalar multiplication or exponentiation if the multiplicative

notation is used. The study of cryptosystems based on hyperelliptic curves is an ac-

tive area of research. In this thesis, we propose various techniques at point arithmetic

level to speed up scalar multiplication on hyperelliptic curves of genus two over prime

fields.

1.2 Hyperelliptic Curve Scalar Multiplication

Most time consuming operation for HECC is the computation kD for a divisor class

D on a suitable subgroup of the Jacobian of a hyperelliptic curve for k ∈ Zn where

n is the order of the subgroup. Broadly, scalar multiplication involves three levels

of abstractions. The top level is representations of scalars. The second level is the

point arithmetic level about which the thesis is primarily concerned. For example we

may represent the scalar k as a binary number and perform doubling and addition

operations to obtain kD. Hence efficient doubling and addition operations at point

arithmetic level are required to perform scalar multiplication. The third level can be

viewed as a composition of two sublevels. One of them is computation on a polynomial

ring over a finite field which is realized by the second sublevel of finite field arithmetic.

Each point operation is composed of finite number of field operations.

1.3 Contributions

The contributions of the thesis are as follows:

1. We introduce a new coordinate system which we refer to as semi-affine coordi-

nates.

2. We obtain more efficient traditional point formulae in semi-affine coordinates,

Lange’s new coordinates and projective coordinates.

3

3. Improved formulae for double-add operations are obtained for semi-affine coor-

dinates and a new double-add formula for Lange’s new coordinates is introduced.

4. We present tripling formulae for semi-affine coordinates, Lange’s new coordi-

nates and projective coordinates.

1.4 Overview of Results

In this section, we give an indication of how much improvements one can expect using

our methods in various environments. As the relative costs of operation will differ

from environment to environment we do a theoretical analysis as well. Reader is

referred to Sections 5.5 and 6.5 for details.

1. We improve the precomputation cost by up to 11.4% for semi-affine coordinates

compared to that of affine coordinates. Speed up of precomputation for Lange’s

new coordinates and projective coordinates is up to 12.6%.

2. We obtain up to 11.78% and 13.85% speed up on the scalar multiplication for

semi-affine coordinates (in comparison to affine) and Lange’s new coordinates

respectively

3. Scalar multiplication for projective coordinates is at most 3.3% slower than that

of Lange’s new coordinates using our formulae.

4. Multibase methods provide speed-up up to 2.35% and 2.9% for semi-affine co-

ordinates and Lange’s new coordinates respectively.

1.5 Organization of the Thesis

The organization of this thesis as follows:

1. Chapter 2: This chapter introduces the basic concepts of hyperelliptic curves

relevant to the scalar multiplication.

2. Chapter 3: We discuss the existing number representations that are relevant

to this work. In this section, we also present a brief description of various

coordinate systems and their significance.

4

3. Chapter 4: In this chapter we describe the methodologies we use to obtain

the formulae presented in this thesis.

4. Chapter 5: We make a detailed description of formulae for the semi-affine

coordinates. We compare the costs using new techniques with those of existing

methods.

5. Chapter 6: This chapter catalogues formulae for the inversion-free coordinates.

We make a comprehensive comparison of improvements made on the scalar

multiplication.

6. Chapter 7: We conclude with remarks on the thesis and future work.

7. Appendix A: For ease of reference, Appendix A is a collection of all the

formulae derived in this thesis. We refer to the collection in Chapters 5 and 6.

Chapter 2

Background on Hyperelliptic Curves

In this chapter, we present a brief mathematical background needed to understand

computational aspects of hyperelliptic curves relevant to their use in cryptography.

This is intended as a brief introduction. For extensive presentations refer to [6,9,15,

17,21,22,25].

2.1 Groups

A group (G, ∗) is a nonempty set G with a binary operation satisfying

∗ : G × G → G

following properties.

1. Associativity: For all a, b, c ∈ G , a ∗ (b ∗ c) = (a ∗ b) ∗ c

2. Identity: There is a i such that for all a ∈ G, i ∗ a = a ∗ i = a

3. Inverse: For all a ∈ G there is a a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = i

A Group is Abelian, if in addition, for all a, b ∈ G a ∗ b = b ∗ a. If the binary

operation is denoted by +, the group is called additive and the terminology familiar

from arithmetic is used. Similarly for the case where the operation is denoted ×, the

group is called multiplicative. A subgroup (H,+) of a group (G,+) is:

1. H ⊂ G.

2. (H,+) is a group with the operation + is the operation + on (G,+) restricted

to set H

Let (G,+) a Abelian group and (H,+) is a subgroup of (G,+). Then the quotient

group (Q,+Q) induced by (H,+) on (G,+) is:

5

6

1. Q set of partitions induced on G by the equivalence g1 ∼ g2 iff g1 − g2 ∈ H for

all g1, g2 ∈ G. We denote by [g] the partition containing g.

2. For [g1], [g2] ∈ Q the group operation is defined as:

[g1] +Q [g2] = [g1 + g2].

where [g] represents the partition in which g is an element.

3. The operation is well defined with identity H as if:

[g1] = [g2], [g3] = [g4]

then

[g1 + g3]− [g2 + g4] = [g1 + g3 − g2 − g4] = [g1 − g2 + g3 − g4]

But g1 − g2 and g3 − g4 are in H. Hence [g1 + g3] = [g2 + g4] and identity is H.

2.2 Finite Fields

A field (F,+,×) is a nonempty set F with two binary operations satisfying:

1. Associativity of Addition : For all a, b, c ∈ F , a+ (b+ c) = (a+ b) + c.

2. Additive Identity: There is a 0 ∈ F such that for all a ∈ F, 0 + a = a+ 0 = a.

3. Additive Inverse: For all a ∈ F there is a −a ∈ F such that a+ (−a) = 0.

4. Commutativity of Addition: For all a, b ∈ F, a+ b = b+ a.

5. Associativity of Multiplication : For all a, b, c ∈ F , a× (b× c) = (a× b)× c.

6. Multiplicative Identity: There is a 1 ∈ F such that for all a ∈ F, 1× a = a.

7. Multiplicative Inverse: For all a ∈ F−{0} there is an a−1 such that a×a−1 = 1.

8. Commutativity of Multiplication: For all a, b ∈ F, a× b = b× a.

7

9. Distributivity Multiplication over Addition : For all a, b, c ∈ F , a × (b + c) =

(a× b) + (a× c).

A finite field is a field with finitely many elements. Every finite field Fq has q = pd

elements where p is a prime called characteristic of the finite field Fq. If d = 1 then

the field is classified as a prime field. An extension of a finite field Fq is a field Fq′

such that Fq ⊂ Fq′ . An extension of Fq always has order q′ = qr for some positive

integer r. For a polynomial f(x) of degree n with coefficients in Fq, splitting field of

f(x) is the smallest extension of Fq in which f(x) has n roots. Polynomial f(x) is

said to split in any field in which f(x) has n roots. The algebraic closure of a field

Fq is the unique minimal field in which all the polynomial equations, on one variable

with coefficients in Fq, split. We denote by F̄q the unique algebraic closure of finite

field Fq.

2.3 Hyperelliptic Curves

A hyperelliptic curve of genus g over a finite field Fq is a special point at infinity

denoted ∞ and the set of ordered pairs (x, y) ∈ F̄q × F̄q satisfying an equation:

C : y2 + h(x)y = f(x) = x2g+1 +

2g∑
i=0

fix
i (2.1)

where

1. h(x) ∈ Fq[x] is of degree at most g.

2. f(x) ∈ Fq[x] is a monic polynomial of degree 2g + 1.

3. There are no (x, y) ∈ F̄q × F̄q satisfying C and both its partial derivatives.

If the characteristic of the field is not two then y− h(x)
2

is well-defined. Application

of the replacement of y by y − h(x)
2

in Equation 2.1 results in:

(y − h(x)

2
)2 + h(x)(y − h(x)

2
) = f(x)

y2 − h(x)y + (
h(x)

2
)2 + h(x)y − h(x)2

2
= f(x)

8

y2 = f(x) +
h(x)2

4

But deg(h(x)2) = 2deg(h(x)) ≤ 2g. So the degree of f(x)+ h(x)2

4
is a monic polynomial

of degree 2g+ 1 since f(x) is a monic polynomial of degree 2g+ 1. Hence for the case

of fields with characteristic not equal to 2 Equation 2.1 reduces to:

C : y2 = f(x) (2.2)

If the characteristic, p, of the field does not divide 2g+1 then x− f2g
2g+1

is well-defined.

Substituting x = x− f2g
2g+1

in the Equation 2.2, we obtain:

y2 = f(x− f2g
2g + 1

)

But the coefficient of x2g on right hand side is sum of coefficients of x2g in (x− f2g
2g+1

)2g+1

and f2g. This sum is zero. We observe later in section 2.10 that having f2g = 0,

speeds-up formulae for g = 2.

2.3.1 Technical Point on Point at Infinity

On the projective space there are singular points (0 : a : 0) on a hyperelliptic curve.

A technique called normalization is applied to remove singularities. The resulting

singular curve agrees with C at the affine points and has a single point at infinity [34].

For our purposes preceding definition of points on hyperelliptic curves is sufficient.

2.4 Divisors on Hyperelliptic Curves

A divisor on a hyperelliptic curve is a finite formal sum (free Abelian group) of points

on the curve. That is a divisor D is:

D =
∑
P∈C

mPP

where only finitely many mP are nonzero. By a formal sum or free Abelian group of

points on the curve we mean:

9

1. Set of elements of the group is:

{
∑

P∈C,mP∈Z

mPP}

Where only finitely many mP are nonzero.

2. Addition is defined as :

∑
P∈C

mPP +
∑
P∈C

nPP =
∑
P∈C

(mP + nP)P

3. Additive identity is the element with mP = 0 for any point P ∈ C.

4. Additive inverse of ∑
P∈C

mPP

is ∑
P∈C

(−mP)P

5. Scalar multiplication for any k ∈ Z defined as:

k
∑
P∈C

mPP =
∑
P∈C

(kmP)P

6. A basis is the set of points on C.

Degree of a divisor ∑
P∈C

mPP

is defined as ∑
P∈C

mP

The order of a point in the divisor is the coefficient corresponding to it. A zero divisor

is defined as a divisor with zero degree. We denote by Div0 the subgroup of all degree

zero divisors of the vector space of divisors.

10

2.5 Rational Function

A polynomial function on a hyperelliptic curve, given by equation 2.2, is defined as

a polynomial class on two indeterminates x, y under the equivalence relation induced

by the equation 2.2. Any polynomial function on a hyperelliptic curve has a unique

canonical representation of the form a(x)− yb(x) where a(x) and b(x) are univariate

polynomials. This follows from the fact that we can replace yk for k ≥ 2 by yk−2f(x).

Applying this substitution repeatedly we can obtain any polynomial on x and y in the

above form. Uniqueness follows from the observation two representations of the same

polynomial function should differ by a α(x, y)(y2−f(x)) for some polynomial α(x, y).

Since the difference of two representations have degree with respect to y at most 1

it should be that α(x, y) = 0. Degree of a polynomial function in its canonical form

P = a(x)− yb(x) is the maximum of two times the degree of a(x) as a polynomial in

x and 2g + 1 + 2d where d is the degree of b(x) as a polynomial in x.

A rational function on a hyperelliptic curve is defined as

R(x, y) =
P (x, y)

Q(x, y)

where P (x, y) and Q(x, y) are polynomial functions on the hyperelliptic curves such

that R(x, y) is defined for at least one point of the hyperelliptic curve C other than

the point at infinity. The value of a rational function R(x, y) = P (x, y)/Q(x, y) at

the point at infinity is as follows:

1. Zero if degree of the P (x, y) is less than that of the Q(x, y).

2. The ratio of the coefficients of the highest degrees if the degrees of both P (x, y)

and Q(x, y) are equal.

3. Undefined in other cases.

Divisor of a rational function on a hyperelliptic curve is defined as

Div(R(x, y)) =
kz∑
i=1

miPi −
kp∑
i=1

niQi

11

where P ′is are zeroes of R(x, y) with multiplicity mi and Q′is are poles of R(x, y) with

multiplicity ni. The degree of divisor corresponding to R(x, y) ,
∑kz

i=1mi−
∑kp

i=1 ni is

always zero by the definition of the value of a rational function at the point at infinity.

The set of rational functions on a hyperelliptic curve has following properties.

1. The product of any two rational functions not necessarily distinct is also a

rational function. Hence, the set of divisors corresponding to a rational function

is closed under group operations.

2. The divisor corresponding to a constant function is the identity element of the

free Abelian group.

Hence, the set of divisors corresponding to rational functions is a subgroup of the free

Abelian group of divisors and particularly of Div0. This subgroup is known as the

set of Principal divisors denoted by Divp.

The quotient group JC = Div0/Divp is called the Jacobian of the hyperelliptic

curve which is also known as divisor class group. We denote the equivalence induced

by the quotient group by ∼.

2.6 Semi-reduced and Reduced Divisors

A semi-reduced divisor is a divisor of the form:

r∑
i=1

miPi − (
r∑

i=1

mi)∞ (2.3)

Such that all mi ≥ 0 and if a point and its involution are distinct at most one of

them has nonzero order and if they are not distinct and the point is not ∞ the point

has as order 1. Every divisor D has a semi-reduced divisor D′ such that D ∼ D′. If

the semi-reduced divisor satisfies the property that
∑r

i=1mi ≤ g then the divisor is

called a reduced divisor. For any divisor D there exists a unique reduced divisor D′′

such that D ∼ D′′, i.e an element of the JC can be uniquely represented by a reduced

divisor.

12

2.7 Polynomial Representation of a Reduced Divisor

Mumford [31] showed that a reduced divisor can be represented uniquely by two

polynomials U(X), V (X) ∈ F̄q[X] where:

1. U(X) is monic,

2. deg(V (X)) < deg(U(X)) ≤ g,

3. U(X)|(f(X)− V (X)h(X)− V (X)2).

4. U(xi) = 0 for all points Pi = (xi, yi) with positive order in the reduced divisor.

5. V (xi) = yi for all points Pi = (xi, yi) with positive order in the reduced divisor.

This follows that if (U, V) represent a reduced divisor P1 + P2 − 2∞ then (U,−V)

represents its additive inverse in the divisor class group. Following arguments show

that for the case degree of U is 2. Arguments for the cases when degree of U is 1 or

0 are similar.

1. U is a rational function with zeroes at P1 = (x1, y1), P2 = (x2, y2), P3 =

(x1,−y1) and P4 = (x2,−y2).

2. U also has as pole ∞ with order 4.

3. −V (xi) = −yi for i = 1, 2.

Cantor presented an algorithm to perform group addition in the Mumford represen-

tation [6]. Cantor’s algorithm is presented as Algorithm 1. Hyperelliptic curves,

having algebraic structures, can be used in protocols based on the discrete logarithm

problem. Their geometric structure leads to polynomial representations, hence the

scalar multiplication can be efficiently implemented on hardware and software.

2.8 Genus 2 Hyperelliptic Curves over Prime Fields in Cryptography

Divisor classes represented by U(X), V (X) ∈ Fq[X] form a finite Abelian subgroup

JC(Fq) of the divisor class group. To build secure systems using JC(Fq) of hyperel-

liptic curves, JC(Fq) should have a large enough prime factor in it’s order. Order Nq

13

Algorithm 1 Cantor’s Algorithm for Group Law (arbitrary genus g, Fp)

Input: D1 = (u1, v1), D2 = (u2, v2), C : y2 = f(x)
Output: D3 = (u3, v3) reduced with D3 = D1 +D2

1. d1 = gcd(u1, u2) = e1u1 + e2u2
2. d = gcd(d1, v1 + v2) = c1d1 + c2(v1 + v2)
3. s1 = c1e1, s2 = c1e2, s3 = c2
4. u = u1u2

d
, s1u1v1+s2u2v1+s3(v1v2+f(x)

d

5. repeat

6. u′ = f(x)−v2
u

, v′ = −v (mod u′)
7. u = u′, v = v′

8. until deg(u) ≤ g
9. u3 = monic form of u′, v3 = v′

of the JC(Fq) a of hyperelliptic curve over Fq satisfies following inequality:

(q1/2 − 1)2g ≤ Nq ≤ (q1/2 + 1)2g (2.4)

If k-bit field results in a group of order nk for elliptic curves and k
2
-bit field results in

a group of order n k
2

for hyperelliptic curves of genus 2 then:

nk ≈ (2
k
2)2 = 2k

and

n k
2
≈ (2

k
4)4 = 2k

This implies that it is sufficient to use appropriately chosen hyperelliptic curve of

genus two over field of size half of that of elliptic curves for equivalent security.

Cantor’s algorithm is not efficient enough to be practical. Harley published very

efficient algorithms distinguishing cases and eliminating redundant computations [15,

17]. More details on Cantor’s and Harley’s algorithms can be found in [9, 22, 35].

Harley’s algorithms for doubling operation and addition are presented in Algorithms

2 and 3. Explicit formulae derived from Harley’s algorithms [22] for the frequent

cases are presented in Tables 2.1 and 2.2.

14

2.9 Different Cases

Almost always, the polynomial U representing a divisor is of degree two whereas poly-

nomial V is of degree one with gcd(U, V) = 1 for curves with cryptographically useful

parameters. For the frequent case of addition of (U1, V1) and (U2, V2), gcd(U1, U2) = 1.

If s1 = 0 then U polynomial of the result is of degree one where S = s1x + s0 (Al-

gorithm 2). Usually s1 is nonzero. We consider only the frequent cases in our

discussions. Less frequent cases are analyzed extensively in [14] and [22]. Frequent

cases almost always occur for curves with field size useful for security applications.

We observe that tests for categorization of the cases are performed as a part of the

formulae hence categorization does not require additional operations. A cryptosys-

tem may be implemented without dealing with infrequent cases by implementing it

to choose another random scalar and perform the protocol whenever infrequent cases

occur without performance penalty on average. We also assume h(x) = 0 and the

coefficient of x4 in f(x) is zero.

2.10 Explicit Formulae from Harley’s Algorithms

Explicit formulae derived from Harley’s algorithms [22] for the frequent cases are

presented in Tables 2.1 and 2.2.

2.10.1 Doubling Formula

We give a description of doubling formula presented in Table 2.1. Reader is referred

to Harley’s algorithm for doubling (Algorithm 3 in page 16) as well.

1. Step 1: 2V1 is computed.

2. Step 2: Resultant r of V1 and U1 is computed. r = 0 then gcd(U1, U2) is not

one and the case is not the frequent one. The resultant r is the determinant of

the linear system obtained by the following polynomial identity:

2V1(i1X + i0)− i1(2v11)U2 = 1

3. Step 3: Pseudo-inverse I = i1X + i0 = (r/2V1) (mod U1) is computed.

15

4. Step 4: Exact division of (f(X)− V 2
1) by U1 followed by modular reduction by

U1. We observe that having f4 = 0 speed up formula.

5. Step 5: S ′ = rS is computed. If s′1 = 0 then resulting divisor will have U

polynomial with degree strictly less than two.

6. Step 6: Monic form S ′′ of S = s1X + s0 = K/2V1 (mod U1) for obtaining U3.

and s1 required for deriving V3 is obtained.

7. Step 7: Monic form L′ of L in Harley’s algorithm for doubling Algorithm is

computed (Algorithm 3 of page 16).

8. Step 8: U3 is computed by observing that we are required to compute only the

first three leading coefficients of monic form of K−S(SU1 + 2V1). This step for

doubling is more efficient than that of addition by the fact that U3 = S
′′2+ 2V1−K

s21U1
.

9. Step 9: V3 is computed as −V1 + s1(−L′ (mod U3)) for efficiency.

2.10.2 Addition Formula

We give a description of addition formula presented in Table 2.2. Reader is referred

to Harley’s algorithm for addition (Algorithm 2 in page 16) as well.

1. Step 1: Resultant r of U1 and U2 is computed. If r = 0 then gcd(U1, U2) is not

one and the case is not the frequent one. The resultant r is the determinant of

the linear system obtained by the following polynomial identity:

(U1 − U2)(i1X + i0)− i1(u11 − u21)U2 = 1

2. Step 2: Pseudo-inverse I = i1X + i0 = (r/(U1) (mod U2) is computed.

3. Step 3: S ′ = rS = r V2−V1

U1
(mod U1) is computed. If s′1 = 0 then resulting

divisor will have U polynomial with degree strictly less than two.

4. Step 4: Since monic S ′′ form of S = s1X + s0 = K/2V1 (mod U1) for obtaining

U3 and s1 required for deriving V3 is obtained.

