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Abstract. In this paper, we propose several selective-identity chosen-ciphertext attack secure iden-
tity based key encapsulation (IB-KEM) schemes that are provably secure under the computational
bilinear Diffie-Hellman (CBDH) assumption in the standard model. Our schemes compare favor-
ably to previous results in efficiency. With delicate modification, our schemes can be strengthened
to be full-identity CCA secure easily.
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1 Introduction

1.1 Background

Security against adaptive chosen ciphertext attack (CCA security for short) is nowadays con-
sidered the commonly accepted security notion for public key encryption (PKE)/identity based
encryption (IBE). One of the most important research direction in this field is to design CCA-
secure PKE/IBE schemes based on weak security assumptions in the standard model.

Cramer and Shoup [CS98] proposed the first practical CCA-secure PKE scheme without
random oracles. Their construction was later generalized to hash proof systems [CS02]. How-
ever, all its variants [KD04, BMW05, Kil06, Kil07, HK07, HK09] inherently rely on decisional
assumption, e.g., the decisional Diffie-Hellman (DDH) assumption, the decisional bilinear Diffie-
Hellman (DBDH) assumption or the decisional quadratic residuosity assumption. CCA security
from computational assumptions was considered to be hard to obtain. Canetti, Halevi and
Katz [CHK04] made the breakthrough in 2004. They proposed the first practical CCA-secure
PKE scheme based on CBDH assumption. Later, Cash et al. [CKS08] presented a variant of
Cramer-Shoup scheme [CS98] which is CCA-secure based on the strong twin CDH assumption,
and in turn based on the standard CDH assumption. However, n group elements (where the
value n is the bit-length of keys) have to be added into the ciphertext in order to prove CCA
security. Hanaoka and Kurosawa [HK08] presented a CCA-secure PKE scheme enjoying the con-
stant size ciphertext based on the CDH assumption from broadcast encryption. Hofheinz and
Kitz [HK09] presented a construction assuming the hardness of factoring. Cramer, Hofheinz and
Kitz [CHK10] refined the well-known Naor-Yung paradigm [NY90] and constructed practical
CCA-secure PKE schemes based on hard search problems, which includes the CDH and RSA
type assumptions. Wee [Wee10] gave more efficient and general transformations to CCA secure
PKE schemes from extractable hash proof system, which again can be based on the hardness
of CDH, RSA and factoring. Haralambiev, Jager, Kiltz and Shoup [HJKS10] then proposed a
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number of new PKE schemes that are provably secure under the CDH/CBDH assumption in
the standard model, which improved efficiency of prior schemes from [CKS08,HK08].

For the time being, although there are several practical CCA-secure PKE schemes based
on computational assumptions, CCA-secure IBE schemes based on weak assumptions are rare.
This forms the main motivation of our work.

1.2 Our Contributions

In this paper we propose a number of new IB-KEM schemes that are CCA-secure under the
CBDH assumption in the standard model. Our main idea is to extend the technique of construct-
ing CCA-secure PKE schemes [HJKS10] to the IB-KEM version of Boneh-Boyen “commutative-
blinding” IBE scheme (known as BB1-IBE) [BB04]. We begin from a basic 1-bit IB-KEM, then
extend it to n-bits IB-KEMs using different methods. As shown in Table 1 at the end of this
section, our schemes improve efficiency of prior scheme [Gal10].

A 1-bit IB-KEM Scheme. We first construct a 1-bit IB-KEM scheme. We denote it by Scheme
0 and briefly describe it as follows.

Setup : mpk = (g, h,X = ga, X ′, Y ),msk = a
KeyGen : sk = (Y aF (I)s, gs),where F (I) = XIh
Encap : C = (gr, (XtX ′)r, F (I)r),where t = TCR(gr)

K = fgl(e(X,Y )r, R)

Decryption only returns K if the ciphertext C = (C1, C2, C3) is consistent, i.e., e(C1, X
tX ′) =

e(g, C2)∧e(C1, F (I)) = e(g, C3). In all other cases it rejects and returns ⊥. We defer the detailed
construction and security proof to Section 3.

In what follows, we give a brief explanation of our strategy to achieve indistinguishability
of ciphertext under selective-identity CCA attack (IND-sID-CCA) from two aspects, one is
how to obtain selective-identity CCA security, and the other is how to reduce it to the CBDH
assumption.

We first give the intuition behind the CCA security. From the attacker’s view, the second
part of the ciphertext C2 = (XtX ′)r prohibits an adversary from modifying a valid ciphertext in
a meaningful way. From the challenger’s view, the consistency of ciphertext is publicly verifiable,
i.e., anyone could check the consistency of ciphertext with the help of bilinear map. Therefore
any inconsistent ciphertext will be rejected. On the other hand, in the simulation all consistent
ciphertexts can be classified into the following three types. Type-1 ciphertext is the one whose
t value differs to t∗ of the challenge ciphertext. Type-2 ciphertext is the one encrypted under
an identity different from the challenge identity I∗. Type-3 ciphertext is exactly the challenge
ciphertext. The reduction algorithm is able to decrypt all the consistent ciphertexts correctly
by implementing dual all-but-one technique: set X ′ := X−t

∗
gd to implement the all-but-one

technique (with respect to t 6= t∗) to decrypt Type-1 ciphertexts (t 6= t∗); set F (I) := XI−I∗gz

to implement the all-but-one technique (with respect to I 6= I∗) to extract a private key for all
identities but the challenge identity I∗, thus to be able to decrypt Type-2 ciphertexts (I 6= I∗).
Type-3 ciphertext (I = I∗ ∧ t = t∗) is not allowed to be queried according to the definition of
selective-identity chosen ciphertext security model. To summarize, the reduction algorithm can
handle all the decryption queries correctly.

We then give our basic idea about how to reduce the IND-sID-CCA security to the CBDH
assumption. Note that the indistinguishable type security notion is essentially defined as a deci-
sional problem. Considering the gap between decisional problems and computational problems,
it would be difficult to directly reduce the IND-sID-CCA security to the CBDH assumption.
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A natural approach is to find a stepping stone. More specifically, we first reduce the IND-sID-
CCA security to some decisional assumption related to the CBDH assumption, then reduce
the decisional assumption to the CBDH assumption. In this way the IND-sID-CCA security
can be finally reduced to the CBDH assumption. We provide more details as follows. We select
the Goldreich-Levin version decisional BDH (GL-DBDH) assumption [HJKS10] as the stepping
stone, which states that there is no PPT algorithm that can distinguish the two distributions
∆bdh = (g,A,B,C,K,R) and ∆rand = (g,A,B,C, U,R). Here (g,A,B,C) are the inputs of
a BDH problem, K is the output of a Goldreich-Levin hardcore predicate with bdh(A,B,C)
and randomness R as input while U is a bit sampled from {0, 1} uniformly random. Suppose a
reduction algorithm B is asked to solve the GL-DBDH problem. B simulates a real attack game
of Scheme 0 by embedding A into X, embedding B into Y , and embedding C into one part
of the challenge ciphertext. We demonstrate that if there exists an IND-sID-CCA adversary A
that can break the CCA security of Scheme 0, then B can break the GL-DBDH assumption.
The GL-DBDH assumption can be thus reduced to the CBDH assumption according to the
Goldreich-Levin theorem. Therefore, the IND-sID-CCA security of Scheme 0 is finally reduced
to the CBDH assumption.

We note that Scheme 0 bears a close resemblance to the IB-KEM scheme [KG06]. The key
difference between the two schemes is the derivation of the symmetric key. In [KG06] the Encap
algorithm directly uses a BDH seed as a symmetric key, while in Scheme 0 the Encap algorithm
uses the Goldreich-Levin hardcore predicate to derive a 1-bit symmetric key from a BDH seed.

Note that the element (XtX ′)r and F (I)r in the ciphertext share the same randomness r,
thus it is possible to further shrink the public parameters size and the ciphertext size. By using
a technique similar to [KV08], the ciphertext can be reduced to two group elements at the cost
of adding one group element in the private key and resorting to a stronger assumption, named
the modified CBDH assumption. We denote the resulting scheme by Scheme 0′. The concrete
construction and security proof are included in Appendix A.

A Scheme with constant size public parameters. To encapsulate a n-bits symmetric key,
we can follow the standard multiple encapsulations method: perform the 1-bit IB-KEM n times
using independent random coins. We denote the resulting scheme by Scheme 1 and describe it
as follows.

Setup : mpk = (g, h,X = ga, X ′, Y ),msk = a
KeyGen : sk = (Y aF (I)s, gs)
Encap : C = (C1, . . . , Cn),where Ci = (gri , (XtX ′)ri , F (I)ri)

with t = TCR(Ci,1, . . . , Cn,1).
K = (K1, . . . ,Kn),where Ki = fgl(e(X,Y )ri , R)

We defer the detailed construction and security proof to Section 4.

A Scheme with constant size ciphertext. In contrast to the multiple encapsulations
method used in Scheme 1, we may also adopt the randomness-reusing technique: include n
group elements (Y1, . . . , Yn) into mpk (instead of a solo group element Y in previous schemes),
then generate n BDH seeds using a single randomness r with respect to n different bases e(X,Yi).
We denote the resulting scheme by Scheme 2 and describe it as follows.

