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Abstract

In the problem of private outsourced computation, a client wishes to delegate the evaluation of a
function f on a private input x to an untrusted worker without the latter learning anything about x and
f(x). This problem occurs in many applications and, most notably, in the setting of cloud computing.

In this work, we consider the problem of privately outsourcing computation to a cluster of machines,
which typically happens when the computation is to be performed over massive datasets, e.g., to analyze
large social networks or train machine learning algorithms on large corpora. At such scales, computation
is beyond the capabilities of any single machine so it is performed by large-scale clusters of workers.

We address this problem by introducing the notion of parallel homomorphic encryption (PHE)
schemes, which are encryption schemes that support computation over encrypted data via evaluation
algorithms that can be efficiently executed in parallel. We also consider delegated PHE schemes which,
in addition, can hide the function being evaluated. More concretely, we focus on the MapReduce model
of parallel computation and show how to construct PHE schemes that can support various MapReduce
operations on encrypted datasets including element testing and keyword search. More generally, we con-
struct schemes that can support the evaluation of functions in NC0 with locality 1 and m = polylog(k)
(where k is the security parameter).

Underlying our PHE schemes are two new constructions of (local) randomized reductions (Beaver and
Feigenbaum, STACS ′90) for univariate and multivariate polynomials. Unlike previous constructions,
our reductions are not based on secret sharing and are fully-hiding in the sense that the privacy of the
input is guaranteed even if the adversary sees all the client’s queries.

Our randomized reduction for univariate polynomials is information-theoretically secure and is based
on permutation polynomials, whereas our reduction for multivariate polynomials is computationally-
secure under the multi-dimensional noisy curve reconstruction assumption (Ishai, Kushilevitz, Ostrovsky,
Sahai, FOCS ’06 ).

1 Introduction

In the problem of private outsourced computation, a client wishes to delegate the evaluation of a function
f on a private input x to an untrusted worker without the latter learning anything about x and f(x).
This problem occurs in many applications and, most notably, in the setting of cloud computing, where a
provider makes its computational resources available to clients “as a service”.

One approach to this problem is via the use of homomorphic encryption (HE). An encryption scheme
is homomorphic if it supports computation on encrypted data, i.e., in addition to the standard encryption
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and decryption algorithms it also has an evaluation algorithm that takes as input an encryption of some
message x and a function f and returns an encryption of f(x). HE schemes can be roughly categorized into
two types. The first are arithmetic HE schemes which, in addition to the standard encrypt and decrypt
operations, have an add or multiply operation that take as inputs encryptions of messages x1 and x2 and
returns encryptions of x1 +x2 and x1 ·x2, respectively. If an arithmetic HE scheme supports both addition
and multiplication, then it can evaluate any arithmetic circuit over encrypted data and we say that it is a
fully homomorphic encryption (FHE) scheme. We refer to the second type of HE schemes as non-arithmetic
since they do not provide (at least explicitly) addition or multiplication operations.

The problem of outsourced computation occurs in various forms. For instance, in addition to the
simple client/worker setting described above, clients often wish to outsource their computation to clusters
of workers. This typically occurs when the computation is to be performed over massive datasets, e.g.,
to analyze large social networks or train machine learning algorithms on large corpora. At such scales,
computation is beyond the capabilities of any single machine so it is performed on clusters of machines,
i.e., large-scale distributed systems often composed of low-cost unreliable commodity hardware. For our
purposes, we will view such a cluster as a system composed of w workers and one controller. Given some
input, the controller generates n jobs (where typically n � w) which it distributes to the workers. Each
worker executes its job in parallel and returns some value to the controller who then decides whether to
continue the computation or halt.

In this work, we consider the problem of privately outsourcing computation to a cluster of machines. To
address this, we introduce parallel homomorphic encryption (PHE) schemes, which are encryption schemes
that support computation over encrypted data through the use of an evaluation algorithm that can be
efficiently executed in parallel. Using a PHE scheme, a client can outsource the evaluation of a function
f on some private input x to a cluster of w machines as follows. The client encrypts x and sends the
ciphertext and f to the controller. Using the ciphertext, the controller generates n jobs that it distributes
to the workers and, as above, the workers execute their jobs in parallel. When the entire computation is
finished, the client receives a ciphertext which it decrypts to recover f(x). To handle cases where even the
function f must be hidden, we introduce a second variant of PHE which we refer to as delegated PHE. This
variant includes an additional token generation algorithm that takes as input f and outputs a token τ that
reveals no information about f but that, nonetheless, can be used by the evaluation algorithm (instead of
f) to return an encryption of f(x).