16

5. Step 5: Monic form L′ of L ,in Harley’s algorithm for addition Algorithm, is

computed (Algorithm 2 of page 16).

6. Step 6: U3 is computed by observing that we are required to compute only the

first three leading coefficients of monic form of K − S(SU1 + 2V1).

7. Step 7: V3 is computed as −V1 + s1(−L′ (mod U3)) for efficiency.

Algorithm 2 Harley’s Algorithm for Group Addition (g = 2, Fp, p > 2 a prime,
h = 0)

Input: D1 = (U1, V1), D2 = (U2, V2), C : Y 2 = f(X)
Output: D3 = (U3, V3) reduced with D3 = D1 +D2

1. K =
f(X)−V 2

1

U1
(division)

2. S = s1X + s0 = V2−V1

U1
(mod U2)

3. L = SU1

4. U3 = K−S(L+2V1)
U2

(division)

5. make U3 monic
6. V3 = −(L+ V1) (mod U3)

Algorithm 3 Harley’s Algorithm for Group Doubling (g = 2, Fp, p > 2 a prime,
h = 0)

Input: D1 = (U1, V1)C : Y 2 = f(X)
Output: D2 = (U2, V2) reduced with D2 = 2D1

1. K =
f(X)−V 2

1

U1
(division)

2. S = s1X + s0 = K
2V1

(mod U1)

3. L = SU1

4. U2 = K−S(L+2V1)
U1

(division)

5. make U2 monic
6. V2 = −(L+ V1) (mod U2)

2.11 Summary

In this chapter, we presented a brief discussion of the algebraic aspects of hyperel-

liptic curves relevant to their use in cryptography. Efficiency of scalar multiplication

depends on the representation of scalars in addition to the efficiency of group oper-

ations. In the next chapter, we briefly review material relevant to representations of

scalars.

17

Table 2.1: Doubling Formula for Affine Coordinates
Input:Genus 2 HEC C:Y 2 = f(X)
f = X5 + f3X

3 + f2X
2 + f1X + f0

(U1, V1) where D1 = (U1, V1) is a reduced divisor
U1 = X2 + u11X + u10, V1 = v11X + v10
Output:D3 = 2D1 where D3 = (U3, V3) is a reduced divisor
U3 = X2 + u31X + u30,V3 = v31X + v30

Step Expression Cost
1 Compute V ′ = 2V1 (mod U1) -

v′1 = 2v11, v
′
0 = 2v10

2 Compute resultant r of V ′ and U ′ 3M+2S
w0 = v211, w1 = u211, w2 = 4w0, w3 = u11v

′
1

r = u10w2 + v′0(v
′
0 − w3)

if r = 0 then different case
3 Compute pseudo-inverse I = i0 + i1x = r/2V ′ (mod U1) -

i1 = −v′1, i0 = v′0 − w3

4 Compute k = (f − V 2)/U1 (mod U1) = k1X + k0 1M
w3 = f3 + w1, w4 = 2u10, k1 = 2w1 + w3 − w4

k0 = u11(2w4 − w3) + f2 − w0

5 Compute S ′ ≡ kI (mod U1) 5M
w0 = k0i0, w1 = k1i1
s′1 = (i0 + i1)(k0 + k1)− w0 − w1(1 + u11)
s′0 = w0 − u10w1 if s′1 = 0 different case

6 Compute S ′′ = X + s0/s1 = X + s′0/s
′
1 and s1 I+5M+2S

w0 = 1/(s
′
1r),w1 = w0r,w2 = w0s

′2
1 = s1

w3 = rw1(= 1/s1),w4 = w2
3, s

′′
0 = s′0w1

7 Compute L
′′

= S
′′
U1 = X3 + l

′
2X

2 + l
′
1X + l

′
0 2M

l
′
2 = u11 + s

′′
0 , l

′
1 = u11s

′′
0 + u10, l

′
1 = u10s

′′
0

8 Compute U3 = (S(L+ 2V1)−K)/U ′ = X2 + u31X + u30 2M+1S
u30 = s

′′2
0 + 2v1w3 + 2u1w4

u31 = 2s′′0 − w4

9 Compute V3 4M
w0 = l

′
2 − u31, w1 = u31w0 + u30 − l

′
1, v31 = w1w2 − v11

w1 = u30w0 − l
′
0, v30 = w1w2 − v0

Total Cost : I+22M+5S

18

Table 2.2: Addition Formula for Affine Coordinates
Input:Genus 2 HEC C:Y 2 = f(X) Cost
f = X5 + f3X

3 + f2X
2 + f1X + f0

(U1, V1) where D1 = (U1, V1) is a reduced divisor
reduced divisor D2 = (U2, V2)
U1 = X2 + u11X + u10, V1 = v11x+ v10
U2 = X2 + u21X + u20, V1 = v21x+ v20
Output: (U3, V3)
where D3 = (U3, V3) = D1 +D2 is a reduced Divisor
U3 = X2 + u31X + u30, V3 = v31X + v30

Step Expression Cost
1 Compute the resultant r of U1, U2 : 4M+1S

t1 = u11 − u21, t0 = u20 − u10, t2 = t1u11 + t0,
r = t2t0 + t21u10
if r = 0 then different case

2 Compute almost inverse of U2 modulo U1 2M
i1 = t1, i0 = t2

3 Compute S ′ = s′1X + s′0 ≡ r(V1 − V2)/U1 (mod U2): 4M
w0 = v10 − v20, w1 = v11 − v21, w2 = i0w0, w3 = i1w1

s′0 = w2 − u10w3, s
′
1 = (i0 + i1)(w0 + w1)− w2 − w3(1 + u11);

If s′1 = 0, different case
4 Compute S ′′ = X + s0/s1 = X + s′0/s

′
1, and 1/s1 1I+3M+2S

w0 = (rs′1)
−1,w1 = rw0,w2 = s

′2
1 w0

w3 = rw1,w4 = w2
3,s

′′
0 = s′0w1

5 Compute L
′′

= S
′′
U1 = X3 + l

′
2X

2 + l
′
1X + l

′
0 2M

l
′
2 = u21 + s

′′
0 , l

′
1 = u21s

′′
0 + u20, l

′
1 = u10s

′′
0

6 Compute U3 = (S(L+ 2V1)−K)/U2 = X2 + u′1X + u′0: 3M
u30 = (s

′′
0 − u11)(s

′′
0 − t1)− u10 + l′1 + 2v21w3 + (u11 + u21)w4

u31 = 2s
′′
0 − t1 − w4

7 Compute V3 4M
w0 = l

′
2 − u31, w1 = u31w0 + u30 − l

′
1, v31 = w1w2 − v21

w1 = u30w0 − l
′
0, v30 = w1w2 − v20

Total Cost: I+22M+3S

Chapter 3

Number Representations for Efficient Scalar Multiplication

In this chapter, we introduce number representations used to decrease computational

time of scalar multiplication on the Jacobian of hyperelliptic curves.

3.1 Binary Representation

This form of representation and its usage for scalar multiplication has been known

for more than 2000 years [9]. We present left-to-right and right-to-left binary scalar

multiplication algorithms as Algorithms 4 and 5. The Number of doubling opera-

tions is approximately log2(k) for both algorithms. The expected average number of

additions is the average Hamming weight of the binary representation and is 1
2
log2(k).

Algorithm 4 Left-to-Right Binary Scalar Multiplication

Input: An element D of a group G and a non-negative integer k = (kl−1 · · · k0)2
Output: The element kD ∈ G
1: D′ = 1, i = l − 1
2: while i ≥ 0
3: D′ = 2D
4: if ki = 1 then D′ = D +D′

5: i = i− 1
6: end while
7: return D′

3.2 Non Adjacent Form (NAF) and Multibase Representations

An odd integer is either 1 (mod 4) or −1 (mod 4). The additive inverse of divi-

sor class represented in Mumford form as (U, V) is (U,−V). Preceding fact can be

utilized to decrease the number of additions in scalar multiplication without precom-

putation. General idea of this method was introduced by Brauer [5]. The idea is

19

20

Algorithm 5 Right-to-Left Binary Scalar Multiplication

Input: An element D of a group G and a non-negative integer k = (kl−1 · · · k0)2
Output: The element kD ∈ G
1: D′ = 1, D′′ = D, i = 0
2: while i ≤ l − 1
3: if ki = 1 then D′ = D′ +D′′

4: D′′ = 2D′′;i = i+ 1
5: end while
6: return D′

to represent a positive integer on a base 2w where w is called window size. If an

integer k is a (mod 2w) then it is also (a − 2w) (mod 2w). Hence windowed-NAF

representation of window size w can be used for scalar multiplication on Jacobians of

a hyperelliptic curves using only 2w−2 precomputed values. Bosma [3] made precise

analysis of density for w = 2. The density is 1/3 on average. In general, windowed

NAF with window size w has density 1
w+1

on average. More details of NAF and

windowed-NAF can be found in [1–3,5,7,8,10,18,29,30,32]. Longa and Miri [24] gen-

eralized this method for more than one base. We present their most general recoding

algorithm and corresponding scalar multiplication algorithm in Algorithms 6 and 7

respectively. They refer to their representation as extended windowed multibase NAF

(ex-wmbNAF). Longa and Miri [24] showed that addition is performed only if the

scalar is not divisible by any bj for all j such that wj > 0. Hence the precomputed

points needed are {nP : 1 ≤ n ≤ b/2 and bj - n for all 1 ≤ j ≤ J such that wj > 0}
where b =

∏n
i=1 b

wi
i .

w-NAF corresponds to base set of singleton 2 with weight w. We denote by

(b1, b2, · · · bl)-ex-wmbNAFw1,w2,···wl
with base set {b1, b2, · · · bl} with each bi having

weight wi. Longa and Miri use the terminology wmbNAF for the case with b1 = 2

and wi = 0 for i 6= 1. We use only restricted case of these representations with

l = 2, b1 = 2, b2 = 3 and w2 = 0 and we denote that case by (2, 3)-wmbNAFw1

where w1 is the weight of base two. Using Markov chains, [27] Li and Miri established

the nonzero density and the average number of times each composite operation is

performed. Table 3.1 presents the average number of doubling operations, tripling

operations and additions needed to be performed for (2, 3) − wmbNAFw for 256-bit

21

scalar.

Algorithm 6 Algorithm For ex-wmbNAF Multibase Recoding

Input: Scalar k
Bases B = (b1, b2, · · · , bJ), is an ordered set of prime numbers
Window set W = {w1, w2, · · · , wJ} is an ordered set of non-negative integers

b =
∏j=J

j=1 b
wj

j

Output:k = (kl, kl−1, · · · , k0). ki = (di, ri) where |di| <
∏j=J

j=1 b
wj

j

bj does not divide di for all 1 ≤ j ≤ J such that wj > 0 ,

ri ∈ B and k =
∑j=l

j=0 dj
∏m<j

m=0 rm
1.i = 0
2.While k > 0 do
3. Find the first j such that bj|k and set ri = bj, di = 0,k = k/bj
4. If there is no j such that k (mod bj) ≡ 0 1 ≤ j ≤ J
5. di = k (mod b)
6. If (di > w/2) then
7. di = bi − b
8. end if
9. k = k − di
10. end if

11. ki = (di, ri); i = i+ 1;
12.end while
13.Return (ki−1, ki−2, · · · , k1)

Algorithm 7 Algorithm for Extended wmbNAF Method for Scalar Multiplication

Input: P , (kl, kl−1, · · · , k0) and diP where ki = (di, ri) 0 ≤ i ≤ l

Output: kP where k =
∑j=l

j=0 dj
∏m<j

m=0 rm
1.Q = O
2.For i = l down to 0 do
3. Q = riQ+ diP
4.end for
5.Return Q

3.3 Different Systems of Coordinates

Field inversions are necessary for obtaining results of point operations. But they

are hard to implement in hardware and have high computational cost in software

implementations. Weighted coordinate systems are used to eliminate inversion of

22

Table 3.1: Number of Different Operations for 256-Bit Scalar using (2, 3)−wmbNAFw

Weight of 2(w) No. of Doublings No. of Triplings No. of Additions
2 202.5 33.7 67.5
3 213.7 26.7 53.4

field elements in the point operations. A reduced divisor (U, V) is represented in

various coordinates as follows:

1. Affine Coordinates : (U, V)

2. Semi-Affine Coordinates (Introduced in this work): (U,ZV, Z, z = Z2)

3. Lange’s New Coordinates:(Uz1, V Z
3
1Z2, Z1, Z2, z1 = Z2

1 , z2 = Z2
2)

4. Projective Coordinates:(UZ, V Z, Z)

3.4 Summary

In the previous chapter, we reviewed algebraic aspects of hyperelliptic curves. In this

chapter, we presented a discussion on representation and manipulation of scalars.

Having presented the necessary background, in the subsequent chapter, we describe

the existing and new techniques we use to obtain efficient point formulae.

Chapter 4

Description of Techniques Used In Deriving the Formulae

In this chapter, we describe the existing techniques and the new techniques we use

to obtain point operations in Chapters 5 and 6. Computation on the Jacobian of

a hyperelliptic is performed using Mumford representation of its elements. Mumford

representation of an element of the Jacobian is a pair of polynomials. Hence group op-

erations on the Jacobian is efficiently performed using modern methods of computer

algebra. Systematic techniques achieving asymptotically tighter bound are used both

directly and by adapting to the special case of small degree polynomial computa-

tion arising in the practical hyperelliptic curve cryptosystems. First we survey the

existing techniques: Karatsuba multiplication, Montgomery simultaneous inversions,

techniques for efficient polynomial division and side-stepping reduction of intermedi-

ate V polynomial for the computation of double-add and tripling operations. Next

we introduce new techniques: Computation of modular fraction, computing V with

weight instead of exactly, computing the U polynomial of the result of tripling oper-

ation modulo the U polynomial of the divisor class being tripled.

4.1 Existing Techniques

4.1.1 Karatsuba Multiplication

Karatsuba multiplication of polynomials, introduced in [19], is a technique now widely

used to trade more expensive field multiplications for less expensive field additions.

The product of a pair of degree one polynomials ax + b and cx + d is computed as

follows [22]:

(ax+ b)(cx+ d) = abx2 + ((a+ b)(c+ d)− ab− cd)x+ cd

23

24

This saves one multiplication at the expense of two subtractions and one addition.

Similar technique is applied to reduce a degree three polynomial modulo degree two

polynomial. We perform that computation as follows:

(ax3 + bx2 + cx+ d)

≡ (c− (u1 + u0)(a+ (b− u1a)) + u1a+ u0(b− u1a))x+ d+ u0(b− u1a) (mod U)

where

U = x2 + u1x+ u0

4.1.2 Montgomery’s Simultaneous Inversions

Montgomery [28] introduced the following method for inverting simultaneously n field

elements {ai : 1 ≤ i ≤ n}:

1. Compute Ar =
∏r

i=1 ai

2. Invert An to obtain In

3. Repeatedly compute ir = a−1r by computing from r = n to r = 2:

(a) ir = Ar−1Ir

(b) Ir−1 = arIr

(c) r = r − 1

We perform n − 1 multiplications to compute Ar. The cost for computing Ir is

one inversion and further n − 1 multiplications and cost for computing ir is n − 1

multiplications. So the total cost is 1I + 3(n− 1)M on average where I denotes the

average cost of the inversion and M stands for the average cost of the multiplication.

4.1.3 Exact Division by a Polynomial

Exact division of a degree three polynomial by a monic polynomial of degree two is

performed as follows [22]:

1. We obtain the polynomial equation:

(ax3 + bx2 + cx+ d) = (q1x+ q0)(x
2 + u1x+ u0)

25

2. By equating coefficients we obtain:

q1 = a

q0 = b− q1u1

This method can be extended to division of degree five polynomial as follows.

(ax5 + bx4 + cx3 + dx2 + ex+ f) = (q3x
3 + q2x

2 + q1x+ q0)(x
2 + u1x+ u0)

q3 = a

q2 = b− q3u1

q1 = c− q3u0 − q2u1 = c− (q3 + q2)(u0 + u1) + q3u1 + q2u0

q0 = d− q2u0 − q1u1

4.1.4 Computation of Double-Add and Tripling without Computing In-

termediate V

In [13] Eisenträger, Lauter and Montgomery introduced a technique by which double-

add operation can be sped up by not computing y−coordinate of intermediate result of

double-add operation while performing double-add operation as two additions for the

elliptic curves. Fan and Gong [14] adapted this technique to genus two hyperelliptic

curves over prime fields in the affine case. We use that technique for semi-affine as

well as inversion-free coordinates. Following lemma is central to their method.

Lemma 1. Let C be a genus 2 HEC over Fq given by,

C : Y 2 = f(X) (4.1)

where f(X) = X5 + f4X
4 + f3X

3 + f2X
2 + f1X + f0 ∈ Fq[X]. Assume that

D1 = [U1, V1], D2 = [U2, V2] and D′ = [U ′, V ′] = D1 + D2 are reduced divisor

classes in the Jacobian JC(Fq) of C and satisfy that U1, U2 and U ′ are quadratic, and

gcd(U1, U2)=gcd(U1, U
′)=1. Let S and S̃ satisfy the congruent relations: S ≡ V2−V1

U1

26

(mod U2) and S̃ ≡ V ′−V1

U1
(mod U ′), then the following modular identity holds.

S̃ ≡ −S − 2V1
U1

(mod U ′). (4.2)

Using Lemma 1, we obtain efficient double-add and tripling operation.

4.2 Techniques Introduced In This Thesis

4.2.1 Computation of Fraction of Polynomials Modulo another Monic

Polynomial

To compute S = s1x + s0 = (ax + b)/(cx + d) (mod x2 + u1x + u0), we proceed as

follows

1. We obtain a polynomial equation for S

ax+ b = (cx+ d)(s1x+ s0)− s1(cx2 + cu1x+ cu0)

2. By equating the coefficients, we obtain the following linear system on s0 and s1

ds0 − cu0s1 = b

cs0 + (d− cu1)s1 = a

We use two multiplications for computing coefficients.

3. We use the Cramer’s rule to to solve the linear system up to a factor of deter-

minant at a cost of six multiplications.

Traditionally, resultant method is used to obtain the pseudo-inverse I of cx + d

up to the factor of resultant r at a cost of three multiplications and a squaring

operation [22]. rS is obtained by using Karatsuba multiplication of I and ax + b

followed by modular reduction at a cost of five multiplications. Our method saves

one squaring operation.

27

4.2.2 Computing V with a weight

In the Mumford representation (U, V) of divisor D, U is always monic and V is almost

always not monic. Hence computing U up to a constant substantially increases the

multiplications needed. We observe from Harley’s algorithms presented in Algorithms

2 and 3 that computation of the first polynomial of Mumford representation does not

require the values of s1 or s0 where S = s1x + s0. Also computation of (1/s1) times

the second polynomial V also does not require the values of s1 or s0. Hence, we use a

technique of computing V̄ = V/s1 instead of V of the result of addition or doubling

operation. This introduces extra three multiplications for normalization. But we

save on the overhead involved in computing two inversions needed for computing

s1, s0, s0/s1, 1/s1 using Montgomery’s simultaneous inversions [28]. Further saving is

introduced by the simplified modular reductions of S
′′
U1 + V̄1 where S

′′
is the monic

form of S.

4.2.3 Computing U3 modulo U1 and adjusting U3

We observe that in the Harley’s algorithm for addition and doubling used to obtain

tripling:

s21U1U2 = K − S(SU1 + 2V1) (4.3)

and

s̃21U2U3 = K − S̃(S̃U1 + 2V1) (4.4)

where

1. D1 = (U1, V1) is the divisor being tripled

2. D2 = (U2, V2) = 2D1

3. D3 = (U3, V3) = 3D1

4. K =
f(X)−V 2

1

U1

5. S = K
2V1

(mod U1)

6. S̃ = V2−V1

U1
(mod U2)

28

We subtract 4.3 from 4.4 to obtain:

s̃21U2U3 − s21U1U2 = S(SU1 + 2V1)− S̃(S̃U1 + 2V1) (4.5)

Hence we obtain in the case of gcd(U1, U2) = 1:

s̃21U3 =
2(S − S̃)V1

U2

(mod U1) (4.6)

In the case of inversion free coordinates, normalization results in several multiplica-

tions in the last step of computation of U3. We observe that computing a weighted

u30 − u10 using the above identity saves on that overhead.

4.3 Summary

This chapter surveyed existing techniques and introduced new techniques at the point

arithmetic level used in the thesis to speed up scalar multiplication on the Jacobian

of hyperelliptic curves. One of the techniques, computing weighted V , leads to a

coordinate system which we refer as semi-affine coordinates. This is the simplest

coordinate system apart from affine coordinate system. In the next chapter we derive

formulae for semi-affine coordinate system and compare the cost with new methods

for semi-affine coordinates against existing methods for affine coordinates.