Setup : mpk = (g, h,X = ga, X ′, Y1, . . . , Yn),msk = a
KeyGen : sk = (ski, . . . , skn),where ski = (Y a

i F (I)si , gsi)
Encap : C = (gr, (XtX ′)r, F (I)r),where t = TCR(gr)

K = (K1, . . . ,Kn),where Ki = fgl(e(X,Yi)
r, R)
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We defer the detailed construction and security proof to Section 5.

Generalized Scheme 1. Scheme 1 enjoys the constant-size mpk but its ciphertext size is
linear in n, while Scheme 2 enjoys the constant-size ciphertext but its mpk size is linear in n. It
is interesting to know if there exists a trade-off between mpk size and ciphertext size. From the
above two schemes, it is easy to see that when generating n pair-wise independent BDH seeds,
the roles of Yi and the randomness rj are exchangeable. With this observation, we propose the
following generalized scheme that offers a trade-off between mpk and ciphertext. We denote
it by Scheme 3 and described it as follows. The detailed construction and security proof are
deferred to Section 6.

Setup : mpk = (g, h,X = ga, X ′, Y1, . . . , Yn1),msk = a
KeyGen : sk = (ski, . . . , skn1),where ski = (Y a

i F (I)si , gsi)
Encap : C = (C1, . . . , Cn2),where Ci = (gri , (XtX ′)ri , F (I)ri)

with t = TCR(Ci,1, . . . , Cn2,1)
K = (Ki,j) for 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, where Ki,j = fgl(e(X,Yi)

rj , R)

In the above generalized scheme, (Y1, . . . , Yn1) are n1 independent elements from G. When
performing encapsulation, the Encap algorithm picks n2 = n/n1 independent random integers
(r1, . . . , rn2) from Zp, then mix-and-match them to generate n pair-wise independent BDH seeds
of the form e(X,Yi)

rj . If we set n1 = n2 =
√
n, the yielding scheme has mpk of O(

√
n) group

elements and ciphertext of O(
√
n) group elements. Scheme 1 and Scheme 2 can be viewed

as special cases of the generalized scheme with the parameter choice (n1 = 1, n2 = n) and
(n1 = n, n2 = 1), respectively. Interestingly, we find that the above trade-off method can natu-
rally apply to the KEM schemes proposed in [HK08,Wee10,HJKS10] and the IB-KEM scheme
presented in [Gal10]. Particularly, when implementing the trade-off method to the KEM scheme
presented in [HJKS10, Section 3], the resulting scheme is exactly the one constructed by Liu et
al. [LLLJ11].

Generalized Scheme 2. Observe that one BDH seed bdh(A,B,C) is determined by three
inputs, then mpk and ciphertext can be further shrunk to O( 3

√
n) group elements by using the

mix-and-match method twice. More precisely, instead of generating the BDH seed like e(X,Yi)
rj

as the above generalized scheme, we can generate the BDH seeds of the form e(Yi, Yj)
rk . That

is, first self mix-and-match the set (Y1, . . . , Yn1), then mix-and-match the resulting n1(n1−1)/2
bases e(Yi, Yj) (i 6= j) with n2 random integers (r1, . . . , rn2). The self mix-and-match method is
better than the “implicitly defining” method used in [HJKS10, Section 5.3] since it travels all
the binary combinatorial pairs (Yi, Yj) over the set (Y1, . . . , Yn1), thus it can generate the same
number of bases with smaller mpk. Based on this observation, we propose another generalized
scheme called Scheme 4 as follows. The detailed construction and security proof are deferred to
Section 7.

Setup : mpk = (g, h,X,X ′, Y1 = gy1 , . . . , Yn1 = gyn1 ),msk = (y1, . . . , yn1)
KeyGen : sk = (skij) for 1 ≤ i < j ≤ n1 where skij = (gyiyjF (I)sij , gsij )
Encap : C = (C1, . . . , Cn2), where Ck = (grk , (XtX ′)rk , F (I)rk)

with t = TCR(Ci,1, . . . , Cn2,1)
K = (Ki,j,k) for 1 ≤ i < j ≤ n1, 1 ≤ k ≤ n2,where Ki,j,k = fgl(e(Yi, Yj)

rk , R)

To generate n pair-wise independent BDH seeds we require that n = n1(n1 − 1)n2/2. Let
n1 = n2, then the public parameters and the ciphertext are both of O( 3

√
n) groups elements.

Not surprisingly, this trade-off technique can also apply to the KEM scheme [HJKS10, Section
5.3] and the IB-KEM scheme [Gal10].
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Scheme Assumption Ciphertext Efficiency [# exp, # pairing] Key Sizes
Overhead Encap Decap |mpk| |msk| |sk|

Galindo [Gal10] CBDH 4× |GT | [4, 0] [2, 2n + 2] (2n + 9)× |G| (n + 4)× |Zp| 2n× |G|
Scheme 1 (§4) CBDH 3n× |GT | [3n + 1, 0] [1, 4n] 5× |G| 1× |Zp| 2× |G|
Scheme 2 (§5) CBDH 3× |GT | [4, 0] [1, 2n + 2] (n + 4)× |G| 1× |Zp| 2n× |G|
Scheme 3 (§6) CBDH 3n2 × |GT | [3n2 + 1, 0] [1, 2n + 2n2] (n1 + 4)× |G| 1× |Zp| 2n1 × |G|
Scheme 4 (§7) CBDH 3n2 × |GT | [3n2 + 1, 0] [1, 2n + 2n2] (n1 + 4)× |G| n1 × |Zp| 2n/n2 × |G|

In Scheme 3 we have n = n1n2, then n1 and n2 can be set to integers around O(
√
n). In Scheme 4 we have

n1(n1 − 1)n2/2, then n1 and n2 can be set to integers around O( 3
√
n).

Table 1. Efficiency comparison of the proposed schemes

1.3 Related Work

Recently, Galindo [Gal10] gave an IND-sID-CCA secure IB-KEM based on the CBDH as-
sumption in the standard model by integrating the KEM scheme [HK08] with the BB1-IBE
scheme [BB04]. Galindo’s scheme is not conceptually simple due to the complexity of the un-
derlying KEM scheme [HK08], and its master secret consists of O(n) group elements that
might be impractical for some applications. Haralambiev et al. [HJKS10] mentioned that their
KEM scheme with public key of size O(

√
n) can extend to selective-identity secure BB1-IBE

scheme [BB04]. They sketched their ideas as follows: the IBE scheme has the same parameters
as their KEM scheme [HJKS10, Section 5.3], and a private key for identity I contains 2n group

elements of the form (gziz
′
j · (XIX ′)sij , gsij ) ∈ G2. However, we remark that a private key for

identity I should be (gziz
′
j · F (I)sij , gsij ), where F (I) is the Boneh-Boyen hash. Besides, the

master secret key of their scheme is still a bit large (2
√
n elements from Zp), which may render

it less practical in use. Regarding to this, it would be very interesting to construct IBE schemes
with short master secret key while provably secure under weak assumptions in the standard
model.

2 Preliminaries

2.1 Notation

We use standard asymptotic notation O and o to denote the growth of functions. We denote
with poly(κ) an unspecified function f(κ) = O(κc) for some constant c. We denote with negl(κ)
an unspecified function f(κ) such that f(κ) = o(κ−c) for every constant c. Throughout the
paper, a probabilistic polynomial-time (PPT) algorithm is a randomized algorithm that runs in
time poly(κ). For a positive integer n, we denote with [n] the set [n] = {1, . . . , n}. For a finite

set S, we use s
R←− S to denote that s is sampled from the set S uniformly at random.

2.2 Identity based Key Encapsulation Mechanisms

An identity-based key encapsulation mechanism (IB-KEM) [BFMLS08] consists of four PPT
algorithms as follows:

Setup: takes the security parameter 1κ as input and outputs the public parameter mpk and
the master secret msk. Intuitively, mpk is the system parameters which will be public known,
while the msk will be known only to the thrusted third party, called Private Key Generator.
KeyGen: takes mpk, msk, an identity I as input and outputs the associated private key sk.
Encap: takes mpk and an identity as input and outputs a pair (C,K) where C is the ciphertext
and K ∈ K is a data encryption key.
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Decap: takes mpk, private key sk, and a ciphertext C as input and outputs the data encryption
key K ∈ K.

We require that if (mpk,msk)
R←− Setup(1κ), sk ← KeyGen(mpk,msk, I), and (C,K) ←

Encap(mpk, I) then we have Decap(mpk, sk, C) = K.

2.3 Chosen Ciphertext Security

CCA-security of an IB-KEM is defined by the following game playing between an adversary A
and a challenger CH.

Setup. CH takes a security parameter 1κ and runs the KeyGen algorithm. It gives the adversary
the resulting system parameters. It keeps the master key to itself.
Phase 1. A may make polynomially-many private key queries and decapsulation queries. CH
answers these queries by running the algorithm KeyGen to extract the associated private keys.
Challenge. Once the adversary decides that Phase 1 is over it outputs an identity I∗ on
which it wishes to be challenged. The only constraint is that I∗ did not appear in any private
key extraction query in Phase 1. CH computes (C∗,K∗0 ) = Encap(mpk, I∗), samples K∗1 uniform
randomly from K. Finally, CH picks a random bit β ∈ {0, 1} and sends (C∗,K∗β) as the challenge
to the adversary.
Phase 2. A issues more private key queries with the restriction that 〈I〉 6= 〈I∗〉 and the
decapsulation queries with the restriction that 〈I, C〉 6= 〈I∗, C∗〉.
Guess. Finally, A outputs a guess β′ ∈ {0, 1} and wins the game if β = β′.

