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Abstract. Signcryption is a primitive which simultaneously performsthe functions of both signature and encryp-
tion in a way that is more efficient than signing and encrypting separately. We study in this paper constructions
of signcryption schemes from basic cryptographic mechanisms; our study concludes that the known constructions
require expensive encryption in order to attain confidentiality, however some adjustments make them rest on cheap
encryption without compromising their security. Our constructions further enjoy verifiability which entitles the
sender or the receiver to prove the validity of a signcryption with/out revealing thesigncryptedmessage. They also
allow the receiver to release some information which allowsanyone to publicly verify a signcryption on a given
message. Finally, our constructions accept efficient instantiations if the building blocks belong to a wide class of
signature/encryption schemes.
Keywords: signcryption, sign-then-encrypt paradigm, commit-then-encrypt-and sign paradigm, encrypt-then-sign
paradigm, (public) verifiability, homomorphic encryption.

1 Introduction

Cryptographic mechanisms that proffer both the functionalities of signature and of encryption are becoming nowadays
increasingly important. In fact, many real-life applications entail both the confidentiality and the authenticity/integrity
of the transmitted data; an illustrative example is electronic elections where the voter wants to encrypt his vote to
guarantee privacy, and at the same time, the voting center needs to ensure that the encrypted vote comes from the
entity that claims to be its provenance. To respond to this need, Zheng [51] introduced the notion ofsigncryption
which is a primitive that simultaneously performs the functions of both signature and encryption in a way that is more
efficient than signing and encrypting separately.

Related workSince the introduction of this primitive, many constructions which achieve different levels of security
have been proposed. On a high level, security of a signcryption scheme involves two properties; privacy and authen-
ticity. Privacy is analogous to indistinguishability in encryption schemes, and it denotes the infeasibility to inferany
information about thesigncryptedmessage. Authenticity is similar to unforgeability in signature schemes and it de-
notes the difficulty to impersonate thesigncrypter. Defining formally those two properties is a fundamental divergence
in signcryption constructions as there are many issues which come into play:

– TWO-USER VERSUS MULTI-USER SETTINGIn the two-user setting, adopted for instance in [1], a single sender
(the entity that creates the signcryption) interacts with asingle receiver (the entity that recovers the message from
the signcryption). Although such a setting is too simplistic to represent the reality, e.g. the case of electronic
elections, it provides however an important preliminary step towards modeling and building schemes in the multi-
user setting. In fact, many works have proposed simple tweaks in order to derive multi-user security from two-user
security [1, 39].

– INSIDER VERSUS OUTSIDER SECURITYAnother consequential difference between security modelsis whether
the adversary is external or internal to the entities of the system. The former case corresponds to outsider security,
e.g. [22], whereas the latter denotes insider security which protects the system protagonists even when some of
their fellows are malicious or have compromised/lost theirprivate keys [1, 39]. It is naturally possible to mix
these notions into one single signcryption scheme, i.e. insider indistinguishability and outsider unforgeability [1,
16], or outsider indistinguishability and insider unforgeability [2]. However, the most frequent mix is the latter as
illustrated by the number of works in the literature, e.g. [1, 34, 2]; it is also justified by the necessity to protect the
sender from anyone trying to impersonate him including entities in the system. Insider indistinguishability is by
contrast needed in very limited applications; the typical example [1] is when the adversary happens to steal the
private key of the sender, thus when it is able to send “fake” messages, but we still wish to protect the privacy of
the recorded signcryptions sent by the genuine sender.



– VERIFIABILITY A further requirement on signcryption is verifiability which consists in the possibility to prove
efficiently the validity of a given signcryption, or to provethat a signcryption has indeed been produced on a given
message. In fact, if we consider the example of electronic elections, the voting center might require from the voter
a proof of validity of the ”signcrypted” vote. Also, the trusted party (the receiver) that decrypts the vote might
be compelled, for instance to resolve some later disputes, to prove that the sender has indeed produced the vote
in question; therefore, it would be desirable to support theprover with efficient means to provide such a proof
without having to disclose his private input. This propertyis also needed in filtering out spams in a secure email
system. Although a number of constructions [3, 46, 17, 38, 45] have tackled the notion of verifiability (this notion
is often referred to in the literature as public verifiability, and it denotes the possibility to release (by the receiver)
some information which allows to publicly verify a signcryption with/out revealing the message in question), most
of these schemes do not allow the sender to prove the validityof the created signcryption, nor allow the receiver to
provewithout revealing any information, ensuring consequentlynon-transferability, to a third party, the validity of
a signcryption w.r.t. a given message. It is worth noting that the former need, i.e. allowing the sender to prove the
validity of a signcryption without revealing the message, already manifests in the IACR electronic voting scheme
(The Helios voting scheme) where the sender proves the validity of the encrypted vote to the voting manager. The
scheme nonetheless does not respond to the formal security requirements of a signcryption scheme.

Before ending this paragraph, we recall the main generic constructions of signcryption schemes that were pro-
posed so far. In fact, building complex mechanisms from basic ones is customary in cryptography as it allows achiev-
ing easy-to-analyze schemes, compared to dedicated/monolithic constructions. The first constructions of signcryption
were given and analyzed in [1], where the authors study how toderive signcryption schemes, mainly in the two-user
setting, using the classical combinations “sign-then-encrypt”, “encrypt-then-sign”, and “commit-then-encrypt-and-
sign”. Subsequently, the work [39] presented several optimizations of these combinations that lead to signcryptions
with multi-user security. The paper shows also how to use symmetric encryption in order to derive constructions in
the outsider multi-user setting. Finally, there are the recent constructions [16] which achieve security in the insider
multi-user setting without key registration assumptions (on the receiver’s side). It is worth noting that none of these
constructions treat verifiability.

To the best of our knowledge, there are no generic constructions which provide verifiability in a reasonable security
model. The main contribution of this paper is to provide suchconstructions.

Our Contributions We make the following contributions. First, we propose a newmodel for signcryption schemes
which upgrades the existing models by three interactive protocols: 1. a protocol that allows the sender to prove, to
a third party, the validity of the created signcryption, 2. and two protocols that allow the receiver to prove, to a third
party, the validity of a given signcryption with/out revealing the message. All these protocols do not require the provers
to revealany information.

In Section 3, we show that the “sign-then-encrypt” (StE) andthe “commit-then-encrypt-and-sign”(CtEaS) paradigms
require expensive assumptions on the underlying encryption in order to derive signcryption with outsider indistin-
guishability. We do this by first proving the insufficiency ofOW-CCA and NM-CPA secure encryption, then by ex-
hibiting a simple attack if the system is instantiated from certain encryption schemes. Next, we propose simple tweaks
of the paradigms that make the resulting constructions reston cheap encryption.

In Section 4, we show that the “encrypt-then-sign” (“TagEncrypt-then-sign”) paradigm provides efficient construc-
tions which are proven secure in our adopted model. We demonstrate the efficiency of these schemes by explicitly
describing the different verification protocols if the constructions are instantiated from a wide class of encryption
(tag-based encryption) schemes.

Finally, in Section 5, we propose a new paradigm which combines the merits of both the “sign-then-encrypt” (StE)
and “encrypt-then-sign” (EtS) paradigms while avoiding their drawbacks. In fact, the former (both the old and the new
variant) suffers the problem of verifiability as the underlying encryption operates on bit-strings rather than elements
from algebraic sets where homomorphisms could be used in order to ease verifiability. The latter suffers the recourse
to stronger security assumptions on the underlying signature in order to get outsider indistinguishability. Moreover, the
paradigm does not provide anonymity of the sender. In this section, we show that our new proposed paradigm, called
“encrypt-then-sign-then-encrypt” (EtStE) circumvents these problems while accepting many efficient instantiations.
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2 Model and Main Constructions

In this section, we present our model for verifiable signcryption. We refer to Appendix A for the necessary crypto-
graphic bricks that will come into play, namely digital signatures, public key encryption schemes, tag-based encryp-
tion, KEM/DEM mechanisms, and commitment schemes.

A verifiable signcryption scheme consists of the following algorithms/protocols:

Setup (setup(1κ)). This probabilistic algorithm inputs a security parameterκ, and generates the public parameters
param of the signcryption scheme.

Key generation (keygenU (1
κ, param), U ∈ {S,R}). This probabilistic algorithm inputs the security parameter κ

and the public parametersparam, and outputs a key pair(pkU , skU ) for the system userU which is either the
senderS or the receiverR.

Signcryption (signcrypt(m, skS , pkS , pkR)). This probabilistic algorithm inputs a messagem, the key pair(skS , pkS)
of the sender, the public keypkR of the receiver, and outputs the signcryptionµ of the messagem.

Proof of validity ( proveValidity(µ, pkS , pkR)). This is an interactive protocol between the receiver or the sender who
has just generated a signcryptionµ on some message, and any verifier: the sender uses the randomness used to
createµ (as private input) and the receiver uses his private keyskR in order to convince the verifier thatµ is a valid
signcryption on some message. The common input to both the prover and the verifier comprise the signcryptionµ

in question,pkS , andpkR. At the end of the protocol, the verifier either accepts or rejects the proof.
Unsigncryption (unsigncrypt(µ, skR, pkR, pkS)). This is a deterministic algorithm which inputs a putative signcryp-

tionµ on some message, the key pair(skR, pkR) of the receiver, and the public keypkS of the sender, and outputs
either the message underlyingµ or an error symbol⊥.

Confirmation/Denial ({confirm, deny}(µ,m, pkR, pkS)). These are interactive protocols between the receiver and
any verifier; the receiver uses his private keyskR (as private input) to convince any verifier that a signcryptionµ on
some messagem is/is not valid. The common input comprises the signcryptionµ and the messagem in question,
in addition topkR andpkS . At the end of the protocol, the verifier is either convinced of the validity/invalidity of
µ w.r.t.m or not.

Public verification (publicVerify(µ,m, skR, pkR, pkS)). This is an algorithm which inputs a signcryptionµ, a mes-
sagem, the key pair(skR, pkR) of the receiver, and the public keypkS of the sender, and outputs either an error
symbol⊥ if µ is not a valid signcryption onm, or a string which allows to publicly verify the validity ofµ onm

otherwise.

Remark 1. – The proveValidity protocol allows the sender to prove the validity of the signcryption he has just
created (need for the randomness used to produce the signcryption). Although this situation is plausible in secure
email or in electronic elections, it would be however nice tohave a stateless system. This would require in our
constructions involved non-interactive proofs which are in general difficult to obtain in the standard model.

– The{confirm, deny} protocols can also be run by the sender who has just generatedthe signcryption in question.
Furthermore, they are interactive in order to ensurenon-transferability, i.e. the possibility of the verifier to transfer
to a third party his conviction about the validity/invalidity of a signcryption w.r.t. a given message. It has been
proven in [37] that interactivity guarantees onlyoffline non-transferability, i.e., non-transferability is not preserved
if the verifier interacts concurrently with the receiver andan unexpected verifier. One way to remediate to this
problem was proposed in [18] using non-interactive designated verifier proofs. Again, the proposed solution rests
on heavy non-interactive proofs using the [30] proof system, and is hard to be generalized.

It is natural to require the correctness of a signcryption scheme, i.e. for any messagem:

unsigncrypt(signcrypt(m, skS , pkS , pkR), skR, pkR, pkS) = m.

and
publicVerify(m, signcrypt(m, skS , pkS , pkR), skR, pkR, pkS) 6=⊥ .

Moreover, the protocolsproveValidity and{confirm, deny} must be complete, sound, and zero knowledge. We
refer to [27] for details of these notions.
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2.1 Unforgeability

This notion protects the sender’s authenticity frommalicious insideradversaries, i.e. the receiver. It is defined through
a game between a challengerC and an adversaryA where the latter gets the public keypkS of the sender, generates
the key pair(pkR, skR) of the receiver, and handspkR to the challenger. During the game,A is allowed to ask adap-
tively signcryption queries w.r.t.pkR andpkS on messages of his choice toC. The scheme is said to beExistentially
Unforgeable against Chosen Message Attacks (EUF-CMA)if the adversary is unable to produce a valid signcryption
µ⋆ on a messagem⋆ that he did not ask to the signcryption oracle.