Chapter 5

Scalar Multiplication on Semi-Affine Coordinates

In this chapter, we present more efficient traditional formulae and new compos-

ite formulae in semi-affine coordinates using techniques presented in Chapter 4.

The coordinate system we use is slightly different from the traditional affine coordi-

nates. We represent a reduced divisor (U, V) in semi-affine coordinates by the tuple

(U,Z2V, Z2, z2 = Z2
2) where Z2 is a weight value. We first derive formulae for tradi-

tional operations of doubling and mixed addition. Then we improve the double-add

formulae presented by Fan and Gong [14]. Finally, we obtain triplings to make use of

the multibase representations introduced by Longa and Miri [24]. We obtain up to

11.78% speed up for scalar multiplication using binary expansions of scalars. Appli-

cation of multibase methods using tripling formula derived in this work results up to

2.35% speed up compared to binary methods using formulae obtained in this work.

Reader is referred to Section 5.5 for the environments considered for the comparison

and for the analytical comparison.

5.1 Doubling

Our doubling formula, presented in Table A.1 in page 82 for the semi-affine coor-

dinates costs one inversion, twenty multiplications and four squaring operations. In

comparison to existing doubling formula in affine coordinates [22] due to Lange(2003),

we save two multiplications and a squaring operation. We derive our formula from

Harley’s Algorithms presented in Algorithm 3 and explicit formula presented in Ta-

ble 2.1. The input is a divisor class represented as (U1, V̄1 = Z12V1, Z12, z12 = Z2
12)

where D1 = (U1, V1) is the corresponding reduced divisor. The output is a reduced

divisor D2 in the form of (U2, V̄2 = Z22V2, Z22, z22 = Z2
22) where D2 = 2D1 = (U2, V2).

1. We compute V ′ = 2V̄1 in step 1 of Table A.1.

29

30

2. We compute k1x + k0 = K (mod U1) where K = (z12f − V̄ 2
1)/U1 in steps 2-3

of Table A.1.

We obtain k1 and k0 as follows:

k1 = (3u211 + f3 − 2u10)z12

k0 = (u11(4u10 − f3 − u211) + f2)z12 − v211

3. We compute S
′′

the monic form of S = s1x+ s0 and Z22 = 1/s1 in steps 4-5 of

Table A.1).

We set up a linear system of two equations given by:

c(k1x+ k0) = (x+ s
′′

0)(2V̄1)− 2v̄11U1

on two variables c and s
′′
0 . For the computation of S = K/2V1 (mod U1)

we use K (mod U1) with weight z12 and the denominator with weight Z12.

Hence c = 1/(Z12s1). We obtain d,dc = d/(Z12s1) and ds
′′
0 at a cost of eight

multiplications using Cramer’s rule. If d and/or c is zero then we use the

Cantor’s algorithm given in Algorithm 1. We invert d to obtain i = d−1. Using

the inversion i of d, we compute c = 1/(Z12s1) = (d/(Z12s1))i and s′′0 = (ds
′′
0)i at

a cost I + 2M . With an additional 1M , We obtain Z22 = 1/s1 from 1/(Z12s1).

We compute V̄1 = V1/s1 = (V̄1)(1/(Z12s1)) at a cost of 2M in step 6 of Table

A.1.

4. We perform computation of U2 in step 7 of Table A.1.

Using the expression given in Table 2.1 [22], we compute U2 as:

u21 = 2s
′′

0 − z22

u20 = s
′′2
0 + 2v̄11 + 2u11z22

using 1M + 1S.

5. We derive V̄2 = Z22V2 = −S ′′
U1 − V̄1 (mod U2) in step 8 of Table A.1)

31

The cost for this step is 3M.

V̄2 = −S ′′
U1 + S

′′
U2 + (u11 − u21)U2 − V̄1

v̄21 = (s
′′

0 − u21)(u21 − u11) + u20 − u10 − v̄11

v̄20 = s
′′

0(u20 − u10) + (u11 − u21)(u20)− v̄10

5.2 Mixed Addition

We derive an explicit formula for mixed addition on semi-affine coordinates using

Harley’s Algorithm for addition presented in Algorithm 2 and explicit formulae for

addition given in Table 2.2. We are given two divisor classes D1 and D2 and we

compute D3 = D1 +D2. The inputs and the output are in the following form.

1. (U1, V̄1 = Z12V1, Z12, z12 = Z2
12) where D1 = (U1, V1) is a reduced divisor.

2. D2 = (U2, V2) is a reduced divisor.

3. D3 = (U3, V̄3 = Z32V3, Z32, z32 = Z2
32) where D3 = D1 + D2 = (U3, V3) is a

reduced divisor.

The cost of the new formula, shown in Table A.2 of page 83, is one inversion,

twenty multiplications and a squaring operation. We save two multiplications and

two squaring operations compared to existing addition in affine coordinates.

1. We normalize V2 with respect to V̄1 in step 1 of Table A.2.

By using two multiplications, we compute V̄2 = Z12V2.

2. We compute S
′′

the monic form of S = s1x + s0 and Z22 = 1/s1 in step 2 of

Table A.2.

We set up a linear system of two equations given by:

c(V̄2 − V̄1) = (x+ s
′′

0)(U1 − U2)− (u11 − u12)U2

on two variables c and s
′′
0 . Since for the computation of S = (V2 − V1)/U1

(mod U2) we use (V̄2 − V̄1) with weight Z12 and the denominator with weight

32

1, it follows that c = 1/(Z12s1). We obtain d,dc = d/(Z12s1) and ds
′′
0 at a

cost of eight multiplications using Cramer’s rule. If d and/or c is zero then

we use Cantor’s algorithm (Algorithm 1). We use the inversion i of d to

obtain 1/Z12s1 = (d/(Z12s1))i and s′′0 = (ds
′′
0)i at a cost of I + 2M . With

one multiplication, Z32 = 1/s1 is derived from 1/(Z12s1). We also compute

z32 = Z2
32 using 1S.

3. We obtain V̄1 = V1/s1 = (V̄1)(1/(Z12s1)) at a cost of 2M in step 3 of Table A.2.

4. For the computation of U3 we use the expression given in Table 2.2 [22] with

some optimization (Step 4 of Table A.2).

u31 = 2s
′′

0 + (u11 − u21)− z32

u30 = s′′0(s′′0 + 2a10) + u10 − u20 − u21(u11 − u12) + 2v̄11 + z22(u11 + u12)

Since we have computed z22 and u21(u11−u21) (when we computed linear system

parameters), this step costs 2M .

5. We obtain V3 in step 5 of Table A.2. This step is similar to the corresponding

step of the doubling formula. We perform the computation of V̄3 as follows:

V̄3 = −S ′′
U1 + S

′′
U3 + (u11 − u31)U3 − V̄1

v̄31 = (s
′′

0 − u31)(u31 − u11) + u30 − u10 − v̄11

v̄30 = s
′′

0(u30 − u10) + (u11 − u31)(u30)− v̄10

5.3 Double-Add Operation

We derive two formulae for double-add operation, one requiring two inversions and

another requiring only one inversion. The second formula trades an inversion for a

few multiplications in comparison to the first formula. The input divisors and the

output divisors are represented as follows.

1. (U1, V̄1 = Z12V1, Z12, z12 = Z2
12) where D1 = (U1, V1) is a reduced divisor.

33

2. D2 = (U2, V2) is a reduced divisor.

3. (U4, V̄4 = Z42V4, Z42, z42 = Z2
42) where D4 = D1 + D2 = (U4, V4) is a reduced

divisor.

5.3.1 Double-Add Operation with Two Inversions

We obtain a formula costing two inversions, thirty-six multiplications and two squar-

ing operations. The formula is presented in Tables A.3 and A.4 of pages 84 and 85.

Compared to the formula given in [14], we save six multiplications and three squaring

operations.

1. We normalize V2 with respect to V̄1 in step 1 of Table A.3.

At a cost of two multiplications we compute V̄2 = Z12V2.

2. We compute S
′′

the monic form of S = s1x + s0 and Z22 = 1/s1 in step 2 of

Table A.3.

We set up a linear system of two equations given by:

c(V̄2 − V̄1) = (x+ s
′′

0)(U1 − U2)− (u11 − u12)U2

on two variables c and s
′′
0 . For the computation of S = (V2−V1)/U1 (mod U2)

we use (V̄2 − V̄1) with weight Z12 and the denominator with weight 1. Hence

c is equal to 1/(s1Z12). We obtain d,dc = d/(Z12s1) and ds
′′
0 at a cost of eight

multiplications using Cramer’s rule. The inversion i of d is used to obtain

c = 1/(Z12s1) = (d/(s1Z12))i and s′′0 = (ds
′′
0)i at a cost of I + 2M . With

an additional 1M , Z22 = 1/s1 is computed from 1/(Z12s1). We also compute

z22 = Z2
22 using 1S.

3. We adjust V̄1 = V1/s1 = (V̄1)(1/(Z12s1)) at a cost of 2M (Step 3 of Table A.3).

4. For the computation of U3, we use the expression given in Table 2.2 [22] with

some optimization (Step 4 of Table A.3):

u31 = 2s
′′

0 + (u11 − u21)− z22

34

u30 = s′′0(s′′0 + 2a10) + a00 − u21(u11 − u12) + 2v̄11 + z22(u11 + u12)

Since we have computed z22 and u21(u11 − u21) (when we computed the linear

system parameters), this step costs 2M .

5. By applying Lemma 1, we compute the S̃ as (Step 5 of Table A.4):

(1/Z32)S̃ ≡ −S
′′ − 2V̄1/U1 (mod U3)

We set up a linear system to find T̃ = x + t̃′′0 the monic form of (−2V̄1/U1)

(mod U3)) as

−c̃′2V̄1 = (x+ t̃
′′

0)(U1 − U3)− (u11 − u31)U31

and solve to obtain d̃′, c̃′′ = d̃′c̃′ and t̃′′′0 = d̃′t̃
′′
0 . If d̃′c̃′ is zero, then we apply

Cantor’s algorithm. Otherwise we proceed to perform normalized addition:

S̃ = −c̃′′S ′′
+ T̃ ′′′(= d̃′X + t̃

′′′

0)

d̃ = d̃′ − c̃′′

d̃c̃ = c̃′′

d̃s̃′′ = t̃′′′0 − c̃′′s′′0

Next step is to invert d̃ and obtain c̃ and s̃′′0. We also compute Z42 = dc̃Z32 and

z42 = Z2
42. The cost of this step is one inversion, twelve multiplications and a

squaring operation.

6. After adjusting V̄1 by : Ṽ1 = V1/s1 = V̄1c̃, we compute U4 and V4 as follows

(Steps 6-8 of Table A.4):

u41 = 2s̃
′′

0 + (u11 − u31)− z42

u40 = s̃′′0(s̃′′0 + 2(u31 − u11)) + u10 − u30 − u31(u11 − u31) + 2v̄11 + z42(u11 + u31)

V̄4 = −S̃ ′′
U1 + S̃

′′
U4 + (u11 − u41)U4 − Ṽ1

35

v̄41 = (s̃
′′

0 − u41)(u41 − u11) + u40 − u10 − ṽ11

v̄40 = s̃
′′

0(u40 − u10) + (u11 − u41)(u40)− ṽ10

5.3.2 Double-Add Operation with One Inversion

We derive a formula costing one inversion, forty-five multiplications and four squaring

operations. The formula is shown in Tables A.5 and A.6 of pages 86 and 87.

Compared to the formula given in [14], we save eleven multiplications and three

squaring operations.

1. We normalize V2 with respect to V̄1 in step 1 of Tables A.5 and A.6.

At the expense of two multiplications we compute V̄2 = Z12V2.

2. We obtain S
′′
, the monic form of S = s1x + s0, and Z22 = 1/s1 in step 2 of

Tables A.5 and A.6.

We set up a linear system of two equations given by:

c(V̄2 − V̄1) = (x+ s
′′

0)(U1 − U2)− (u11 − u12)U2

on two variables c and s
′′
0 . c is equal to c1/(Z12s1), because for the compu-

tation of S = (V2 − V1)/U1 (mod U2) we use (V̄2 − V̄1) with weight Z12 and

the denominator with weight 1. We obtain d,c′ = d/(Z12s1) and s′′′0 = ds
′′
0 at

a cost of eight multiplications using Cramer’s rule. In addition we compute

d′ = dc′,Z32 = c′Z12 and z32 = Z2
32.

3. We adjust V̄1 = (d2V1)/s1 = d′V̄1 at a cost of 2M (Step 3 of Tables A.4 and

A.5).

4. We obtain D = d2 and DU21 in step 4 of Tables A.5 and A.6.

D = d2, , u′21 = Du21, u′20 = Du20

The cost for this step is two multiplications and a squaring operation.

36

5. Instead of U3 we compute D(U3 − U1) = u′31x + u′30 where D = d2 in step 5 of

Tables A.5 and A.6.

W1 = ds
′′′

0 , u
′
31 = 2W1 − u′21 − z32

u′30 = s
′′′2
0 + (2W1 − u′21)(u11 − u21)− u′20 + +2v̄11 + z32(u11 + u21)

We use two multiplications and a squaring operation.

6. By applying Lemma 1, we compute the S̃ as (Steps 6-9 of Tables A.5 and A.6):

(1/Z32)S̃ ≡ −dS
′′′ − 2V̄1/U1 (mod U3)

First we compute (V1 − V3)/U3 (mod U1). We observe that:

(V1 − V3)/U3 ≡ S + u11 − u31 − 2V1/U3 (mod U1)

from the fact that:

V3 = −SU1 + SU3 + (u11 − u31)U3 − V1

We set up a linear system to find T̃ = t̃1x+ t̃0 ≡ −2V̄1/U3 (mod U1) as

−2V̄1 = (t̃1x+ t̃0)(U3 − U1) + t̃′1(u11 − u31)U31

and by applying Cramer’s rule, we obtain d̃′, t̃′1 = d̃′t̃1 and t̃′0 = d̃′t̃0. By

performing normalized addition of (S + u11 − u31) and T ′ = t′1x+ t′0, we obtain

d̃ = D(t̃′1 + d̃′)

i1 = d̃−1

s̃′′0 = (Dt′0 + (W1 − u′31)d̃′)i1

c̃ = d̃′i1

37

Z42 = dc̃Z32, z42 = Z2
42

Then we adjust s′′0, U3 and V1:

i2 = i1(t̃
′
1 + d̃′)

u31 = u′31i2 + u11

u30 = u′30i2 + u10

s̃′′0 = s̃′′0 + u31 − u11

ṽ′11 = v̄11c̃

ṽ′10 = v̄10c̃

7. We derive U4 = X2 + u41x+ u40 in step 10 of Tables A.5 and A.6.

u40 = s̃
′′2
0 + (2s̃′′0 + u31)(u11 − u31) + u30 − u10 + 2ṽ11 + (u11 + u31)z42

u41 = 2s
′′

0 + u31 − u11 − z32

8. Finally, we compute V̄4 = Z42V4 = v̄41X + v̄40 in step 11 of Tables A.5 and

A.6.

v̄41 = (u41 − s̃′′0)(u11 − u41) + (u40 − u10)− ṽ11

v̄40 = s̃′′0(u40 − u10) + (u11 − u31)u40 − ṽ10

5.4 Tripling

Tripling formulae are based on the fact that the input divisor and the output divisor

are represented in the semi-affine coordinates. We derive two tripling formulae. The

first formula as in the case of double-add operation requires two inversions. The

second formula is obtained by trading one inversion for other field operations.

38

5.4.1 Tripling with Two Inversions

We perform tripling with two inversions as doubling followed by addition. Using

Lemma 1, we avoid computing intermediate V as in the case of double-add operation.

The formula is presented in Tables A.7 and A.8 of pages 88 and 89.

1. We compute V ′ = 2V̄1 in step 1 of Table A.7.

2. We obtain k1x+ k0 = Kz12 (mod U1) in steps 2-3 of A.7.

For the doubling part, as before we use the following expression given in [22].

k1 = 3u211 + f3 − 2u10

k0 = u11(4u10 − f3 − u211) + f2 − v211

Since exact v11 is not given the expressions have to be normalized. In our

formula we compute as K (mod U1),

k1 = (3u211 + f3 − 2u10)z12

k0 = (u11(4u10 − f3 − u211) + f2)z12 − v211

A weighted form of K (mod U1) is computed at a cost of three multiplications

and two squaring operations. The cost is 3M + 2S.

3. We compute the monic form S
′′

of S = s1x+ s0 and Z22 = 1/s1 in steps 4-5 of

Table A.7.

Now we set up a linear system

c(k1x+ k0) = (x+ s
′′

0)(2V̄1)− 2v̄11U1

on two variables c and s
′′
0 . Similar to the computation of doubling, we obtain

Z22, z22, s
′′
0 at a cost of I + 11M + 1S operations using Cramer’s rule.

39

4. We adjust V̄1 at a cost of two multiplications in step 6 of Table A.7.

v̄11 = cv̄11, v̄10 = cv̄10

5. By using the expression given in Table 2.1 [22], we compute U2 as (Step 7 of

A.7):

u21 = 2s
′′

0 − z22

u20 = s
′′2
0 + 2v̄11 + 2u11z22

The cost is 1M + 1S.

6. By applying Lemma 1, we compute the S̃ as (Step 8 of Table A.8):

(1/Z32)S̃ ≡ −S
′′ − 2V̄1/U1 (mod U3)

We set up a linear system to find the monic form T̃ = x + t̃′′0 of −2V̄1/U1

(mod U3)

−c̃′2V̄1 = (x+ t̃
′′

0)(U1 − U3)− (u11 − u31)U31

and solve to obtain d̃′, c̃′′d̃′c̃′ and t̃′′′0 = d̃′t̃
′′
0 . If c̃′′ is zero, then we apply Cantor’s

algorithm. Otherwise we proceed to perform normalized addition:

S̃ = −c̃′′S ′′
+ T̃ ′′

d̃ = d̃′ − c̃′′

d̃c̃ = c̃′′

d̃s̃′′ = t̃′′′0 − c̃′′s′′0

Next step is to invert d̃ and obtain c̃ and s̃′′0. We also compute Z32 = c̃Z22 and

z32 = Z2
32. The cost of this step is one inversion, twelve multiplications and a

squaring operation.

7. After adjusting V̄1 as Ṽ1 = V1/s1 = (V̄1)(c̃), we compute U3 and V3 by performing

40

the following steps (Steps 9-11 of Table A.8).:

u31 = 2s̃
′′

0 + (u11 − u21)− z32

u30 = s̃′′0(s̃′′0 + 2(u21 − u11)) + u10 − u20 + u21(u11 − u21) + 2ṽ11 + z32(u11 + u21)

V̄3 = −S̃ ′′
U1 + S̃

′′
U3 + (u11 − u31)U3 − Ṽ1

v̄31 = (s̃
′′

0 − u31)(u31 − u11) + u30 − u10 − ṽ11

v̄30 = s̃
′′

0(u30 − u10) + (u11 − u31)(u30)− ṽ10

5.4.2 Tripling with One Inversion

Tripling with one inversion is obtained by performing doubling followed by addition

and while postponing the inversion needed in the doubling step of the tripling to

addition step. The formula is presented in Tables A.9 and A.10 of pages 90 and

91.

1. We compute V ′ = 2V̄11 in step 1 of Table A.9.

2. We obtain k1x+ k0 = z12K (mod U1) in steps 2-3 of Table A.9.

For the doubling part, as before we use the following expression given in [22].

k′1 = 3u211 + f3 − 2u10

k′0 = u11(4u10 − f3 − u211) + f2 − v211

Since exact v11 is not given, the expressions have to be normalized. We compute

K as,

k1 = (3u211 + f3 − 2u10)z12

k0 = (u11(4u10 − f3 − u211) + f2)z12 − v211

A weighted form of K (mod U1) is computed at a cost of three multiplications

and two squaring operations (3M + 2S).

41

3. Now we set up a linear system (Steps 4-5 of Table A.9)

c(k1x+ k0) = (x+ s
′′

0)(2V̄1)− 2v̄11U1

on two variables c and s
′′
0 . For the computation of S = (K/2V1) (mod U2)

we use K (mod U1) with weight z12 and the denominator with weight Z12.

Hence c is equal to 1/(Z12s1). We obtain d,c′ = d/(Z12s1) and s′′′0 = ds
′′
0 at a

cost of eight multiplications using Cramer’s rule. With additional 1M + 1S,

Z22 = c′Z12 = d/s1 and z22 = Z2
22 are computed.