We refer to such an adversaryA as an IND-ID-CCA adversary. We define adversaryA’s advantage
over the IB-KEM scheme E by AdvCCA

E,A (κ) =
∣∣Pr[β = β′]− 1

2

∣∣, where κ is the security parameter.
The probability is over the random bits used by the challenger and the adversary.

Definition 2.1 We say that an IB-KEM scheme E is IND-ID-CCA secure if for any PPT
IND-ID-CCA adversary A the advantage AdvCCA

E,A (κ) is negligible.

Selective-identity CCA-security [CHK04] can be defined in a similar game as the above game
of full-identity CCA-security, except that the adversary needs to output a target identity at the
very beginning of the game. We refer to such an adversary A as an IND-sID-CCA adversary. We
define adversary A’s advantage over the IB-KEM scheme E by AdvCCA

E,A (κ) =
∣∣Pr[β = β′]− 1

2

∣∣,
where κ is the security parameter. The probability is over the random bits used by the challenger
and the adversary.

Definition 2.2 We say that an IB-KEM scheme E is IND-sID-CCA secure if for any PPT
IND-sID-CCA adversary A the advantage AdvCCA

E,A (κ) is negligible.

2.4 Target Collision Resistant Hash Function

TCR = (TCRk)k∈N is a family of keyed hash function TCRsk : G→ Zp for each k-bit key s. For
an adversary H, its tcr-advantage AdvTCR

H (k) is defined as:

Pr[TCRs(c∗) = TCRs(c) ∧ c 6= c∗ : s
R←− {0, 1}k; c∗ R←− G; c← H(s, c∗)]

Note that TCR is a weaker requirement than collision-resistance, so any practical collision-
resistant function can be used. To simplify notation we will drop the superscript s and simply
use TCR hereafter. Additionally, we can define multi-inputs TCR function in a natural way,
that is TCRsk : (G)n → Zp. The corresponding tcr-advantage of an adversary H is defined in a
similar way except substituting c with (c1, . . . , cn) and c∗ with (c∗1, . . . , c

∗
n).
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2.5 Computational Bilinear Diffie-Hellman Assumption

Let G be a cyclic group generated by g and equipped with a bilinear map e : G × G → GT .
Define

bdh(A,B,C) := T, where A = ga, B = gb, C = gc, and T = e(g, g)abc

The computational bilinear Diffie-Hellman (CBDH) problem is computing the value bdh(A,B,C)
given random A,B,C ∈ G. The CBDH assumption asserts that the CBDH problem is hard,
that is, Pr[A(A,B,C) = bdh(A,B,C)] ≤ negl(κ) for all PPT algorithms A.

In the bilinear setting, the Goldreich-Levin theorem [GL89] gives us the following lemma for
a Goldreich-Levin hardcore predicate fgl : GT × {0, 1}u → {0, 1}.

Lemma 2.3 Let G be a prime order group generated by g equipped with a pairing e : G×G→
GT . Let A,B,C

R←− G be random group elements, R
R←− {0, 1}u, and let K = fgl(bdh(A,B,C), R).

Let U
R←− {0, 1} be uniformly random. Suppose there exists a PPT algorithm B distinguishing

the distributions ∆bdh = (g,A,B,C,K,R) and ∆rand = (g,A,B,C, U,R) with non-negligible
advantage. Then there exists a PPT algorithm computing bdh(A,B,C) on input (A,B,C) with
non-negligible success probability, hence breaking the CBDH problem.

We assume that the global public parameters known to all the parties consist of the pairing
parameters (e,G,GT , g, p)← GroupGen(1κ), the descriptions of a target collision resistant hash
function TCR and a suitable Goldreich-Levin hardcore predicate fgl(·, R) with randomness R
to extract one pseudorandom bit from a BDH seed. It is well known that an IB-KEM scheme
compares favorably to an IBE scheme in many ways [CS01, BFMLS08], and IB-KEM schemes
can be readily bootstrapped to full functional IBE schemes by coupling with a DEM having
appropriate properties. Therefore in this paper, we focus on the constructions of IB-KEM.

3 A 1-bit IB-KEM Scheme

In this section we describe an 1-bit IB-KEM which is obtained by extending the techniques
of [HJKS10] to the Boneh-Boyen IBE scheme [BB04]. The resulting IB-KEM scheme is IND-
sID-CCA secure based on the CBDH assumption. It is defined as follows.

Setup. Pick a
R←− Zp, h,X ′, Y

R←− G, set X = ga, and define the function F : Zp → G as
I 7→ XIh. The public parameters and the master secret key are given by

mpk = (g, h,X,X ′, Y ) and msk = a

KeyGen. To generate a private key for an identity I ∈ Zp, pick s
R←− Zp and output

sk = (Y aF (I)s, gs)

Encap. Pick r
R←− Zp, then generate the ciphertext C = (C1, C2, C3) as C1 = gr, C2 = (XtX ′)r

with t = TCR(C1), and C3 = F (I)r. Compute

K = fgl(e(X,Y )r, R)

Decap. To decapsulate ciphertext (C1, C2, C3) under identity I, first compute t = TCR(C1). If
e(C1, X

tX ′) 6= e(g, C2) or e(C1, F (I)) 6= e(g, C3) then return ⊥. Take the private key sk and

the ciphertext C = (C1, C2, C3) as input and outputs K = fgl

(
e(C1,sk1)
e(C3,sk2) , R

)
. Indeed, for a valid

ciphertext, we have
e(C1, sk1)

e(C3, sk2)
=
e(gr, Y aF (I)s)

e(F (I)r, gs)
= e(X,Y )r.
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Notice that the consistency of the ciphertext is publicly verifiable, i.e., anyone can verify a
ciphertext being consistent or not.

Theorem 3.1 Let TCR be a target collision-resistant hash function and suppose that the CBDH
assumption holds in G. Then the above scheme is an IND-sID-CCA secure IB-KEM.

Proof. We proceed in a sequence of games. We write (C∗1 , C
∗
2 , C

∗
3 ) to denote the challenge

ciphertext with the corresponding key K∗ of identity I∗, denote with U∗ the random key chosen
by the IND-sID-CCA experiment, and set t∗ = TCR(C∗1 ). Let Wi denote the event that A outputs
β′ such that β′ = β in Game i.

Game 0. This is the standard IND-sID-CCA game. By definition we have

Pr[W0] =
1

2
+ AdvCCAAKEM(κ) (1)

Game 1. Let E01 be the event that the adversary issues a decapsulation query 〈I∗, C ′1, C ′2, C ′3〉
with C ′1 = C∗1 in Phase 1. Note that the probability that the adversary submits a decapsulation
query such that C ′1 = C∗1 before seeing the challenge ciphertext is bounded by Qd/p, where Qd
is the number of decapsulation queries issued by A. Since Qd = poly(κ), we have Pr[E01] ≤
Qd/p ≤ negl(κ). We define Game 1 exactly the same as Game 0 except assuming that E01 never
occurs in Game 1. It follows that

|Pr[W1]− Pr[W0]| ≤ negl(κ) (2)

Moreover, we remark that in Phase 2 a decapsulation query 〈I∗, C ′1, C ′2, C ′3〉 will be rejected
if C ′1 = C∗1 . Since if C ′2 6= C∗2 or C ′3 6= C∗3 , the decapsulation query will be rejected for the
inconsistency of the ciphertext. If C ′2 = C∗2 and C ′3 = C∗3 , it will be rejected by definition of
IND-sID-CCA game.

Game 2. Let E12 be the event that the adversary issues a decapsulation query 〈I∗, C ′1, C ′2, C ′3〉
with C ′1 6= C∗1 and TCR(C ′1) = TCR(C∗1 ). By the target collision resistance of TCR, we have
Pr[E12] ≤ negl(κ). We define Game 2 exactly the same as Game 1 except assuming that E12

never occurs in Game 2. It follows that

|Pr[W2]− Pr[W1]| ≤ negl(κ) (3)

We claim that

Pr[W2] =
1

2
+ negl(κ) (4)

We prove this statement by letting an adversary against the GL-DBDH assumption simulate
the challenger in Game 2. B is given a challenge instance (g,A,B,C, L,R), where L is either
randomly sampled from {0, 1} or fgl(bdh(A,B,C), R). B plays the game with an adversary A
against the IND-sID-CCA security of the 1-bit IB-KEM scheme.

Initialization. A first outputs an identity I∗ ∈ Zp that it intends to attack.

Setup. B picks d
R←− Zp, and then sets X = A = ga, X ′ = X−t

∗
gd, Y = B = gb, where

t∗ = TCR(C). B picks z
R←− Zp and defines h = X−I

∗
gz. It gives A the public parameters

mpk = (g, h,X,X ′, Y ). The corresponding msk, which is unknown to B is a. The function F is
essentially of the form

F (I) = XIh = XI−I∗gz
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Phase 1 - Private Key Queries.A issues up toQe private key queries with the only restriction
that 〈I〉 6= 〈I∗〉. To respond to a private query for identity I ∈ Zp, B generates sk as follows:

for sk` algorithm B picks s
R←− Zp and sets

sk1 = Y
−z

I−I∗ F (I)s, sk2 = gsY
−1

I−I∗

Let s̃ = s− b/(I − I∗). It is easy to see that sk is a valid random private key for I since

sk1 = Y
−z

I−I∗ (XI−I∗gz)s = Y a(XI−I∗gz)s−
b

I−I∗ = Y aF (I)s̃`

sk2 = gsY
1

I−I∗ = gs̃

where s, s̃ are uniform in Zp. This matches the definition for a private key for I. Hence, sk is a
valid private key for I.