Definition 1 (Unforgeability). We consider a signcryption schemesc given by the algorithms/protocols defined ear-
lier in this section. LetA be a PPTM. We consider the following random experiment:

ExperimentExpeuf-cma
sc,A (1κ)

param← sc.setup(1κ)
(pkS , skS)← sc.keygenS(1

κ, param)
pkR ← A(pkS)
µ⋆ ← AS(pkS , pkR, skR)

S : m 7−→ sc.signcrypt{skS , pkS , pkR}(m)
return 1 if and only if the following properties are satisfied:

- sc.unsigncrypt{skR,pkR,pkS}
[µ⋆] = m⋆

- m⋆ was not queried toS

We define thesuccessofA via:

Succeuf-cma
sc,A (1κ) = Pr

[

Expeuf-cma
sc,A (1κ) = 1

]

.

Given(t, qs) ∈ N
2 andε ∈ [0, 1], A is called a(t, ε, qs)-EUF-CMA adversary againstsc if, running in timet and

issuingqs queries to thesc.signcrypt oracle,A hasSucceuf-cma
sc,A (1κ) ≥ ε. The schemesc is said to be(t, ε, qs)-EUF-

CMA secure if no(t, ε, qs)-EUF-CMA adversary against it exists.

Remark 2.Note thatA in the above definition is not given the oraclessc.proveValidity, sc.unsigncrypt, sc.publicVerify,
andsc.{confirm, deny}. In fact, these oracles are useless for him as he has the receiver’s private keyskR at his disposal.

2.2 Indistinguishability

This notion protects the sender’s privacy fromoutsider adversaries. It is defined through a game between a chal-
lengerC and an adversaryA; C generates the key pairs(skS , pkS) and (skR, pkR) for the sender and for the re-
ceiver respectively, and hands(pkS , pkR) to A. During the first phase of the game,A queries adaptivelysigncrypt
and proveValidity (actually proveValidity is only invoked on inputs just obtained from the signcryption oracle),
unsigncrypt, {confirm, deny}, andpublicVerify for any input. OnceA decides that this phase is over, he generates

two messagesm⋆
0,m

⋆
1 and hands them toC who generates a signcryptionµ⋆ on m⋆

b for b
R
←− {0, 1} and gives it

(µ⋆) toA. The latter resumes querying the previous oracles adaptively on any input with the exception of not querying
unsigncrypt onµ⋆, and{confirm, deny} andpublicVerify on the pair(µ⋆,m⋆

i ) for i ∈ {0, 1}. At the end, the adversary
outputs his guessb′ for the message underlying the signcryptionµ⋆. He is considered successful ifb = b′.

Definition 2 (Indistinguishability (IND-CCA)). Letsc be a signcryption scheme, and letA be a PPTM. We consider

the following random experiment forb
R
←− {0, 1}:
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ExperimentExpind-cca-b
sc,A (1κ)

param← sc.setup(1κ)
(skS , pkS)← sc.keygenS(1

κ, param)
(skR, pkR)← sc.keygen(1κ, param)

(m⋆
0,m

⋆
1, I)← A

S,V,U,C(find, pkS , pkR)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

S : m 7−→ sc.signcrypt{skS ,pkS ,pkR}(m)

V : µ 7−→ sc.proveValidity(µ, pkS, pkR)
U : µ 7−→ sc.unsigncryptskR,pkR,pkS

(µ)

C : (µ,m) 7−→ sc.{confirm, deny}(µ,m,pkR, pkS)
P : (µ,m) 7−→ sc.publicVerify(µ,m, pkR, pkS)

µ⋆ ← sc.signcrypt{skS ,pkS ,pkR}(m
⋆
b)

d← AS,V,U,C(guess, I, µ⋆, pkS , pkC)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

S : m 7−→ sc.signcrypt{skS ,pkS ,pkR}(m)

V : µ 7−→ sc.proveValidity(µ, pkS, pkR)
U : µ( 6= µ⋆) 7−→ sc.unsigncryptskR,pkR,pkS

(µ)

C : (µ,m)( 6= (µ⋆,m⋆
i ), i = 0, 1) 7−→ sc.{confirm, deny}(µ,m, pkR, pkS)

P : (µ,m)( 6= (µ⋆,m⋆
i ), i = 0, 1) 7−→ sc.publicVerify(µ,m, pkR, pkS)

Returnd

We define theadvantageofA via:

Advind-cca
sc,A (1κ) =

∣

∣

∣

∣

Pr
[

Expind−cca−b
sc,A (1κ) = b

]

−
1

2

∣

∣

∣

∣

.

Given(t, qs, qv, qu, qcd, qpv) ∈ N6 andε ∈ [0, 1],A is called a(t, ε, qs, qv, qu, qcd, qpv)-IND-CCA adversary against
sc if, running in timet and issuingqs queries to thesc.signcrypt oracle,qv queries to thesc.proveValidity oracle,
qu queries to thesc.unsigncrypt oracle, qcd queries to thesc.{confirm, deny} oracle, andqpv to thepublicVerify

oracle,A hasAdvind−cca
sc,A (1κ) ≥ ε. The schemesc is said to be(t, ε, qs, qv, qu, qcd, qpv)-IND-CCA secure if no

(t, ε, qs, qv, qu, qcd, qpv)-IND-CCA adversary against it exists.

In Appendix B, we provide the above properties in the multi-user setting, namely the dM-EUF-CMA and the fM-
IND-CCA security properties, where the adversary is further given all the private keys except those of the target sender
and of the target receiver.

2.3 Main Constructions

Let Σ be a digital signature scheme given byΣ.keygen which generates a key pair (Σ.sk, Σ.pk), Σ.sign, and
Σ.proveValidity. Let furthermoreΓ denote a public key encryption scheme described byΓ.keygen that generates
the key pair (Γ.sk,Γ.pk), Γ.encrypt, andΓ.decrypt. Finally, letΩ be a commitment scheme given by the algorithms
Ω.commit andΩ.open. The most popular paradigms used to devise signcryption schemes from basic primitives are:

– The“sign-then-encrypt” (StE) paradigm. Given a messagem, signcrypt first produces a signatureσ on the mes-
sage usingΣ.sk, then encryptsm‖σ underΓ.pk. The result forms the signcryption onm. Tounsigncrypt, one first
decrypts the signcryption usingΓ.sk in m‖σ, then checks the validity ofσ, usingΣ.pk, onm. Finally,publicVerify
of a valid signcryptionµ = Γ.encrypt(m‖σ) onm outputsσ.

– The “encrypt-then-sign” (EtS) paradigm. Given a messagem, signcrypt produces an encryptione on m using
Γ.pk, then produces a signatureσ on e usingΣ.sk; the signcryption is the pair(e, σ). To unsigncrypt such a
signcryption, one first checks the validity ofσ w.r.t. e usingΣ.pk, then decryptse usingΓ.sk to getm. Finally,
publicVerify outputs a zero knowledge non-interactive (NIZK) proof thatm is the decryption ofe; such a proof is
possible since the statement in question is in NP ([28] and [6]).

– The “commit-then-encrypt-and-sign” (CtEaS) paradigm. This construction has the advantage of performing the
signature and the encryptionin parallel in contrast to the previous sequential compositions. Givena messagem,
one first produces a commitmentc on it using some random noncer, then encryptsm‖r underΓ.pk, andproduces
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a signatureσ onc usingΣ.sk. The signcryption is the triple(e, c, σ). Tounsigncrypt such a signcryption, one first
checks the validity ofσ w.r.t. c, then decryptse to getm‖r, and finally checks the validity of the commitmentc

w.r.t (m, r). publicVerify is achieved by releasing the decryption ofe, namelym‖r.

The proofs of well (mal) formed-ness, namelyproveValidity and{confirm, deny} can be carried out since the
languages in question are in NP (co-NP) and thus accept zero knowledge proof systems [28]. Finally, it is possible
to require a proof in thepublicVerify algorithms of StE and CtEaS, that the revealed information is indeed a correct
decryption of the encryption in question; such a proof is again possible to issue since the corresponding statement is
in NP.

3 Analysis of the StE and CtEaS Paradigms

3.1 Insufficiency of OW-CCA and NM-CPA secure encryption

We proceed in this subsection as in [23] where the author shows the impossibility to derive secure confirmer signa-
tures, using the StE and the CtEaS paradigms, from both OW-CCA and NM-CPA secure encryption; we first show
the impossibility result for the so-calledkey-preserving reductions, i.e. reductions which launch the adversary on its
challenge public key in addition to some freely chosen parameters, then we generalize the result to arbitrary reductions
assuming new assumptions on the underlying encryption scheme.

Lemma 1. Assume there exists a key-preserving reductionR that converts an IND-CCA adversaryA against sign-
cryptions from the StE (CtEaS) paradigm to a OW-CCA adversary against the underlying encryption scheme. Then,
there exists a meta-reductionM that OW-CCA breaks the encryption scheme in question.

This lemma claims that under the OW-CCA security assumptionof the underlying encryption, there is no key-
preserving reduction that reduces OW-CCA breaking the encryption scheme in question to IND-CCA breaking the
signcryption construction (from StE or CtEaS), or if there exists such an algorithm, then the underlying encryption
scheme is not OW-CCA secure, thus rendering such a reductionuseless.

Proof. LetR be the key-preserving reduction that reduces OW-CCA breaking the encryption scheme underlying the
construction to IND-CCA breaking the construction (from StE or CtEaS) itself. We will construct an algorithmM
that usesR to OW-CCA break the same encryption scheme by simulating an execution of the IND-CCA adversaryA
against the construction.

Let Γ be the encryption schemeM is trying to attack.M gets his challengec and is equipped with a decryption
oracle that he can query on all ciphertexts of his choice except of course on the challenge.M launchesR overΓ
with the same public keyΓ.pk and the same challengec. Obviously, all decryption queries made byR, which are
by definition different from the challengec, can be forwarded toM’s own challenger.M needs now to simulate an
IND-CCA adversaryA toR (Σ andΩ denote respectively the signature and the commitment schemes in use):

– StE paradigm.A receives as a challenge signcryption a certainµb = Γ.encrypt(Σ.sign(mb)), whereb ∈ {0, 1}
(m0,m1 being the challenge messages output byA, simulated byM, to R). With overwhelming probability,
c 6= µb (we refer to Remark 3 in caseRmisbehaves and submitsc as a challenge signcryption) since the challenge
c is not encryption of a valid digital signature on the messagem0 or the messagem1. ThusM can queryµb to
his own challenger for decryption. The answer of such a queryis sufficient forA (simulated byM) to answer his
indistinguishability challenge.

– CtEaS paradigm.A receives as a challenge signcryptionµb = [Γ.encrypt(mb‖r), c = Ω.commit(mb, r), Σ.sign(c)]
with b ∈ {0, 1} (alwaysm0,m1 denote the challenge messages output byA toR). Similarly,c 6= Γ.encrypt(mb‖r)
(we refer again to Remark 3 in caseR misbehaves and submitsc as the first field of the challenge signcryption)
with overwhelming probability sincec is not encryption of a message whose prefix is the messagem0 or m1.
Thus,M can query his challenger for the decryption of the first field of µb. The result of such a query is sufficient
for A to answer his indistinguishability challenge.
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To sum up,M is able to perfectly answer the decryption queries made byR (that are by definition different from
c).M is further capable of successfully simulating the IND-CCA challenge against the construction (from the StE or
the CtEaS paradigms). ThusR is expected to return the answer to the OW-CCA challenge, namely the decryption of
c. Upon receipt of this answer,M will forward it to his own challenger. ⊓⊔

Remark 3.In the above proof, ifR submitsc in the challenge signcryption toA, then this latter cannot solve the
IND-CCA challenge as he (M) cannot invoke his decryption oracle onc. In this case, as it is very unlikely that the
resulting signcryption is a valid signcryption on the challenge messagesm0 or m1, then whatever is the answer of
A (actually in this case,A, simulated byM who launchedR overc, can abort the indistinguishability game) to the
challenge signcryption, this answer will not helpR solving his OW-CCA challenge since he already knows thatc

cannot be (with overwhelming probability) a valid signcryption on either messagesm0 or m1. In other words, in
this case, whateverR learns fromA, he can also learn it withoutA, which corresponds to a reductionR solving a
OW-CCA challenge in polynomial time without the help ofA, i.e.R is useless as it is solving an easy problem.

We further have this lemma (which we prove in Appendix C.1) onthe insufficiency of NM-CPA secure encryption.

Lemma 2. Assume there exists a key-preserving reductionR that converts an IND-CCA adversaryA against sign-
cryptions from the StE (CtEaS) paradigm to a NM-CPA adversary against the underlying encryption scheme. Then,
there exists a meta-reductionM that NM-CPA breaks the encryption scheme in question.