4. We adjust V̄1 = (d2V1)/s1 = (dV̄1)(1/(Z12s1)) at a cost of 3M (Step 6 of Table

A.9).

5. Using the expression given in [22], we compute DU2 and DU1 as (Step 7-8 of

Table A.9):

W6 = ds′′′0 , u21 = 2W0 − z22

u20 = s
′′′2
0 + 2V̄1 + 2u11z22

D = d2

u′11 = Du11

u′10 = Du10

6. By the application of Lemma 1, we compute the S̃ as (Step 9 of Table A.10):

(1/Z22)S̃ ≡ (−dS ′′′ − 2(V̄1/U1)) (mod U3)

We set up a linear system to find T̃ = t̃1x+ t̃0 ≡ −2V̄1/U1 (mod U3) as

−2V̄1 = (t̃1x+ t̃0)(U1 − U2)− (u11 − u21)U21

and solve to obtain d̃′, t̃′ = d̃′t̃1 and t̃′0 = d̃′t̃0. Then by performing normalized

42

addition of −S and T ′ = t′1x+ t′0, we obtain:

d̃ = D(t̃′1 − d̃′)

i1 = d̃−1

s̃′′0 = (Dt′0 − (W6)d̃
′)i1

c̃ = d̃′i1 = d̃/(s̃1Z22)

Z32 = dc̃Z22, z32 = Z2
32

At this stage, we adjust U2 and V1 (Steps 10-11 of Table A.10):

i2 = i1(t̃
′
1 − d̃′)

u21 = u′21i2

u20 = u′20i2

ṽ′11 = c̃v′11

ṽ′10 = c̃v′10

7. We compute U3 and V3 as follows (Steps 12-13 of Table A.10):

u31 = 2s̃
′′

0 + (u11 − u21)− z32

u30 = s̃
′′2
0 + (2s̃′′0 + u21)(u21 − u11) + u10 − u20 + 2ṽ11 + z32(u11 + u21)

V̄3 = −S̃ ′′
U1 + S̃

′′
U3 + (u11 − u31)U3 − Ṽ1

v̄31 = (s̃
′′

0 − u31)(u31 − u11) + u30 − u10 − ṽ11

v̄30 = s̃
′′

0(u30 − u10) + (u11 − u31)(u30)− ṽ10

43

5.5 Precomputation Schemes and the Cost of Scalar Multiplication Using

the New Formulae

5.5.1 Comparison of Costs of Formulae

Table 5.1 compares costs of formulae for semi-affine coordinates with existing formu-

lae. We compare doubling and mixed addition with the cost given in [22]. Double-add

operation cost is compared with the formulae given in [14]. Tripling cost is compared

with naive method of doubling followed by addition.

5.5.2 Precomputation

Cost of scalar multiplication depends on the number representation being using and

the costs of field operations in the environment concerned. We illustrate the im-

provements using the mpFq library [16]. The mpFq library has implementations of

general fields and implementations that are optimized for some particular fields. We

make our comparison on the prime fields with two words long characteristic. In that

implementation the cost of an inversion is 16.7 multiplications and that of a squaring

operation is 0.9 multiplications. The cost of precomputation using existing methods

is one (group) doubling and 2w−2 − 1 (group) additions. We use the double-add and

tripling operation to decrease the computational cost of precomputation. We illus-

trate our technique for the cases with w = 3 and w = 4. We denote by D the base

point to be multiplied by the scalar. For w = 3, we need to precompute 3D. For

w = 4 we need to precompute 3D, 5D and 7D.

Only one precomputed point (w = 3)

We modify step 9 of tripling with one inversion shown on Tables A.7 and A.8 as

follows:

ã00 = u′10 − u20, ã10 = u′11 − u21, ã01 = −ã10u20

W̃0 = ã10u21, ã11 = ã00D + W̃0, q̃0 = 2v̄10, q̃1 = 2v̄11

c̃ = (ã00ã11 − ã10ã01), W̃1 = (ã00q̃1 − ã10q̃1)d− d̃′, d̃ = dW̃1

44

s̃
′′′

0 = (q̃0ã11 − q̃1ã01)d− d̃′s′′′0

M1 = c̃Z22, I = (d̃M1)
−1

s̃1 = Id̃
′2

i1 = IM1

s̃′′0 = s̃′′′0 i1, c̃ = c̃i1

Z32 = c̃Z22, z32 = Z2
32

That is, we use Montgomery simultaneous inversions to obtain s̃1 at an additional

cost of 4M + 2S. Unweighted V3 can be obtained with two multiplication.

Three Precomputed Points(w = 4)

In this case, we have to compute, 3D, 5D and 7D. We proceed as follows:

1. We compute 3D using tripling introduced earlier.

2. Note that we did not explicitly compute the second polynomial V2 of the Mum-

ford representation of 2D. To obtain V2 we note that:

V̄3 = −S ′′U1 + S̄
′′
U3 − (V1/s1)

where S̄ = S + u11 − u31. Almost always U2 is degree 2 and hence, for the

frequent case, V3 remains unchanged when modular reduced by U2. But by

Harley’s algorithm:

S ′′U1 = (V2 − V1)/s1 (mod U)2

Hence we obtain the following expression for V2:

V̄2 = V2/s1 = −V3 + S̄
′′
U3 (mod U2)

v̄31 = (−s̃′′0 + u41 − u11 − u31)(u31 − u41) + u40 − u30 − ṽ41

45

v̄30 = (u11 − u41 + s̃
′′

0)(u40 − u30) + (u31 − u41)(u30)− ṽ40

We obtain V̄2 at a cost of three multiplications.

3. By noting that V̄2 and V̄3 both have the same weight, we perform a double-add

operation to obtain 7D = 2(2D)+3D, side-stepping the first step of normaliza-

tion. We use 7M+2S computation to find 1/Z32 and 1/Z72. 4M+2S operations

are used to obtain the inverse of the weight of Z72 similar to what was done

for the case of one precomputed point. Performing Montgomery simultaneous

inversions to obtain the inverse of the weight of V3 costs three multiplications.

4. Six multiplications are used to obtain 3D, 5D and 7D in affine form.

5. Two multiplications are saved on normalization.

Total cost is one tripling, one double-add and 17M + 1S .

5.5.3 Cost of Main Phase and Total Cost

The Tables 5.3 and 5.4 show the speed up obtained for the main phase of scalar

multiplication using double-add operation with two inversions and one inversion re-

spectively using binary expansions of scalars. Table 5.5 shows the total cost of scalar

multiplication for a 256-bit scalar using binary expansions of scalars using double-add

operation with one inversion. Table 5.6 shows the total cost of scalar multiplication

using wmbNAF with bases 2 and 3 against weights on base 2. The weight on base 3

is zero. We use the double-add operation and tripling with one inversion. The salient

features of improvements are as follows:

1. Up to 11.78% improvement in the total cost using binary expansions of scalars.

2. Total cost is improved by up to 2.35% to using mutibase methods compared to

binary expansion methods using our formulae

46

Table 5.1: Costs of Formulae for Semi-Affine Coordinates
Formulae This Work Existing
Doubling I+20M+4S I+22M+5S
Addition I+20M+1S I+22M+3S
Double-Add 2I+36M+2S 2I+42M+5S
Tripling 2I+36M+5S 2I+38M+5S
Double-Add I+45M+4S I+56M+7S
Tripling I+47M+6S -

Table 5.2: Costs of Precomputations for Semi-Affine Coordinates
Window Existing This work Reduction

3 84.6M 74.9M 11.46%
4 167.4M 153.2M 8.48%

Table 5.3: Costs per Bit Scalar of main phase of scalar multiplication using double-
add with two inversions for Semi-Affine Coordinates
Window Existing This work Reduction
2 (4I+86M+15S)/3 (4I+76M+10S)/3 8.71%
3 (5I+108M+20S)/4 (5I+96M+14S)/4 8.30%
4 (6I+130M+25S)/5 (6I+116M+18S)/5 8.03%

Table 5.4: Costs per Bit Scalar of main phase of scalar multiplication using double-
add with one inversion for Semi-Affine Coordinates
Window Existing This work Reduction
2 (3I+100M+17S)/3 (3I+85M+12S)/3 11.78%
3 (4I+122M+22S)/4 (4I+105M+16S)/4 10.74%
4 (5I+144M+27S)/5 (5I+125M+20S)/5 10.05%

Table 5.5: Costs for Scalar Multiplications using double-add with one inversion for
256-Bit Scalar in Semi-Affine Coordinates using Binary Methods
Window Existing This work Reduction
3 13435M 11992M 10.74%
4 13059M 11750M 10.02%

47

Table 5.6: Costs for Scalar Multiplications using double-add and tripling with one
inversion for 256-Bit Scalar in Affine Coordinates Using (2, 3)−wmbNAFw Methods
Weight of 2 (w) Binary (2, 3)− wmbNAFw Reduction
2 12450M 12157M 2.35%
3 11992M 11846M 1.21%

5.6 Summary

In this chapter we obtained efficient traditional and composite operations for envi-

ronments in which inversion is cheap. Often inversions are very expensive compared

to multiplications for low genus hyperelliptic curves over prime fields. Further, inver-

sions on prime fields are difficult to implement in hardware. In the next chapter we

improve point formulae for inversion-free coordinates.

Chapter 6

Formulae in Inversion-Free Coordinates

In the previous chapter, we presented formulae that require inversions. Field inver-

sions are performed using the extended-Euclidean Algorithm for computing greatest

common divisors. The extended Euclidean algorithm has high computational cost and

is hard to implement in hardware. Inversion-free methods are the preferred meth-

ods for scalar multiplication on the Jacobian of low genus hyperelliptic curves over

prime fields. We derive formulae in the two inversion-free coordinate systems that are

being currently used for hyperelliptic curves using techniques developed in Chapter

4. They are Lange’s new coordinates and projective coordinates. We obtain more

efficient formulae for doubling operations and additions. We also introduce formulae

for double-add and tripling operations. Lange’s new coordinates need storage of four

weight values in comparison to one value needed for projective coordinates. In en-

vironments in which memory is a major issue projective coordinates are useful. We

reduce the gap between the cost of scalar multiplication for projective and Lange’s

new coordinates.

6.1 Doubling

Doubling formula for Lange’s coordinates costs thirty multiplication and seven squar-

ing operations. The formula is presented in Tables A.11 of page 92. We save seven

multiplications at the expense of three squaring operations compared to the formula

presented in [22]. For the projective coordinates our formula, presented in Table A.17

of page 98, costs thirty-five multiplications and two squaring operations. The cost of

our formula is three multiplications and four squaring operations less than that was

obtained in [22].

48

49

6.1.1 Lange’s New Coordinates

When given a divisor D1 as (U1, V1, Z11, z11, Z12, z12) in Lange’s new coordinates, we

proceed as follows to obtain D2 = 2D1 as (U2, V2, Z21, z21, Z22, z22) in Lange’s new

coordinates.

1. We compute V ′1 = 2V1 in step 1 of Table A.11.

2. We obtain of k1x+ k0 ≡ K (mod U1) in step 2 of Table A.11. We compute k1

with weight z211z12 and k0 with weight z311z12 as:

w0 = v211

w1 = u211

W2 = z211

W3 = u10z11

W4 = f3W2 + w1

w5 = 2W3

k1 = (2w1 + w4 − w5)z12

k0 = (u11(2w5 − w4) + f2W2z11)z12 − w0

In further discussion we denote by k′1 the value k1z11 which is not computed in

the formula.

3. We set up the linear system for computation K/2V1 (mod U1) using the poly-

nomial equation (Step 3 of Table A.11)

(k′1x+ k0)c = (z11x+ s
′′′

0)(v′11x+ v′10)− 2v′11(z11x
2 + u11x+ u10)

We note that s
′′′
0 = z11s

′′
0. By equating coefficients of powers of x, we obtain the

following linear system.

a00 = 2v10; a01 = −k0; q0 = 2v11u10;

50

a10 = 2v11; a11 = −k′1; q1 = 2v11u11 − 2v0z11

Instead of computing a00, a11, q0 as above, we compute them using expressions

given below.

a00 = v′10z11; a11 = −k1; q0 = v′11W3

We compute q1 using the expression v′11u11−a00. The determinant of the linear

system is computed as follows.

d = a00a11 − a01a10

We obtain c′ = z11dc and s′′′′0 = ds′′′0 by performing the following calculations.

c′ = a00q1 − 2v11q0

s′′′′0 = q0a11 − q1a01

If c′ = 0 then gcd(U1, V1) is not zero. If the determinant d is zero then s1 is zero.

These cases occur rarely. These cases can be handled by Cantor’s algorithm

without significant performance penalty on average. We do not consider these

cases in our discussions. We observe that :

c′ = dz11c = (dz11(z11)(1/(Z
3
11Z12))/s1 = (dZ11)/(Z12s1)

The above relation holds from the following facts.

(a) A weight of 1/Z3
11Z12 is introduced by the differences in weights of denom-

inator and numerator in the computation S.

(b) A weight of z11 is introduced by the fact that z11 is the leading coefficient

pseudo-inverse in the linear system.

By similar arguments the following relationship holds between s′′′′0 and its cor-

responding affine value s′′0.

s′′′′0 = ds′′′0 = dz11s
′′
0

51

4. We perform some precomputation in step 4 of Table A.11.

W6 = c′Z12;W7 = W6Z11

W8 = dz11;W9 = W 2
8

W10 = W 2
7 ;W11 = W8s

′′′
0

We note that W6 = (dZ11)/s1 and W7 = (dz11)/s1.

5. We adjust V1 in step 5 of Table A.11. We compute V ′1 = (W9V1)/s1 as shown

below.

W12 = dc′; v′11 = W12v11; v
′
10 = W12v10

We obtain V ′ with a weight of W9 with respect to its affine value.

6. We compute U2 with weight W9 in step 6 of Table A.11.

u21 = 2W11 −W10 =

u20 = s
′′′′2
0 + 2v′11 + 2u11W

2
6

7. We compute a form of U1 with weight as that of U2 (Step 7 of Table A.11).

W13 = W8d;u′11 = W13u11;u
′
10 = W13u10

8. We set the weights in step 8 of Table A.11.

Z21 = W8

z21 = W9

Z22 = W7

z22 = W10

9. We compute V2 in step 9 of Table A.11. V2 = −(z21x+W11)U
′
1−z21V ′1 (mod U2).

52

V2 has a weight of z221/s1 = Z3
21Z22. V2 is obtained as:

v20 = W11(u20 − u′10) + (u′11 − u21)u20 − z21v′10

v21 = (u21 −W11)(u
′
11 − u21) + z21(u20 − u′10 − v′10)

6.1.2 Projective Coordinates

When given a divisor D1 as (U1, V1, Z1) in projective coordinates, we proceed as shown

subsequently to obtain D2 = 2D1 as (U2, V2, Z2) in projective coordinates.

1. We compute V ′1 = 2V1 in step 1 of Table A.17.

2. We compute a weighted k1x+k0 ≡ K (mod U1) in step 2 of Table A.17. Similar

to the case of Lange’s new coordinates, we compute k1 and k0 with different

weights. We compute k1 with weight Z2
1 and k0 with weight Z3

1 as

w0 = v211

w1 = u211

W2 = Z2
1

w3 = f2W2

W4 = u10Z1

w5 = f3W2 + w1

w6 = 2W4

k1 = 2w1 + w3 − w5

k0 = u11(2w5 − w3) + (w3 − w0)Z1

In further discussion we denote by k′1 the value k1Z1 which is not computed in

the formula.

3. We set up the linear system for computation of K/2V1 (mod U1) using the

53

polynomial equation presented below (Step 3 of the Table A.17).

(k′1x+ k0)c = (Z1x+ s
′′′

0)(2v11x+ 2v10)− 2v11(Z1x
2 + u11x+ u10)

By equating the coefficients of powers of the indeterminate, we obtain two linear

equations.

a00 = v′10; a01 = −k0; q0 = v′11u10;

a10 = v′11; a11 = −k′1; q1 = v′11u11 − v′0Z1

Instead of computing a00, a11, q0 as above, we compute them as follows:

W7 := v10Z1; a00 = 2W7; a11 = −k1; q0 = v′11W4; a01 = −k0; a10 = v′11

The q1 can be computed as v′11u11 − a00. The determinant of the linear system

is computed as follows:

d = a00a11 − a01a10

We obtain c′ = dZ1c and s′′′′0 = Z1s
′′′
0 by the expressions given below.

c′′ = a00q1 − a10q0(= d/s1)

s′′′′0 = q0a11 − q1a01(= dZ1s
′′
0))

If c′ = 0 then gcd(U1, V1) is not zero. As mentioned previously, the infrequent

cases of d = 0 and/or c′ = 0 are not considered in this discussion.

4. We precompute the following values (Step 4 of Table A.17).

W8 = ds′′′′0

w9 = c′Z1

W10 = c′w9

W11 = dw9

54

5. We adjust V1 in step 5 of Table A.17.

v′11 = W11v11

v′10 = W11a00

Hence now v′11 has a weight d2Z2
1 w.r.t the corresponding affine value. Since

a00 = v10Z1, v
′
10 has a weight d2Z3

1 w.r.t the corresponding affine value.

6. We compute U ′2 in step 6 of Table A.17.

u′21 = 2W8 −W10

u′20 = 2u11W10 + 2v′11 + s
′′′′2
0

In this step we have computed u21 with a weight of d2Z1 and u20 with a weight

of (dZ1)
2.

7. We obtain weight Z2 in step 7 of Table A.17.

W12 = d2;W13 = W11W2;Z2 = W12W13

8. We adjust U1 in step 8 of A.17. In this step we compute u10 and u11 with

weights as that of u20 and u21 respectively.

u′11 = W12u11;u
′
10 = W12W4

9. We compute of V2 in step 9 of Table A.17.

v20 = W8(u20 − u′10) + (u′11 − u21)u20 −Dv′10

v21 = Z1((u21 −W8)(u
′
11 − u21) +D(u20 − u′10 − v′11))

55

10. Finally, we adjust U2 in step 10 of Table A.17.

u21 = u21W11Z1;u20 = u20W11

6.2 Mixed Addition

While performing scalar multiplication on weighted coordinates, additions have to

be performed after normalization of the precomputed point being added and the

current result. If the precomputed points are also in a weighted form then the cost

of normalization is normally at least twice that of the case in which the precomputed

points were in affine form. Cohen, Miyaji and Ono [11] introduced the technique

of reducing the precomputed points to affine form before the principal phase of the

scalar multiplication. In order to utilize their technique, we derive formulae for mixed

additions in which one point is represented in Lange’s coordinates (or projective

coordinates) and other point is represented in affine form.

6.2.1 Mixed Addition for Lange’s New Coordinates

Given a divisor class D1 = (U1, V1, Z11, z11 = Z2
11, Z12, z

2
12) in Lange’s coordinates and

another divisor class D2 = (U2, V2) in affine form, we obtain their sum D3 represented

in Lange’s coordinates by the following steps. The formula is shown in Table A.12

of page 93.

1. We normalize of D2 with respect to D1 in steps 1-3 of Table A.12.

W1 = Z11Z12;W2 = z11W1;

u′20 = u20z11;u
′
21 = u21z11

v′20 = v20W2; v
′
21 = v21W2

2. We set up the linear system to find the monic form of S using the polynomial

equation (Step 4 of Table A.12):

c(V ′2 − V1) = (x+ s′′′0)(U1 − U ′2)− (u11 − u′21)U2

56

The resulting linear system on the two variables (s′′′0 , c) is as follows.

a00 = u10 − u′20; a01 = v10 − v′20; q0 = (u11 − u′21)u20;

a10 = u11 − u′21; a11 = v11 − v′21; q1 = W3 − a00;

where W3 = (u11 − u′21)u21.
We solve the linear system using Cramer’s rule to obtain:

d = a00a11 − a01a10;

c′ = dc = a00q1 − a10q0;

s′′′′0 = ds′′′0 = a11q0 − a01q1

Observe that from the fact that the difference in weights of U1 and V1 is Z11Z12:

s′′′′0 = ds′′0

c′ = dc = d/(Z11Z12s1)

3. We perform some precomputations in step 5 of Table A.12.

D = d2;W4 = dc′;W5 = c′W1;W6 = W5Z11;

W7 = W 2
5 ;W8 = W 2

6 ;W9 = s′′′′0 z11;W10 = Z11W9;

4. We adjust V1 in step 6 of Table A.12.

v′11 = W4v11; v
′
10 = W4v10

5. We use the expression for U3 affine formula to compute U3 with a weight of

(dZ11)
2 (Step 7 of Table A.12).

u31 = 2W10 +Da10 −W8

57

u30 = s′′′′0 (W9 + 2a10d)−Dq1 + 2v′11 + (u′21 + u11)W7

6. We adjust the weight of U1. We obtain U ′1 with weight as that of U3 (Step 8 of

Table A.12).

u′11 = Du11

u′10 = Du10

7. We obtain the weights in step 9 of Table A.12.

Z31 = dZ11; z31 = Z2
31

Z32 = W6;Z32 = W8;

8. Using the normalized modular identity (Step 10 of Table A.12):

V2 = −(z31x+W10)U
′
1 − z31V ′1 (mod U)3

we obtain V3 as:

v30 = W10(u30 − u′10) + (u′11 − u′31)u30 − z31v′10

v31 = (u31 −W10)(u
′
11 − u21) + z31(u30 − u′10 − v′10)

6.2.2 Mixed Addition for Projective Coordinates

Given a divisor classD1 = (U1, V1, Z1) in projective representation and another divisor

class D2 = (U2, V2) in affine coordinates, we obtain their sum D3 represented in

projective coordinates by performing the following steps. The formula is presented in

Table A.18 of page 99.