Phase 1 - Decapsulation Queries. Upon A issuing a decaptulation query 〈I, C1, C2, C3〉, B
responds as follows. If I 6= I∗, B uses the corresponding private key to handle it. Otherwise, B
computes t = TCR(C1) and tests the consistency of the ciphertext by checking

e(C1, X
tX ′)

?
= e(g, C2) ∧ e(C1, F (I))

?
= e(g, C3)

If the equality holds, B sets K := fgl(e(X̃, Y ), R). It is easy to see that the decapsulation result

is correct by observing X̃ = (C2/C
d
1 )1/(t−t∗) = (Xr(t−t∗)grd/grd)1/(t−t∗) = Xr = dh(X,C1). By

the definition of Game 2 we know that when I = I∗, if C1 6= C∗1 then we have t 6= t∗. Therefore
B can answer all decapsulation queries issued by A correctly.

Challenge. B sets C∗1 = C (which implicitly assigns r = c), C∗2 = Cd, and C∗3 = Cz. The
challenge ciphertext is C∗ = (C∗1 , C

∗
2 , C

∗
3 ). Note that this is a consistent ciphertext since we

have (Xt∗X ′)r = (gd)r = Cd and F (I∗)r = (gz)r = Cz. Then B sets K∗ = L and gives A the
challenge (C∗,K∗).

Phase 2. In Phase 2, all the queries are responded in the same way as in Phase 1 except the
decapsulation query 〈I∗, C∗〉 will be rejected.

This finishes the description of simulation. It is easy to see that B simulates the challenger
perfectly. If A’s advantage is not negligible, then B has non-negligible advantage against the GL-
DBDH problem. According to Lemma 2.3, B further implies an algorithm with non-negligible
advantage against the CBDH problem, which contradicts to the CBDH assumption. Therefore,
we prove the statement. The theorem follows by combining (1)-(4). ut

4 CCA Secure IB-KEM with Constant Size Public Parameters

In this section we present a n-bit IB-KEM scheme based on the 1-bit IB-KEM scheme using
multiple encapsulations method.

Setup. The same as Scheme 0.

KeyGen. The same as Scheme 0.

Encap. Pick r1, . . . , rn
R←− Zp, then compute Ci,1 = gri , t = TCR(C1,1, . . . , Cn,1), Ci,2 =

(XtX ′)ri , Ci,3 = F (I)ri . The final ciphertext is C = (C1, . . . , Cn), where Ci = (Ci,1, Ci,2, Ci,3).
Compute K = (K1, . . . ,Kn), where

Ki = fgl(e(X,Y )ri , R) for 1 ≤ i ≤ n.

9



Decap. To decapsulate ciphertext C = (C1, . . . , Cn) under identity I, first compute t =
TCR(C1,1, . . . , Cn,1). If e(Ci,1, X

tX ′) 6= e(g, Ci,2) or e(Ci,1, F (I)) 6= e(g, Ci,3) for any i ∈ [n]
then return ⊥. Take the private key sk = (sk1, sk2) and the ciphertext C = (C1, . . . , Cn) as
input and output

Ki = fgl

(
e(Ci,1, sk1)

e(Ci,3, sk2)
, R

)
for 1 ≤ i ≤ n.

Indeed, for a valid ciphertext, we have

e(Ci,1, sk1)

e(Ci,3, sk2)
=
e(gri , Y aF (I)s)

e(F (I)ri , gs)
= e(X,Y )ri for 1 ≤ i ≤ n.

Theorem 4.1 Let TCR be a target collision-resistant hash function and suppose that the CBDH
assumption holds in G. Then the above scheme is an IND-sID-CCA secure IB-KEM.

The security is somewhat straightforward by conducting the hybrid argument with the proof of
Scheme 0. For completeness we put the proof in Appendix B.

5 CCA Secure IB-KEM with Constant Size Ciphertext

In this section we present a n-bit IB-KEM scheme based on the 1-bit IB-KEM scheme using
the randomness-reuse technique.

Setup. Pick a
R←− Zp, h,X ′, Y1, . . . , Yn

R←− G, set X = ga, and define the function F : Zp → G
as I 7→ XIh. The mpk and the msk are given by

mpk = (g, h,X,X ′, Y1, . . . , Yn) and msk = a

KeyGen. To generate a private key for an identity I ∈ Zp, pick s1, . . . , sn
R←− Zp and output

sk = (sk1, . . . , skn), where

ski = (Y a
i F (I)si , gsi) for 1 ≤ i ≤ n.

Encap. Pick r
R←− Zp, then generate the ciphertext C = (C1, C2, C3) as C1 = gr, C2 = (XtX ′)r

with t = TCR(C1), and C3 = F (I)r. Compute K = (K1, . . . ,Kn), where

Ki = fgl(e(X,Yi)
r, R) for 1 ≤ i ≤ n.

Decap. To decapsulate ciphertext (C1, C2, C3) under identity I, first compute t = TCR(C1).
If e(C1, X

tX ′) 6= e(g, C2) or e(C1, F (I)) 6= e(g, C3) then return ⊥. Take the private key sk =
(sk1, . . . , skn) and the ciphertext C = (C1, C2, C3) as input and output

Ki = fgl

(
e(C1, ski,1)

e(C3, ski,2)
, R

)
for 1 ≤ i ≤ n.

Indeed, for a valid ciphertext, we have

e(C1, ski,1)

e(C3, ski,2)
=
e(gr, Y a

i F (I)si)

e(F (I)r, gsi)
= e(X,Yi)

r for 1 ≤ i ≤ n.

Notice that the consistency of the ciphertext is publicly verifiable, i.e., anyone could verify a
ciphertext being consistent or not.

Theorem 5.1 Let TCR be a target collision-resistant hash function and suppose that the CBDH
assumption holds in G. Then the above scheme is an IND-sID-CCA secure IB-KEM.

The security is somewhat straightforward by conducting the hybrid argument with the proof of
Scheme 0. For completeness we put the proof in Appendix C.
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6 Generalized Scheme 1

In this section we present the first generalized scheme which shows that there exists a trade-off
between the ciphertext size and the public parameters size. We assume that n is the product of
n1 and n2. The generalized scheme is defined as follows.

Setup. The same as Scheme 2 except we substitute n with n1.
KeyGen. The same as Scheme 2 except that we substitute n with n1.

Encap. Pick r1, . . . , rn2

R←− Zp, and set Cj,1 = grj for 1 ≤ j ≤ n2. Set t = TCR(C1,1, . . . , Cn2,1),
Cj,2 = (XtX ′)rj , Cj,3 = F (I)rj for 1 ≤ j ≤ n2. The ciphertext is C = (C1, . . . , Cn2) where
Cj = (Cj,1, Cj,2, Cj,3). Compute the symmetric key K = (K1, . . . ,Kn), where

K(i−1)×n1+j = fgl(e(X,Yi)
rj , R) for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.

Decap. To decapsulate ciphertext C = (C1, . . . , Cn2) encrypted under identity I, first compute
t = TCR(C1,1, . . . , Cn2,1). If e(Cj,1, X

tX ′) 6= e(g, Cj,2) or e(Cj,1, F (I)) 6= e(g, Cj,3) for some
j ∈ [n2] then return ⊥. Take the private key sk = (sk1, . . . , skn1) and C = (C1, . . . , Cn2) as
input and output

K(i−1)×n1+j = fgl

(
e(Cj,1, ski,1)

e(Cj,3, ski,2)
, R

)
where 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.

Indeed, for a valid ciphertext, we have

e(Cj,1, ski,1)

e(Cj,3, ski,2)
=
e(grj , Y a

i F (I)si)

e(F (I)rj , gsi)
= e(X,Yi)

rj for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.

Particularly, let n be a perfect square and n1 = n2 =
√
n, we obtain an IB-KEM scheme

with O(
√
n) public parameters size and O(

√
n) ciphertext size.

Theorem 6.1 Let TCR be a target collision-resistant hash function and suppose that the CBDH
assumption holds in G. Then the above scheme is an IND-sID-CCA secure IB-KEM.

The security is somewhat straightforward by conducting the hybrid argument with the proof
of Scheme 0. For completeness we put the proof in Appendix D.

7 Generalized Scheme 2

In this section we present the second generalized scheme. We assume that n = n1(n1 − 1)n2/2.

Setup. mpk and msk are given by

mpk = (g, h,X,X ′, Y1 = gy1 , . . . , Yn1 = gyn1 , F ) and msk = (y1, . . . , yn1)

KeyGen. To generate a private key sk = (skij) for an identity I ∈ Zp, pick sij
R←− Zp and set

skij = (gyiyjF (I)sij , gsij ) for 1 ≤ i < j ≤ n1.