We generalize in Appendix C.2 the previous results to arbitrary reductions if the encryption scheme has anon-
malleable key generator, which informally means that OW-CCA (NM-CPA) breaking the encryption, w.r.t. a public
keypk, is no easier when given access to a decryption oracle w.r.t.any keypk′ different frompk.

Moreover, we can rule out the OW-CPA, OW-PCA, and IND-CPA notions1 by remarking that ElGamal’s encryp-
tion meets all those notions (under different assumptions), but cannot be employed in StE and CtEaS as it is malleable.
In fact, the indistinguishability adversary can create a new signcryption (by re-encrypting the ElGamal encryption) on
the challenge message, and query it for unsigncryption. Theanswer of such a query is sufficient to conclude. We refer
to Appendix C.3 for the detail of this attack using a much larger class of encryption schemes.

In consequence of the above analysis, the used encrypted scheme has to satisfy at least IND-PCA security in order
to lead to secure signcryption from StE or CtEaS. Since thereare no known encryption schemes in the literature which
separate the notions IND-PCA and IND-CCA, our result practically means that the encryption scheme underlying the
previous constructions has to satisfy the highest securitylevel (IND-CCA) in order to lead to secure signcryption. This
translates in expensive operations, especially if verifiability is further required for the resulting signcryption.

3.2 Positive results

Constructions from StE or CtEaS suffer the strong forgeability: given a signcryption on some message, one can create
another valid signcryption on the same message without the sender’s help. To circumvent this problem, we propose
the following techniques which bind the digital signature to the resulting signcryption.

The new “sign-then-encrypt”(StE) paradigm. Let Σ be a digital signature scheme given byΣ.keygen, which gen-
erates a key pair (Σ.sk, Σ.pk), Σ.sign, andΣ.proveValidity. Let furthermoreK be a KEM given byK.keygen, which
generates a key pair (K.pk, K.sk), K.encap, andK.decap. Finally, we consider a DEMD given byD.encrypt and
D.decrypt. We assume that the message space ofD includes the concatenation of elements from the message space of
Σ, and of signatures produced byΣ, and that the encapsulations generated byK are exactlyκ-bit long, whereκ is a
security parameter.

1 The step of ruling out OW-CPA, OW-PCA, and IND-CPA is necessary although we have proved the insufficiency of stronger
notions, namely OW-CCA and NM-CPA. In fact, suppose there isan efficient key-preserving reductionR which reduces OW-
PCA breaking a cryptosystemΓ underlying a StE or CtEaS construction to IND-CCA breaking the construction itself. Then there
exists an efficient key-preserving reduction sayR′ that reduces OW-CCA breakingΓ to IND-CCA breaking the construction
(since OW-CCA is stronger than OW-PCA). According to the previous Lemmata, such a reduction (R′) may exist ifΓ is not
OW-CCA secure (although it is OW-PCA secure). In other terms, since there are separations between the notions OW-CCA and
OW-PCA (same for the other notions), we cannot apply the insufficiency of OW-CCA (NM-CPA) to rule out the weaker notions.
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A signcryption schemesc is defined as follows:sc.setup invokes the setup algorithms ofΣ,K, andD. sc.keygenS
and sc.keygenR consist ofΣ.keygen andK.keygen respectively. Tosc.signcrypt a messagem, one first generates
a key k with its encapsulationc usingK.encap, then produces a signatureσ on c‖m, and finally outputsµ =
(c,D.encryptk(m‖σ)) as a signcryption ofm. Unsigncryption of some(µ1, µ2) is done by first recovering the keyk
fromµ1 usingK.decap, then usingD.decrypt andk to decryptµ2, and finally checking that the result is a valid digital
signature onµ1‖m wherem is the retrieved message. The rest is similar to the originalStE.

Theorem 1 Given(t, qs) ∈ N2 andε ∈ [0, 1], the above construction is (t, ǫ, qs)-EUF-CMA secure if the underlying
digital signature scheme is (t, ǫ, qs)-EUF-CMA secure.

The proof is given in Appendix C.4.

Theorem 2 Given(t, qs, qv, qu, qcd, qpv) ∈ N6 and(ε, ǫ′) ∈ [0, 1]2, the above construction is (t, ǫ, qs, qv, qu, qcd, qpv)-
IND-CCA secure if it uses a(t, ǫ′, qs)-EUF-CMA secure digital signature, an IND-OT secure DEM andan (t+qs(qu+
qcd + qpv), ǫ · (1 − ǫ′)qu+qcd+qpv )-IND-CPA secure KEM.

The proof is provided in Appendix C.5. We note that the above theorem holds true also when the used DEM is
only computationally secure. Details are given in Remark 9.

The new “commit-then-encrypt-and-sign” (CtEaS) paradigmThe new“commit-then-encrypt-and-sign” (CtEaS)
paradigm. The construction is similar to the basic one described earlier, with the exception of producing the digital
signature on both the commitmentc and the encryptione. The new construction looses the parallelism of the original
one, i.e. encryption and signature can longer be carried outin parallel, however it has the advantage of resting on cheap
encryption compared to the early one.

Theorem 3 Given(t, qs) ∈ N
2 and(ε, ǫb) ∈ [0, 1]2, the above construction is (t, ǫ, qs)-EUF-CMA secure if it uses a

uses a(t, ǫb) binding commitment scheme and a(t, ǫ(1− ǫb)
qs , qs)-EUF-CMA secure digital signature scheme.

Theorem 4 Given(t, qs, qv, qu, qcd, qpv) ∈ N
6 and(ε, ǫ′, ǫh) ∈ [0, 1]3, the new CtEaS construction is(t, ǫ, qs, qv, qu, qcd, qpv)-

IND-CCA secure if it uses a(t, ǫ′, qs)-SEUF-CMA secure digital signature, a statistically binding, and (t, ǫh)-hiding
commitment, and a(t+ qs(qu + qcd + qpv),

1
2 (ǫ + ǫh)(1 − ǫ′)qu+qcd+qpv )-IND-CPA secure encryption scheme.

The proofs are given in Appendix C.6 and Appendix C.7 resp.

4 Efficient Verifiable Signcryption from the EtS Paradigm

The Encrypt-then-Sign paradigm, described in Subsection 2.3, turns out to provide efficient signcryptions schemes
that are proven secure in the model we adhere to.

Theorem 5 Given(t, qs) ∈ N2 andε ∈ [0, 1], signcryption schemes from EtS are (t, ǫ, qs)-EUF-CMA secure if the
underlying digital signature scheme is (t, ǫ, qs)-EUF-CMA secure.

Theorem 6 Given(t, qs, qv, qu, qcd, qpv) ∈ N6 and(ε, ǫ′) ∈ [0, 1]2, signcryptions from EtS are(t, ǫ, qs, qv, qu, qcd, qpv)-
IND-CCA secure if they use a(t, ǫ′, qs)-SEUF-CMA secure digital signature and a(t + qs(qu + qcd + qpv), ǫ(1 −
ǫ′)qu+qcd+qpv )-IND-CPA secure encryption scheme

We flesh out the details of both proofs in Appendix D.1 and Appendix D.2 respectively. In fact, the proofs that
were given so far correspond to security models different from the one we consider.

Remark 4.Note that the IND-CPA requirement on the encryption scheme is also necessary. In fact, an IND-CCA ad-
versary against the signcryption construction can easily use an IND-CPA adversary against the underlying encryption
scheme in order to solve his challenge.
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4.1 Efficient instantiations

To allow efficientproveValidity, {confirm, deny}, andpublicVerify protocols/algorithms, we propose to instantiate the
encryption scheme from the following class:

Definition 3 (The classE of encryption schemes).E is the set of public key encryption schemesΓ that have the
following properties:

1. The scheme operates in a message spaceM which is a groupM = (G, ∗), and produces encryptions which
belong to a group spaceC = (H, ◦e), i.e.Γ.encrypt : (G, ∗)→ (H, ◦e).

2. Letm ∈M be a message andc its encryption (usingΓ.encrypt) w.r.t. a keypk. On the common inputpk, m, and
c, there exists an efficient zero knowledge proofPoK of m being the decryption ofc w.r.t. pk. The private input of
the prover is either the private key corresponding topk or the randomness used to produce the encryptionc.

3. ∀m,m′ ∈ M, ∀pk : Γ.encryptpk(m ∗m
′) = Γ.encryptpk(m) ◦e Γ.encryptpk(m

′). Moreover, given the random-
ness used to encryptm in Γ.encryptpk(m) andm′ in Γ.encryptpk(m

′), one can deduce (using only the public
parameters) the randomness used to encryptm ∗m′ in Γ.encryptpk(m) ◦e Γ.encryptpk(m

′).

Examples of encryption schemes in the above class include ElGamal’s encryption [24], the encryption scheme defined
in [8], or Paillier’s [40] encryption scheme. In fact, theseschemes are homomorphic and possess efficient protocols
for proving that a ciphertext decrypts to a given message: the proof of equality of two discrete logarithms [15], in case
of [24, 8], or the proof of knowledge of anN -th root in case of [40].

We describe in the rest of this subsection theproveValidity, {confirm, deny}, andpublicVerify protocols/algorithms
if the used encryption belongs to the classE.

Proof of Validity We depict theproveValidity protocol in Figure 1.

ProverP Verifier V

Choosem′ R
←−M

Computee′ = Γ.encryptΓ.pk(m
′)

e′
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

b
←−−−−−−−−−−−−−−−−−−−−−−−−−−−− Chooseb

R
←− {0, 1}ℓ (b ∈ N)

z = m′ ∗mb

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

PoK{e′ ◦e e
b = Γ.encryptΓ.pk(z)}

←−−−−−−−−−−−−−−−−−−−−−−−−−−→
Accept ifPoK is valid

Fig. 1. Proof system for membership to the language{m : e = Γ.encryptΓ.pk(m)} Common input: (e, Γ.pk) and
Private input: m and Γ.sk or randomness used to producee.

Theorem 7 Let Γ be a one-way encryption scheme from the classE. The protocol depicted in Figure 1 is a zero
knowledge proof of knowledge of the decryption ofe. ⊓⊔

Confirmation/denial protocols Theconfirm protocol is nothing but the proofPoK which is in case of [24, 8] a proof
of equality of two discrete logarithms, and in case of [40] a proof of knowledge of anN -th root. We depict thedeny
protocol in Figure 2, wheref denotes an arbitraryhomomorphic injective one way function:

∀m,m′ : f(m ⋆m′) = f(m) ◦s f(m
′)

Theorem 8 LetΓ be an IND-CPA encryption scheme from the above classE. The protocol depicted in Figure 2 is a
zero knowledge proof of the decryption ofe which is different from the messagem. ⊓⊔
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ProverP Verifier V

Choosem′ R
←−M

Computee′1 = f(m′)

Computee′2 = Γ.encryptΓ.pk(m
′)

e′1, e
′

2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
b

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Chooseb
R
←− {0, 1}ℓ (b ∈ N)

z = m′ ∗ m̃b

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

PoK{e′2 ◦e eb = Γ.encryptΓ.pk(z)}
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Accept ifPoK is valid and iff(z) 6= e′1 ◦s f(m)b.

Fig. 2. Proof system for membership to the language{(m, e) : ∃m̃ : e = Γ.encrypt(m̃) ∧ m̃ 6= m} Common input: (m, e, Γ.pk) andPrivate input: Γ.sk or
randomness encrypting̃m in e

Public verification thepublicVerify algorithm outputs a ZK non-interactive proof of the correctness of a decryption.
We note the following three solutions according to the used encryption:

1. The case of Paillier’s encryption [40]: this scheme belongs tofully decryptableencryption schemes, i.e. encryption
schemes where decryption leads to the randomness used to produce the ciphertext. Thus,publicVerify will simply
release the randomness used to generate the ciphertext.

2. The case of [8]’s encryption: Groth and Sahai [30] presented an efficient ZK non-interactive proof that a given
encryption using this scheme encrypts a given message undera given public key.

3. The case of DL-based encryption schemes, e.g. [24, 8, 20]:the interactive proof of correctness of most such
schemes reduces to a proof of equality of two discrete logarithms. The work [21] presented an efficient method to
remove interaction using additively homomorphic encryption, e.g. Paillier [40].

4.2 Extension to Multi-user security

The construction is the same provided in [39], namely the TagEncrypt-then-Sign paradigm (TEtS), which deviates
from the standard EtS paradigm as follows:

1. It considers a tag-based encryption scheme where the tag is set to the public key of the senderpkS .
2. The digital signature is produced on the resulting ciphertext and on the public key of the receiver.