1. We normalize U2 with respect to U1 and V2 with respect to V1 (Step 1 of Table

A.18).

u′20 = u20Z1;u
′
21 = u21Z1

58

v′20 = v20Z1; v
′
21 = v21Z1

2. Similar to the case of mixed addition for Lange’s new coordinates, we set up

the linear system to find monic(S) using the polynomial equation given below

(Step 2 of Table A.18).

c(V ′2 − V1) = (x+ s′′′0)(U1 − U ′2)− (u11 − u′21)U2

The resulting linear system in variable (s′′′0 , c
′) is as follows.

a00 = u10 − u′20; a01 = v10 − v′20; q0 = (u11 − u′21)u20;

a10 = u11 − u′21; a11 = v11 − v′21; q1 = W0 − a00;

where W0 = (u11 − u′21)u21.
We solve the linear system using Cramer’s rule to obtain the following values.

d = a00a11 − a01a10;

c′ = dc = a00q1 − a10q0;

s′′′′0 = ds′′′0 = a11q0 − a01q1

3. We perform some precomputation in step 3 of Table A.18.

D = d2;W1 = s′′′′0 Z1;W2 = dW1;W3 = c
′2;W4 = W3Z1;

4. We compute V1 with weight d2Z1/s1 compared to its affine value in step 4 of

Table A.18.

W5 = dc′; v′11 = W5v11; v
′
10 = W5v10

5. We compute U3 with weight DZ1 (Step 5 of Table A.18).

u31 = 2W2 + a10D −W4

59

u30 = s′′′′0 (W1 + 2a10d) +D(a00 −W0) + 2v′11 + (u′21 + u11)W3

6. We compute the final weight of the result in step 6 of Table A.18.

W6 = DZ1;W7 = W5Z1;Z3 = W6W7

7. We obtain U ′1 with weight DZ1 in step 7 of Table A.18.

u′11 = Du11

u′10 = Du10

8. Using the normalized modular identity (Step 8 of Table A.18):

V3 = −(W6x+W2)U
′
1 −W6V

′
1 (mod U3)

we obtain V3 as follows:

v30 = W2(u30 − u′10) + (u′11 − u31)u30 −W6v
′
10

v31 = (u31 −W2)(u
′
11 − u31) +W6(u30 − u′10 − v′10)

9. We adjust the weight of U3 in step 9 of Table A.18.

u31 = W7U31;u30 = W7u30

6.3 Double-Add Operation for Lange’s New Coordinates

We obtain an efficient double-add operation compared to the naive method of per-

forming doubling followed mixed addition for Lange’s new coordinates. The technique

we use was first proposed by Eisenträuger [13] for elliptic curves in affine coordinates.

Eisenträuger, et al., obtain speed up by not explicitly computing polynomial V of

intermediate divisor class. Fan and Gong adapted this technique to double-add oper-

ation on the Jacobian of genus two hyperelliptic curves when the coordinate system

60

used is affine coordinates. Longa and Miri [24], in the context of elliptic curves, op-

timized by observing that for the second addition normalization is not needed. We

apply both techniques to genus two hyperelliptic curves for Lange’s new coordinates.

The formula is presented in Tables A.13 and A.14 of pages 94 and 95.

1. We perform the first eight steps of mixed addition. We reproduce those steps

from mixed addition formula.

(a) We normalize of D2 with respect to D1 in steps 1-3 of Table A.13.

W1 = Z11Z12;W2 = z11W1;

u′20 = u20z11;u
′
21 = u21z11

v′20 = v20W2; v
′
21 = v21W2

(b) We set up the linear system to find the monic form of S using the polyno-

mial equation given below (Step 4 of Table A.13).

c(V ′2 − V1) = (x+ s′′′0)(U1 − U ′2)− (u11 − u′21)U2

The resulting linear system on two variables (s′′′0 , c
′) as follows.

a00 = u10 − u′20; a01 = v10 − v′20; q0 = (u11 − u′21)u20;

a10 = u11 − u′21; a11 = v11 − v′21; q1 = W3 − a00;

where W3 = (u11 − u′21)u21.
We solve the linear system using Cramer’s rule to obtain:

d = a00a11 − a01a10;

c′ = dc′ = a00q1 − a10q0;

s′′′′0 = ds′′′0 = a11q0 − a01q1

We observe from the fact that the difference in weights of U1 and V1 is

61

Z11Z12:

s′′′′0 = ds′′0

c′ = dc′ = d/(Z11Z12)

(c) We perform some precomputation in step 5 of Table A.13.

D = d2;W4 = dc′;W5 = c′W1;W6 = W5Z11;

W7 = W 2
5 ;W8 = W 2

6 ;W9 = s′′′′0 z11;W10 = Z11W9

(d) We adjust V1 in step 6 of Table A.13.

v′11 = W4v11; v
′
10 = W4v10

(e) We use the expression for U3 affine formula to compute U3 with weight

(dZ11)
2 (Step 7 of Table A.13).

u31 = 2W10 +Da10 −W8

u30 = s′′′′0 (W9 + 2a10d)−Dq1 + 2v′11 + (u′21 + u11)W7

(f) We adjust the weight of U1. We obtain U ′1 with weight as that of U3 in

step 8 of Table A.13.

u′11 = Du11

u′10 = Du10

2. We compute weights Step 9 of Table A.13.

Z31 = dZ11; z31 = Z2
31

3. We set up the following linear system to compute T =
−2V ′

1

U ′
1

(mod U3) (Step 10

62

of Table A.14).

−2V ′1 = T̃ (U ′1 − U3) + t̃1(u31 − u′11)U3

where T̃ = t̃1z31x+ t̃0 By equating coefficients of powers of x we compute:

ã00 = u′10 − u30; ã10 = u′11 − u31;

q̃0 = −2v′10; q̃1 = −2v′11

ã10 = −ã10u30; ã11 = −ã10u31 + ã00z31

By applying Cramer’s rule, we compute:

d̃′ = ã00ã11 − ã10ã01

t̃′1(= d̃′t̃1) = ã00q̃1 − ã10q̃0

t̃′0(= d̃′t̃0) = ã11q̃0 − ã01q̃1

Let T̃ ′ = t̃′1z31x+ t̃′0.

4. Now we perform normalized addition of S ′′′′ and T̃ ′ and some precomputation

(Step 11 of Table A.14).

s̃′′′′0 = t̃0z31 −W10d̃
′;

W̃0 = d̃′Z32; W̃1 = W̃0Z31

d̃
′′

= t̃′1z31 − d̃′

d̃ = d̃
′′
z31

W̃2 = d̃′d̃

W̃3 = s̃′′′′0 d̃

W̃4 = W̃ 2
1 ;

63

W̃5 = d̃′′d̃; W̃6 = d̃
′′2; W̃7 = W̃ 2

0 ;

5. We adjust V1 in step 12 of Table A.14.

v′11 = v′11W̃2; ṽ
′
10 = v′10W̃2

6. We compute U4 with weight d̃2 in step 13 of Table A.14.

u41 = 2W̃3 − W̃4 + W̃5ã10

u40 = s̃′′′′0(s̃′′′′0 + 2ã10d̃
′′
) + ã11W̃6 + 2ṽ′11 + (u31 + u′11)W̃7

7. We obtain weights in step 14 of Table A.14.

Z41 = d̃; z41 = Z2
41

Z42 = W̃1, z42 = W̃4

8. We compute a form of U1 with the weight as that of U4 (Step 15 of Table A.14).

ũ′11 = u′11W̃5, ũ
′
10 = u′10W̃5

9. Finally, we compute V4 in step 16 of Table A.14.

v41 = (u41 − W̃3)(ũ
′
11 − u41) + z41(u41 − ũ′11 − ṽ′11)

v40 = W̃3(u40 − ũ′10) + (ũ′11 − u41)u40 − z41ṽ′10

6.4 Tripling

We compute tripling by performing doubling followed by a addition for both Lange’s

new coordinates and projective coordinates. We side step computing the intermediate

V polynomial. We apply the technique of computing the U polynomial of the result

in the Mumford representation modulo U1 where U1 is the first polynomial of the

64

Mumford representation of the divisor to be tripled.

6.4.1 Lange’s New Coordinates

We proceed as follows to triple a divisor given in Lange’s new coordinates. The

formula is presented in Tables A.15 and A.16 of pages 96 and 97.

1. We first perform the first 7 steps of doubling. For the sake of readability we

reproduce those steps.

(a) We compute V ′1 = 2V1 step 1 of Table A.15.

(b) We compute k1x + k0 ≡ K (mod U1) step 2 of Table A.15. We compute

k1 with weight z211z12 and k0 with weight z311z12 as: .

w0 = v211

w1 = u211

W2 = z211

W3 = u10z11

W4 = f3W2 + w1

w5 = 2W3

k1 = (2w1 + w4 − w5)z12

k0 = (u11(2w5 − w4) + f2W2)z12 − w0

In further discussions we denote by k′1 the value k1z11 which is not com-

puted in the formula.

(c) We set up the linear system for computation K/2V1 (mod U1) using the

polynomial equation given below. (Step 3 of Table A.15)

(k′1x+ k0)c = (z11x+ s
′′′

0)(2v11x+ 2v10)− 2v11(x
2 + u11x+ u10)

65

We note that s
′′′
0 = z11s

′′
0. By equating coefficients of identical powers of

the indeterminate, we obtain the following linear system.

a00 = 2v10; a01 = −k0; q0 = 2v11u10;

a10 = 2v11; a11 = −k′1; q1 = 2v11u11 − 2v0z11

Instead of computing a00, a11, q0 as above, we compute them as follows.

a00 = v′10z11; a11 = −k1; q0 = v′11W3

Now q1 = v′11u11 − a00. The determinant of the linear system is computed

as:

d = a00a11 − a01a10

We obtain c′ = z11dc and s′′′′0 = ds′′′0 by computing

c′ = a00q1 − 2v11q0

s′′′′0 = q0a11 − q1a01

If c′ = 0 then gcd(U1, V1) is not zero. If the determinant d is zero then s1

is zero. These cases occur rarely. These cases can be handled by Cantor’s

algorithm without significant performance penalty. We do not consider

these cases. We observe that :

c′ = dz11c
′ = (dz211)(1/(Z

3
11Z12))/s1 = (dZ11)/(Z12s1)

It follows from this that there is a weight of 1/(Z3
11Z12) introduced by the

differences in weights of the denominator and numerator in the compu-

tation of S and a weight of z11 is introduced by the fact that z11 is the

leading coefficient of the modular fraction in the linear system. Further

s′′′′0 and its affine value s′′0 are related are shown next.

s′′′′0 = ds′′′0 = dz11s
′′
0

66

(d) We perform some precomputation on step 4 of Table A.15.

W6 = c′Z12;W7 = W6Z11;

W8 = dz11;W9 = W 2
8

W10 = W 2
7 ;W11 = W8s

′′′
0

We note that W6 = (dZ11)/s1 and W7 = (dz11)/s1.

(e) We compute V ′1 = W9V1/s1 as (Step 5 of Table A.15):

W12 = dc′; v′11 = W12v11; v
′
10 = W12v10

dc′ = (d2Z11)/(Z12s1). Since we have a weight of Z3
11Z12 on V we obtain

V ′ with required weight.

(f) We obtain U2 with weight W9 in step 6 of Table A.15.

u21 = 2W11 −W10

u20 = s
′′′2
0 + 2v′11 + 2u11W

2
6

(g) We adjust U1. We compute a form of U1 with weight as that of U2 (Step

7 of Table A.15).

W13 = W8d;u′11 = W24u11;u
′
10 = W13u10

2. We compute weights in step 8 of Table A.15.

Z21 = W8, z21 = W9

Z22 = W7, z22 = W10

3. We compute a weighted T̃ = −2V ′1/U2 (mod U1) in step 9 of Table A.16. We

67

set up the linear system as

−2V ′1 = T̃ (U2 − U1) + (u11 − u21)U1

where T̃ = z21t̃1x + t̃0. We solve the system up to a factor of the determinant

using Cramer’s rule.

ã00 = u20 − u′10; ã10 = u21 − u′11

ã01 = −2v′10; ã11 = −2v11

w̃0 = ã00z21, q̃0 = ã10u
′
10, q̃11 = ã10u

′
11 − w̃0

W̃1 = ã00ã11 − ã01ã10, t̃′1 = z11W̃1

t̃′0 = ã11q̃0 − ã01q̃1

d̃′ = ã00q̃1 − ã10q̃0

4. We compute a weighted R̃ = 2V ′1/U1 (mod U2) in step 10 of Table A.16. We

observe that:

−2V1 = T̃U2 − R̃U1

Using the above relation we compute

r̃′1 = t̃′1, r̃
′
0 = t̃′0 + W̃1(u21 − u′11)

5. We perform some precomputation and compute a weighted S̃ = (V2 − V1)/U1

(mod U2) by performing normalized addition of T̃ and S ′′ (Step 11 of Table

A.16).

W̃3 = r̃′; W̃4 = z21r̃
′
0

W̃5 = W11d̃
′; s̃′0 = W̃4 − W̃5;

6. We compute a weighted S̄ = S ′′ − S̃ by normalized addition (Step 12 of Table

68

A.16).

s̄′1 = r̃′ − 2d̃′, s̄0 = −2W̃5 + W̃4

At this point, we observe that s̄1 = z21s̄
′
1.

7. We compute U ′3 = U3 (mod U1) using Equation 4.6 (Step 13 of Table A.16)

W̃6 = t̃′1s̄1, u
′
30 = s̄0t̃0 − W̃6u

′
10

Subsequently, we compute u31 exactly using the expression given in Table 2.2

in order to save some computation.

8. We compute U3 (Step 14-16,18 of Table A.16). By noting that the weight of

U ′3 is W̃ 2
3 z21, we compute U3 and the weights as follows:

W̃7 = W̃ 2
3

u30 = u′30 + W̃7u
′
10

Z31 = W̃3Z21, z31 = Z2
31

Z32(= Z31/s1) = d̃′Z22

W̃8 = W̃3s̃
′
0; W̃9 = W̃3d̃

′

u31 = 2W̃8 + (u′11 − u21)W̃7 − z32;u′31 = u31 − u′11W̃7;

9. We adjust V1 in step 17 of Table A.16.

ṽ′11 = W̃9v
′
11, ṽ

′
10 = W̃9v

′
10

10. Finally, we obtain V3 as step 19 of Table A.16.

v31 = −(u31 − W̃8)u
′
31 + z31(u

′
30 − ṽ11)

v30 = W̃8u
′
30 − u′31u30 − z31ṽ′10

69

6.4.2 Projective Coordinates

To perform tripling of reduced divisor given in projective coordinates we proceed as

shown subsequently. The formula is presented in Tables A.19 and A.20 of pages

100 and 101.

1. We first perform the first eight steps of doubling with modifications.

(a) We compute V ′1 = 2V1 in step 1 of Table A.19.

(b) Similar to the case of Lange’s coordinates we compute k1 and k0 with

different weights. We compute k1 with the weight Z2
1 and k0 with the

weight Z3
1 as presented below (Step 2 of Table A.19).

w0 = v211

w1 = u211

W2 = Z2

w3 = f2W2

W4 = u10Z1

w5 = f3W2 + w1

w6 = 2W4

k1 = 2w1 + w3 − w5

k0 = u11(2w5 − w3) + (w3 − w0)Z1

In further discussion we denote by k′1 the value k1Z1 which was not com-

puted in the formula.

(c) A linear system for computation of K/2V1 (mod U1) is set up using the

70

polynomial equation shown in what follows (Step 3 of Table A.19).

(k′1x+ k0)c = (Zx+ s
′′′

0)(2v11x+ 2v10)− 2v11(x
2 + u11x+ u10)

By equating the coefficients of powers of x, we obtain a system of two

linear equations.

a00 = v′10; a01 = −k0; q0 = v′11u10;

a10 = v′11; a11 = −k′1; q1 = v′11u11 − v′0Z1

Instead of computing a00, a11, q0 as above, we perform the following steps.

a00 = v′10Z1; a11 = −k1; q0 = v′11W4; a01 = −k0; a10 = v′11

We derive q1 as w7−a′00 where w7 = v′11u11. The determinant of the linear

system is computed as:

d = a00a11 − a01a10

We obtain c′ and s′′′′0 with factors of dZ and d compared respectively to c

and s′′′0 by computing

c′ = a00q1 − a10q0

s′′′′0 = q0a11 − q1a01

If c′ = 0 then gcd(U1, V1) is not zero. As previously mentioned, the infre-

quent cases of d = 0 and/or c′ = 0 are not considered in this discussion.

(d) We precompute the following values (Step 4 of Table A.19).

Z21 = dZ1; z21 = Z2
21;

W8 = Z21s
′′′′
0

w9 = c′Z1

71

W10 = c′w9

W11 = dw9

Z22 = w9

z22 = Z2
22

(e) We adjust V1 in step 5 of Table A.19.

v′11 = W11v11

v′10 = W11v10

V ′1 has a weight d2Z2
1 w.r.t the corresponding affine value.

(f) We compute U2 in step 6 of Table A.19.

u21 = 2W8 − z22

u20 = 2u11W10 + 2v′11 + s
′′′′2
0

In this step we compute U2 with a weight of DZ2
1 .

(g) We adjust U1 in Step 7 of A.19. In this step we compute u10 and u11 with

weights as that of u20 and u21 respectively.

w12 = dZ21;u
′
11 = w12u11;u

′
10 = w12u10

2. At this stage, we perform an addition to obtain the result in Lange’s new coor-

dinates

(a) We compute T̃ = −2V ′1/U2 (mod U1) in step 8 of Table A.20. We set up

the linear system as

−2V ′1 = T̃ (U2 − U1) + (u11 − u21)U1

72

where T̃ = z21t̃1x+ t̃0. We solve the system up to a factor of the determi-

nant using Cramer’s rule.

ã00 = u20 − u′10; ã10 = u21 − u′11

ã01 = −2v′10; ã11 = −2v11

w̃0 = ã00z21, q̃0 = ã10u
′
10, q̃11 = ã10u

′
11 − w̃0

W̃1 = ã00ã11 − ã01ã10, t̃′1 = z11W̃1

t̃′0 = ã11q̃0 − ã01q̃1

d̃′ = ã00q̃1 − ã10q̃0

(b) We Compute the weighted R̃ = 2V ′1/U1 (mod U2) (Step 9 of Table A.20).

We observe that:

−2V1 = T̃U2 − R̃U1

Using the above relation we compute as

r̃′1 = t̃′1, r̃
′
0 = t̃′0 + W̃1(u21 − u′11)

(c) We perform some precomputation and compute a weighted S̃ = (V2 −
V1)/U1 (mod U2) by performing normalized addition of T̃ and S ′′ (Step 10

of Table A.20).

W̃3 = r̃′; W̃4 = z21r̃
′
0

W̃5 = W11d̃
′; s̃′0 = W̃4 − W̃5;

(d) We compute a weighted S̄ = S ′′ − S̃ by normalized addition (Step 11 of

Table A.20).

s̄′1 = r̃′ − 2d̃′, s̄0 = −2W̃5 + W̃4

At this point, we observe that s̄1 = z21s̄
′
1.

(e) We compute U ′3 = U3 (mod U1) using the Equation 4.6 (Step 12 of Table

73

A.20)

W̃6 = t̃′1s̄1, u
′
30 = s̄0t̃0 − W̃6u

′
10

We compute u31 exactly using the expression given in the Table 2.2 in

order to save some computation.