Encap. Pick r1, . . . , rn2

R←− Zp, and set Ck,1 = grk for 1 ≤ k ≤ n2. Set t = TCR(C1,1, . . . , Cn2,1),
Cj,2 = (XtX ′)rj , Cj,3 = F (I)rj for 1 ≤ j ≤ n2. The ciphertext is C = (C1, . . . , Cn2) where
Ck = (Ck,1, Ck,2, Ck,3). Compute the symmetric key K = (Ki,j,k), where

Ki,j,k = fgl(e(Yi, Yj)
rk , R) for 1 ≤ i < j ≤ n1 and 1 ≤ k ≤ n2.
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Decap. To decapsulate ciphertext C = (C1, . . . , Cn2) encrypted under identity I, first compute
t = TCR(C1,1, . . . , Cn2,1). If e(Ck,1, X

tX ′) 6= e(g, Ck,2) or e(Ck,1, F (I)) 6= e(g, Ck,3) for some
k ∈ [n2] then return ⊥. Take the private key sk = (skij) and C = (C1, . . . , Cn2) as input and
output

Ki,j,k = fgl

(
e(Ck,1, skij,1)

e(Ck,3, skij,2)
, R

)
where 1 ≤ i < j ≤ n1 and 1 ≤ k ≤ n2.

Indeed, for a valid ciphertext, we have

e(Ck,1, skij,1)

e(Ck,3, skij,2)
=
e(grk , gyiyjF (I)sij )

e(F (I)rk , gsij )
= e(Yi, Yj)

rk for 1 ≤ i < j ≤ n1, 1 ≤ k ≤ n2.

Theorem 7.1 Let TCR be a target collision-resistant hash function and suppose that the CBDH
assumption holds in G. Then the above scheme is an IND-sID-CCA secure IB-KEM.

The proof is similar to that of Scheme 1 in Section 4, Scheme 2 in Section 5, and Generalized
Scheme 1 in Section 6, except that for a given CBDH challenge instance (A,B,C) the reduction
algorithm first sets Yi = A for some i ∈ [n1] then sets X = Ah for a random chosen exponent h
instead of directly setting X = A as before. For the limit of space, we omit the details here.

8 Extensions

Since BB1-IBE [BB04] and Waters-IBE [Wat05] share the same commutative-blinding frame-
work, thus we can enhance our IB-KEM schemes with only selective-identity security to IB-KEM
schemes with full-identity security by using the Waters-IBE as the underlying IBE scheme. The
security proofs are somewhat straightforward by composing the proofs for IB-KEM schemes in
Section 4, 5, and 6 based on BB1-IBE and the proofs for Waters-IBE [Wat05, KG06]. For a
concrete example, we sketch the proof of Scheme 1∗, which is the resulting scheme of replacing
the underlying IBE scheme of Scheme 1 with Waters-IBE, as follows. The proof is conducted by
a sequence of games. Game 0 is the standard IND-ID-CCA game. Game 1 is defined like Game
1 except that the reduction algorithm will terminate the simulation due to regular abort or
artificial abort. Game 2, Game 3, and Game 4 are defined like Game 1, Game 2, and Game 3
in the proof for Scheme 1, respectively. The argument of the indistinguishability between Game
3 and Game 4 is similar to that between Game 2 and Game 3 in the proof for Scheme 1. Then
the security result immediately follows.
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A A Variant of Scheme 0

In this section we describe a variant of Scheme 0 with shorter mpk and ciphertext at the cost
of relying on a slightly strong assumption, named the modified computational bilinear Diffie-
Hellman assumption.
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A.1 The Modified Computational Bilinear Diffie-Hellman Assumption

Let G be a cyclic group generated by g and equipped with a bilinear map e : G × G → GT .
Define

mbdh(A,B,B′, C) := T, where A = ga, B = gb, B′ = gb
2
, C = gc, and T = e(g, g)abc

The modified computational BDH (mCBDH) problem is computing the value mbdh(A,B,B′, C)

given A,B,B′, C ∈ G where a, b, c
R←− Zp. Compared to the BDH problem, the mBDH problem

furthermore provide the adversary with the element gb
2
. The mCBDH assumption asserts that

the mCBDH problem is hard, that is, Pr[A(A,B,B′, C) = mbdh(A,B,B′, C)] ≤ negl(κ) for all
PPT algorithms A.

Lemma 1.1 Let G be a prime order group generated by g equipped with a pairing e : G×G→
GT . Let a, b, c

R←− Zp be random integers, R
R←− {0, 1}u, and let K = fgl(bdh(A,B,C), R). Let

U
R←− {0, 1} be uniformly random. Suppose there exists a PPT algorithm B distinguishing the

distributions

∆mbdh = (g,A,B,B′, C,K,R) and ∆rand = (g,A,B,B′, C, U,R)

with non-negligible advantage. Then there exists a PPT algorithm computing bdh(A,B,C) on
input (g,A,B,B′, C) with non-negligible success probability, hence breaking the mCBDH as-
sumption.

Setup. Pick a
R←− Zp, and then set X = ga. Pick h, Y

R←− G. Define the function F : Zp → G as
I 7→ XIh. The public parameters and the master secret key are given by

mpk = (g, h,X, Y ) and msk = a

KeyGen. To generate a private key for an identity I ∈ Zp, pick s
R←− Zp and output sk =

(Y aF (I)s, g−s, Y s).

Encap. Pick r
R←− Zp, then compute C1 = gr, C2 = (F (I)Y t)r with t = TCR(C1). Compute

K = fgl(e(X,Y )r, R).

Decap. To decapsulate ciphertext (C1, C2) under identity I, first compute t = TCR(C1). If
e(C1, F (I)Y t) 6= e(g, C2) then return ⊥. Otherwise, take the private key sk and C = (C1, C2) as
input, computeK = fgl

(
e(C1, sk1sk

t
3)e(C2, sk2), R

)
. Indeed, for a valid ciphertext C = (C1, C2),

we have

e(C1, sk1sk
t
3)e(C2, sk2) = e(gr, Y aF (I)sY st)e(F (I)rY rt, g−s) = e(X,Y )r

Notice that the consistency of the ciphertext is publicly verifiable, i.e., anyone could verify a
ciphertext being consistent or not.

Theorem 1.2 Let TCR be a target collision-resistant hash function and suppose that the mCBDH
assumption holds in G. Then the above scheme is an IND-sID-CCA secure IB-KEM.

Proof. We proceed in a sequence of games. We write (C∗1 , C
∗
2 ) to denote the challenge ciphertext

with the corresponding key K∗ of identity I∗, denote with U∗ the random key chosen by the
IND-sID-CCA experiment, and set t∗ = TCR(C∗1 ). Let Wi denote the event that A outputs β′

such that β′ = β in Game i.
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Game 0. This is the standard IND-sID-CCA game. By definition we have

Pr[W0] =
1

2
+ AdvCCAAKEM(κ) (5)

Game 1. Let E01 be the event that the adversary issues a decapsulation query 〈I∗, C ′1, C ′2〉
with C ′1 = C∗1 in Phase 1. Note that the probability that the adversary submits a decapsulation
query such that C ′1 = C∗1 before seeing the challenge ciphertext is bounded by Qd/p, where Qd
is the number of decapsulation queries issued by A. Since Qd = poly(κ), we have Pr[E01] ≤
Qd/p ≤ negl(κ). We define Game 1 exactly the same as Game 0 except assuming that E01 never
occurs in Game 1. It follows that

|Pr[W1]− Pr[W0]| ≤ negl(κ) (6)

Moreover, we remark that in Phase 2 a decapsulation query 〈I∗, C ′1, C ′2〉 will be rejected if
C ′1 = C∗1 . Since if C ′2 6= C∗2 , the decapsulation query will be rejected for the inconsistency of the
ciphertext. If C ′2 = C∗2 , it will be rejected by definition of IND-sID-CCA game.
Game 2. Let E12 be the event that the adversary issues a decapsulation query 〈I∗, C ′1, C ′2〉
with C ′1 6= C∗1 and TCR(C ′1) = TCR(C∗1 ). By the target collision resistance of TCR, we have
Pr[E12] ≤ negl(κ). We define Game 2 exactly the same as Game 1 except assuming that E12

never occurs in Game 2. It follows that

|Pr[W2]− Pr[W1]| ≤ negl(κ) (7)

We claim that

Pr[W2] =
1

2
+ negl(κ) (8)

We prove this statement by letting an algorithm B against the GL-mDBDH assumption simulate
the challenger in Game 2. Suppose B is given a challenge instance (g,A,B,B′, C, L,R), where
L is either uniform randomly sampled from {0, 1} or fgl(mbdh(A,B,B′, C), R). B plays Game
2 with an adversary A against the IB-KEM scheme as follows.
Initialization. A first outputs an identity I∗ ∈ Zp that it intends to attack.