Theorem 9 Given(t, qs) ∈ N2 andε ∈ [0, 1], signcryption schemes from the TEtS paradigm are (t, ǫ, qs)-dM-EUF-
CMA secure if the underlying digital signature scheme is (t, ǫ, qs)-EUF-CMA secure.

Theorem 10 Given (t, qs, qv, qu, qcd, qpv) ∈ N6 and (ε, ǫ′) ∈ [0, 1]2, signcryption constructions from the TEtS
paradigm are(t, ǫ, qs, qv, qu, qcd, qpv)-IND-CCA secure if they use a(t, ǫ′, qs)-SEUF-CMA secure digital signature
and a(t+qs(qu+qcd+qpv), ǫ(1−ǫ

′)qu+qcd+qpv , qu+qcd+qpv)-IND-sTag-CCA secure tag-based encryption scheme.

We provide again the proofs of both theorems in Appendix D.3 and Appendix D.3 resp. as we consider a model
different from that adopted in [39]. Finally, we provide in Appendix D.5 an efficient instantiation of the paradigm
using Kiltz’encryption [35].

5 Efficient Verifiable Signcryption from the EtStE Paradigm

The EtS technique compares better with respect to verifiability, since the prover needs simply to prove knowledge
of the decryption of a given ciphertext. Also, the receiver has to prove that a message is/isn’t the decryption of a
given ciphertext. Such proofs are easy to carry out if one considers the already mentioned classE. Moreover, we
showed thatpublicVerify can be made efficient for many encryption schemes from the classE. However, in order to
achieve indistinguishability, EtS exacts that the underlying signature satisfies the highest security notion, i.e. strong
unforgeability under chosen message attacks. Such a need isjustified by the possibility, in case the signature scheme
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does not satisfy this requirement, to create a new signcryption on any message given one signcryption on it (just
generate a new digital signature on the encryption e), whichentitles the indistinguishability adversary to retrieve the
message in the game described in Definition 6.

The new StE paradigm, described in Subsection 3.2, does not suffer the recourse to stronger assumptions on
the underlying signature. It further provides anonymity ofthe sender; the signcryption on a message m is a ciphertext,
whereas in the EtS paradigm, everyone can check whether the sender was involved in a signcryption(e, s) by checking
the validity of the digital signature (using the sender’s public key) on the ciphertexte. However, verifiability turns out
to be a hurdle; StE applies the signing algorithm (of the usedsignature scheme) to the message to be signcrypted
concatenated with the used encapsulation. It further produces an encryption of the resulting signature concatenated
with the message in question. As we are interested in provingthe validity of the produced signcryption, we will need
to exploit the homomorphic properties of the signature and of the encryption schemes in order to provide proofs of
knowledge of the encrypted signature and message. As a consequence, the used encryption and signature schemes
need to operate on elements from a set with a known algebraic structure rather than on bit-strings.

To sum-up, EtS provides efficient verifiability but at the expense of the sender’s anonymity, and of the secu-
rity requirements on the building blocks. StE achieves better privacy using cheap constituents but at the expense of
verifiability. It would be nice to have a technique that combines the merits of both paradigms while avoiding their
drawbacks. This is the main contribution in this section; the core of the idea consists in first encrypting the message to
be signcrypted using a public key encryption scheme, then applying the StE paradigm to the produced encryption. The
result of this operation in addition to the encrypted message form the new signcryption of the message in question. In
other terms, this technique can be seen as a merge between theEtS and the StE paradigms; thus we can term it the
”encrypt-then-sign-then-encrypt” paradigm (EtStE).

5.1 The construction

Setup. Consider a signature schemeΣ, an encryption schemeΓ , and another encryption scheme(K,D) derived
from the KEM/DEM paradigm. Next, on input the security parameterκ = (κ1, κ2, κ3), generate the parameters
param of these schemes. We assume that signatures issued withΣ can be written as(r, s), wherer reveals no
information about the signed message nor about the public signing key, ands represents the “significant” part of
the signature.

Key generation. On input the security parameterκ and the public parametersparam, invoke the key generation
algorithms of the building blocks and set the sender’s key pair to (Σ.pk, Σ.sk), and the receiver’s key pair to
({Γ.pk,K.pk}, {Γ.sk,K.sk}).

Signcrypt. On a messagem, produce an encryptione = Γ.encryptΓ.pk(m) of m. Then fix a keyk along with
its encapsulationc usingK.encryptK.pk, produce a signature(r, s) on c‖e, and finally encrypts with k using
D.encrypt. The signcryption ofm is the tuple(e, c,D.encryptk(s), r).

Prove Validity. Given a signcryptionµ = (µ1, µ2, µ3, µ4) on a messagem, the prover proves knowledge of the
decryption ofµ1, and of the decryption of(µ2, µ3), which together withµ4 forms a valid digital signature on
µ2‖µ1. The private input is either the randomness used to createµ or {Γ.sk,K.sk}.

Unsigncrypt. On a signcryption a(µ1, µ2, µ3, µ4), computem = Γ.decryptΓ.sk(µ1) andk = K.K.sk(µ2). Check
whether(D.decryptk(µ3), µ4) is valid signature onµ2‖µ1; if yes then outputm, otherwise output⊥.

Confirm/Deny. On input a putative signcryptionµ = (µ1, µ2, µ3, µ4) on a messagem, use the receiver’s private key
to prove thatm is/isn’t the decryption ofµ1, and prove knowledge of the decryption of(µ2, µ3), which together
with µ4 forms a valid/invalid digital signature onµ2‖µ1.

Public Verify. On a valid signcryptionµ = (µ1, µ2, µ3, µ4) on a messagem, output a ZK non-interactive proof that
µ1 encryptsm, in addition to(D.decryptK.decap(µ2)(µ3), µ4).

5.2 Analysis

Theorem 11 Given(t, qs) ∈ N2 andε ∈ [0, 1], the above construction is (t, ǫ, qs)-EUF-CMA secure if the underlying
digital signature scheme is (t, ǫ, qs)-EUF-CMA secure.
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Theorem 12 Given(t, qs, qv, qu, qcd, qpv) ∈ N6 and(ε, ǫ′) ∈ [0, 1]2, the construction proposed above is (t, ǫ, qs, qv, qu, qcd, qpv)-
IND-CCA secure if it uses a(t, ǫ′, qs)-EUF-CMA secure digital signature, an IND-CPA secure encryption, an IND-OT

secure DEM, and a (t+ qs(qu + qcd + qpv),
ǫ(1−ǫ′)qcd+qu+qpv

2 )-IND-CPA secure KEM.

We provide both proofs in Appendix E.1 and Appendix E.2 respectively.
Our aim in the rest of this paragraph consists in identifyingsuitable classes of encryption/signature schemes that

renders theproveValidity and{confirm, deny} efficient. These protocols comprise the following sub-protocols:

1. Proving knowledge of the decryption of a ciphertext produced using the encryption schemeΓ .
2. Proving that a message is/isn’t the decryption of a certain ciphertext produced usingΓ .
3. Proving knowledge of the decryption of a ciphertext produced using(K,D), and that this decryption forms a

valid/invalid digital signature, issued usingΣ, on some known string.

It is natural to instantiate the encryption schemeΓ from the classE defined in Definition 3. The first two sub-
protocols can be efficiently carried out using the proofs depicted in Figure 1 and Figure 2. For the last sub-protocol,
one can consider encryption schemes from the classE that are derived from the KEM/DEM paradigm, in addition to
signature schemes that accept efficient proofs of knowledge. We provide in Appendix E.3 the class of used signatures
as well as the proof underlying the third sub-protocol.

5.3 Extension to Multi-user security

The above EtStE technique can be extended to achieve security in the multi-user setting, as defined in Subsection B,
by applying the standard techniques [1, 39]. More specifically, one considers a tag-based encryption schemeΓ , a tag-
based KEMK, a DEMD, an a signature scheme. The sender’s key pair is the signature scheme key pair, whereas the
receiver’s key pair comprise both key pairs ofΓ andK. Signcryption on a messagem w.r.t. a sender’s public keyΣ.pk

and a receiver’s public key(Γ.pk,K.pk) is generated as follows. First compute an encryptione onm (with Γ ) w.r.t. the
tagΣ.pk, then generate a keyk and its encapsulationc w.r.t. the same tag (withK), then compute a digital signature
on c‖e‖{Γ.pk,K.pk}, and finally sign the “significant” part of this signature using k. The signcryption consists of
the result of this encryption, the remaining part of the signature, and(e, c). The rest is similar to the paradigm in the
two-user setting.

Theorem 13 Given (t, qs) ∈ N2 and ε ∈ [0, 1], the above construction is (t, ǫ, qs)-dM-EUF-CMA secure if the
underlying digital signature scheme is (t, ǫ, qs)-EUF-CMA secure.

The proof is similar to that of Theorem 9 and of Theorem 11. ⊓⊔

Theorem 14 Given(t, qs, qv, qu, qcd, qpv) ∈ N6 and(ε, ǫ′) ∈ [0, 1]2, the above construction is(t, ǫ, qs, qv, qu, qcd, qpv)-
fM-IND-CCA secure if it uses a(t, ǫ′, qs)-EUF-CMA secure digital signature, an IND-sTag-CCA secureencryption,

an IND-OT secure DEM, and a (t + qs(qu + qcd + qpv),
ǫ(1−ǫ′)qcd+qu+qpv

2 , qcd + qu + qpv)-IND-sTag-CCA secure
KEM.

The proof is similar to that of Theorem 9 and of Theorem 12.
⊓⊔

6 Conclusion

We provided a model for verifiable signcryption which captures many real-life applications of this primitive. We fur-
ther studied the classical generic constructions of signcryption and provided optimzations of these when they fail to
provide secure and efficient instantiations. The resultingschemes have insider unforgeability and outsider indistin-
guishability. Achieving insider indistinguishability isa natural aspiration. Unfortunately, it does not seem plausible
without resting on IND-CCA secure encryption, which impacts negatively verifiability as we can no longer use ho-
momorphic encryption. Another enhancement of our schemes would be to get rid of interaction in the used protocols
and use instead non-interactive (designated verifier) proofs. This step does not seem so immediate as it is known that
non-interactive proofs are in general difficult to obtain inthe standard model.
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A Preliminaries

A.1 Digital signatures

A signature schemeΣ comprises three algorithms, namely the key generation algorithmkeygen, the signing algorithm
sign, and the verification algorithmproveValidity. The standard security notion for a signature scheme is existential
unforgeability under chosen message attacks (EUF-CMA), which was introduced in [29]. Informally, this notion refers
to the hardness of, given a signing oracle, producing a validpair of message and corresponding signature such that
message has not been queried to the signing oracle. There exists also the stronger notion, SEUF-CMA (strong exis-
tential unforgeability under chosen message attack), which allows the adversary to produce a forgery on a previously
queried message, however the corresponding signature mustnot be obtained from the signing oracle.

A.2 Public key encryption schemes

A public key encryption (PKE) scheme consists of the key generation algorithmkeygen, the encryption algorithm
encrypt and the decryption algorithmdecrypt. The typicalsecurity goalsa cryptosystem should attain are: one-
wayness (OW) which corresponds to the difficulty of recovering the plaintext from a ciphertext, indistinguishabil-
ity (IND) which refers to the hardness of distinguishing ciphertexts based on the messages they encrypt, and finally
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non-Malleability (NM) which corresponds to the hardness ofderiving from a given ciphertext another ciphertext such
that the underlying plaintexts are meaningfully related. Conversely, the typicalattack modelsan adversary against
an encryption scheme is allowed to are: Chosen Plaintext Attack (CPA) where the adversary can encrypt any mes-
sage of his choice. This is inevitable in public key settings, Plaintext Checking Attack (PCA) in which the adver-
sary is allowed to query an oracle on pairs (m, c) and gets answers whetherm is really encrypted inc or not, and
finally Chosen Ciphertext Attack (CCA) where the adversary is allowed to query a decryption oracle. Pairing the men-
tioned goals with these attack models yields ninesecurity notions: GOAL-ATK for GOAL ∈ {OW, IND,NM} and
ATK ∈ {CPA,PCA,CCA}. We refer to [4] for the formal definitions of these notions aswell as for the relations they
satisfy.