(f) We obtain U3 in steps 13-15,17 of Table A.20. By noting that the weight

of U ′3 is W̃ 2
3 z21, we compute U3 and weights as follows:

W̃7 = W̃ 2
3

u30 = u′30 + W̃7u
′
10

Z31 = W̃3Z21, z31 = Z2
31

Z32(= Z31/s1) = d̃′Z22

W̃8 = W̃3s̃
′
0; W̃9 = W̃3d̃

′

u31 = 2W̃8 + (u′11 − u21)W̃7 − z32;u′31 = u31 − u′11W̃7;

(g) We adjust V1 in Step 16 of Table A.20.

ṽ′11 = W̃9v
′
11, ṽ

′
10 = W̃9v

′
10

(h) We compute V3 in step 18 of Table A.20.

v31 = −(u31 − W̃8)u
′
31 + z31(u

′
30 − ṽ11)

v30 = W̃8u
′
30 − u′31u30 − z31ṽ′10

3. Finally, we adjust the weight of U3 and compute Z3 (Step 19 of Table A.20).

w̃10 = Z31Z32;Z3 = z31w̃10;

u31 = u31W̃10;u30 = u30w̃10

74

6.5 Precomputation Schemes and Comparison of Performance Against

Existing Methods

In this section, we compare the cost of scalar multiplication with our new and im-

proved formulae to that with scalar multiplication using existing formulae. We inves-

tigate the improvements using the nuMongo library. In that nuMongo implementation

the cost of an inversion is equal to the cost of 29.5 multiplications and that of squaring

operation is equal to one multiplication.

Special Addition and Precomputation

First we develop a special addition of two reduced divisors in projective coordinates

with identical weights. This technique was first used by Longa and Miri for elliptic

curves [23].

Given two reduced divisors with identical weights the formula two divisors D1 =

(U1, V1, Z) and D2 = (U2, V2, Z) the formula computes D3 = D1 + D2 = (U3, V3, Z3).

A form, in projective coordinates, of D1, (U ′1, V
′
1 , Z3) with weight Z3 is computed. Z3

Z

is also computed by formula. The formula is presented in Table A.21 of page 102.

1. We set up the linear system and solve it in step 2 of Table A.21.

a00 = u10 − u20, a10 = u11 − u21

a01 = v10 − v20, a11 = v11 − v21

q0 = u20a10,W0 = a10u21, q0 = W0 − a00Z

d′ = a00a11 − a01a10, d = dZ

s′′′0 = q0a11 − q1a01, c′ = a00q1 − a10q0

2. We perform some precomputation in step 3 of Table A.21.

D = d2,W1 = s′′′0 Z,W2 = dW1,W3 = c
′2,W4 = W3Z

3. We adjust V1 in step 4 of Table A.21. V ′1 is computed as the affine value of

75

V1/s1 multiplied by DZ1.

W5 = dc′1, v
′
11 = W5v11, v

′
10 = W5v10

4. We compute U3 with weight DZ1 in step 5 of Table A.21.

u31 = 2W2 + a10D −W4

u30 = s′′′0 (W1 + 2da10)− dd′q1 + 2v′11 + (u′21 + u11)W3

5. We compute Z3, Z
′
3 in step 6 of Table A.21.

W6 = DZ1,W7 = W5Z1, Z3 = W6W7, Z
′
3 = W5W6

6. We adjust U1 so as to be the same as U3 in step 7 of Table A.21.

u′11 = Du11, u
′
10 = Du10

7. We adjust V1 to have a weight of Z3 in step 8 of Table A.21.

v′11 = v′11W6, v
′
10 = v′11W6

8. We compute V3 with weight Z3 in Step 9 of Table A.21.

v30 = W2(u30 − u′10) + (u′11 − u31)u30 − v′10

v31 = (u31 −W2)(u
′
11 − u31) +W6(u30 − u′10)− v′11

9. We adjust U3, U1 so that they have weight Z3 in step 10 of Table A.21.

u31 = W7u31, u30 = W7u30, u
′
11 = u′11W7, u

′
10 = u′10W7

Precomputation for w-NAF scalar multiplication is performed as follows:

76

1. Let D be the base point to be multiplied by scalar.

2. Compute 2D (Doubling operation cost).

3. Compute D with the weight as that of 2D (3M).

4. Perform special additions to compute 3D, 5D, · · · , kD(one special addition per

point).

5. Invert Z coordinate of kD(1M).

6. Obtain inverse of Z coordinates of k − 2, k − 4, · · · , 3(1M per point).

7. Remove weights on 3D, 5D, · · · , kD (4M per point).

The total cost is equal to Cost of Doubling of Point in Affine Coordinates+ 3 M+(2w−2−
1)× (Cost of Special Addition)+I+ (5M) ×(2w−2 − 1). Table 6.1 compares the cost

of precomputation by our method with that of the existing method shown in [22].

6.5.1 Lange’s New Coordinates

In this section, we compare the cost of scalar multiplication using our formulae against

existing formulae for Lange’s new coordinates. Precomputation is performed on pro-

jective coordinates. The comparison of cost of fomulae is presented in Table 6.2.

We compare the cost of our traditional formulae against the results presented in [22].

Composite formulae are compared against the cost of naive methods of computing

composite operations using doubling and addition.

Table 6.3 shows the speed up obtained for the main phase of scalar multiplication

and the total cost (including precomputation).

Table 6.4 shows the total cost of scalar multiplication for a 256-bit scalar using

binary expansions of scalars. Table 6.5 shows the same for the multibase method. But

we compare the cost using multibase methods against our binary methods. We use

only (2,3)-wmbNAF methods with zero window on base 3. This is because tripling is

not efficient enough compared to the double-add operation. This is in contrast to the

case of genus one curves for which multibase methods are used to obtain significant

speed up. We observe the following principal features of improvements:

77

Table 6.1: Costs of Precomputations on Projective Coordinates
Window This Work Previous
2 - -
3 I+61M+9SS I+89M+6S
4 I+164M+13S I+197M+10S

Table 6.2: Costs of Formulae for Lange’s New Coordinates
Formulae This Work Previous Work
Doubling 30M+7S 34M+7S
Mixed Addition 34M+4S 37M+6S
Double-Add 61M+8S 71M+13S
Tripling 55M+10S 71M+13S

1. We obtain up to 13.85% speed up for the main phase using binary expansions

of scalars.

2. Up to 13.11% improvement in the total cost using binary expansions of scalars.

3. Total cost is improved by up to 2.9% using multibase methods compared with

that of our binary expansion methods

4. Overall improvement due to multibase methods is up to 16% compared with

existing methods.

6.5.2 Projective Coordinates

Comparison costs of formulae are presented in Table 6.6. We compare traditional

formulae against results presented in [22]. Composite formulae are compared against

the naive method cost of computing composite operations using doubling and addi-

tion. Table 6.7 compares the cost of the main phase of scalar multiplication using

Table 6.3: Costs of Main Phase per Bit Scalar using binary methods for Lange’s New
coordinates
Window Existing This work Reduction
2 (139M+27S)/3 (121M+22S)/3 13.85%
3 (173M+34S)/4 (151M+29S)/4 13.04%
4 (207M+41S)/5 (181+36S)/5 12.50%

78

Table 6.4: Costs for Scalar Multiplications on Lange’s New Coordinates Using Binary
Methods for 256-Bit Scalar
Window Existing This work Reduction
3 13373M 11620M 13.11%
4 12934M 11317M 12.5%

Table 6.5: Costs for Scalar Multiplications on Lange’s New Coordinates Using (2,3)-
wmbNAFw methods for 256-Bit Scalar
Weight(w) Binary (This Work) This work(wmbNAF) Reduction
2 12203M 11850M 2.9%
3 11620M 11456M 1.4%

our methods for Lange’s new coordinates and projective coordinates. Scalar multi-

plication on projective coordinates is slower by less than 3.3% compared with scalar

multiplication on Lange’s new coordinates. We conclude that projective coordinates

are as effective as scalar multiplication on Lange’s new coordinates. We conclude that

projective coordinates are almost as efficient as Lange’s new coordinates.

Table 6.6: Costs of Formulae for Projective Coordinates
Formulae This Work Existing
Doubling 32M+5S 38M+7S
Mixed Addition 35M+2S 40M+4S
Tripling 57M+9S 67M+7S

Table 6.7: Costs per Bit Scalar for Projective Coordinates
Window Projective coordinates Lange’s New Coords. Slower By
2 (131M+17S)/3 (121M+22S)/3 3.3%
3 (163M+22S)/4 (151M+29S)/4 2.7%
4 (195M+27S)/5 (181M+36S)/5 2.3%

Chapter 7

Conclusions and Future Work

Scalar multiplication is the most important operation in hyperelliptic cryptosystems.

In this work, we mainly improved scalar multiplication by decreasing the computa-

tional time. This work focused primarily on the point arithmetic level. Improvements

were made on coordinates which use field inversion as well as for inversion-free co-

ordinates. Contribution was made on space requirements by obtaining formulae in

projective coordinates which need a single weight value per point; these are almost

as efficient as formulae on Lange’s new coordinates. Previously formulae in Lange’s

new coordinate were significantly faster than those of projective coordinates. We

introduced semi-affine coordinates. Formulae for semi-affine coordinates require field

inversions too but are significantly faster than that of existing affine coordinates. We

applied multibase representations with the tripling formulae to further speed up scalar

multiplication. We also improved precomputation cost by using efficient double-add

operations and special addition.

One future direction would be the application of techniques used in this thesis to

hyperelliptic curves of higher genera. Genus 3 hyperelliptic curves over prime fields

with 64-bit modulus provides the security of elliptic curves over 192-bit field. With

the widespread use of 64-bit architectures, significant improvement in point formulae

in genera 3 and 4 in conjunction with the use of machine instructions to perform

field operation may lead to more efficient cryptosystems. We note that when we

multiply two 64-bit numbers the number of bits in the result can be upto 128 bits.

But applying technique of Karatsuba multiplication and viewing a 64-bit integer as a

polynomial with coefficients of size 32-bit we can implement multiplication followed

by modular reduction using 64-bit machine instructions.

In order to construct practical cryptosystem based on hyperelliptic curves, atomic

79

80

formulae which resist the attacks based on side channel information have to be de-

veloped. We have in this thesis specialized computation by using double-add and

triple formulae. As we specialize operations to save computation adversary will have

access to more side-channel information. Hence protection against side-channel at-

tacks become important. For elliptic curves with fewer operations it is not hard to

obtain efficient formulae in the form of atomic blocks which will have similar execu-

tion trace. But in the case of hyperelliptic curves with a significantly larger number

of field operations, efficient atomic formulae would only be possible using some kind

of automation of search for atomic blocks. The problem can be converted to coloured

graph traversal problems as follows:

1. We build a directed graph with dependency information for each formula.

2. Nodes are initial, final or intermediate variables will be coloured based on the

operation used to obtain them.

3. A directed edge (v, w) is in the edge set of graph iff v is used to obtain w. There

may be more than one possible graph for an operation.

4. A formulae in the form series of atomic blocks, will have a pre-order traversal

of a graph as subsequence of sequence of operations. Hence search space can be

bounded.

In genus two hyperelliptic curves over a prime field, computation K (mod U)

requires many operations for normalization. Our initial inspection shows that using

expression K = ((f(X) − (−SU ′ − V1 + S ′U)/U) when the previous operation is

doubling, D = 2D′ and S denotes the usual polynomial calculated for doubling, will

give some gain on Lange’s new coordinates.

In this thesis we demonstrated that computation can be saved by identifying

relationships between values in adjacent traditional operations. We observe that for

genus two hyperelliptic curves over binary fields:

1. There is no division by V in any of the doubling formulae. Further there is no

multiplication by V for doubling in the binary case.

81

2. Squaring distributes over the polynomial addition for polynomials over binary

fields.

3. Some of the coefficients of V can be recovered by the fact U |(f(X) + h(X)V +

V 2).

Based on these observations computation across point operations can be saved by

avoiding computing some coefficients of V until addition. When addition needs to be

performed those coefficients can be recovered by the relation U |(f(X)+h(X)V +V 2).

Appendix A

Table A.1: Doubling for Semi-Affine Coordinates
Input:Genus 2 HEC C:Y 2 = f(X)
f = X5 + f3X

3 + f2X
2 + f1X + f0

Z12,z12 = Z2
12, (U1, V̄1 = Z12V1)

where D1 = (U1, V1) is a reduced divisor
U1 = X2 + u11X + u10,V̄1 = v̄11X + v̄10
Output:(U2, V̄2 = Z22V2, Z22, z22)
where D2 = (U2, V2) = 2D1 is a reduced divisor
U2 = X2 + u21X + u20,V̄2 = v̄21X + v̄20

1 Compute V ′ = 2V̄1 (mod U1) -
v′11 = 2v̄11, v

′
10 = 2v̄10

2 Precomputations 2S
W0 = v̄211,W1 = u211

3 Compute K = (z12f − V̄ 2)/U1 (mod U1) = k1X + k0 3M
w3 = f3 +W1, w4 = 2u10, k1 = (2W1 + w3 − w4)z12
k0 = (u11(2w4 − w3) + f2)z12 −W0

4 Compute coefficients and determinant d the matrix : 4M
a00 = v′10, a01 = −k0, , a10 = v′11, a11 = −k1
d = a00a11 − a01a10
q0 = v′11u10, q1 = v′11u21 − v′10
if d = 0 then different case

5 Compute S ′′ = X + s′′0 ≡ K/(2V1s1) (mod U1)) and Z22: I+7M+1S
i = d−1, c(= 1/Z11s1) = (a00q1 − a10q0)i, Z22 = Z12c
s′′0 = (a11q0 − a01q1)i, z22 = Z2

22

if c = 0 then different case
6 Precomputations V̄1 = v̄11x+ v̄10 2M

v̄11 = v̄11c = v11Z22, v̄10 = v̄10c = v10Z22

7 Compute U2 = (S(SU1 + 2V1)−K)/U1 = X2 + u21X + u20 1M+1S
u20 = s

′′2
0 + 2v̄11 + 2u1z22

u21 = 2s′′0 − z22
8 Compute V̄2 = Z22V2 3M

v̄21 = (u21 − s′′0)(u11 − u21) + (u20 − u10)− v̄11
v̄20 = s′′0(u20 − u10) + (u11 − u21)u20 − v̄10
Total Cost I+20M+4S

82

83

Table A.2: Mixed Addition for Semi-Affine Coordinates
Input:Genus 2 HEC C:Y 2 = f(X)
f = X5 + f3X

3 + f2X
2 + f1X + f0

Z12, z12 = Z2
12, (U1, V̄1 = Z12V1)

where D1 = (U1, V1) is a reduced divisor
reduced divisor D2 = (U2, V2)
U1 = X2 + u11X + u10,V̄1 = v̄11X + v̄10
U2 = X2 + u21X + u20,V1 = v21X + v20
Output: (U3, V̄3 = Z32V3), Z32 and z32 = Z2

32

where D3 = (U3, V3) = D1 +D2 is a reduced Divisor
U3 = X2 + u31X + u30, V̄3 = v̄31X + v̄30

1 Compute V̄2 = Z12V2 2M
v̄21 = Z12v21,v̄20 = Z12v20

2 Compute S ′′ = (V̄2 − V̄1)/(s1U1) (mod U2) and Z32 I+11M+1S
a00 = u10 − u20, a01 = v̄10 − v̄20
a10 = u11 − u21, a11 = v̄11 − v̄21
d = a00a11 − a01a10,if d = 0 then different case,i = d−1

W0 = u21a10, q0 = u20a10, q1 = W0 − a00
s′′0 = (a11q0 − a01q1)i, c = 1/(Z12s1) = (a00q1 − a10q0)i
Z32 = cZ12, z32 = Z2

32

if c = 0 then different case
3 Precomputations V̄1 = v̄11x+ v̄10 2M

v̄11 = v̄11c = v11Z32, v̄10 = v̄10c = v10Z32

4 Compute U3 = (S(L+ 2V1)−K)/U2 = X2 + u′1X + u′0: 2M
u30 = s

′′
0(s′′0 + 2a10)− q1 + 2v̄11 + (u11 + u21)z32

u31 = 2s
′′
0 + a10 − z32

5 Compute V̄3 = Z32V3 3M
v̄31 = (u31 − s′′0)(u11 − u31) + (u30 − u10)− v̄11
v̄30 = s′′0(u30 − u10) + (u11 − u31)u30 − v̄10
Total Cost I+20M+1S

84

Table A.3: Double-Add with Two Inversions for Semi-Affine Coordinates-Part 1
Input:Genus 2 HEC C:Y 2 = f(X)
f = X5 + f3X

3 + f2X
2 + f1X + f0

Z12, z12 = Z2
12, (U1, V̄1 = Z12V1)

where D1 = (U1, V1) is a reduced divisor
reduced divisor D2 = (U2, V2)
U1 = X2 + u11X + u10,V̄1 = v̄11X + v̄10
U2 = X2 + u21X + u20,V1 = v21x+ v20
Output: (U4, V̄4 = Z42V4), Z42 and z42 = Z2

42

where D4 = (U4, V4) = 2D1 +D2 is a reduced Divisor
U4 = X2 + u41X + u40, V̄4 = v̄41X + v̄40

1 Compute V̄2 = Z12V2 2M
v̄21 = Z12v21,v̄20 = Z12v20

2 Compute S ′′ = (V̄2 − V̄1)/(s1U1) (mod U2) and Z32 I+11M+1S
a00 = u10 − u20, a01 = v̄10 − v̄20
a10 = u11 − u21, a11 = v̄11 − v̄21
d = a00a11 − a01a10,if d = 0 then different case,i = d−1

W0 = u21a10, q0 = u20a10, q1 = W0 − a00
s′′0 = (a11q0 − a01q1)i, c = 1/(Z12s1) = (a00q1 − a10q0)i
if c = 0 then different case
Z32 = cZ12, z32 = Z2

32

3 Precomputations V̄1 = v̄11x+ v̄10 2M
v̄11 = v̄11c(= v11Z32), v̄10 = v̄10c(= v10Z32)

4 Compute U3 = (S(L+ 2V1)−K)/U2 = X2 + u′1X + u′0: 2M
u30 = s

′′
0(s′′0 + 2a10)− q1 + 2v̄11 + (u11 + u21)z32

u31 = 2s
′′
0 + a10 − z32

85

Table A.4: Double-Add with Two Inversions for Semi-Affine Coordinates-Part 2
5 Compute S̃ ′′ = (V̄3 − V̄1)/(s̃1U1) (mod U3) and Z32 = 1/s1 I+12M+1S

ã00 = u10 − u30, ã01 = 2v̄10, q̃0 = u30(u11 − u31)
ã10 = u11 − u31, ã11 = 2v̄11, W̃0 = u31(u11 − u31)
d̃′ = ã00ã11 − ã01ã10, q̃1 = W̃0 − u10 + u30
if d̃′ = 0 then different case
t̃′′′0 = q̃0ã11 − q̃1ã01, c̃′′ = ã00q̃1 − ã10q̃0
d̃ = d̃′ −′ c̃′′, i = d̃−1, c̃ = c̃′′i, s̃′′0 = (t̃′′′0 − s′′0 c̃′′)i
if d̃ = 0 or c̃ = 0 then different case
Z42 = Z32c̃, z42 = Z2

42

6 Precomputations Ṽ1 = ṽ11x+ ṽ10 2M
ṽ11 = v̄11c̃(= v11Z42), ṽ10 = v̄10c̃(= v10Z420

7 Compute U4 = (S(L+ 2V1)−K)/U3 = X2 + u41X + u40: 2M
u40 = s̃

′′
0(s̃′′0 + 2ã10)− q̃1 + 2ṽ11 + (u11 + u31)z42

u41 = 2s̃
′′
0 + u11 − u31 − z42

8 Compute V̄4 = Z42V4 3M
v̄41 = (u41 − s̃′′0)(u11 − u41) + (u40 − u10)− ṽ11
v̄40 = s̃′′0(u40 − u10) + (u11 − u41)u40 − ṽ10
Total Cost 2I+36M+2S

86

Table A.5: Double-Add with One Inversion for Semi-Affine Coordinates-Part 1
Input:Genus 2 HEC C:Y 2 = f(X)
f = X5 + f3X

3 + f2X
2 + f1X + f0

Z12, z12 = Z2
12, (U1, V̄1 = Z12V1)

where D1 = (U1, V1) is a reduced divisor
reduced divisor D2 = (U2, V2)
U1 = X2 + u11X + u10,V̄1 = v̄11X + v̄10
U2 = X2 + u21X + u20,V1 = v21X + v20
Output: (U4, V̄4 = Z42V4), Z42 and z42 = Z2