Setup. B picks d
R←− Zp, and then sets X = A = ga, Y = B = gb, compute t∗ = TCR(C). B picks

d
R←− Zp and defines h = X−I

∗
Y −t

∗
gd. It gives A the public parameters mpk = (g, h,X, Y ). The

corresponding msk, which is unknown to B is a. The function F is essentially of the form

F (I) = XIh = XI−I∗Y −t
∗
gd

Phase 1 - Private Key Queries.A issues up toQe private key queries with the only restriction
that 〈I〉 6= 〈I∗〉. To respond to a private query for identity I ∈ Zp, B generates sk as follows:
pick a random integer s ∈ Zp and sets

sk1 = Y
−d

I−I∗B′
t∗

I−I∗ (XI−I∗Y −t
∗
gd)s, sk2 = g−sY

1
I−I∗ , sk3 = Y sB′

−1
I−I∗

Let s̃ = s− b/(I − I∗). It is easy to see that sk is a valid private key for I since

sk1 = Y
−d

I−I∗B′
t∗

I−I∗ (XI−I∗Y −t
∗
gd)s = Y a(XI−I∗Y −t

∗
gd)s−

b
I−I∗ = Y aF (I)s̃

sk2 = g−sY
1

I−I∗ = g−s+
b

I−I∗ = g−s̃

sk3 = Y sB′
−1

I−I∗ = Y s− b
I−I∗ = Y s̃

where s, s̃ are uniform in Zp. This matches the definition for a private key for I. Hence, sk is a
valid private key for I.
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Phase 1 - Decapsulation Queries. Upon A issuing a decaptulation query 〈I, C1, C2〉, B
responds as follows. If I 6= I∗, B uses the corresponding private key to handle it. Otherwise, B
computes t = TCR(C1) and tests the consistency of the ciphertext by checking

e(C1, F (I)Y t)
?
= e(g, C2)

If the above equality holds, B sets K := fgl(e(Ỹ , X), R). It is easy to verify that the answer

is correct by observing that Ỹ = (C2/(C
d
1 )

1
d(t−t∗) = (Y (t−t∗)rgdr/grd)

1
d(t−t∗) = Y r = dh(Y, gr).

By Game 2 we know that when I = I∗, if C1 6= C∗1 then t 6= t∗. Therefore B can answer all
decapsulation queries issued by A correctly.
Challenge. B sets C∗1 = C (which implicitly assigns r = c), and C∗2 = Cd. The chal-
lenge ciphertext is C∗ = (C∗1 , C

∗
2 ). Note that this is a consistent ciphertext since we have

(F (I∗)Y t∗)r = (gd)r = Cd. Then B sets K∗ = L and gives A the challenge (C∗,K∗).
Phase 2. In Phase 2, all the queries are responded in the same way as in Phase 1 except the
decapsulation query 〈I∗, C∗〉 will be rejected.

This finishes the description of simulation. It is easy to see that B simulates the challenger
perfectly. If A’s advantage is not negligible, then B has non-negligible advantage against the GL-
mDBDH problem. According to Lemma 2.3, B further implies an algorithm with non-negligible
advantage against the mCBDH problem, which contradicts to the mCBDH assumption. There-
fore, we prove the statement. The theorem follows by combining (5)-(8). ut

We compare Scheme 0 and Scheme 0′ in Table 2. Scheme 0′ can be extended to n-bits
IB-KEMs in an analogous way as we did to Scheme 0.

Scheme Assumption Ciphertext Efficiency [# exp, # pairing] Key Sizes
Overhead Encap Decap |mpk| |msk| |sk|

Scheme 0 (§3) CBDH 3× |GT | [4, 0] [1, 4] 5× |G| 1× |Zp| 2× |G|
Scheme 0′ (§A) mCBDH 2× |GT | [3, 0] [2, 4] 4× |G| 1× |Zp| 3× |G|

Table 2. Comparison of Scheme 0 and Scheme 0’

B The Proof of Scheme 1

Proof. We proceed in a sequence of games. Let (C∗1 , . . . , C
∗
n) be the challenge ciphertext of the

corresponding key K∗ under I∗, denote with U∗ the random key chosen by the IND-sID-CCA
experiment, and set t∗ = TCR(C∗1,1, . . . , C

∗
n,1). We start with a game where the challenger

proceeds like the standard IND-sID-CCA game (i.e., K∗ is a real key and U∗ is a random key),
and end up with a game where both K∗ and U∗ are chosen uniformly random. Then we show
that all games are computationally indistinguishable under the CBDH assumption. Let Wi

denote the event that A outputs β′ such that β′ = β in Game i.

Game 0. This is the standard IND-sID-CCA game. By definition we have

Pr[W0] =
1

2
+ AdvCCAAKEM(κ)

Game 1. Let E01 be the event that the adversary issues a decapsulation query 〈I∗, C ′1, . . . , C ′n〉
with C ′i,1 = C∗i,1 for all 1 ≤ i ≤ n in Phase 1. Note that the probability that the adversary submits
a ciphertext such that C ′i,1 = C∗i,1 for all 1 ≤ i ≤ n before seeing the challenge ciphertext
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is bounded by Qd/p
n, where Qd is the number of decapsulation queries issued by A. Since

Qd = poly(κ), we have Pr[E0,1] ≤ Qd/p
n ≤ negl(κ). We define Game 1 like Game 0 except

assuming that E01 never occurs in Game 1. It follows that

|Pr[W1]− Pr[W0]| ≤ negl(κ)

Moreover, we remark that in Phase 2 a decapsulation query 〈I∗, C ′1, . . . , C ′n〉 will be rejected if
C ′i,1 = C∗i,1 for all 1 ≤ i ≤ n. Since if C ′i,2 6= C∗i,2 or C ′i,3 6= C∗i,3 for some i ∈ [n], the decapsulation
query will be rejected for the inconsistency of the ciphertext. If C ′i,2 = C∗i,2 and C ′i,3 = C∗i,3 for
all 1 ≤ i ≤ n, it will be rejected by definition of IND-sID-CCA game.
Game 2. Let E12 be the event that the adversary issues a decapsulation query 〈I∗, C ′1, . . . , C ′n〉
with C ′i,1 6= C∗i,1 for some i ∈ [n] and TCR(C ′1,1, . . . , C

′
n,1) = TCR(C∗1,1, . . . , C

∗
n,1). By the target

collision resistance of TCR we have Pr[E12] ≤ negl(κ). We define Game 2 like Game 1 except
assuming that E12 never occurs in Game 2. It follows that

|Pr[W2]− Pr[W1]| ≤ negl(κ)

Game 3. We define Game 3 like Game 2, except that we sample K∗
R←− {0, 1}nν uniformly at

random. Note that both K∗ and U∗ are chosen uniformly random, thus we have

Pr[W3] =
1

2

We claim that |Pr[W3]− Pr[W2]| ≤ negl(κ)under the CBDH assumption. We prove this by
a hybrid argument. To this end, we define a sequence of hybrid games H0, . . . ,Hn, such that H0

equals Game 2 and Hn equals Game 3. Then we argue that hybrid Hi is indistinguishable from
hybrid Hi−1 for i ∈ {1, . . . , n} under the CBDH assumption. The claim follows, since n = n(κ)
is a polynomial. We define H0 exactly like Game 2. Then, for i from 1 to n, in hybrid Hi we set
the first iν bits of K∗ to independent random bits, and proceed otherwise exactly like in hybrid
Hi−1. Thus, hybrid Hn proceeds exactly like Game 3. Let Ei denote the event that A outputs
β′ such that β′ = β in Hi. Suppose that

|Pr[E0]− Pr[En]| = 1/poly′(κ) (9)

that is, the success probability of A in H0 is not negligible close to the success probability in
Hn. Note that then there must exist an index i such that |Pr[Ei−1]−Pr[Ei]| = 1/poly(κ) (since
if |Pr[Ei−1]− Pr[Ei]| ≤ negl(κ) for all i, then we should have |Pr[E0]− Pr[En]| ≤ negl(κ)).

Suppose that there exists an algorithm A for which Equation (9) holds. Then we can con-
struct an adversary B distinguishing the distributions ∆bdh and ∆rand, which by Lemma 2.3 is
sufficient to prove security under the CBDH assumption in G. Adversary B receives a challenge
D = (g,A,B,C, L,R) as input, guesses an index ` ∈ [n], which with probability at least 1/n
such that |Pr[E`−1]− Pr[E`]| = 1/poly(κ), and proceeds as follows:
Initialization. A first outputs an identity I∗ ∈ Zp that it intends to attack.

Setup. For i = [n]\`, B picks ri
R←− Zp, then picks d

R←− Zp, and sets X = A = ga, Y =

B = gb, and X ′ = X−t
∗
gd, where t∗ = TCR(gr1 , . . . , gr`−1 , C, gr`+1 , . . . , grn). Pick z

R←− Zp and
defines h = X−I

∗
gz. It gives A the system parameters mpk = (g, h,X,X ′, Y, F ). Note that the

corresponding msk, which is unknown to B is a.
Phase 1 - Private Key Queries.A issues up toQe private key queries with the only restriction

that 〈I〉 6= 〈I∗〉. To respond to a private query of I ∈ Zp, B picks s
R←− Zp and sets

sk1 = Y
−z

I−I∗ F (I)s, sk2 = gsY
−1

I−I∗
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We claimed that sk is a valid private key for I. To see this, let s̃ = s− b/(I− I∗). Then we have

sk1 = Y
−z

I−I∗ (XI−I∗gz)s = Y a(XI−I∗gz)s−
b

I−I∗ = Y aF (I)s̃

sk2 = gsY
−1

I−I∗ = gs̃

where s, s̃ are uniform distributed in Zp. This matches the definition for a private key for I.
Hence, sk is a valid private key for I.