A.3 Tag-based encryption

Tag-based encryption, also referred to as encryption with labels, was first introduced in [47]. In these schemes, the
encryption algorithm takes as input, in addition to the public key pk and the messagem intended to be encrypted,
a tagt which specifies information related to the messagem and its encryption context. Similarly, the decryption
algorithm takes additionally to the ciphertext and the private key the tag under which the ciphertext was created.
Security notions are then defined as usual except that the adversary specifies to his challenger the tag to be used in the
challenge ciphertext, and in case he (the adversary) is allowed to query oracles, then he cannot query them on the pair
formed by the challenge ciphertext and the tag used to form it. There are also weakened security models for this type
of encryption where the adversary specifies the challenge tag before getting the parameters of the scheme, and during
the game, he (the adversary) is not allowed to query the allowed oracles w.r.t. the challenge tag; we talk in this case
about selective tag security. We specify in the following the formal definition of IND-sTag-CCA security for tag-based
encryption:

Definition 4 (IND-sTag-CCA indistinguishability). LetΓ be a tag-based encryption scheme scheme. Let furtherA
denote a PPTM. We consider the following random experiment:

ExperimentExp
ind-sTag-CCA−b
Γ,A (1κ)

(t⋆, I0)← A(1
κ, init)

(pk, sk)← Γ.keygen(1κ),
(m⋆

0,m
⋆
1, I)← A

O(find, pk, I0)
∣

∣O : (c, t)[t 6= t⋆] 7−→ Γ.decryptsk(c, t)
c⋆ ← Γ.encryptpk(m

⋆
b , t

⋆)
d← AO(guess, I, c⋆, t⋆)

Returnd

We define theadvantageofA via:

Adv
ind-sTag-CCA
Γ,A (1κ) =

∣

∣

∣

∣

Pr
[

Exp
ind-sTag-CCA−b
Γ,A (1κ) = b

]

−
1

2

∣

∣

∣

∣

.

Given(t, qd) ∈ N2 andε ∈ [0, 1],A is called a(t, ε, qd)-ind-sTag-CCA adversary againstΓ if, running in timet and
issuingqd decryption queries,A hasAdv

ind−sTag−CCA
Γ,A (1κ) ≥ ε. The schemeΓ is said to be(t, ε, qd)-ind-sTag-CCA

secure if no(t, ε, qd)-ind-sTag-CCA adversary against it exists.

A.4 Key/Data encapsulation mechanisms (KEM/DEMs)

A KEM comprises three algorithms: the key generation algorithmkeygen, the encapsulation algorithmencap and the
decapsulation algorithmdecap. The typical security goals that a KEM should satisfy are similar to the ones defined
for encryption schemes. Similarly, when conjoined with thethree attack models CPA, PCA and CCA, they yield nine
security notions whose definitions follow word-for-word from the definitions of the encryption schemes notions. A
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DEM is simply a secret key encryption scheme given by the samealgorithms forming a cryptosystem (PKE). KEMs
could be efficiently combined with DEMs to build secure encryption schemes. This paradigm is called the Hybrid
encryption paradigm and we refer to [33] for the necessary and sufficient conditions on the KEMs and the DEMs in
order to obtain a certain level of security for the resultinghybrid encryption scheme. For instance, to obtain an IND-
CPA secure cryptosystem, it suffices to combine an IND-CPA secure KEM and anindistinguishable under a one time
attack (IND-OT)DEM.

A.5 Commitment schemes

A commitment scheme [10] consists of the following algorithms:

– setup: the setup algorithm that generates the public parameters of the system.
– keygen: generates probabilistically a public commitment keypk.
– commit: a probabilistic algorithm that, on input a public keypk and a messagem, produces a pair(c, r): c serves

as the commitment value (locked box), andr as the opening value.
– open: this is a deterministic algorithm that given a commitment(c, r), w.r.t. a public keypk, on a alleged message

m, checks whetherc
?
= commitpk(m, r).

The algorithmopen must succeed if the commitment was correctly formed (correctness). Moreover, we require the
following security properties:

1. Hiding. It is hard for an adversary A to generate two messagesm0,m1 such that he can distinguish between their
corresponding locked boxesco, c1. That is,c reveals no information aboutm.
A commitment scheme is(t, ǫ)-hiding if no adversary A, operating in timet, can succeed in the above game with
probability greater thanǫ, where the probability is taken over the random coins of bothA and his challenger.

2. Binding. It is hard for an adversary A to come up with acollision (c, d, d′) such that(c, d) and(c, d′) are valid
commitments form andm′ resp andm 6= m′.

B Multi-User Security

Definition 5 (Multi-user Unforgeability). We consider a signcryption schemesc given by the algorithms/protocols
defined earlier in this document. LetA be a PPTM. We consider the following random experiment:

ExperimentExpdm-euf-cma
sc,A (1κ)

param← sc.setup(1κ)
(sk⋆S , pk

⋆
S)← sc.keygenS(1

κ, param)
(sk⋆R, pk

⋆
R, µ

⋆)← AS(pk⋆S)
S : (m, skR, pkR) 7−→ sc.signcrypt{sk⋆S , pkS , pkR}(m)

return 1 if and only if the following properties are satisfied:
- sc.unsigncrypt{sk⋆

R
,pk⋆

R
,pk⋆

S
}[µ

⋆] = m⋆

- m⋆ was not queried toS w.r.t. pk⋆R.

We define thesuccessofA via:

Succdm-euf-cma
sc,A (1κ) = Pr

[

Expdm-euf-cma
sc,A (1κ) = 1

]

.

Given (t, qs) ∈ N2 and ε ∈ [0, 1], A is called a(t, ε, qs)-dM-EUF-CMA (dynamic Multi-user Existentially Un-
forgeable against Chosen Message Attacks) adversary against sc if, running in timet and issuingqs queries to the
sc.signcrypt oracle,A hasSuccdm-euf-cma

sc,A (1κ) ≥ ε. The schemesc is said to be(t, ε, qs)-dM-EUF-CMA secure if no
(t, ε, qs)-dM-EUF-CMA adversary against it exists.
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Remark 5.A tangible difference between unforgeability in the multi-user setting and unforgeability in the two-user
setting lies in the possibility of the adversary in the former to return a forgery on a messagem⋆ that may have been
queried before but w.r.t. a receiver’s key different from the returned receiver’s keypk⋆R.

Definition 6 (Multi-user Indistinguishability). Let sc be a signcryption scheme, and letA be a PPTM. We consider

the following random experiment forb
R
←− {0, 1}:

ExperimentExpfM-ind-cca-b
sc,A (1κ)

param← sc.setup(1κ)
(sk⋆S , pk

⋆
S)← sc.keygenS(1

κ, param)
(sk⋆R, pk

⋆
R)← sc.keygen(1κ, param)

(m⋆
0,m

⋆
1, I)← A

S,V,U,C(find, pk⋆S , pk
⋆
R)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

S : m 7−→ sc.signcrypt{sk⋆
S
,pk⋆

S
,pk⋆

R
}(m)

V : µ 7−→ sc.proveValidity(µ, pk⋆S, pk
⋆
R)

U : µ 7−→ sc.unsigncryptsk⋆
R
,pk⋆

R
,pk⋆

S
(µ)

C : (µ,m) 7−→ sc.{confirm, deny}(µ,m, pk⋆R, pk
⋆
S)

P : (µ,m) 7−→ sc.publicVerify(µ,m,pk⋆R, pk
⋆
S)

µ⋆ ← sc.signcrypt{sk⋆
S
,pk⋆

S
,pk⋆

R
}(m

⋆
b)

d← AS,V,U,C(guess, I, µ⋆, pk⋆S , pk
⋆
R)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

S : m 7−→ sc.signcrypt{sk⋆
S
,pk⋆

S
,pk⋆

R
}(m)

V : µ 7−→ sc.proveValidity(µ, pk⋆S, pk
⋆
R)

U : µ( 6= µ⋆) 7−→ sc.unsigncryptsk⋆
R
,pk⋆

R
,pk⋆

S
(µ)

V : (µ,m)( 6= (µ⋆,m⋆
i ), i = 0, 1) 7−→ sc.{confirm, deny}(µ,m, pk⋆R, pk

⋆
S)

P : (µ,m)( 6= (µ⋆,m⋆
i ), i = 0, 1) 7−→ sc.publicVerify(µ,m, pk⋆R, pk

⋆
S)

Returnd

We define theadvantageofA via:

Advfm-ind-cca
sc,A (1κ) =

∣

∣

∣

∣

Pr
[

Expfm-ind-cca-b
sc,A (1κ) = b

]

−
1

2

∣

∣

∣

∣

.

Given(t, qs, qv, qu, qcd, qpv) ∈ N
6 andε ∈ [0, 1],A is called a(t, ε, qs, qv, qu, qcd, qpv)-fM-IND-CCA (fixed challenge

Multi-user Indistinguishable under Chosen Ciphertext Attacks) adversary againstsc if, running in timet and issuingqs
queries to thesc.signcrypt oracle,qv queries to thesc.proveValidity oracle,qu queries to thesc.unsigncrypt oracle,qcd
queries to thesc.{confirm, deny} oracle , andqpv queries to thesc. oracle,A hasAdvind−cca

sc,A (1κ) ≥ ε. The scheme
sc is said to be(t, ε, qs, qv, qu, qcd, qpv)-fM-IND-CCA secure if no(t, ε, qs, qv, qu, qcd, qpv)-fM-IND-CCA adversary
against it exists.

Remark 6.Note that in the Multi-user setting, the indistinguishability adversary is allowed to ask the unsigncryption
of the challenge w.r.t. any receiver’s key except that of thetarget receiver.

C Analysis of the StE and the CtEaS Paradigms

C.1 Proof of Lemma 2

Proof. LetR be the key-preserving reduction that reduces NM-CPA breaking the encryption scheme underlying the
construction to IND-CCA breaking the construction (from the StE or EtS) itself. We will construct an algorithmM
that usesR to NM-CPA break the same encryption scheme by simulating an execution of the IND-CCA adversaryA
against the construction.

LetΓ be the encryption schemeM is trying to attack.

17



– StE paradigm.M (behaving asA) will queryR on two messagesm0,m1 (m0 6= m1) for signcryption. Letµ0, µ1

be the corresponding signcryptions respectively.M will query again(µi,mi), i ∈ {0, 1}, for public verification.
Let σ0, σ1 be the corresponding answers respectively. At that point,M outputsD = {m0‖σ0,m1‖σ1}, to his
NM-CPA challenger, as a distribution probability from which the messages will be drawn. He gets in response a
challenge encryptionµ⋆, of eitherm0‖σ0 or m1‖σ1 underΓ.pk, and is asked to produce a ciphertextµ′ whose
corresponding plaintext is meaningfully related to the decryption of µ⋆. To solve his task,M queriesµ⋆ for
unsigncryption. Letmb be the result of such a query withb ∈ {0, 1}.M will output Γ.encryptΓ.pk(mb‖σb) (m
refers to the bit-complement of the elementm) and the relationR: R(m,m′) = (m′ = m). FinallyM aborts the
game (stops simulating an IND-CCA attacker against the generic construction).

– CtEaS paradigm.Similarly,M queriesR on m0,m1 (m0 6= m1) for signcryption. Letµ0 = (e0, c0, σ0) and
µ1 = (e1, c1, σ1) be the corresponding signcryptions.M will then queryµ0, µ1, along with the corresponding
messages, for public verification. Letm0‖r0 andm1‖r1 be the corresponding answers.M will output D =
{m0‖r0,m1‖r1}, to his NM-CPA challenger, as a distribution probability from which the messages will be drawn.
He will receive a challenge encryptione⋆, of eitherm0‖r0 or m1‖r1.M will then query the unsigncryption of

(e⋆, cb, σb) for someb
R
←− {0, 1}. If the answer is different from⊥, thene⋆ is indeed an encryption ofmb‖rb,

and thusM will output Γ.encryptΓ.pk(mb‖rb) and the relationR (defined above). Otherwise,M will output

Γ.encryptΓ.pk(m1−b‖r1−b) and the same relationR. FinallyM aborts the game (stops simulating an IND-CCA
attacker against the generic construction).