Applications of PHE. As discussed above, the most immediate application of PHE is to the setting of
outsourced computation where a weak computational device wishes to make use of the resources of a more
powerful server. Clearly, to be useful in this setting it is crucial that either: (1) running the encryption and
decryption operations of the PHE scheme take less time than evaluating f on the input x directly; or (2)
the PHE scheme is multi-use in the sense that the evaluations of several (different) functions can be done
on a single ciphertext (this is also referred to as the online/offline setting). In this work we focus on the
latter and present several multi-use PHE schemes. Using our schemes a client can encrypt a large database
during an offline phase and then, have the workers evaluate many different functions on its data during
the online phase. In particular, the client does not need to know the functions it will want to evaluate
during the online phase at the time of encryption. In section 9 we show how our PHE schemes can be used
to evaluate several functionalities (e.g., keyword search, set membership testing, and disjunctions) for a
particular model of parallel computation which we describe below.
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Parallel computation. Most computations are not completely parallelizable and require some amount
of communication between machines. The specifics of how the computation and communication between
processors are organized leads to particular architectures, each having unique characteristics in terms
of computational and communication complexity. This has motivated the design of several architecture-
independent models of parallel computation, including NC circuits [16], the parallel RAM (PRAM) [25, 40],
Valiant’s bulk synchronous parallel (BSP) model [51], LogP [20] and, more recently, the MapReduce [23]
and Dryad models [33]. It follows that an important consideration in the design of PHE schemes is the
parallel model in which the function will be evaluated. In this work, we focus on the MapReduce model
(which we describe below) but note that our choice is due mainly to practical considerations (e.g., the
emergence of cloud-based MapReduce services such as Amazon’s Elastic MapReduce [1]) and that PHE
can also be considered with respect to other models of parallel computation. As an example, note that
any arithmetic FHE scheme yields an NC-parallel HE scheme for any function f in NC.

Applications to cloud-based cluster-computing. Due to its simplicity and generality, the MapRe-
duce model has quickly become the standard for working with massive datasets. In fact, it is arguably
the most successful and widely used model of parallel computation. In 2008 it was reported that Google
processed over 20 petabytes of data a day using MapReduce [24] and that Yahoo! deployed a 10, 000 core
MapReduce cluster [4]. A MapReduce algorithm is run by an execution framework that handles the details
of distributing work among the machines in the cluster, balancing the workload so as to optimize perfor-
mance and recovering from failures. The most popular framework is Hadoop [3] which is open source and
used by hundreds of large organizations including Amazon, Ebay, Facebook, Yahoo!, Twitter and IBM.

Building and maintaining large-scale clusters requires a considerable amount of effort and resources,
so a recent trend in cluster-computing has been to make use of cloud infrastructures. Examples include
Amazon’s Elastic MapReduce [1], Cloudera’s Hadoop distribution [2] (which can run over several cloud
infrastructures) and the recently announced Microsoft Azure Hadoop service. With such services, a client
can run a MapReduce algorithm on massive datasets “in the cloud”. While these services allow clients to
take advantage of all the benefits of cloud computing, they require the client to trust the provider with
its data. For many potential clients (e.g., hospitals or government agencies) this presents an unacceptable
risk.

Using an MR-parallel HE scheme a client can maintain the confidentiality of its data while utilizing
the processing power of a third-party MapReduce cluster such as Amazon’s Elastic MapReduce service.
Of course, the client must bear the costs of encryption and decryption which, for massive datasets, can
represent a non-trivial amount of work. But, as discussed above, in certain settings this cost is dominated
by the amount of work that is outsourced. This occurs, for example, if the function being evaluated is very
complex or if the client wishes to evaluate many different functions over its data (i.e., the offline/online
setting). We also note that for all of our constructions, encryption can be performed in a streaming manner.
This means that even if the data is very large, it can still be encrypted by a “weak” client (i.e., with a
small amount of memory) albeit rather slowly.