Phase 1 - Decapsulation Queries. Upon A issuing a decaptulation query 〈I, C1, . . . , Cn〉, B
responds as follows. If I 6= I∗, B uses the corresponding private key to handle it. Otherwise, B
computes t = TCR(C1,1, . . . , Cn,1) and tests the consistency of the ciphertext by checking

e(Ci,1, X
tX ′)

?
= e(g, Ci,2) ∧ e(Ci,1, F (I))

?
= e(g, Ci,3)

If the equality holds for all 1 ≤ i ≤ n, B sets K = (K1, . . . ,Kn) as Ki = fgl(e(X,Y )ri , R)

for i ∈ [n]\{`} and K` = fgl(e(X̃`, Y ), R). Here we compute X̃` := (C`,2/C
d
`,1)1/(t−t∗) =

(Xr`(t−t∗)grid/grid)1/(t−t∗) = Xr` = dh(X,C`,1). By the definition of Game 2 we know that
when I = I∗, if Ci,1 6= C∗i,1 for some i ∈ [n] then t 6= t∗. Therefore B can answer all decapsula-
tion queries issued by A correctly.

Challenge. To generate the challenge ciphertext C∗ = (C∗1 , . . . , C
∗
n), for i = [n]\{`}, B generates

C∗i normally. For C∗` = (C∗`,1, C
∗
`,2, C

∗
`,3), B sets C∗`,1 = C (which implicitly assigns r` = c),

C∗i,2 = Cd, and C∗i,3 = Cz. Note that C∗ is a consistent ciphertext since we have (Xt∗X ′)r` =

(gd)r` = Cd and F (I∗)c = (gz)c = Cz. Then B samples `− 1 uniformly random groups of ν bits
K∗1 , . . . ,K

∗
`−1, sets K∗` = L, K∗i = fgl(e(X,Y )r

∗
j , R) for i from ` + 1 to n. B samples uniform

randomly bits U∗ ∈ {0, 1}nν , picks a random bit β ∈ {0, 1}. If β = 1, it gives A the challenge
(C∗,K∗). Otherwise it gives A the challenge (C∗, U∗).

Phase 2. In Phase 2, all the queries are responded the same way as in Phase 1 except the
decapsulation query 〈I∗, C∗〉 will be rejected.

This completes the description of simulation. IfD ∈ ∆bdh we haveK∗` = fgl(bdh(A,B,C), R).
Thus A’s view when interacting with B is identical to H`−1. If D ∈ ∆rand, then A’s view is
identical to H`. Thus B can use A to distinguish D ∈ ∆bdh from D ∈ ∆rand. According to
Lemma 2.3, B further implies a PPT algorithm which can break the CBDH problem, which
contradicts to the CBDH assumption. ut

C The proof of Scheme 2

Proof. We proceed in a sequence of games. We write (C∗1 , C
∗
2 , C

∗
3 ) to denote the challenge

ciphertext with the corresponding key K∗ of identity I∗, denote with U∗ the random key chosen
by the IND-sID-CCA experiment, and set t∗ = TCR(C∗1 ). We start with a game where the
challenger proceeds like the standard IND-sID-CCA game (i.e., K∗ is a real key and U∗ is a
random key), and end up with a game where bothK∗ and U∗ are chosen uniformly random. Then
we show that all games are computationally indistinguishable under the CBDH assumption. Let
Wi denote the event that A outputs β′ such that β′ = β in Game i.

Game 0. This is the standard IND-sID-CCA game. By definition we have

Pr[W0] =
1

2
+ AdvCCAAKEM(κ)
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Game 1. Let E01 be the event that the adversary issues a decapsulation query 〈I∗, C ′1, C ′2, C ′3〉
with C ′1 = C∗1 in Phase 1. Note that the probability that the adversary submits a decapsulation
query such that C ′1 = C∗1 before seeing the challenge ciphertext is bounded by Qd/p, where Qd
is the number of decapsulation queries issued by A. Since Qd = poly(κ), we have Pr[E01] ≤
Qd/p ≤ negl(κ). We define Game 1 exactly the same as Game 0 except assuming that E01 never
occurs in Game 1. It follows that

|Pr[W1]− Pr[W0]| ≤ negl(κ)

Moreover, we remark that in Phase 2 a decapsulation query 〈I∗, C ′1, C ′2, C ′3〉 will be rejected
if C ′1 = C∗1 . Since if C ′2 6= C∗2 or C ′3 6= C∗3 , the decapsulation query will be rejected for the
inconsistency of the ciphertext. If C ′2 = C∗2 and C ′3 = C∗3 , it will be rejected by definition of
IND-sID-CCA game.
Game 2. Let E12 be the event that the adversary issues a decapsulation query 〈I∗, C ′1, C ′2, C ′3〉
with C ′1 6= C∗1 and TCR(C ′1) = TCR(C∗1 ). By the target collision resistance of TCR, we have
Pr[E12] ≤ negl(κ). We define Game 2 exactly the same as Game 1 except assuming that E12

never occurs in Game 2. It follows that

|Pr[W2]− Pr[W1]| ≤ negl(κ)

Game 3. We define Game 3 like Game 2, except that we sample K∗0
R←− {0, 1}nν uniformly

random. Note that both K∗0 and K∗1 are chosen uniformly random, thus we have

Pr[W3] =
1

2

We claim that |Pr[W3] − Pr[W2]| ≤ negl(κ) under the CBDH assumption. We prove this by a
hybrid argument. To this end, we define a sequence of hybrid games H0, . . . ,Hn, such that H0

equals Game 2 and Hn equals Game 3. Then we argue that hybrid Hi is indistinguishable from
hybrid Hi−1 for i ∈ {1, . . . , n} under the CBDH assumption. The claim follows, since n = n(κ)
is a polynomial. We define H0 exactly like Game 2. Then, for i from 1 to n, in hybrid Hi we set
the first iν bits of K∗ to independent random bits, and proceed otherwise exactly like in hybrid
Hi−1. Thus, hybrid Hn proceeds exactly like Game 3. Let Ei denote the event that A outputs
β′ such that β′ = β in Hi. Suppose that

|Pr[E0]− Pr[En]| = 1/poly′(κ) (10)

that is, the success probability of A in H0 is not negligible close to the success probability in
Hn. Note that then there must exist an index i such that |Pr[Ei−1]−Pr[Ei]| = 1/poly(κ) (since
if |Pr[Ei−1]− Pr[Ei]| ≤ negl(κ) for all i, then we should have |Pr[E0]− Pr[En]| ≤ negl(κ)).

Suppose that there exists an algorithm A for which Equation (10) holds. Then we can
construct an adversary B distinguishing the distributions ∆bdh and ∆rand, which by Lemma 2.3
is sufficient to prove security under the CBDH assumption in G. Adversary B receives a challenge
D = (g,A,B,C, L,R) as input, guesses an index ` ∈ [n], which with probability at least 1/n
that |Pr[E`−1]− Pr[E`]| = 1/poly(κ), and proceeds as follows:
Initialization. A first outputs an identity I∗ ∈ Zp that it intends to attack.

Setup. B picks d
R←− Zp, and then sets X = A = ga, X ′ = X−t

∗
gd, Y` = B = gb, where

t∗ = TCR(C). For i ∈ [n]\{`}, B picks yj
R←− Zp and sets Yi = gyj ; picks z

R←− Zp and
defines h = X−I

∗
gz. It gives A the public parameters mpk = (g, h,X,X ′, Y1, . . . , Yn, F ). The

corresponding msk, which is unknown to B is a. The function F is essentially of the form

F (x) = Xxh = Xx−I∗gz
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Phase 1 - Private Key Queries. A issues up to Qe private key queries with the only re-
striction that 〈I〉 6= 〈I∗〉. To respond to a private query for identity I ∈ Zp, B generates

sk = (sk1, . . . , skn) as follows: for sk` algorithm B picks s`
R←− Zp and sets

sk`,1 = Y
−z

I−I∗
` F (I)s` , sk`,2 = gs`Y

−1
I−I∗
`

for ski where i ∈ [n]\{`}, B picks a random integer si ∈ Zp and sets

ski,1 = XyiF (I)si = Y a
i F (I)si , ski,2 = gsi

Let s̃` = s` − b/(I − I∗). It is easy to see that sk is a valid random private key for I since

sk`,1 = Y
−z

I−I∗
` (XI−I∗gz)s` = Y a

` (XI−I∗gz)s`−
b

I−I∗ = Y a
` F (I)s̃`

sk`,2 = gs`Y
1

I−I∗
` = gs̃`

where s`, s̃` are uniform in Zp. This matches the definition for a private key for I. Hence, sk is
a valid private key for I.
Phase 1 - Decapsulation Queries. Upon A issuing a decaptulation query 〈I, C1, C2, C3〉, B
responds as follows. If I 6= I∗, B uses the corresponding private key to handle it. Otherwise, B
computes t = TCR(C1) and tests the consistency of the ciphertext by checking

e(C1, X
tX ′)

?
= e(g, C2) ∧ e(C1, F (I))

?
= e(g, C3)

If the equality holds, B sets K = (K1, . . . ,Kn) as Ki = fgl(e(X,C1)yi , R) for i ∈ [n]\{`}
and K` = fgl(e(X̃, Y`), R), where X̃ := (C2/C

d
1 )1/(t−t∗) = (Xr(t−t∗)grd/grd)1/(t−t∗) = Xr =

dh(X,C1). By Game 2 we know that when I = I∗, if C1 6= C∗1 then we have t 6= t∗. Therefore
B can answer all decapsulation queries issued by A correctly.
Challenge. B sets C∗1 = C (which implicitly assigns r = c), C∗2 = Cd, and C∗3 = Cz. The
challenge ciphertext is C∗ = (C∗1 , C

∗
2 , C

∗
3 ). Note that this is a consistent ciphertext since we

have (Xt∗X ′)r = (gd)r = Cd and F (I∗)r = (gz)r = Cz. Then B samples i−1 uniformly random
groups of ν bits K∗1 , . . . ,K

∗
`−1, sets K∗` = L, K∗i = fgl(e(X,C

∗
1 )yi , R) for i from ` + 1 to n. B

samples U∗ ∈ {0, 1}nν uniformly at random, and picks a random bit β ∈ {0, 1}. If β = 1, it
gives A the challenge (C∗,K∗). Otherwise it gives A the challenge (C∗, U∗).
Phase 2. In Phase 2, all the queries are responded in the same way as in Phase 1 except the
decapsulation query 〈I∗, C∗〉 will be rejected.