⊓⊔

C.2 Generalization to Arbitrary Reductions

Non malleable key generatorsWe define thenon malleability of a cryptosystem key generatorthrough the following
two games:

1. In Game 0, we consider an algorithmR trying to break a cryptosystemΓ , w.r.t. a public keyΓ.pk, in the sense
of NM-CPA (or OW-CCA) using an adversaryA which solves a problem A, perfectly reducible to OW-CPA
breaking the cryptosystemΓ (w.r.t. Γ.pk). In this game,R lunchesA over his own challenge keyΓ.pk and
some other parameters chosen freely byR. We will denote byadv0(RA) the success probability ofR in such a
game, where the probability is taken over the random tapes ofbothR andA. We further definesuccGame0

Γ (A) =
maxR adv0(R

A) to be the success inGame 0of the best reductionRmaking the best possible use of the adversary
A. Note that the goal ofGame 0 is to include all key-preserving reductionsR from NM-CPA (or OW-CCA)
breaking the cryptosystem in question to solving a problem A, which is reducible to OW-CPA breaking the same
cryptosystem.

2. In Game 1, we consider the same entities as inGame 0, with the exception of providingR with, in addition
to A, a OW-CPA oracle (i.e. a decryption oracle corresponding toΓ ) that he can query w.r.t. any public key
Γ.pk′ 6= Γ.pk, whereΓ.pk is the challenge public key ofR. Similarly, we defineadv1(RA) to be the success of
R in such a game, andsuccGame1

Γ (A) = maxR adv0(R
A) the success inGame 1of the reductionR making the

best possible use of the adversaryA and of the OW-CPA oracle.

Definition 7. A cryptosystemΓ is said to have a non malleable key generator if
∆ = maxA|succ

Game1
Γ (A)-succGame0

Γ (A)| is negligible in the security parameter.

This definition informally means that a cryptosystem has a non malleable key generator if NM-CPA (or OW-CCA)
breaking it w.r.t. a keypk is no easier when given access to a decryption (OW-CPA) oracle w.r.t. any public key
pk′ 6= pk.

To generalize the impossibility results in Subsection 3.1,we first need the following Lemma (similar to Lemma 6
of [41])

Lemma 3. LetA be an adversary solving a problem A, reducible to OW-CPA breaking a cryptosystemΓ , and letR
be an arbitrary reductionR that NM-CPA (OW-CCA) breaks a cryptosystemΓ , given access toA. We haveadv(R) ≤
succGame1

Γ (A)
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Proof. We will construct an algorithmM that playsGame 1with respect to a perfect oracle forA and succeeds
in breaking the NM-CPA (OW-CCA) security ofΓ with the same success probability ofR. AlgorithmM gets a
challenge w.r.t. a public keypk and launchesR over the same challenge and the same public key. IfR callsA onpk,
thenM will call his own oracle forA. Otherwise, ifR callsA onpk′ 6= pk,M will invoke his own decryption oracle
for pk′ (OW-CPA oracle) to answer the queries. In fact, by assumption, the problem A is reducible to OW-CPA solving
Γ . Finally, whenR outputs the result toM, the latter will output the same result to his own challenger. ⊓⊔

Theorem 1. If the cryptosystem underlying the StE or the CtEaS constructions has a non malleable key generator and
is OW-CCA (NM-CPA) secure, then, there is no efficient reduction which reduces OW-CCA (NM-CPA) breaking the
cryptosystem to IND-CCA breaking the construction.

Proof. We first remark that the indistinguishability of constructions from the plain StE and CtEaS paradigms is per-
fectly reducible to OW-CPA breaking the cryptosystem underlying the construction.
Next, we note that the advantage of the meta-reductionM in the proof of Lemma 1 (Lemma 2 ) is the same as the
advantage of any key-preserving reductionR reducing the indistinguishability of StE and CtEaS constructions to the
NM-CPA (OW-CCA) security of its underlying cryptosystemΓ . For instance, this applies to the reduction making the
best use of an indistinguishabilityA against the constructions. Therefore we have:

succGame0
Γ (A) ≤ min[succ(NM -CPA[Γ ]), succ(OW -CCA[Γ ])]

wheresucc(NM -CPA[Γ ]) (succ(OW -CCA[Γ ])) is the success of breakingΓ in the NM-CPA (OW-CCA) sense.
Now, LetR be an arbitrary reduction from NM-CPA (OW-CCA) breaking a cryptosystemΓ , with a non malleable
key generator, to IND-CCA breaking the (StE and CtEaS) constructions (using the same cryptosystemΓ ):

adv(R) ≤ succGame1
Γ (A) ≤ succGame0

Γ (A) +∆

≤ succ(NM -CPA[Γ ])(succ(OW -CCA[Γ ])) +∆

since∆ is negligible, then under the assumption ofΓ being NM-CPA (OW-CCA) secure, the advantage ofR is also
negligible. ⊓⊔

C.3 A breach in indistinguishability with homomorphic encryption

Definition 8 (Homomorphic encryption). A homomorphic public encryption scheme
Γ = (Γ.keygen, Γ.encrypt, Γ.decrypt) has the following properties:

1. The message spaceM and the ciphertext spaceC are groups w.r.t. some binary operations∗ and◦e respectively.
2. ∀m,m′ ∈ M, ∀(sk, pk)← Γ.keygen(1κ) for some security parameterκ:

Γ.encryptpk(m ∗m
′) = Γ.encryptpk(m) ◦e Γ.encryptpk(m

′).

Examples of homomorphic encryptions in the literature include EL GAMAL [24], BONEH-BOYEN-SHACHAM [8],
and PAILLIER [40]. All those schemes are IND-CPA secure.

Fact 1 The StE and the CtEaS paradigms cannot lead to IND-CCA secureconstructions when used with homomorphic
encryption.

Proof. Letm0,m1 be the challenge messages the indistinguishability adversaryA outputs to his challenger. We show
that the mentioned paradigms are prone to these simple attacks if the underlying encryption scheme is homomorphic:

– StE paradigm.Let Γ andΣ denote respectively the encryption and signature schemes used as constituents.A
will receive as a challenge signcryption a certainµb = Γ.encrypt(Σ.sign(mb)), whereb ∈ {0, 1} and his task
is to guess correctly the usedb. To solve his challenge,A will obtain another encryption, saỹµb, of sign(mb) by
multiplyingµb with an encryption of the identity element (of the message space ofΓ ). According to Definition 6,
A can queryµ̃b for unsigncryption and the answer to such a query is sufficient forA to conclude.
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– CtEaS paradigm.LetΓ ,Σ, andΩ denote respectively the encryption, signature, and commitment schemes used as
building blocks.Awill get as a challenge signcryption a certainµb = [Γ.encrypt(mb‖r), c = Ω.commit(mb‖r), (c)]
with b ∈ {0, 1}. Similarly,A will compute a new signcyption ofmb by multiplying the first field ofµb by an en-
cryption of the identity element (of the message space ofΓ ). A will then query this new signcryption to the
unsigncryption oracle, and the answer of the former is sufficient forA to solve his challenge.

⊓⊔

Remark 7.Note that the EtS paradigm is resilient to the previous attack since the adversary would need to compute a
valid digital signature on the newly computed encryption. This is not plausible in the game described in Definition 6.

C.4 Proof of Theorem 1

Proof. LetA be a (t, ǫ, qs)-EUF-CMA adversary against the above signcryption schemesc. We build a (t, ǫ, qs)-EUF-
CMA adversary, sayR, against the underlying signature scheme as follows.

setup and keygen.R gets the public keypkS of the signature scheme from his challenger. He generates further the
parameters of the KEM/DEM based encryption, namely(K.sk,K.pk), and hands then along withpkS to A as
settings for the target signcryption schemesc.

signcrypt. On a messagem, A will generate a keyk together with its encapsulationc usingK.encap, then he will
query his own challenger for a digital signature onc‖m. Upon receipt of the result of such a query, sayσ, R
will encrypt it in e usingk, and will hand(c, e) as a signcryption ofm. It is easy to see that such a simulation is
indistinguishable from that of the standard algorithm described in Definition 1.

Final output . WhenA outputs his forgery(c⋆, e⋆) on some messagem⋆, R will output D.decryptk⋆(e⋆), where
k⋆ = K.decapK.sk(c

⋆), to his own challenger. In fact,e⋆ is an encryption of a valid digital signature, onc⋆‖m⋆,
using the decapsulation ofc⋆. It remains to show thatR never requested his challenger for a digital signature
on c⋆‖m⋆. Suppose that this the case, i.e. there exists an1 ≤ i ≤ qs such thatc⋆‖m⋆ = ci‖mi. this means
thatm⋆ = mi, since the encapsulations have the same bit-size, which contradicts the fact that(c⋆, e⋆) is valid
existential forgery onm⋆.

⊓⊔

Remark 8.The previous theorem shows that existential unforgeability of the underlying digital signature scheme suf-
fices to ensure existential unforgeability of the resultingconstruction. Actually, one can also show that this requirement
on the digital signature guarantees also that no adversary,against the construction, can come up with a valid signcryp-
tion (c, e) (c is the encapsulation used to generate the signcryptionµ) on a messagem that has been queried before to
the signing oracle but wherec was never used to generate answers (signcryptions) to the signcryption queries.

To prove this claim, we construct from such an adversary, sayA, an EUF-CMA adversaryR against the underlying
digital signature scheme, which runs in the same time and hasthe same advantage asA. In fact,R will simulateA’s
environment in the same way described in the proof of Theorem1. WhenA outputs his forgeryµ⋆ = (c⋆, e⋆) on a
messagemi that has been previously queried to the signing oracle,R decryptsµ⋆ in σ⋆, which by definition forms
a valid digital signature onc⋆‖mi. Since by assumptionc⋆ was never used to generate signcryptions on the queried
messages,R never invoked his own challenger for a digital signature onc⋆‖mi. Therefore,(σ⋆, c⋆‖mi) will form a
valid existential forgery on the underlying digital signature scheme.

C.5 Proof of Theorem 2

Proof. Let A be (t, ǫ, qs, qv, qu, qcd, qpv)-IND-CCA attacker against the above signcryption schemesc which uses
(t, ǫ′, qs)-EUF-CMA secure digital signature and an IND-OT secure DEMD. We build a (t + qs(qu + qcd, qpv), ǫ ·
(1− ǫ′)qu+qcd+qpv )-IND-CPA attackerR against the underlying KEM as follows.

keygen and setup. R gets the public keyK.pk of the KEM K from his challenger. Then, he chooses an appro-
priate IND-OT secure DEMD and a(t, ǫ′, qs)-EUF-CMA secure signature schemeΣ along with a key pair
(Σ.sk, Σ.pk).
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signcrypt and proveValidity queries. On a messagemi, R will proceed as the standard algorithm with the excep-
tion of maintaining in a list, sayL, the queried messagemi and the resulting signcryptionµi, in addition to the
intermediate values used to produce this signcryption, i.e. the produced encapsulationci, the corresponding de-
capsulationki, the input nonceri to the encapsulation algorithm, and finally the digital signatureσi on ci‖mi. To
verify such a generated signcryption,R will run the standardproveValidity algorithm. This simulation is clearly
indistinguishable from the standard algorithm.

unsigncrypt queries. To unsigncryptµi = (ci, ei),R will look up the listL for a record containing the encapsulation
ci. If such a record exists, thenR will use the corresponding key, sayki, to decrypt the query and recover the
digital signature and the messagemi then output the last item, otherwise he will output⊥.
This simulation departs from the real algorithm whenµi is a valid signcryption on some messagemi, andR
outputs⊥. Two cases, eithermi has never been queried to the signcryption oracle, or not. The first case would
correspond to an existential forgery onsc, and thus to an existential forgery on the underlying digital signature
scheme by virtue of Theorem 1. The second case would correspond to an existential forgery on the underlying
signature scheme according to Remark 8. Hence, the probability that both scenarios do not happen is at least
(1− ǫ′)qu because the underlying digital signature scheme is(t, ǫ′, qs)-EUF-CMA secure by assumption.

{confirm, deny} queries. For a verification queryµi = (ci, ei) on a messagemi, R will proceed as above (in the
unsigncryption queries); he will look up the listL for a record containingci, if found,R will prove in ZK the
validity of the signcryption ofµi w.r.t. mi using the last field of the record, i.e. the input to the encapsulation
algorithm used to produceci. Otherwise,R will simulate thedeny protocol. This proof is possible to issue since
the protocol in question is ZK and thus simulatable using thepopular rewinding technique.
This simulation differs from the real algorithm whenR issues thedeny protocol whenµi is a valid signcryption
on the messagemi. Two cases, eithermi has not been queried for signcryption in which case(µi,mi) forms an
existential forgery onsc, or mi has been queried before butci was never used to generate signcryptions, which
corresponds to an existential forgery on the underlying signature scheme according to Remark 8. Both scenarios
do not occur with probabilities at least(1− ǫ′)qcd .

queries. R will proceed as in a{confirm, deny} queries with the exception of issuing the corresponding digital
signature instead of theconfirm protocol, and⊥ instead of thedeny protocol. This simulation is correct with
probability at least(1− ǫ′)qpv .