1.1 Overview of Techniques

Designing PHE schemes. Our approach to designing PHE schemes combines randomized reductions
(RR) [12, 13] and homomorphic encryption. Roughly speaking, a RR from a function f to a function
g transforms an input x in the domain of f to a set of n inputs S = (s1, . . . , sn) in the domain of g
such that f(x) can be efficiently recovered from (g(s1), . . . , g(sn)). In addition, a RR guarantees that no
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information about x or f(x) can be recovered from any subset of t ≤ n elements of S. A natural approach
to constructing a PHE (ignoring the particualr model of parallel computatin) is therefore to “encrypt” x
by using a RR to transform it into a set (s1, . . . , sn) and have each worker i evaluate g on si independently.
The results can then be sent back to the client who can recover f(x) using the reduction’s recover algorithm.
As long as at most t workers collude, the RR will guarantee the confidentiality of x and f(x).

Unfortunately, there are two problems with this approach. First, as far as we know, the best hiding
threshold achieved by any RR is t ≤ (n − 1)/q [12, 13]. In the context of cloud computing, however, this
is not a reasonable assumption as the cloud provider owns all the machines in the cluster 1. Another
limitation is that the client has to run the RR’s recovery algorithm which can represent a non-trivial
amount of work depending on the particular scheme and the parameters used.

We address these limitations in the following way. First, we show how to construct fully-hiding RRs,
i.e., reductions with a hiding threshold of t = n. Our first construction is for the class of univariate
polynomials while the second is for multivariate polynomials with a “small” (i.e., poly-logarithmic in the
security parameter) number of variables. As far as we know, these are the first RRs to achieve a threshold
of t = n. Towards handling the second limitation, we observe that if the recovery algorithm of the RR
can be evaluated homomorphically, then the recovery step can also be outsourced to the workers. Clearly,
using FHE any recovery algorithm can be outsourced, but our goal here is to avoid the use of FHE so as
to have practical schemes. Our approach therefore will be to design RRs with recovery algorithms that are
either (1) simple enough to be evaluated using partially-homomorphic encryption; or (2) efficient enough
to be run by the client.

Designing fully-hiding RRs. The best known RRs for polynomials [12, 13] work roughly as follows.
Let Q be the polynomial of degree q that we wish to evaluate and x ∈ Fm be the input. First, each element
of x is shared into q · t+ 1 shares using Shamir secret sharing with a sharing polynomial of degree t (i.e.,
the hiding threshold). This yields m sets of shares (s1, . . . , sm), where si = (si[1], . . . , si[q · t + 1]). Each
worker j ∈ [q · t+ 1] is then given (s1[j], . . . , sm[j]) and evaluates Q on his shares. Given the results of all
these evaluations, the client interpolates at 0 to recover Q(x). This approach yields a hiding threshold of
up to t = (n − 1)/q. Note that this construction works equally as well for m = 1. As shown in [12, 13],
this can be improved to t = n · c log(m)/m for any constant c > 0 and m > 1.

Due to their reliance on secret sharing, it is not clear how to extend the techniques from [12, 13] to
achieve t = n and (informally) it seems hard to imagine using any technique based on secret sharing
to achieve full hiding. Instead, we introduce two new techniques for designing RRs. The first works for
univariate polynomials and makes use of permutation polynomials over finite fields (i.e., bijective families of
polynomials). The resulting RR is information-theoretically secure and very efficient. Our second approach
is only computationally-secure but works for multivariate polynomials. The security of the reduction is
based on the multi-dimensional noisy curve reconstruction assumption [36, 45].

1.2 Our Contributions

While (sequential) homomorphic encryption constitutes an important step towards private outsourced
computation, an increasing fraction of the computations performed “in the cloud” is on massive datasets
and therefore requires the computation to be performed on clusters of machines. To address this, we make
the following contributions:

1Of course one could use the above approach with more than one cloud providers if they do not collude.
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1. We initiate the study of PHE and delegated PHE (which also hides the function being evaluated).
In particular, we consider the MapReduce model of parallel computation and formalize MapReduce-
parallel HE schemes. Given the practical importance of the MapReduce model and the emergence
of cloud-based MapReduce clusters, we believe the study of MapReduce-parallel HE to be important
and well motivated.