This finishes the description of simulation. If D ∈ ∆bdh we have K∗` = fgl(bdh(A,B,C), R),
A’s view is identical to H`−1. If D ∈ ∆rand, A’s view is identical to H`. Thus B can use A
to distinguish D ∈ ∆bdh from D ∈ ∆rand. According to Lemma 2.3, B further implies a PPT
algorithm which can break the CBDH problem, which contradicts to the CBDH assumption.

ut

D The proof of Generalized Scheme 1

Proof. We proceed in a sequence of games. We write C∗ = (C∗1 , . . . , C
∗
n2

) to denote the challenge
ciphertext with the corresponding key K∗ of I∗, denote with U∗ the random key chosen by the
IND-sID-CCA experiment, and set t∗ = TCR(C∗1,1, . . . , C

∗
n2,1

). We start with a game where the
challenger proceeds as the standard IND-sID-CCA game (i.e., K∗ is a real key and U∗ is a random
key), and end up with a game where both K∗ and U∗ are chosen uniformly random. Then we
show that all games are computationally indistinguishable under the CBDH assumption. Let
Wi denote the event that A outputs β′ such that β′ = β in Game i.
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Game 0. This is the standard IND-sID-CCA game. By definition we have

Pr[W0] =
1

2
+ AdvCCAAKEM(κ)

Game 1, Game 2, and Game 3 are defined in the same way as in the proof of Scheme 2. It is
easy to verify that |Pr[W1]−Pr[W0]| ≤ negl(κ), |Pr[W2]−Pr[W1]| ≤ negl(κ), and Pr[W3] = 1/2.
We claim that |Pr[W3] − Pr[W2]| ≤ negl(κ) under the CBDH assumption. We prove this by a
hybrid argument. To this end, we define a sequence of hybrid games H0, . . . ,Hn, such that H0

equals Game 2 and Hn equals Game 3. Then we argue that hybrid Hi is indistinguishable from
hybrid Hi−1 for i ∈ {1, . . . , n} under the CBDH assumption. The claim follows, since n = n(κ)
is a polynomial. We define H0 exactly like Game 2. Then, for i from 1 to n, in hybrid Hi we set
the first iν bits of K∗ to independent random bits, and proceed otherwise exactly like in hybrid
Hi−1. Thus, hybrid Hn proceeds exactly like Game 3. Let Ei denote the event that A outputs
β′ such that β′ = β in Hi. Suppose that

|Pr[E0]− Pr[En]| = 1/poly′(κ) (11)

that is, the success probability of A in H0 is not negligible close to the success probability in
Hn. Note that then there must exist an index ` such that |Pr[Ei−1]−Pr[Ei]| = 1/poly(κ) (since
if |Pr[Ei−1]− Pr[Ei]| ≤ negl(κ) for all i, then we should have |Pr[E0]− Pr[En]| ≤ negl(κ)).

Suppose that there exists an algorithm A for which Equation (11) holds. Then we can
construct an adversary B distinguishing the distributions ∆bdh and ∆rand, which by Lemma 2.3
is sufficient to prove security under the CBDH assumption in G. Adversary B receives a challenge
D = (g,A,B,C, L,R) as input, guesses an index ` ∈ [n], which with probability at least 1/n such
that |Pr[E`−1]−Pr[E`]| = 1/poly(κ). Let (̄i, j̄) be the unique tuple that satisfies (̄i−1)×n1+ j̄ =
`, B proceeds as follows:

Initialization. A first outputs an identity I∗ ∈ Zp that it intends to attack.

Setup. B first picks rj
R←− Zp for j ∈ [n2]\j̄, then sets t∗ = TCR(gr1 , . . . , grj̄−1 , C, grj̄+1 , . . . , grn2 ).

B then picks d
R←− Zp, and sets X = A = ga, X ′ = X−t

∗
gd, Yī = B = gb; picks yi

R←− Zp and sets
Yi = gyi for i ∈ [n1]\̄i. It givesA the system public parametersmpk = (g, h,X,X ′, Y1, . . . , Yn2 , F ).
Note that the corresponding msk, which is unknown to B is a.

Phase 1 - Private Key Queries.A issues up toQe private key queries with the only restriction

that 〈I〉 6= 〈I∗〉. To respond to the query of I ∈ Zp, for skī algorithm B picks sī
R←− Zp and sets

skī,1 = Y
−z

I−I∗

ī
F (I)sī , skī,2 = gsīY

−1
I−I∗

ī

for ski where i ∈ [n1]\{̄i}, B picks a random si ∈ Zp and sets

ski,1 = XyiF (I)si = Y a
i F (I)si ski,2 = gsi

Let s̃ī = sī − b/(I − I∗). It is easy to see that sk is a valid random private key for I since

skī,1 = Y
−z

I−I∗

ī
(XI−I∗gz)sī = Y a

ī (XI−I∗gz)sī−
b

I−I∗ = Y a
ī F (I)s̃ī

skī,2 = gsīY
1

I−I∗

ī
= gs̃ī

where sī and s̃ī are uniform distributed in Zp. This matches the definition of a private key for
I. Hence, sk is a valid private key for I.
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Phase 1 - Decapsulation Queries. Upon A issuing a decaptulation query 〈I, C1, . . . , Cn2〉, B
responds as follows. If I 6= I∗, B uses the corresponding private key to handle it. Otherwise, B
computes t = TCR(C1,1, . . . , Cn2,1) and then tests the consistency of the ciphertext by checking

e(Cj,1, X
tX ′)

?
= e(g, Cj,2) ∧ e(Cj,1, F (I))

?
= e(g, Cj,3)

If the equality holds for all 1 ≤ j ≤ n2, then B computes K = (K1, . . . ,Kn) as follows. Suppose
e = (i− 1)× n1 + j,

1. If i 6= ī, set Ke = fgl(e(X,Cj)
yi , R).

2. If i = ī, compute X̃j := (Cj,2/C
d
j,1)1/(t−t∗) = (Xrj(t−t∗)grjd/grjd)1/(t−t∗) = Xrj = dh(X,Cj,1),

set Ke = fgl(e(X̃j , Yī), R).

By the definition of Game 2 we know that when I = I∗, if Cj,1 6= C∗j,1 for some j ∈ [n2] then
t 6= t∗. Therefore B can answer all decapsulation queries issued by A correctly.
Challenge. To generate the challenge ciphertext C∗ = (C∗1 , . . . , C

∗
n2

), for j = [n2]\j̄, B sets
C∗j = (C∗j,1, C

∗
j,2, C

∗
j,3) = (grj , (Xt∗X ′)rj , F (I∗)rj ); for C∗

j̄
= (C∗

j̄,1
, C∗

j̄,2
, C∗

j̄,3
), B sets C∗

j̄,1
= C

(which implicitly assigns rj̄ = c), C∗
j̄,2

= Cd, and C∗
j̄,3

= Cz. Note that this is a consistent

ciphertext since we have (Xt∗X ′)rj̄ = (gd)rj̄ = Cd and F (I∗)rj̄ = (gz)rj̄ = Cz. Then B samples
` − 1 uniformly random groups of ν bits K∗1 , . . . ,K

∗
`−1, sets K∗` = L. For ` ≤ e ≤ n, B

generates Ke in a similar way as it did when answering decapsulation queries, that is, suppose
e = (i − 1) × n1 + j, if i 6= ī, set Ke = fgl(e(X,Cj)

yi , R); if j 6= j̄, set Ke = fgl(e(X,Yi)
rj , R).

B samples U∗ ∈ {0, 1}nν uniformly at random, then picks a random bit β ∈ {0, 1}. If β = 1, it
gives A the challenge (C∗,K∗). Otherwise it gives A the challenge (C∗, U∗).
Phase 2. In Phase 2, all the queries are responded in the same way as in Phase 1 except the
decapsulation query 〈I∗, C∗〉 will be rejected.

This completes the description of simulation. IfD ∈ ∆bdh we haveK∗` = fgl(bdh(A,B,C), R),
A’s view when interacting with B is identical to H`−1. If D ∈ ∆rand, A’s view is identical to
H`. Thus B can use A to distinguish D ∈ ∆bdh from D ∈ ∆rand. According to Lemma 2.3, B
further implies a PPT algorithm which can break the CBDH problem, which contradicts to the
CBDH assumption. ut
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