42

where D4 = (U4, V4) = 2D1 +D2 is a reduced Divisor
U4 = X2 + u41X + u40, V̄4 = v̄41X + v̄40
Expression Cost

1 Compute V̄2 = Z12V2 2M
v̄21 = Z12v21, v̄20 = Z12v20

2 Compute S ′′ = d× (V̄2 − V̄1)/(s1U1) (mod U2) and Z ′2 = d/s1 10M+1S
a00 = u10 − u20, a01 = v̄10 − v̄20,a10 = u11 − u21, a11 = v̄11 − v̄21
d = a00a11 − a01a10, if d = 0 then different case
W0 = u21(u11 − u21), q0 = u20(u11 − u21), q1 = W0 + (u20 − u10)
s′′′0 = a11q0 − a01q1, c′ = dc = a00q1 − a10q0
d′ = dc′, Z32 = c′Z12, z32 = Z2

32

if c′ = 0 then different case
3 Precomputations 2M

v′11 = v̄11d
′, v′10 = v̄10d

′

4 Compute U ′2 = d2U2 = d2X2 + u′21X + u′20 2M+1S
D = d2, u′21 = Du21, u

′
20 = Du20

5 Compute U ′3 = D(U3 − U1) = u′31X + u′30: 3M+1S
u′30 = s

′′2
0 + (−u′21 + 2W1)(u11 − u21)− u′20 + 2v′11 + (u11 + u21)z32

W1 = ds
′′
0 , u

′
31 = 2W1 − u′21 − z32

87

Table A.6: Double-Add with One Inversion for Semi-Affine Coordinates-Part 2
6 Computation of S̃ ′ = −2V ′1/U

′
3 (mod U1) 8M

ã00 = u′30, q̃0 = −2v′10, w̃0 = −u10u′31
ã10 = u′31, q̃1 = −2v′11, w̃1 = −u11u′31
ã01 = w̃0, ã11 = w̃1 + u′30
t̃′0 = q0a11 − q1a01, t̃′1 = a00q1 − a10q0,d̃′ = a00a11 − a01a10
if d̃′ = 0 then different case

7 Computation of S̃ = ((V3 − V1)/U1 (mod U ′) I+9M+1S

d̃ = D(t̃′1 + d̃′), ĩ1 = d̃−1, s̃′′0 = (Dt̃′0 + d̃(W1 − u′31))i1
if d̃ = 0 then different case

i2 = i1(t̃
′
1 + d̃), c̃ = −i1d̃′, W̃2 = i2u

′
31

if c̃′ = 0 then different case

s̃′′0 = s̃′′0 + W̃2, Z42 = dc̃Z32, z42 = Z2
42

8 Adjustments 1M

u31 = W̃2 + u11, u30 = i2u
′
30 + u10

9 Precomputations Ṽ1 = ṽ11x+ ṽ10 2M
ṽ11(= v̄11Z32) = v11c̃, ṽ10(= v̄10Z32) = v10c̃

10 Compute U4 = (S(L+ 2V1)−K)/U3 = X2 + u41X + u40: 3M
u40 = s̃

′′
0(2s̃′′0 + 2(u31 − u11)) + u31(u31 − u11) + u30 − u10+

2ṽ11 + (u11 + u31)z42
u41 = 2s

′′
0 + u11 − u31 − z42

11 Compute V̄4 = Z42V4 3M
v̄41 = (u41 − s̃′′0)(u11 − u41) + (u40 − u10)− ṽ11
v̄40 = s̃′′0(u40 − u10) + (u11 − u31)u40 − ṽ10
Total Cost I+45M+4S

88

Table A.7: Tripling with Two Inversions for Semi-Affine Coordinates-Part 1
Input: Genus 2 HEC C:Y 2 = f(X)
f = X5 + f3X

3 + f2X
2 + f1X + f0

Z12,z12 = Z2
12, (U1, V̄1 = Z12V1)

where D1 = (U1, V1) is a reduced divisor
U1 = X2 + u11X + u10,V̄1 = v̄11x+ v̄10
Output: (U2, V̄2 = Z22V2, Z22, z22)
where D2 = (U2, V2) = 2D1 is a reduced divisor
U2 = X2 + u21X + u20,V̄2 = v̄21x+ v̄20

1 Compute V ′ = 2V̄1 (mod U1) -
v′11 = 2v̄11, v

′
10 = 2v̄10

2 Precomputations 2S
W0 = v̄211,W1 = u211

3 Compute K ′ = (z12f − V̄ 2)/U1 (mod U1) = k′1X + k′0 3M
w3 = f3 +W1, w4 = 2u10, k1 = (2W1 + w3 − w4)z12
k0 = (u11(2w4 − w3) + f2)z12 −W0

4 Compute coefficients and determinant d of the matrix 1I+4M
a00 = v′10, a01 = −k0, , a10 = v′11, a11 = −k1
d = a00a11 − a01a10,if d = 0 then different case
i = d−1, q0 = v′11u10, q1 = v′11u11 − v′10

5 Compute S ′′ ≡ K/(2V1s1) (mod U1) and Z22 7M+1S
c = 1/Z12s1 = (a00q1 − a10q0)i, Z22 = Z12c
if c = 0 then different case
s′′0 = (a11q0 − a01q1)i, z22 = Z2

22

6 Precomputations V̄1 = v̄11x+ v̄10 2M
v̄11 = v̄11c(= v11Z22), v̄10 = v̄10c(= v10Z22)

7 Compute U2 = (S(SU1 + 2V1)−K)/U1 1M+1S
u20 = s

′′2
0 + 2v̄11 + 2u1z22

u21 = 2s′′0 − z22

89

Table A.8: Tripling with Two Inversions for Semi-Affine Coordinates-Part 2
8 Compute S ′′ = (V̄3 − V̄1)/(s̃1U1) (mod U3) and Z32 = 1/s1 I+12M+1S

ã00 = u10 − u20, ã01 = 2v̄10, q̃0 = u20(u11 − u21)
ã10 = u11 − u21, ã11 = 2ṽ11, W̃0 = u21(u11 − u21), q̃1 = W̃1 − ã00
d̃′ = ã00ã11 − ã01ã10
t̃′′′0 = q̃0ã11 − q̃1ã01, c̃′′ = ã00q̃1 − ã10q̃0
d̃ = d̃′ −′ c̃′′, i = d̃−1, c̃ = c̃′′i, s̃′′0 = (t̃′′′0 − s′′0 c̃′′)i
if d̃ = 0 or c̃ = 0 then different cases.
Z32 = Z22c̃, z32 = Z2

32

9 Precomputations Ṽ1 = ṽ11x+ ṽ10 2M
ṽ11 = ṽ11c̃(= v11Z32), ṽ10 = ṽ10c̃(= v10Z32)

10 Compute U3 = (S̃(S̃U1 + 2V1)−K)/U1 2M
u31 = 2s̃′′ + ã10 − z32
u30 = s̃′′0(s̃′′0 + 2ã10)− q̃1 + 2ṽ11 + (u11 + u21)z32

11 Compute V̄3 = V3Z32 3M
v30 = s̃′′0(u30 − u10) + (u11 − u31)u30 − ṽ10
v31 = (u31 − s̃′′0)(u11 − u31) + (u30 − u10)− ṽ11
Total Cost 2I+36M+5S

90

Table A.9: Tripling with One Inversion for Semi-Affine Coordinates-Part 1
Input: Genus 2 HEC C:Y 2 = f(X)
f = X5 + f3X

3 + f2X
2 + f1X + f0

Z12,z12 = Z2
12, (U1, V̄1 = Z12V1)

where D1 = (U1, V1) is a reduced divisor
U1 = X2 + u11X + u10,V̄1 = v̄11x+ v̄10
Output: (U2, V̄2 = Z22V2, Z22, z22)
where D2 = (U2, V2) = 2D1 is a reduced divisor
U2 = X2 + u21X + u20,V̄2 = v̄21x+ v̄20

1 Compute V ′ = 2V̄1 (mod U1) -
v′11 = 2v̄11, v

′
10 = 2v̄10

2 Precomputations 2S
W0 = v̄211,W1 = u211

3 Compute K = (z12f − V̄ 2)/U1 (mod U1) = k1X + k0 3M
w3 = f3 +W1, w4 = 2u10
k1 = (2W1 + w3 − w4)z12
k0 = (u11(2w4 − w3) + f2)z12 −W0

4 Compute coefficients and determinant d of the matrix : 4M
a00 = v′10, a01 = −k0, , a10 = v′11, a11 = −k1
d = a00a11 − a01a10,if d = 0 then different case
q0 = v′11u10, q1 = v′11u21 − v′10

5 Compute S ′′ = X + s′′0 ≡ (K/(2V1s1)) (mod U1) and Z22 = 1/s1: 5M+1S
c′ = d/Z12s1 = a00q1 − a10q0, Z22 = c′Z12

s′′′0 = a11q0 − a01q1, z22 = Z2
22

if c′ = 0 then different case
6 Precomputations V̄1 = v̄11x+ v̄10 3M

w5 = dc′, v̄11 = v̄11w5, v̄10 = v̄10w5

7 Compute U2 = (S(SU1 + 2V1)−K)/U1 = X2 + u21X + u20 2M+1S
W6 = ds′′′0 , u21 = 2W6 − z22
u20 = s

′′′2
0 + 2v̄11 + 2u11z22

8 Adjust U1 2M+1S
D = d2, u′10 = Du10, u

′
11 = Du11

91

Table A.10: Tripling with One Inversion for Semi-Affine Coordinates-Part 2

9 Compute S̃ ′′ = (−S − 2Ṽ1/U1)/s̃1 (mod U2) and 1/s̃1 1I+17M+1S
ã00 = u′10 − u20, ã10 = u′11 − u21, ã01 = −ã10u20
W̃0 = ã10u21, ã11 = ã00D − W̃0, q̃0 = −2v̄10, q̃1 = −2v̄11
d̃′ = (ã00ã11 − ã10ã01), W̃1 = (ã00q̃1 − ã10q̃0)D − d̃′, d̃ = DW̃1

s̃
′′′
0 = (q̃0ã11 − q̃1ã01)D − d̃′W6

if d̃′ = 0 different case

i1 = d̃−1, s̃′′0 = s̃′′′0 i1, c̃ = d̃′i1
if c̃ = 0 different case
Z32 = dc̃Z22, z32 = Z2

32

10 Adjust U2 3M

i2 = W̃1i1
u20 = i2u20, u21 = i2u21

11 Adjust V1 2M
ṽ11 = ṽ11c̃, ṽ10 = ṽ10c̃

12 Compute U3 = (S̃(S̃U1 + 2V1)−K)/U1 = X2 + u31X + u30 2M+1S
u31 = 2s̃′′0 + u11 − u21 − z32
u30 = (u10 − u20) + 2ṽ11 + (u11 + u21)z32+
s̃
′′2
0 + (u11 − u21)(2s̃′′0 − u21)

13 Compute V̄3 = V3/Z32 3M
v30 = s̃′′0(u30 − u10) + (u11 − u31)u30 − ṽ10
v31 = (u31 − s̃′′0)(u11 − u31) + (u30 − u10)− ṽ11
Total Cost I+46M+7S

92

Table A.11: Doubling In Lange’s New Coordinates
Input: Genus 2 HEC C:Y 2 = f(X)
f = X5 + f3X

3 + f2X
2 + f1X + f0

D1 = (U1, V1, Z11, z11 = Z2
11, Z12, z12 = Z2

12)
A reduced divisor in Lange’s new coordinates
U1 = z11X

2 + u11X + u10,V1 = v11X + v10
Output:D2 = 2D1

D2 = (U2, V2, Z21, z21 = Z2
21, Z22, z22 = Z2

22)
A reduced divisor in Lange’s new coordinates
U2 = z21X

2 + u21X + u20,V2 = v21X + v20
1 Compute V ′1 = 2V1 -

v′11 = 2v11, v
′
10 = 2v10

2 Compute K (mod U1) 5M+3S
w0 = v211, w1 = u211,W2 = z211,W3 = u10z11
w4 = f3W2 + w1, w5 = 2W3

k1 = (2w1 + w4 − w5)z12, k0 = (u11(2w5 − w4) + f2W2z11)z12 − w0

3 Set-up the linear system and solve 9M
a00 = v′10z11, a10 = v′11, a01 = −k0, a11 = −k1
q0 = v′11W3, q1 = v′11u11 − a00
d = a00a11 − a01a10, s′′′′0 = q0a11 − q1a01, c′ = a00q1 − q0a10

4 Precomputations 4M+2S
W6 = c′Z12,W7 = Z11W6,W8 = dz11
W9 = W 2

8 ,W10 = W 2
7 ,W11 = W8s

′′′′
0

5 Adjust V1 3M
W12 = dc′, v′11 = W12v11, v

′
10 = W12v10

6 Compute U2 1M+2S
u21 = 2W11 −W10, u20 = s

′′′′2
0 + 2v′11 + 2u11W

2
6

7 Adjust U1 3M
W13 = W8d, u

′
11 = W13u11, u

′
10 = W13u10

8 Compute weights -
Z21 = W8, z21 = W9, Z22 = W7, z22 = W10 -

9 Compute V2 5M
v21 = (W11 − u21)(u21 − u′11) + z21(u20 − u10 − ṽ11)
v20 = W̃11(u20 − u′10)− (u11 − u′11)u20 − z21ṽ′10
Total Cost:30M+7S

93

Table A.12: Mixed Addition for Lange’s New Coordinates
Input: Genus 2 HEC C:Y 2 = f(X)
f = X5 + f3X

3 + f2X
2 + f1X + f0

D1 = (U2, V2, Z11, z11 = Z2
11, Z12, z12 = Z2

12)
A reduced divisor in Lange’s new coordinates
U1 = z11X

2 + u11X + u10,V1 = v11X + v10
D2 = (U2, V2)
A reduced divisor in Affine coordinates
U2 = X2 + u21X + u20,V2 = v21X + v20
Output:D3 = D1 +D2

D3 = (U3, V3, Z31, z31 = Z2
31, Z32, z32 = Z2

32)
A reduced divisor in Lange’s new coordinates
U3 = z31X

2 + u31X + u30,V3 = v31X + v30
1 Precomputations 2M

W1 = Z11Z12,W2 = z11W1

2 Normalize V2 with respect to V1 2M
v′20 = v20W2, v

′
21 = v21W2

3 Normalize U2 with respect to U1 2M
u′20 = u20z11, u

′
21 = u21z11

4 Compute weighted monic form of S 8M
a00 = u10 − u′20, a10 = u11 − u′21
a01 = v10 − v′20, a11 = v11 − v′21
q0 = a10u20,W3 = a10u21 − a00
d = a00a11 − a01a10, s′′′′0 = q1a11 − q1a01, c′ = a00q1 − a10q0
if d = 0 or c′ = 0 then different cases

5 Precomputations 5M+3S
D = d2,W4 = dc′,W5 = c′W1,W6 = W5Z11

W7 = W 2
5 ,W8 = W 2

6 ,W9 = s′′′′0 z11,W10 = dW9

6 Adjust V1 2M
v′11 = W4v11, v

′
10 = W4v10

7 Compute U3 5M
u31 = 2W10 + a10D −W8

u30 = s′′′′0 (W9 + 2a10d)−Dq1 + 2v′11 + (u11 + u′21)W7

8 Adjust U1 2M
u′11 = Du11, u

′
10 = Du10

9 Compute weights 1M+1S
Z31 = dZ11, z31 = Z2

31, Z32 = W6, z32 = W8

10 Compute V3 5M
v31 = (u31 −W10)(u

′
11 − u31) + z31(u31 − u′11 − v′11)

v30 = W10(u30 − u′10) + (u′11 − u31)u30 − z31v′10
Total Cost 34M+4S

94

Table A.13: Double-Add for Lange’s New Coordinates-Part 1
Input: Genus 2 HEC C:Y 2 = f(X)
f = X5 + f3X

3 + f2X
2 + f1X + f0

D1 = (U2, V2, Z11, z11 = Z2
11, Z12, z12 = Z2

12)
A reduced divisor in Lange’s new coordinates
U1 = z11X

2 + u11X + u10,V1 = v11X + v10
D2 = (U2, V2)
A reduced divisor in Affine coordinates
U2 = X2 + u21X + u20,V2 = v21X + v20
Output:D4 = 2D1 +D2

D4 = (U4, V4, Z41, z41 = Z2
41, Z42, z42 = Z2

42)
A reduced divisor in Lange’s new coordinates
U4 = z41X

2 + u41X + u40,V4 = v41X + v40
1 Precomputations 2M

W1 = Z11Z12,W2 = z11W1

2 Normalize V2 with respect to V1 2M
v′20 = v20W2, v

′
21 = v21W2

3 Normalize U2 with respect to U1 2M
u′20 = u20z11, u

′
21 = u21z11

4 Compute weighted monic form of S 8M
a00 = u10 − u′20, a10 = u11 − u′21
a01 = v10 − v′20, a11 = v11 − v′21
q0 = a10u20,W3 = a10u21, q1 = W3 − a00
d = a00a11 − a01a10, s′′′′0 = q0a11 − q1a01, c′ = a00q1 − a10q0
if d = 0 or c′ = 0 then different cases

5 Precomputations 5M+3S
D = d2,W4 = dc′,W5 = c′W1,W6 = W5Z11

W7 = W 2
5 ,W8 = W 2

6 ,W9 = s′′′′0 z11,W10 = dW9

6 Adjust V1 2M
v′11 = W4v11, v

′
10 = W4v10

7 Compute U3 5M
u31 = 2W10 + a10D −W8

u30 = s′′′′0 (W9 + 2a10d)−Dq1 + 2v′11 + (u11 + u′21)W7

8 Adjust U1 2M
u′11 = Du11, u

′
10 = Du10

9 Compute weights 1M+1S
Z31 = dZ11, z31 = Z2

31

95

Table A.14: Double-Add for Lange’s New Coordinates-Part 2
10 Compute weighted T̃ = −2V1/U1 (mod U2) 9M

ã00 = u′10 − u30, ã10 = u′11 − u31
q̃0 = −2v′10, q̃1 = −2v′11
ã01 = −ã10u30, ã11 = −ã10u31 + ã00z31
t̃′1 = ã00q̃1 − ã10q̃0, d̃′ = ã00ã11 − ã10ã01
t̃0 = q̃0ã11 − q̃1ã01

11 Precomputation 9M+2S

s̃′′′′0 = t̃0z31 −W10d̃
′

W̃0 = d̃′Z32, W̃1 = W̃0Z31, W̃2 = d̃d̃′

d̃
′′

= t̃
′
1z31 − d̃′, d̃ = d̃

′′
z31

W̃3 = s̃′′′′0 d̃, W̃4 = W̃ 2
1

W̃5 = d̃′′d̃, W̃6 = d̃
′′2, W̃7 = W̃ 2

0

12 Adjust V1 2M

v′11 = v′11W̃2, ṽ
′
10 = v′10W̃2

13 Compute U4 5M

u41 = 2W̃3 − W̃4 + W̃5ã10
u40 = s̃′′′′0 (s̃′′′′0 + 2ã10d̃

′′) + ã11W̃6 + 2ṽ′11 + (u31 + u′11)W̃7

15 Compute weights 1S

Z41 = d̃, z41 = Z2
41, Z42 = W̃1, z42 = W̃4

16 Adjust U1 2M

ũ′11 = u′11W̃5, ũ
′
10 = u′10W̃5

17 Compute V4 5M

v41 = (u41 − W̃3)(ũ
′
11 − u41) + z41(u40 − ũ′10 − ṽ′11)

v40 = W̃3(u40 − ũ′10) + (ũ′11 − u41)u40 − z41ṽ′10
Total Cost 61M+8S

96

Table A.15: Tripling for Lange’s New Coordinates-Part 1
Input: Genus 2 HEC C:Y 2 = f(X)
f = X5 + f3X

3 + f2X
2 + f1X + f0

D1 = (U1, V1, Z11, z11 = Z2
11, Z12, z12 = Z2

12)
A reduced divisor in Lange’s new coordinates
U1 = z11X

2 + u11X + u10,V1 = v11X + v10
Output:D3 = 3D1

D3 = (U3, V3, Z31, z31 = Z2
31, Z32, z32 = Z2

32)
A reduced divisor in Lange’s new coordinates
U3 = z31X

2 + u31X + u30,V3 = v31X + v30
1 Compute V ′1 = 2V1 -

v′11 = 2v11, v
′
10 = 2v10

2 Compute K (mod U1) 5M+3S
w0 = v211, w1 = u211,W2 = z211,W3 = u10z11
w4 = f3W2 + w1, w5 = 2W3

k1 = (2w1 + w4 − w5)z12
k0 = (u11(2w5 − w4) + f2W2z11)z12 − w0

3 Set-up the linear system and solve 9M
a00 = v′10z11, a10 = v′11, a01 = −k0, a11 = −k1
q0 = v′11W3, q1 = v′11u11 − a00
d = a00a11 − a01a10, s′′′′0 = q0a11 − q1a01, c′ = a00q1 − q0a10
if d = 0 or c′ = 0 then different cases