2. We construct new RRs for univariate and multivariate polynomials with a small number of vari-
ables (i.e., polylogarithmic in the security parameter). Our reduction for univariate polynomials is
information theoretically secure while our reduction for multivariate polynomials is secure based on
the multi-dimensional noisy curve reconstruction assumption [36]. Both our constructions achieve a
hiding threshold of t = n and are, as far as we know, the first constructions to do so.

3. We give a general transformation from any RR to a MR-parallel HE scheme given any public-key
HE scheme that can evaluate the reductions’ recovery algorithm. If the RR works for any function
within a class C, then the resulting MR-parallel scheme is C-homomorphic.

4. We show how to construct a delegated MR-parallel HE scheme for any function whose output values
can be computed by evaluating a (single) univariate polynomial over the input values. Our construc-
tion is based on our RR for univariate polynomials and makes black-box use of a 2DNF-HE scheme
(i.e., a HE scheme that can handle a single multiplication and any number of additions) such as
[15, 31].

5. We show how to construct a MR-parallel HE scheme for any function in NC0
m which consists of all

functions whose outputs depend on at most m input elements. We note that the construction is not
delegated. The scheme makes use of our RR for multivariate polynomials and makes black-box use
of additively HE.

6. Finally, we show how our MR-parallel HE schemes can be used to evaluate various database queries
on encrypted datasets including keyword search and set membership testing.

2 Related Work

We already mentioned previous work on parallel computation so we restrict the following discussion to
work closer to our own.

Randomized reductions & encodings. Private outsourced computation is also known as instance
hiding and was first considered by Abadi, Feigenbaum and Kilian [5]. Abadi et al. show that if a function
f is NP-hard then it cannot be privately outsourced (even using interaction) unless the polynomial hierarchy
collapses. This negative result motivated Beaver and Feigenbaum [11] to consider a setting where the client
outsources to multiple servers that are not allowed to communicate. Under these constraints, the authors
show that every function f can be privately outsourced by constructing a RR for multi-variate polynomials
that achieves a hiding threshold of t = 1 (i.e., without any resistance to collusion). Following [11], Beaver,
Feigenbaum, Killian and Rogaway showed how to achieve t = (n− 1)/q for any m-variate polynomial with
m ≥ 1 and t = n · c log(m)/m for c,m > 1 [12, 13].

A related notion to RRs are randomized encodings (RE), first proposed by Ishai and Kushilevitz for the
purpose of constant-round multi-party computation [34, 35] and later used for the construction of various
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cryptographic primitives (e.g., pseudo-random generators, commitment schemes, public-key encryption)
with efficient parallel complexity [7, 6, 8, 9]. While REs imply RRs the converse is not known to be true
[10].

Homomorphic encryption. As mentioned in section 1, the problem of private outsourced computation
can be addressed non-interactively using HE. Of course, several semantically secure arithmetic HE schemes
are known [32, 27, 14, 46, 44, 47, 21, 15, 31], including Gentry’s breakthrough FHE scheme [29] and its
variants [52, 50]. Several non-arithmetic HE schemes are also known including [49, 17, 37, 30].

MapReduce. MapReduce was introduced by Dean and Ghemawat in [23]. In this work, they describe
the design and implementation of the MapReduce framework for processing massive datasets on large-scale
systems of loosely coupled machines. MapReduce offers a simple interface to design and implement parallel
algorithms and an execution framework that handles the details of distributing work among the machines
in the cluster, balancing the workload so as to optimize performance and recovering from failures. Due
to the simplicity and generality of the MapReduce model, it has quickly become the standard for working
with massive datasets

The MapReduce model of computation has been formalized and studied in recent work by Karloff,
Suri and Vassilvitskii [39]. This work introduces a new complexity class that captures the power of the
model and relates it to known models of parallel computation, including PRAMs and NC circuits. The
authors also present new MapReduce algorithms for frequency counts, undirected s-t connectivity and for
computing the minimum spanning tree of a dense graph.

