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Abstract. Many technics for randomness extraction over finite fields
was proposed by various authors such as Fouque et al. and Carneti et
al.. At eurocrypt’09, these previous works was improved by Chevalier et
al., over a finite field Fp, where p is a prime. But their papers don’t study
the case where the field is not prime such as binary fields. In this paper,
we present a deterministic extractor for a multiplicative subgroup of F∗

pn ,
where p is a prime. In particular, we show that the k-first F2-coefficients
of a random element in a subgroup of F∗

2n are indistinguishable from a
random bit-string of the same length. Hence, under the Decisional Diffie-
Hellman assumption over binary fields, one can deterministically derive
a uniformly random bit-string from a Diffie-Hellman key exchange in the
standard model. Over Fp, Chevalier et al. use the ”Polya-Vinogradov
inequality” to bound incomplete character sums but over F∗

pn we use
”Winterhof inequality” to bound incomplete character sums. Our propo-
sition is a good deterministic extractor even if the length of its output is
less than those one can have with the leftover hash lemma and universal
hash functions. Our extractor can be used in any cryptographic protocol
or encryption schemes.

Keywords: Finite fields, Polya-Vinogradov inequality, Winterhof in-
equality, exponential sums, incomplete character sums, Deterministic
extractor, Decisional Diffie-Hellman, random bit-string, key exchange,
leftover hash lemma.

1 Introduction

In many cryptographic protocols and cryptographic schemes, it is necessary to
be able to derive a random bit-string from a random element in a group. This is
the case for Diffie-Hellman key exchange [8] which is the most famous protocol
that allows parties to agree on a common random element in a cyclic subgroup
H of a group G, generated by an element g of prime order q. The security of
the Diffie-Hellman exchange relies on the Diffie-Hellman assumption (DDH) [2],
which states that there is no efficient algorithm that can distinguish the two
distributions (ga, gb, gab) and (ga, gb, gc) in G3, where 1 ≤ a, b, c ≤ q are chosen
at random. Under the DDH assumption, one can agree on a random private
element. Hence, one has to derive a random-looking bit-string from this random
element. Different approaches were proposed to solve this problem.
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One classical way to transform a random group-element to a random-looking
bit-string is to apply a hash function to the Diffie-Hellman group-element but
the indistinguishability is proved under the random oracle model [1]. An alter-
native method to hash functions, secure under the standard model, is to use a
randomness extractor.

In 1998, Boneh et al. propose in [4], to extract the least or the most significant
bits of the Diffie-Hellman element.

In 1999, H̊astad et al., [12], via the Leftover Hash Lemma, propose a proba-
bilistic randomness extractor that can extract entropy from any random source
which has sufficient min-entropy. This technic, with its variants [10, 12], requires
the use of hash or pseudorandom functions and an extra perfect randomness,
which is a lack for practical use.

In 2000, Carneti et al. [5] show that, in a statistical sense, the k most signif-
icant bits of gxy is indistinguishable from a random bit-string of length k, given
the k most significant bits of gx and gy. But, in 2001, Boneh et al. observe that
this technic cannot be used in practice because in most protocols, the adversary
learns all of gx and gy.

In 2008, Fouque et al. show in [9], under the DDH assumption that k least
significant bits or the most significant bits of a random element in a subgroup of
Z∗
p are indistinguishable from a random bit-string of the same length. To prove

this, the authors bound the statistical distance by evaluating the L1 norm, using
exponential sums.

In 2009, at Eurocrypt, Chevalier et al. [6] study a quite simple deterministic
extractor from random Diffie-Hellman elements defined over a prime order mul-
tiplicative subgroup G of Z∗

p and over the group of points of an elliptic curve.
They upper-bound the L2 norm and use some classical results on exponential
sums to prove their results. They improve at the same time the results in [9].
But their works include only prime fields.

In this paper, we extend the above result of Chevalier et al. to non prime
finite fields: Fpn , with a prime p and a positive integer n greater than 1. The
extension of the work of Chevalier et al. on elliptic curves over non prime finite
fields was already done in [7]. Here, we present a quite simple deterministic
extractor, denoted Extk for a multiplicative subgroup G of a finite field Fpn . In
particular for binary finite fields F2n , we show under the DDH assumption that
the k-first F2-coefficients (the k least significant bits) of a random group-element
in a subgroup of F∗

2n , are indistinguishable from a random bit-string of the
same length. This approach is somewhat similar to those of [7] for deterministic
randomness extractor in elliptic curves. Over Fp, Chevalier et al. use the ”Polya-
Vinogradov inequality” to bound incomplete character sums [14] but over F∗

pn

we use ”Winterhof inequality” to bound incomplete character sums [20].