Challenge. At some pointA will output two messagesm0 andm1. R will use his challenge(c, k) to produce a

digital signatureσb onmb for b
R
←− {0, 1} (chosen byR). Finally, he will produce an encryptioneb onσb usingk,

and outputsµ = (c, eb) as a challenge signcryption toA. Note that the challenge(c, k) is computed as follows; if

someb′
R
←− {0, 1} is 1, thenk is the decapsulation ofc, otherwisek is a string chosen uniformly at random from

the key space. Thus, ifk is the decapsulation ofc (b′ = 1), thenµ is a valid signcryption onmb. Otherwise, it is
not a valid signcryption on either messages.
If the advantage ofA is non-negligibly different from the advantage of an indistinguishability adversary in a real
attack, i.e.A responds with1 − b with high probability whenk is not the decapsulation ofc (to denote thatµ
is not a signcryption ofmb), thenA can be easily turned into an attacker against the IND-OT security property
of the DEM underlying the construction. In fact, whenA hands the messagesm0,m1 to R (adversary against
the IND-OT property of the DEM), this latter produces a pair(k, c) = K.encap() consisting of a key and of its
encapsulation, and then givesm0‖Σ.sign(m0‖c) andm1‖Σ.sign(m1‖c) as challenge messages to his IND-OT

challenger. Upon receipt of the challenge encryptione of mb‖Σ.sign(mb‖c) for someb
R
←− {0, 1},Rwill forward

(c, e) toA. When this latter answers withb′, thenR will respond with1− b′.
To sum up, under the IND-OT assumption of the DEM underlying the construction, the challengeµ is compatible
with the indistinguishability game described in 6.

Post challenge phaseDuring this phase,A continues to issuesigncrypt, proveValidity, unsigncrypt, {confirm, deny},
andpublicVerify queries, andR continues to handle them as described previously. Note thatin this phase,Amight
request the unsigncryption or confirmation/denial of a signcryption which comprisec in its first field; in this caseR
will respond with⊥ in case of an unsigncryption and will simulate the denial protocol in case of a{confirm, deny}
query.
Again the probability that this simulation is correct is at least(1− ǫ′)qcd+qu+qpv .

Final output WhenA outputs his guessba,R will output br = 1 to his own IND-CPA challenger ifb = ba and0
otherwise.
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The advantage ofA is defined by

ǫ =

∣

∣

∣
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∣
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.
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⊓⊔

Remark 9.In the theorem above, we considered a statistically IND-OT DEM. In case it is(t, ǫD)-IND-OT secure,
then the advantage ofR will be:

Adv(R) =
1

2
(ǫ + ǫD)(1− ǫ′)qpv+qu+qcd

since
∣

∣Pr(ba 6= b|b′ = 0)− 1
2

∣

∣ corresponds to the advantage of the IND-OT attacker againstthe DEM underlying
the construction, as explained above.

C.6 Proof of Theorem 3

Proof. LetA be a (t, ǫ, qs)-EUF-CMA attacker against the CtEaS construction which uses a(t, ǫb) binding commit-
ment. We construct a(t, ǫ, qs)-EUF-CMA against the construction as follows.

setup and keygen R gets the public keypkS of the signature scheme from his challenger, then generatesfurther the
key pair of the encryption scheme (corresponding to the key pair of the receiver)(skR, pkR), and finally hands
those entities toA.

signcrypt. On a messagem,A will proceed as the standard algorithm except when it comes to generating the digital
signature on the commitmentc and the encryptione; he will then solicit his own challenger for a signature on
(e, c). It is easy to see that this simulation is indistinguishablefrom that of the standard algorithm.

Final output . Eventually,A outputs his forgery(e⋆, c⋆, σ⋆) on some messagem⋆ that was never queried before for
signature. By construction,σ⋆ is a valid digital signature on(e⋆, c⋆). It will form an existential forgery on the
digital signature scheme if(e⋆, c⋆) was never queried before byR for a digital signature. Suppose there exists
1 ≤ i ≤ qs such that(e⋆, c⋆) = (ei, ci) where(ei, ci, σi) was the output signcryption on the querymi. Since the
encryptionsei are exactlyκ-bit strings by assumption, equality of the strings(e⋆, c⋆) and(ei, ci) implies equality
of their suffixes (that start at the(κ + 1)-st position), namelyc⋆ andci. The probability that this case (c⋆ = ci
given thatmi 6= m⋆) does not occur is at most(1− ǫb)

qs since the commitment is(t, ǫb) binding. Thus,R returns
(σ⋆, e⋆‖c⋆) as a valid existential forgery against the digital signature in question.

⊓⊔
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C.7 Proof of Theorem 4

Proof. [setup and keygen]. The reductionR gets the public keypkE of the encryption scheme it is trying to attack,
and generates the parameters for the remaining constituents, namely the key pair(skS , pkS) for the signature
schemes and the public parameters for the commitment scheme.

[signcrypt and proveValidity queries].R proceeds as the standard algorithm with the exception of keeping in a listL
the queried message, the answers, and the intermediate values (random nonces used to commit to the signcrypted
message, along with the randomness used to create their encryptions) used to produce the signcryption.

[unsigncrypt queries]. For an unsigncryption query(ei, ci, σi),R will output⊥ if ei does not appear in any record
of the listL, and the corresponding message otherwise.
This simulation departs from the standard one ifR outputs⊥ for a valid query. If the messagemi underlying the
query was never asked to the signcryption oracle, then this case would correspond to a valid existential forgery
on the signcryption scheme. Ifmi was queried before and(ej , cj , σj) is the corresponding answer (j < i), then
(ej , cj) 6= (ei, cj) asei 6= ej and theei’s are by construction exactlyn-bit strings. The query would then lead to
a valid existential forgery(σi, (ei, cj)) on the underlying signature scheme.
Therefore, the provided simulation is indistinguishable from the execution of the standard algorithm with proba-
bility at least(1− ǫ′)qu .

[{confirm, deny}] For a query(ei, ci, σi),R will simulate the denial protocol ifei does not appear in any record of
the listL, and will execute the confirmation protocol otherwise.R can provide a simulation ofdeny since the latter
is ZK by assumption and thus simulatable.R can further execute theconfirm protocol thanks to the intermediate
values (the nonces used to produce the encryptionei) kept in the listL.
This simulation deviates from the standard execution of thealgorithm with probability at most(1− ǫ′)qcd for the
same reasons explained earlier (in the simulation of unsigncryption queries).

[publicVerify] For a query(ei, ci, σi),R will output⊥ if ei does not appear in any record of the listL, and will output
the decryption ofei otherwise.
Again, this simulation deviates from the standard execution of the algorithm with probability at most(1 − ǫ′)qpv

for the same reasons explained earlier.

[Challenge phase]Eventually,A outputs two challenge messagesm0,m1. R will chooseb
R
←− {0, 1} and then

produce a bit stringsr and handsm⋆
0 = (0, 0) andm⋆

1 = (mb, r) to his own challenger. He gets as a challenge

challengeeb′ , encryption ofm⋆
b′ , for someb′

R
←− {0, 1} . He will then produce a commitmentcb of (mb, r), and

finally generate a signatureσb on (eb′ , cb). The challenge signcryption output toA is the tripleµ = (eb′ , cb, σb).
If b′ = 1, then(eb′ , cb, σb) is a valid signcryption ofmb, otherwise it is not a valid signcryption on neithermb nor
m1−b. If A’s advantage is non-negligibly different from that of an indistinguishability adversary in a real attack,
i.e.A answers1− b with high probability whenb′ = 0, thenA can be turned into an adversary against the hiding
property of the underlying commitment scheme as follows. WhenA gives the challenge messagesm0,m1 toR,
this latter will pass them to his challenger and will receivea commitmentcb = commit(mb, r) on the message

mb for someb
R
←− {0, 1} and some random noncer. R will computeeb′ = encrypt(0, 0). FinallyR produces a

digital signature onσb on (eb′ , cb), and gives the triple(eb′ , cb, σb). If A answers1− b with high probability, then
A will output b to his own challenger.
To some up, provided the used commitment is hiding, the challenge signcryption(eb′ , cb, σb) is compatible with
the standard indistinguishability game.

[Post challenge phase]A continue to issue queries toR who will handle them as previously. Note that from now on,
the adversary may ask the unsigncryption/confirmation/denial of (eb′ , cb,−) 6= µ. The probability that this query
is invalid is at least(1− ǫ′)qcd+qu+qpv since the underlying signature scheme is(t, ǫ′, qs)-SEUF-CMA secure.

[Final output] Eventually,A outputs a bitba. If ba = b, thenR outputsbr = 1 to his challenger, otherwise he
answersbr = 0.
The advantage ofA is given by

ǫ = Pr[ba = b|b′ = 1].

Similarly, the advantage ofR is computed as:
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⊓⊔

D Efficient Verifiable Signcryption from the EtS Paradigm

D.1 Proof of Theorem 5

Proof. The adversaryR against the signature underlying the construction will getthe parameters of the target digital
signature from his challenger. Then, he generates the parameters for the encryption scheme. For a signcryption query
on messagemi,R computes an encryptionei of mi, then requests his challenger for a signature onei. Let σi be the
answer of such a query.R will then output(ei, σi).

Eventually, the adversaryA against the signcryption construction will output a forgery (e⋆, σ⋆) on a messagem⋆,
that was never queried before.σ⋆ is by definition a digital signature one⋆. The last item was never queried byR for
digital signature, since otherwisem⋆ would have been queried before. We conclude that(e⋆, σ⋆) is a valid forgery on
the digital signature scheme. ⊓⊔

D.2 Proof of Theorem 6

Proof. The IND-CPA adversaryR against the encryption scheme gets the parameters from his challenger, and gen-
erates the parameters for a(t, ǫ′, qs)-SEUF-CMA secure digital signature . For a signcryption query on mi, R will
proceed as in the real algorithm, with the exception of maintaining a listL of records that consists of the query, its
encryption, the randomness used to produce the encryption,and finally the digital signature on the encryption. For
a verification query,R will proceed as in the standardproveValidity protocol . And finally, for an unsigncryption, a
confirmation/denial, or a public verification query(ei, σi), R will look up the listL (after checking the validity of
the signatureσi on the messagemi); if ei appears in the list as a used encryption, thenR will answer with the cor-
responding message in case of an unsigncryption query, willissue a NIZK proof of the correctness of the decryption
(using the randomness used to generateei) in case of a public verification query, and will execute theconfirm protocol
(using the randomness applied to generate the encryption) in case of a confirmation/denial query. Otherwise,R will
issue⊥ in case of an unsigncryption or public verification query, and will simulate thedeny protocol in case of a
confirmation/denial query.
This simulation departs from the real one when the queried signcryption(ei, σi) is valid onmi howeverei is not in
the listL. We distinguish two cases, either the message in questionmi was not queried before for signcryption, in
which case such a query would correspond to a valid existential forgery on the construction, and thus on the underling
signature scheme. Or, the queried signcryption is on a message that has been queried before, which corresponds to
an existential forgery on the underlying signature scheme.Since the signature scheme underlying the construction is
(t, ǫ′, qs)-SEUF-CMA secure, this scenario does not happen with probability at least(1− ǫ′)qu+qcd+qpv .

Eventually,A produces two messagesm0,m1.R will forward the same messages to his challenger and obtain a

ciphertexte, encryption ofmb for someb
R
←− {0, 1}.R will produce a digital signatureσ on e and give the result in

24



addition toe toA as a challenge signcryption. It is easy to see thatA’s answer is sufficient forR to conclude. Note
that after the challenge phase,A is allowed to make the previous queries andR can handle them as previously. There
is however the possibility forA of issuing an unsigncryption query of the type(c,−) 6= (c, σ) (confirmation/denial
or public verification query on(c,−) 6= (c, σ) andmb). R will respond to such a query by issuing the⊥ symbol
(denial protocol). The probability that this answer does not differ from the output of the real algorithm is at least
(1−ǫ′)qu+qcd+qpv as the signature scheme underlying the construction is(t, ǫ′, qs)-SEUF-CMA secure by assumption.