Other MapReduce algorithms have been proposed for a multitude of tasks, including for indexing the
Web and computing PageRank [23], clustering high-dimensional data [22], processing large-scale graphs
[38, 18, 43, 39], machine learning [19] and natural language processing [48].

3 Preliminaries and Notation

Notation. We write x← χ to represent an element x being sampled from a distribution χ, and x
$← X

to represent an element x being sampled uniformly from a set X. The output x of an algorithm A is
denoted by x ← A. We refer to the ith element of a vector v as either vi or v[i]. Throughout k will
refer to the security parameter. A function ν : N → N is negligible in k if for every polynomial p(·) and
sufficiently large k, ν(k) < 1/p(k). Let poly(k) and negl(k) denote unspecified polynomial and negligible
functions in k, respectively. We write f(k) = poly(k) to mean that there exists a polynomial p(·) such that
for all sufficiently large k, f(k) ≤ p(k), and f(k) = negl(k) to mean that there exists a negligible function
ν(·) such that for all sufficiently large k, f(k) ≤ ν(k). The statistical distance between two distributions
χ1 and χ2 over the same space X is defined as SD(χ1, χ2) = maxS⊂X |Pr [χ1 ∈ S ]− Pr [χ2 ∈ S ]|.

Polynomials. If p is a univariate polynomial of degree d over a field F, then it can be written as
p(x) =

∑
α∈S p(α) · Lα(x), where S is an arbitrary subset of F of size d + 1 and Lα is the Lagrangian

coefficient defined as Lα(x) =
∏
i∈S,i6=α(x−i)/(α−i). A permutation polynomial p ∈ F[x] is a bijection over

F. One class of permutation polynomials which will make use of in this work are the Dickson polynomials
(of the first kind) which are a family of polynomials D = {Dd,β} over a finite field F indexed by a degree
d > 0 and a non-zero element β ∈ F. If |F|2 − 1 is relatively prime to d and if β 6= 0, then the Dicskon

6



polynomial Dd,β defined as

Dd,β(x)
def
= Dd(x, β) =

bd/2c∑
λ=0

d

d− λ
·
(
d− λ
λ

)
· (−β)λxd−2λ,

is a permutation over F. For d = 2 and any β 6= 0, we have D2,β(x) = x2− 2β which is a permutation over
any F such that |F|2 − 1 is odd.

Locality and degree. Here, we follow closely the notation and definitions of [7]. We view a function
f : F∗ → F∗ as a function family {fn}n∈N where fn is the restriction of f to inputs of length n. Throughout
this work we will represent a function fn : Fn → Fw as a vector of polynomials (Q1, . . . ,Qw) such that the
ith output of fn can be computed using Qi. We assume that f can be computed in polynomial time in n
and that its vector representation can be found in polynomial time.

We say that f is `-local if all its output elements depend on at most ` input elements and that it has
degree d if each polynomial in its vector representation has degree at most d. The (arithmetic) class NC0

`

includes all `-local functions that are computable and constructible in polynomial time (throughout this
work all complexity classes will be uniform). Furthermore, we denote by NC0

`,eq the class of functions that
are `-local and whose vector representation is such that Q1 = · · · = Qw.

Homomorphic encryption. Let F be a family of of n-ary functions. A F-homomorphic encryption
scheme is a set of four polynomial-time algorithms HE = (Gen,Enc,Eval,Dec) such that Gen is a probabilistic
algorithm that takes as input a security parameter k and outputs a secret key K; Enc is a probabilistic
algorithm that takes as input a key K and an n-bit message m and outputs a ciphertext c; Eval is a (possibly
probabilistic) algorithm that takes as input a function f ∈ F and n encryptions (c1, . . . , cn) of messages
(m1, . . . ,mn) and outputs an encryption c of f(m1, . . . ,mn); and Dec is a deterministic algorithm takes as
input a key K and a ciphertext c and outputs a message m. In this work, we make use of 2DNF-HE schemes
which support an arbitrary number of additions and a single multiplication. Concrete instantiations of such
schemes include [15] and [31]. Informally, a HE scheme is secure against chosen-plaintext attacks (CPA)
if the ciphertexts it outputs do not leak any useful information about the plaintext even to an adversary
that (in the case of a private-key scheme) can adaptively query an encryption oracle. As discussed in [28]
(cf., section 2.2.), the formal definition of CPA-security for standard encryption schemes can be used for
HE schemes.