The paper is organized as follows : In section 1, we recall some definitions
and results about randomness extraction and character sums. In section 2, we
present and give an analysis of our extractor. We finish by giving a natural
application of our extractor to the Diffie-Hellman key exchange in F∗

2n .
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2 Preliminaries

In this section, we introduce some definitions and results about entropy and
randomness extraction.

2.1 Deterministic extractor

Definition 1 (Collision probability). Let S be a finite set and X be an S-
valued random variable. The collision probability of X, denoted by Col(X), is
the probability

Col(X) =
∑
s∈S

Pr[X = s]2.

If X and X ′ are identically distributed random variables on S, the collision
probability of X is interpreted as Col(X) = Pr[X = X ′].

Definition 2 (Statistical distance). Let S be a finite set. If X and Y are
S-valued random variables, then the statistical distance ∆(X,Y ) between X and
Y is defined as

∆(X,Y ) =
1

2

∑
s∈S

|Pr[X = s]− Pr[Y = s]| .

Definition 3. Let US be a random variable uniformly distributed on S and δ ≤ 1
a positive real number. Then a random variable X on S is said to be δ-uniform
if

∆(X,US) ≤ δ

Lemma 1. Let S be a finite set and let (αx)x∈S be a sequence of real numbers.
Then,

(
∑

x∈S |αx|)2

|S|
≤
∑
x∈S

α2
x. (1)

Proof. This inequality is a direct consequence of Cauchy-Schwartz inequality:∑
x∈S

|αx| =
∑
x∈S

1.|αx| ≤
√∑

x∈S

12
√∑

x∈S

α2
x ≤

√
|S|
√∑

x∈S

α2
x.

The result can be deduced easily.

Corollary 1. If X is an S-valued random variable then

1

|S|
≤ Col(X), (2)

Lemma 2. Let X be a random variable over a finite set S of size |S| and ϵ =
∆(X,US) be the statistical distance between X and US, where US is a uniformly
distributed random variable over S. Then,

Col(X) ≥ 1 + 4ϵ2

|S|
.
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Proof. If ϵ = 0, then the result is an easy consequence of Equation 2. Let suppose
that ϵ ̸= 0 and define

qx = |Pr[X = x]− 1/|S||/2ϵ.

Then
∑

x qx = 1 and by Equation 1, we have

1

|S|
≤
∑
x∈S

q2x =
∑
x∈S

(Pr[X = x]− 1/|S|)2

4ϵ2
=

1

4ϵ2

(∑
x∈S

Pr[X = x]2 − 1/|S|

)

≤ 1

4ϵ2
(Col(X)− 1/|S|).

The lemma can be deduced easily.

Definition 4. Let S and T be two finite sets. Let Ext be a function Ext : S −→
T . We say that Ext is a deterministic (T, δ)-extractor for S if Ext(US) is δ-
uniform on T . That is

∆(Ext(US), UT ) ≤ δ.

For more information on extractors, see [16, 18].

2.2 Character sums

In the following, we recall some fundamental results on character sums. We

denote by ep the character on Fp such that, for all y ∈ Fp, ep(y) = e
2iπy

p ∈ C∗,
and by ψ the additive character in Fpn such that for all x ∈ Fpn , ψ(x) = ep(Tr(x))

where Tr(x) = x+ xp + . . .+ xp
n−1

is the trace of x ∈ Fpn to Fp.

Lemma 3. Let ψ be an additive character of Fpn and let G be a multiplicative
subgroup of F∗

pn . Consider the following Gauss sum T (a,G) =
∑

x∈G ψ(ax).
Then,

max
a∈F∗

pn

|T (a,G)| ≤
√
pn.

Proof. See [14] or [17].

Lemma 4. Let V be an additive subgroup of Fpn et let ψ be an additive character
of Fpn . Then, ∑

y∈Fpn

∣∣∣∣∣∑
z∈V

ψ(yz)

∣∣∣∣∣ ≤ pn.

Proof. See [20] for the proof.

For more details on character sums see [14, 15].
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2.3 Leftover Hash Lemma

In this subsection, we recall the Leftover Hash Lemma [13, 12]. It is the most
famous randomness extractor but it requires the use of universal hash functions.

Definition 5 (Guessing probability).
Let X be a random variable taking values on a set V of size N , the guessing

probability γ(X) of X is defined to be γ(X) = max{P [X = v] : v ∈ V}.