⊓⊔

D.3 Proof of Theorem 9

Proof. The adversaryR against the signature underlying the construction will proceed as the real algorithm with the
exception of requesting his challenger when it comes to computing the digital signature on the ciphertexts.

Eventually, the unforgeability adversaryA against the signcryption construction will output a forgery (c⋆, σ⋆)
on a messagem⋆, that was never queried before for signcryption w.r.t. the target receiver’s keypk⋆R. Sinceσ⋆ is by
definition a digital signature onc⋆‖pk⋆R, then the latter item was never queried byR for digital signature. We conclude
that(c⋆‖pk⋆R, σ

⋆) is a valid forgery on the digital signature scheme. ⊓⊔

D.4 Proof of Theorem 10

Proof. LetR be the IND-sTag-CCA attacker against the tag-based encryption scheme. OnceA generates the target
sender’s key pair, namely(sk⋆S , pk

⋆
S), he forwardspk⋆S to his challenger as the selective tag committed to. He gets as

a response the public keypk⋆R (of the encryption scheme) which he sets as the target receiver’s public key.
Queries w.r.t. the sender’s keypk⋆S are answered as in 6. The probability that such a simulation differs from the

standard execution of the algorithms/protocols is at least(1− ǫ′)qu+qcd+qpv .
Signcryption and verification queries w.r.t. a sender’s keypkS 6= pk

⋆
S are answered as in the standard algo-

rithm/protocol. The remaining queries are perfectly handled usingR’s challenger since the tag in question, i.e.
pkS , is different frompk⋆S . Such a simulation is clearly indistinguishable from the standard execution of the algo-
rithm/protocols in question.

The challenge phase is similar to that in the proof of Theorem6, and finally the post-challenge phase is simulated
like the pre-challenge one.

The response ofA to the challenge is sufficient forR to conclude. ⊓⊔

D.5 Instantiation with Kitlz’ tag-based encryption

Setup Choose a bilinear group(G, ·) generated byg with prime orderd.

Key generation Choosex1, x2, x3, x4
R
←− Zd then computeXi ← gxi , for 1 ≤ i ≤ 4,

Encryption For a messagem ∈ G and a tagt ∈ Zd:

chooser1, r2
R
←− Zd,

set the ciphertext to(Y1, Y2, Y3, Y4, Y5)← (Xr1
1 , Xr2

2 , (gtX3)
r1 , (gtX4)

r2 ,m · gr1+r2).
Decryption Given a ciphertext(Y1, Y2, Y3, Y4, Y5) and a tagt:

check that(Y3, Y4) = (Y
(t+x3)/x1

1 , Y
(t+x4)/x2

2 )

if so then outputm = Y5/(Y
x−1

1

1 Y
x−1

2

2 ), otherwise abort

Fig. 3. Kiltz’ tag-based encryption scheme

Fact 2 Let c be an encryption of some messagem using Kiltz’ tag-based encryption scheme under tagt w.r.t. some
public keypk. Let furtherm′ be an arbitrary message different fromm . There exists efficient proofs for:
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– proving knowledge thatm is the decryption ofc w.r.t.pk under tagt, where the private input of the prover is either
the private key corresponding topk, or the randomness used to createc.

– proving thatm′ is not the decryption ofc w.r.t. pk under tagt, where the private input of the prover is the private
key corresponding topk.

– proving knowledge of the decryption ofc w.r.t. pk under tagt, namely the messagem, where the private input of
the prover is the randomness used to createc.

Proof. We parsec as (Y1, Y2, Y3, Y4, Y5). Note that checking the consistency of the ciphertextc can be publicly
achieved. In fact, as we work in a bilinear group, anyone can check the equality of the discrete logarithms ofYi in base
Xi, and ofYj in basegtXj , where(i, j) ∈ {(1, 3, (2, 4)}.

– To prove thatm is the decryption ofc, one needs to prove the equality of the discrete logarithm ofX2 in base
g and ofe(X1, Y2) in basee(Y5m

−1, X1)e(g, Y1)
−1, wheree is the pairing underlying the groupG. We refer to

[15] for the proof of equality of two discrete logarithms. Itis obvious that the private input of the prover in such a
proof is the private key of the scheme. If the prover holds only the randomness used to createc, then proving that
m is the decryption ofc comes to a proof of discrete logarithm formula [11], i.e. thediscrete logarithm ofY5m

−1

in baseg is the sum of the discrete logarithms ofYi in baseXi, i ∈ {1, 2}.
– To prove thatm′ isn’t the decryption ofc, one needs to prove the inequality of of the discrete logarithm ofX2

in baseg and ofe(X1, Y2) in basee(Y5m
−1, X1)e(g, Y1)

−1 (e is always the pairing underlyingG). See [14] for
details of such a proof.

– Finally, we provide the proof of knowledge of the decryptionof c in Figure 4. This proof departs from that
described in Figure 1 only in the use of tags.

ProverP VerifierV

Choosem′ R
←− G

Computec′ = Kiltz.encryptKiltz.pk(m
′, t)

= (Xs1
1 , Xs2

2 , (gtX3)
s1 , (gtX4)

s2 , m · gs1+s2)
c′

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
b

←−−−−−−−−−−−−−−−−−−−−−−−−−−−− Chooseb
R
←− {0, 1}ℓ (b ∈ N)

z = m′ ·mb

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

PoK{c′ · cb = Kiltz.encryptKiltz.pk(z, t)}
←−−−−−−−−−−−−−−−−−−−−−−−−−−→

Accept ifPoK is valid

Fig. 4. Proof system for membership to the language{m : c = Kiltz.encryptKiltz.pk(m, t)} Common input: (c,Kiltz.pk) and
Private input: m and randomness used to producee.

⊓⊔

E The EtStE Paradigm

E.1 Proof of Theorem 11

Proof. LetA be a (t, ǫ, qs)-EUF-CMA adversary against the above construction. A (t, ǫ, qs)-EUF-CMA adversaryR
against the underlying signature scheme, sayΣ, proceeds as follows.

AfterR gets the parameters ofΣ from his challenger, he will choose two suitable encryptionschemes conforming
with the specifications of the construction, and will hand the key pairs of these schemes along with the public key
of Σ to A. Signcyption queries made byA are answered usingR’s challenger (when it comes to producing the
digital signature on encapsulation and the encryption of the message in question). EventuallyA outputs his forgery
µ⋆ = (µ⋆

1, µ
⋆
2, µ

⋆
3, µ

⋆
4) on a messagem⋆. Let s⋆ be the decryption of(µ⋆

2, µ
⋆
3); by construction,(s⋆, µ⋆

4) is a valid
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digital signature onµ⋆
2‖µ

⋆
1. Sincem⋆ was never queried before, thenR never requested his challenger for a digital

signature on a string whose suffix (starting at the (κ+1) position) isµ⋆
1. Thus(s⋆, µ⋆

4) along withµ⋆
2‖µ

⋆
1 forms a valid

EUF-CMA forgery onΣ. ⊓⊔

Remark 10.Remark 8 applies also here for this paradigm. In fact, suppose that an adversaryA is able to produce a
valid signcryptionµ⋆ = (µ⋆

1, µ
⋆
2, µ

⋆
3, µ

⋆
4) on a messagem which has been queried before, but where the encapsulation

µ⋆
2 was never used to answerA’s signcryption queries. Let furthers⋆ be the decryption of(µ⋆

2, µ
⋆
3). Then(s⋆, µ⋆

4)
along withµ⋆

2‖µ
⋆
1 forms a valid EUF-CMA forgery onΣ asR never invoked his challenger for a digital signature on

a string whoseκ-prefix isµ⋆
1.

E.2 Proof of Theorem 12

Proof. The IND-CPA adversaryR against the KEM gets the public key of the KEM from his challenger and generates
key pairs of the remaining constituents that comply with thespecifications of the construction. He then hands the
public parameters/keys toA, the IND-CCA adversary against the signcryption scheme.

For signcryption/public verification queries,R will proceed as the standard algorithm with the exception ofkeep-
ing in a listL the used encapsulations, the corresponding keys, and the random coins used to produce these quantities.
Verification queries are answered as usual using the intermediate values used to create the signcryption. For unsign-
cryption queries(µ1, µ2, µ3, µ4), R will look up L for µ2, if it is found in the list, then he proceeds as the standard
algorithm using the decapsulation ofµ1, otherwise he outputs⊥. Similarly, for confirm/deny queries,R will look up
L, if the second component of the presumed signcryption appears in the list, thenR proceeds as the standard protocol
using the corresponding key, otherwise he will simulate thedeny algorithm.

The provided simulation deviates from the standard execution of the indistinguishability game whenR outputs
⊥ or simulates thedeny algorithm for a valid signcryptionµ. Two cases manifest, either the message in question has
not been queried for signcryption in which caseµ forms a valid forgery on the construction, or the message hasbeen
queried but the encapsulation (second component ofµ) was never used to answer signcryption queries. According
to Remark 10, this case corresponds to an EUF-CMA forgery on the underlying signature scheme. Thus, the above
simulation is indistinguishable from the standard execution of the indistinguishability game with probability at least
(1− ǫ′)qu+qcd+qpv since the used signature scheme is(t, ǫ′, qs)-EUF-CMA.

Eventually,A outputs two challenge messagesm0,m1. R will encrypt, in eb, the messagemb, for b
R
←− {0, 1}.

Next, he produces a signature(r, s) onc‖eb, where(c, k) is his challenge. Finally,R encryptss in eD usingk, and out-
putsµ = (eb, c, eD, r) as a challenge signcryption. Since the used encryption is IND-CPA secure by assumption, then
information aboutmb can be only leaked from(c, eD, r). If k is the decapsulation ofc, thenµ is a valid signcryption
of mb, otherwise it is not a valid signcryption on either messages. The rest of the proof follows as in that of Theorem
2. Note that after the challenge phase,A can ask for unsigncryption, confirmation/denial, and public verification any
signcryption that is different fromµ; the strong unforgeability of the underlying signature scheme is not needed in this
phase becauseA does not have in clear the signature(r, s). As a result,R will break the IND-CPA security of the

KEM underlying the construction with probability at leastǫ(1−ǫ′)qcd+qu+qpv

2 . ⊓⊔

E.3 The classS of used signature schemes

Definition 9. S is the set of all digital signatures for which there exists a pair of efficient algorithms,convert and
retrieve, whereconvert inputs a public keypk, a messagem, and a valid signatureσ on m (according topk) and
outputs the pair(s, r) such that:

1. r reveals no information aboutm nor aboutpk, i.e. there exists an algorithmsimulate such that for every public key
pk from the key space and for every messagem from the message space, the outputsimulate(pk,m) is statistically
indistinguishable fromr.

2. there exists an algorithmcompute that on the inputpk, the messagem and r, computes a description of an
injectiveone-way functionf : (G, ∗)→ (H, ◦s):

– where(G, ∗) is a group andH is a set equipped with the binary operation◦s ,
– ∀S, S′ ∈ G: f(S ∗ S′) = f(S) ◦s f(S

′).
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and anI ∈ H, such thatf(s) = I.

andretrieve is an algorithm that inputspk, m and the correctly converted pair(s, r) and retrieves the signatureσ on
m.

This class encompasses most signature schemes described inthe literature, e.g. [5, 44, 26, 9, 42, 19, 12, 13, 7, 50,
49].

Proving knowledge of the decryption of the ciphertext(c, eD) (produced using(K,D)), and that this decryption
forms, along with somer, a valid/invalid digital signature on a known string, sayc‖e, can be accomplished as follows:

ReceiverR Verifier V
ComputeI as defined in Definition 9 ComputeI as defined in Definition 9

Chooses′
R
←− G

Computet1 = f(s′)

Computet2 = {K,D}.encryptK.pk(s
′)

t1, t2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

b
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Chooseb

R
←− {0, 1}ℓ (b ∈ N)

z = s′ ∗ sb
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

PoK{z = {K,D}.decryptK.sk(t2 ◦e (e, sk)
b)}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Accept if the proofPoK is valid and,
f(z) = t1 ◦s Ib in case of confirmation,
f(z) 6= t1 ◦s Ib in case of denial.

Fig. 5. Proof system for membership to the language{(c, eD) : ∃s : s = {K,D}.decrypt(c, eD) ∧ Σ.proveValidity(retrieve(s, r), c‖e) = ( 6=)1}
Common input: (e, c, eD , r, Σ.pk,K.pk) andPrivate input: K.sk or randomness encryptings in (c, eD)
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