4 Precomputations 4M+2S
W6 = c′Z12,W7 = Z11W6,W8 = dz11
W9 = W 2

8 ,W10 = W 2
7 ,W11 = W8s

′′′
0

5 Adjust V1 3M
W12 = dc′, v′11 = W12v11, v

′
10 = W12v10

6 Compute U2 1M+2S
u21 = 2W11 −W10, u20 = s

′′′′2
0 + 2v′11 + 2u11W

2
6

7 Adjust U1 3M
W13 = W8d, u

′
11 = W13u11, u

′
10 = W13u10

8 Compute weight of U2 -
Z21 = W8, z21 = W9, Z22 = W7, z22 = W10

97

Table A.16: Tripling for Lange’s New Coordinates-Part 2
9 Compute weighted T̃ = −2V ′1/U2 (mod U1) 10M

ã00 = u20 − u′10, ã10 = u21 − u′11, ã01 = −2v′10, ã11 = −2v11
w̃0 = ã00z21, q̃0 = ã10u

′
10, q̃11 = ã10u

′
11 − w̃0

W̃1 = ã00ã11 − ã01ã10, t̃′1 = z21W̃1, t̃
′
0 = ã11q̃0 − ã01q̃1

d̃′ = ã00q̃1 − ã10q̃0
10 Compute weighted R̃ = −2V ′1/U1 (mod U2) 1M

r̃′1 = t̃′1, r̃
′
0 = t̃′0 + W̃1(u21 − u′11)

11 Compute weighted S̃ = (V2 − V1)/U1 (mod U2) 2M

W̃3 = r̃′1 − d̃′, W̃4 = z21r̃
′
0, W̃5 = W11d̃

′, s̃′′′0 = −W̃5 + W̃4

12 Compute weighted S̄ − S̃-S -

s̄1 = r̃′1 − 2d̃′, s̄0 = −2W̃5 + W̃4

13 Compute U ′3 (mod U1) 3M

W̃6 = −t̃′1s̄′1, u′30 = s̄0t̃
′
0 + W̃6u

′
10

14 Compute U3 1M+1S

W̃7 = (W̃3)
2

u30 = u′30 + W̃7u
′
10

15 Computation of Weights 2M+2S

Z31 = W̃3Z21, z31 = Z2
31

Z32 = d̃′Z22, z31 = Z2
32

16 Precomputation 2M

W̃8 = W̃3s̃
′′′
0 , W̃9 = d̃′W̃3

17 Adjust V1 2M

ṽ′11 = W̃9v
′
11, ṽ

′
10 = W̃9v

′
10

18 Compute u31 2M

u31 = 2W̃8 + (u′11 − u21)W̃7 − z32, u′31 = u31 − u′11W̃7

19‘ Compute V3 5M

v31 = −(u31 − W̃8)u
′
31 + z31(u

′
30 − ṽ11)

v30 = W̃8u
′
30 − u′31u30 − z31ṽ′10

Total Cost 55M+10S

98

Table A.17: Doubling for Projective Coordinates
Input: Genus 2 HEC C:Y 2 = f(X)
f = X5 + f3X

3 + f2X
2 + f1X + f0

D1 = (U1, V1, Z1)
A reduced divisor in projective coordinates
U1 = Z1X

2 + u11X + u10,V1 = v11X + v10
Output:D2 = 2D1

D2 = (U2, V2, Z2)
A reduced divisor in projective coordinates
U2 = Z2X

2 + u21X + u20,V2 = v21X + v20
1 Compute V ′1 = 2V1 -

v′11 = 2v11, v
′
10 = 2v10

2 Compute K (mod U1) 3M+3S
w0 = v211, w1 = u211,W2 = Z2

1w3 = f2W2

W4 = u10Z1, w5 = f3W2 + w1, w6 = 2W4

k1 = 2w1 + w5 − w6, k0 = u11(2w5 − w4) + (w3 − w0)Z1

3 Set-up the linear system and solve 9M
W7 = v10Z1, a00 = 2W7, a10 = v′11, a10 = −k0, a11 = −k1
q0 = v′11W4, q1 = v′11u11 − a00
d = a00a11 − a01a10, s′′′′0 = q0a11 − q1a01, c′ = a00q1 − q0a10
if d = 0 or c′ = 0 then different cases

4 Precomputations 4M
W8 = ds′′′0 , w9 = c′Z1,W10 = c′w9,W11 = dw9

5 Adjust V1 2M
v′11 = W11v11, v

′
10 = W11W7

6 Compute U2 1M+1S
u21 = 2W8 −W10, u20 = s

′′′′2
0 + 2v′11 + 2u11W10

7 Compute Z2 2M+1S
W12 = d2,W13 = W11W2, Z2 = W12W13

8 Adjust U1 2M
u′11 = W12u11, u

′
10 = W12W4

9 Compute V2 6M
v21 = Z1((u21 −W8)(u

′
11 − u21) +W12(u20 − u′10 − v′11))

v20 = W8(u20 − u′10) + u20(u
′
11 − u21)−W12v

′
10

10 Adjust U2 3M
u21 = u21W11Z1, u20 = u20W11

Total Cost:32M+5S

99

Table A.18: Mixed Addition for Projective Coordinates
Input: Genus 2 HEC C:Y 2 = f(X)
f = X5 + f3X

3 + f2X
2 + f1X + f0

D1 = (U1, V1, Z1)
A reduced divisor in projective coordinates
U1 = Z1X

2 + u11X + u10,V1 = v11X + v10
D2 = (U2, V2)
A reduced divisor in affine coordinates
U2 = X2 + u21X + u10,V2 = v21X + v20
Output:D3 = D1 +D2

D3 = (U3, V3, Z3)
A reduced divisor in projective coordinates
U3 = Z3X

2 + u31X + u30,V2 = v31X + v30
1 Normalize D2 w.r.t D1 4M

u′21 = u21Z1, u
′
20 = u20Z1, v

′
21 = v21Z1, v

′
20 = v20Z1

2 Set up the linear system and solve 8M
a00 = u10 − u′20, a10 = u11 − u′21
a01 = v10 − v′20, a11 = v11 − v′21
q0 = u20a10,W0 = a10u21, q0 = W0 − a00
d = a00a11 − a01a10, s′′′′0 = q0a11 − q1a01, c′ = a00q1 − a10q0
if d = 0 or c′ = 0 then different cases

3 Precomputation 3M+2S
D = d2,W1 = s′′′′0 Z1,W2 = dW1,W3 = c

′2,W4 = W3Z1

4 Adjust V1 3M
W5 = dc′1, v

′
11 = W5v11, v

′
10 = W5v10

5 Compute U3 5M
u31 = 2W2 + a10D −W4

u30 = s′′′′0 (W1 + 2da10) +D(a00 −W0) + 2v′11 + (u′21 + u11)W3

6 Compute Z3 3M
W6 = DZ1,W7 = W5Z1, Z3 = W6W7

7 Adjust U1 2M
u′11 = Du11, u

′
10 = Du10

8 Compute V3 5M
v30 = W2(u30 − u′10) + (u′11 − u31)u30 −W6v

′
10

v31 = (u31 −W2)(u
′
11 − u31) +W6(u30 − u′10 − v′11)

9 Adjust U3 2M
u31 = W7u31, u30 = W7u30
Total Cost 35M+2S

100

Table A.19: Tripling for Projective Coordinates-Part 1
Input: Genus 2 HEC C:Y 2 = f(X)
f = X5 + f3X

3 + f2X
2 + f1X + f0

D1 = (U1, V1, Z1)
A reduced divisor in projective coordinates
U1 = Z1X

2 + u11X + u10,V1 = v11X + v10
Output:D3 = 3D1

D3 = (U3, V3, Z3)
A reduced divisor in projective coordinates
U3 = Z3X

2 + u31X + u30,V3 = v31X + v30
1 Compute V ′1 = 2V1 -

v′11 = 2v11, v
′
10 = 2v10

2 Compute K (mod U1) 3M+3S
w0 = v211, w1 = u211,W2 = Z2

1 , w3 = f2W2,W4 = u10Z1

w5 = f3W2 + w1, w6 = 2W4

k1 = 2w1 + w5 − w6, k0 = u11(2w6 − w5) + (w3 − w0)Z1

3 Set-up the linear system and solve 9M
a00 = v′10Z1, a10 = v′11, a10 = −k0, a11 = −k1
q0 = v′11W4, w7 = v′11u11, q1 = w7 − a00
d = a00a11 − a01a10, s′′′′0 = q0a11 − q1a01, c′ = a00q1 − q0a10
if d = 0 or c′ = 0 then different cases

4 Precomputations 5M+2S
Z21 = dZ1, z21 = Z2

21

W8 = Z21s
′′′′
0 , w9 = c′Z1,W10 = c′w9

W11 = dw9, Z22 = w9, z22 = Z2
22

5 Adjust V1 2M
v′11 = W11v11, v

′
10 = W11v10

6 Compute U2 2M+1S
u21 = 2W8 − z22, u20 = s

′′′′2
0 + 2v′11 + 2u11W10

7 Adjust U1 2M
w12 = dZ21, u

′
11 = w12u11, u

′
10 = w12u10

101

Table A.20: Tripling for Projective Coordinates-Part 2
8 Compute weighted T̃ = −2V ′1/U2 (mod U1) 10M

ã00 = u20 − u′10, ã10 = u21 − u′11, ã01 = −2v′10, ã11 = −2v11
w̃0 = ã00z21, q̃0 = ã10u

′
10, q̃11 = ã10u

′
11 − w̃0

W̃1 = ã00ã11 − ã01ã10, t̃′1 = z21W̃1, t̃
′
0 = ã11q̃0 − ã01q̃1

d̃′ = ã00q̃1 − ã10q̃0
9 Compute weighted R̃ = −2V ′1/U1 (mod U2) 1M

r̃′1 = t̃′1, r̃
′
0 = t̃′0 + W̃1(u21 − u′11)

10 Compute weighted S̃ = (V2 − V1)/U1 (mod U2) 2M

W̃3 = r̃′1 − d̃′, W̃4 = z21r̃
′
0, W̃5 = W8d̃

′, s̃′′′0 = −W̃5 + W̃4

11 Compute weighted S̄ − S̃-S -

s̄1 = r̃′1 − 2d̃′, s̄0 = −2W̃5 + W̃4

12 Compute U ′3 (mod U1) 3M

W̃6 = −t̃′1s̄′1, u′30 = s̄0t̃
′
0 + W̃6u

′
10

13 Compute U3 1M+1S

W̃7 = (W̃3)
2

u30 = u′30 + W̃7u
′
10

14 Computation of Weights 2M+2S

Z31 = W̃3Z21, z31 = Z2
31

Z32 = d̃′Z22, z31 = Z2
32

15 Precomputation 2M

W̃8 = W̃3s̃
′′′
0 , W̃9 = d̃′W̃3

16 Adjust V1 2M

ṽ′11 = W̃9v
′
11, ṽ

′
10 = W̃9v

′
10

17 Compute u31 2M

u31 = 2W̃8 + (u′11 − u21)W̃7 − z32, u′31 = u31 − u′11W̃7

18 Compute V3 5M

v31 = −(u31 − W̃8)u
′
31 + z31(u

′
30 − ṽ11)

v30 = W̃8u
′
30 − u′31u30 − z31ṽ′10

19 Adjust U3 and compute Z3 4M
w̃10 = Z31Z32, Z3 := z31w̃10

u31 = u31w̃10, u30 = u30w̃10

Total Cost 57M+9S

102

Table A.21: Special Addition for Projective Coordinates
Input: Genus 2 HEC C:Y 2 = f(X)
f = X5 + f3X

3 + f2X
2 + f1X + f0

D1 = (U1, V1, Z1)
A reduced divisor in projective coordinates
U1 = Z1X

2 + u11X + u10,V1 = v11X + v10
D2 = (U2, V2, Z1)
A reduced divisor in projective coordinates
U2 = Z1X

2 + u21X + u10,V2 = v21X + v20
Output:D3 = D1 +D2

D3 = (U3, V3, Z3)and Z ′3
A reduced divisor in projective coordinates
U3 = Z3X

2 + u31X + u30,V2 = v31x+ v30, Z3 = Z1Z
′
3

D′1 = (U ′1, V
′
1 , Z

′
1)

A reduced divisor D1 in projective coordinates with Z ′1 = Z3

U ′1 = Z ′1X
2 + u′11X + u′10,V

′
1 = v′11x+ v′10

1 Normalize D2 w.r.t D1 -
2 Set up the linear system and solve 10M

a00 = u10 − u20, a10 = u11 − u21, a01 = v10 − v20, a11 = v11 − v21
q0 = u20a10,W0 = a10u21, q0 = W0 − a00Z1

d′ = a00a11 − a01a10, d = dZ1

s′′′′0 = q0a11 − q1a01, c′ = a00q1 − a10q0
if d′ = 0 or c′ = 0 then different cases

3 Precomputation 3M+2S
D = d2,W1 = s′′′′0 Z,W2 = dW1,W3 = c

′2,W4 = W3Z
4 Adjust V1 3M

W5 = dc′1, v
′
11 = W5v11, v

′
10 = W5v10

5 Compute U3 6M
u31 = 2W2 + a10D −W4

u30 = s′′′′0 (W1 + 2da10)− dd′q1 + 2v′11 + (u′21 + u11)W3

6 Compute Z3, Z
′
3 4M

W6 = DZ1,W7 = W5Z1, Z3 = W6W7, Z
′
3 = DW7

7 Adjust U1 2M
u′11 = Du11, u

′
10 = Du10

8 Adjust V1 2M
v′11 = v′11W6, v

′
10 = v′11W6

9 Compute V3 4M
v30 = W2(u30 − u′10) + (u′11 − u31)u30 − v′10
v31 = (u31 −W2)(u

′
11 − u31) +W6(u30 − u′10)− v′11

10 Adjust U3, U1 4M
u31 = W7u31, u30 = W7u30, u

′
11 = u′11W7, u

′
10 = u′10W7

Total Cost 38M+2S

Bibliography

[1] Roberto M. Avanzi. A note on signed sliding window recoding and left-to-right
analogue. In Selected Areas in Cryptography-SAC 2004, volume 3357 of Lecture
Notes In Computer Science, pages 130–143. Springer Verlag, 2005.

[2] Andrew D. Booth. A signed binary multiplication technique. The Quarterly
Journal of Mechanics and Applied Mathematics, 4:236–240, 1951.

[3] Wieb Bosma. Signed bits and fast exponentiation. Journal de Théorie des
Nombres de Bordeaux, 13:27–41, 2001.

[4] Wieb Bosma, John Cannon, and Catherine Playoust. The magma algebra sys-
tem. I. the user language. Journal of Symbolic Computation, 24(3-4):235–265,
1997.

[5] Alfred Brauer. On addition chains. Bulletin of American Mathematical Society,
45:736–739, 1939.

[6] David Cantor. Computing in the Jacobian of a hyperelliptic curve. Mathematics
of Computation, 48:95–101, 1987.

[7] Henri Cohen. A course in computational algebraic number theory, 2000.

[8] Henri Cohen. Analysis of the flexible window powering algorithm. Journal of
Cryptology, 18:63–76, 2005.

[9] Henri Cohen and Gerhard Frey (Eds.). Handbook of elliptic and hyperelliptic
curve cryptography, 2006.

[10] Henri Cohen, Atsuko Miyaji, and Takatoshi Ono. Efficient elliptic curve expo-
nentiation. In Information and Communication Security-ICICS 1997, volume
1334 of Lecture Notes In Computer Science, pages 282–290. Springer, 1997.

[11] Henri Cohen, Atsuko Miyaji, and Takatoshi Ono. Efficient elliptic curve expo-
nentiation using mixed coordinates. In Advances in Cryptology-ASIACRYPT’98,
volume 1514 of Lecture Notes In Computer Science, pages 51–65. Springer-
Verlag, 1998.

[12] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE
Transactions On Information Theory, 22:644–654, 1976.

[13] Kirsten Eisenträger, Kristin Lauter, and Peter L. Montgomery. Fast elliptic curve
arithmetic and improved weil pairing evaluation. In Topics in Cryptology (CT-
RSA 2003), volume 2612 of Lecture Notes In Computer Science, pages 343–354.
Springer-Verlag, 2003.

103

104

[14] Xinxin Fan and Guang Gong. Efficient explicit formulae for genus 2 hyperel-
liptic curves over prime fields and their implementations. In Selected Areas in
Cryptography-SAC 2007, volume 4876 of Lecture Notes In Computer Science,
pages 155–172. Springer-Verlag, 2007.

[15] Pierrick Gaudry and Robert Harley. Counting points on hyperelliptic curves over
finite fields. In Algorithmic Number Theory-ANTS IV, volume 1838 of Lecture
Notes In Computer Science, pages 313–332. Springer-Verlag, 2000.

[16] Pierrick Gaudry and Emmanuel Thomé. The mpFq library and implementing
curve-based key exchanges. In Software Performance Enhancement for Encryp-
tion and Decryption-SPEED 2007, pages 49–64. ECRYPT - European Network
of Excellence for Cryptology, 2007.

[17] Robert Harley. adding.text and doubling.c at
http://cristal.inria.fr/~harley/hyper, 2000.

[18] Marc Joye and Sung-Ming Yen. Optimal left-to-right binary signed-digit recod-
ing. IEEE Transactions on Computers, 49:740–748, 2000.

[19] Anatoly A. Karatsuba and Yu. P. Ofman. Multiplication of multiplace numbers
on automata. Doklady Akademii Nauk SSSR, 145:293–294, 1962.

[20] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48:203–209, 1987.

[21] Neal Koblitz. Hyperelliptic cryptosystems. Journal of Cryptology, 1:139–150,
1989.

[22] Tanja Lange. Formulae for arithmetic on genus 2 hyperelliptic curves. Applicable
Algebra in Engineering, Communication and Computing, 15:295–328, 2003.

[23] Patrick Longa and Ali Miri. New composite operations and precomputa-
tion scheme for elliptic curve cryptosystems over prime fields. In Public Key
Cryptography-PKC 2008, volume 4939 of Lecture Notes In Computer Science,
pages 229–247. Springer Verlag, 2008.

[24] Patrick Longa and Ali Miri. New multibase non-adjacent form scalar
multiplication and its application to elliptic curve cryptosystems. In
http://eprint.iacr.org/2008/052, volume 2008/052. Cryptology ePrint Archive,
2008.

[25] Alfred J. Menezes, Yi-Hong Wu, and Robert J. Zuccherato. An elementary in-
troduction to hyperelliptic curve. In http://www.cacr.math.uwaterloo.ca, volume
CORR 2004-08. Centre for Applied Cryptographic Research (CACR) Technical
Reports, 2004.

105

[26] Victor S. Miller. Use of elliptic curves in cryptography. In Advances in
Cryptology-CRYPTO 85, volume 218 of Lecture Notes In Computer Science,
pages 417–426. Springer-Verlag, 1985.

[27] Li Ming and Ali Miri. Private communications.

[28] Peter L. Montgomery. Speeding the pollard and elliptic curve methods of fac-
torization. Mathematics of Computation, 48:243–264, 1987.

[29] Francois Morain and Jorge Olivos. Speeding up the computations on elliptic
curve using addition-subtraction chains. Theoretical Informatics and Applica-
tions, 24:531–543, 1990.

[30] James A. Muir and Douglas R. Stinson. Minimality and other properties of the
width-w nonadjacent form. Mathematics of Computation, 75:369–384, 2006.

[31] David Mumford. Tata Lectures on Theta II, volume 43 of Progress in Mathe-
matics. Birkhäuser, 1984.

[32] George W. Reitwiesner. Binary arithmetic. Advances in Computing, I:231–308,
1960.

[33] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21:120–126, 1978.

[34] I. Shafarevich. Basic Algebraic Geometry. Springer-Verlag, 1974.

[35] Thomas Wollinger, Jan Pelzl, and Christof Paar. Cantor versus Harley: Opti-
mization and analysis of explicit formulae for hyperelliptic curve cryptosystems.
IEEE Transactions on Computers, 54:861–872, 2005.