Definition 6 (Universal hash function families). Let H = {hi}i be a family
of efficiently computable hash functions hi : {0, 1}n −→ {0, 1}k, for i ∈ {0, 1}d.
We say that H is a universal hash function family if for every x ̸= y in {0, 1}n,

Pri∈{0,1}d [hi(x) = hi(y)] ≤ 1/2k.

Theorem 1 (Leftover Hash Lemma). Let H be a universal hash function
family from {0, 1}n to {0, 1}k, keyed by i ∈ {0, 1}d. Let i denote a random vari-
able with uniform distribution over {0, 1}d, let Uk be a random variable uniformly
distributed in {0, 1}k, and let A be a random variable taking values in {0, 1}n,
with i and A mutually independent. Let γ = γ(A), then

∆(⟨i, hi(A)⟩ , ⟨i, Uk⟩) ≤
√
2kγ

2
.

Proof. See [19]

The Leftover Hash Lemma extracts nearly all of the entropy available what-
ever the randomness sources are, but it needs to invest few additional truly
random bits. To circumvent this problem, we propose a deterministic extractor
which is not optimal.

3 Randomness extraction in Fpn

In this section, we propose and prove the security of a simple deterministic ran-
domness extractor for a subgroup G of Fpn . The main theorem of this section
states that the k-first coefficients of a random element in G are close to a truly
random group-element in Fk

p. Our approach is somewhat similar to those in [7]
related to randomness extraction in elliptic curves defined over Fpn . In fact, we
use the Gaussian exponential sums to bound the statistical distance.

Consider the finite field Fpn , where p is prime and n is a positive integer. Then
Fpn is a n-dimensional vector space over Fp. Let {α1, α2, . . . , αn} be a basis of
Fpn over Fp. That means, every element x in Fpn can be represented in the
form x = x1α1 + x2α2 + . . . + xnαn, where xi ∈ Fpn . Let G be a subgroup of
Fpn . The extractor Extk, for a given random element x of G, outputs the k-first
Fp-coefficients of x.
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Definition 7. Let G ⊂ F∗
pn be a multiplicative subgroup of order q and let k be

a positive integer less than n. The extractor Extk is defined as a function

Extk : G −→ Fk
p

x 7−→ (x1, x2, . . . , xk),

where x is represented as x = x1α1 + x2α2 + . . .+ xnαn.

The following theorem shows that Extk is a good randomness extractor.

Theorem 2. Let G ⊂ F∗
pn be a multiplicative subgroup of order q. Then

∆(Extk(UG), UFk
q
) ≤

√
p(n+k)

2q
,

where 1 < k < n is a positive integer, UG is a random variable uniformly
distributed in G and UFk

p
is the uniform distribution in Fk

p.

Proof. Let us define the sets

M = {(xk+1αk+1 + xk+2αk+2 + . . .+ xnαn), xi ∈ Fp} ⊂ Fpn ,

and

A = {(x, y) ∈ G2/∃m ∈M,x− y = m}.

Let us construct the characteristic function

1(x,y,m) =
1

pn
×
∑
a∈Fq

ψ(a(x− y −m)),

which is equal to 1 if x − y = m and 0 otherwise. Then the size of the set A is
given by

|A| = 1

pn
×
∑
x∈G

∑
y∈G

∑
m∈M

∑
a∈Fn

p

ψ(a(x− y −m)).
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Therefore,

Col(Extk(UG)) =
|A|
|G|2

=
|A|
q2

=
1

q2 × pn
×
∑
x∈G

∑
y∈G

∑
m∈M

∑
a∈Fn

p

ψ(a(x− y −m))

=
1

pk
+

1

q2 × pn
×
∑
x∈G

∑
y∈G

∑
m∈M

∑
a∈F∗

pn

ψ(a(x− y −m))

=
1

pk
+

1

q2 × pn
×
∑

a∈F∗
pn

(∑
x∈G

ψ(ax)

)∑
y∈G

ψ(−ay)

 ∑
m∈M

ψ(−am)

=
1

pk
+

1

q2 × pn
×
∑

a∈F∗
pn

T (a,G).T (−a,G)
∑
m∈M

ψ(−am)

≤ 1

pk
+

1

q2 × pn
×R2 ×

∑
a∈F∗

pn

∣∣∣∣∣ ∑
m∈M

ψ(−am)

∣∣∣∣∣ ,
where R = maxa∈F∗

pn
|T (a,G)| ..

Since

– R ≤
√
pn, by Lemma 3,

– and
∑

a∈F∗
pn

∣∣∑
m∈M ψ(−am)

∣∣ ≤ pn, by Lemma 4,

we have the following inequalities:

Col(Extk(UG)) ≤
1

pk
+
pn

q2
.

Therefore,
1 + 4∆2(Extk(UG), UFk

p
)

pk
≤ 1

pk
+
pn

q2
.

Hence,

∆(Extk(UG), UFk
p
) ≤

√
p(n+k)

2q
.

For non binary field, we have the following corollary.

Corollary 2. Let p > 2 be a prime and let G ⊂ F∗
pn be a multiplicative subgroup

of order q with |q| = r and |p| = m. If e > 1 is a positive integer and k > 1 is a
positive integer such that

k ≤ 2r − 2e−mn

m
,

then Extk is a (UG,
1
2e ) deterministic randomness extractor.
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Proof. Since k ≤ 2r−2e−mn
m , we have

m(n+ k)

2
≤ r−e⇐⇒ 2

m(n+k)
2 ≤ 2r×2−e ⇐⇒ 2

m(n+k)
2

2× 2r−1
≤ 2−e ⇐⇒ p

(n+k)
2

2q
≤ 2−e.

Hence ∆(extk(UG), UFk
p
) ≤ 2−e.

For binary fields, we obtain the following lemma.

Lemma 5. Let G ⊂ F∗
2n be a multiplicative subgroup of order q with |q| = r. If

e > 1 is a positive integer and and k > 1 is a positive integer such that

k ≤ 2r − 2e− n,

then Extk is a (UG,
1
2e ) deterministic randomness extractor.

Proof. We have

k ≤ 2t− 2e− n⇔ 2
(n+k)

2 ≤ 2r2−e.

Since p = 2 and 2r−1 ≤ q < 2r , we deduce that p
(n+k)

2 ≤ 2r

2e
. Therefore,√

pn+k

2× 2r−1
≤ 1

2e
⇐⇒

√
pn+k

2q
≤ 1

2e
.

Remark 1. We have the same results as above if the extractor Extk outputs the
k-last Fp-coefficients of a given random element in a multiplicative subgroup G
of F∗

pn .

4 Applications

Our extractor can extract entropy from any random element in a groupG. Hence,
an obvious application of the extractor Extk is key derivation from a random
Diffie-Hellman element in a DDH group G ⊂ F∗

2n . After a Diffie-Hellman key
exchange, parties agree on a common random element in G which is indistin-
guishable from a uniformly distributed element inG, under the DDH assumption.
However, it does not suffice since they want a uniformly distributed bit-string
for symmetric schemes. Thus, one have to extract the entropy from this random
Diffie-Hellman element by means of a randomness extractor.

For example, suppose that we want a 256-bits symmetric key from a random
Diffie-Hellman key exchange is a subgroup G of F2n with a security bound of
2−e = 2−80 as in the Leftover Hash Lemma. Then, one has to take the prime
n = 811 and consider a subgroup G of prime order q with |q| = r = 615. We
obtain exactly a perfectly random 256-bit string with the security bound 2−80.
Note that the subgroup G has only q elements with 2615 ≤ q < 2616.

As in [10] for prime field, the large q is the main drawback here for non prime
field because q is greater than

√
pn.

In the following table we give the size of q = |G|,( with p = 2 and e = 80)
knowing the size n(= prime) of the field F2n and k (the length of the output of
the extractor).
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k (key)\\n (prime) 521 811 1021 1153
128 |q| = 404 |q| = 549 |q| = 654 |q| = 720
192 |q| = 432 |q| = 581 |q| = 686 |q| = 752
224 |q| = 448 |q| = 597 |q| = 702 |q| = 768
256 |q| = 468 |q| = 615 |q| = 718 |q| = 783

Conclusion

This paper extends the study of the existence of randomness extractors for a
subgroup G of a finite prime field Zp to a field of the form Fpn where p is a
prime and n > 1 an integer. The extractor denoted by Extk, for a given random
element in a subgroup G of Fpn , outputs k-first (resp. k-last) Fp-coefficients
of this element. Our extractor works for any finite field Fpn where the DDH
assumption holds. Hence, we show that if q is large we can derive random bit-
string. In general, they can be used in any cryptographic protocol which requires
to extract a random bit-string from a random group-element.

As in Fouque et al. [10] for prime field, the large q is the main drawback here
for non prime field because q is grater than

√
pn. Hence, as further work it will

be interesting to improve the bound proposed in this paper.
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