4 MapReduce-Parallel Homomorphic Encryption

In this section, we first give an overview of the MapReduce model of computation together with an example
of a simple MapReduce algorithm. We refer the reader to [42] for a more detailed exposition. After
formalizing the MapReduce model, we define MapReduce-parallel HE schemes and present our security
definitions for standard and delegated MR-parallel HE schemes.

4.1 The MapReduce Model of Computation

At a high level, MapReduce works by applying a map operation to the data which results in a set of
label/value pairs. The map operation is applied in parallel and the resulting pairs are routed to a set
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of “reducers”. All pairs with the same label are routed to the same reducer which is then tasked with
applying a reduce operation that combines the values into a single value for that label.

More precisely, a MapReduce algorithm is divided into five (possibly probabilistic) algorithms: parse,
map, partition, reduce and merge. The parse algorithm takes an n-bit input x and outputs a set of
label/value pairs {(`i, vi)}i. The map algorithm takes a single input pair (`i, vi) and outputs a set of
intermediate pairs {(λj , γj)}j , where λj is from some label space Λ. Note that the intermediate pairs do
not have to be from the same space as the input pairs. The partition algorithm takes as input a set of
intermediate pairs and partitions it into the sets {Pl}l. The reduce algorithm takes as input a label λ and
a partition Pl and returns a string z. Finally, the merge algorithm takes a set of strings {zr}r and returns
an output y. For the algorithm to work properly, it is crucial that the map and reduce algorithms be
stateless.

Definition 4.1 (MapReduce algorithm). A MapReduce algorithm for a function family F is a tuple of
five polynomial-time algorithms Π = (Parse,Map,Part,Red,Merge) such that:

(`i, vi)i ← Parse(f, x): is a deterministic algorithm that takes as input a function f ∈ F and a string
x, and that returns a sequence of input pairs.

(λj , γj)j ← Map(`, v): is a (possibly probabilistic) algorithm that takes an input pair (`, v) and that
returns a sequence of intermediate pairs.

h← Part(λ, γ): is a (possibly probabilistic) algorithm that takes as input an intermediate pair (λ, γ)
and that returns a value h in some space H.

(λ, z)← Red(λ, P ): is a (possibly probabilistic) algorithm that takes as input a label λ and a set P of
intermediate values and returns an output pair (λ, z).

y ← Merge
(
(λt, zt)t

)
: is a deterministic algorithm that takes as input a set of output pairs and returns

a string y.

We will sometimes denote the execution of a MapReduce algorithm Π on a function f and input x as
y ← Π(f, x).

We add that all implementations of the MapReduce framework offer a default Part algorithm that maps
all the intermediate pairs with the same label to the same partition. This algorithm is usually referred to
as the Shuffle algorithm.

Executing a MapReduce Algorithm. A MapReduce algorithm Π = (Parse,Map,Part,Red,Merge) is
executed on a cluster of w workers and one controller as follows (we refer the reader to [23] for a more
detailed description). The client provides a function f and an input x to the controller who runs Parse
on (f, x), resulting in a sequence of input pairs (`i, vi)i. Each pair is then assigned by the controller to
a worker that evaluates Map on it. Note that since the Map algorithm is stateless, it can be executed in
parallel. Typically the number of input pairs is much larger than the number of workers so this stage may
require several rounds. When all the input pairs have been processed, the Part algorithm is executed on
the set of intermediate pairs. This results in a partition of the intermediate pairs and each element of the
partition is then assigned to a worker that runs the Red algorithm. Again, since Red is stateless it can
be executed in parallel (though it can be sequential on its own partition). The outputs of all these Red
executions are then processed using Merge and the final result is returned to the client. At any time, a
worker is either executing the Map algorithm (in which case it is a mapper) or the Red algorithm (in which
case it is a reducer).
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An example. Perhaps the simplest example of a MapReduce algorithm is to determine frequency counts,
i.e., the number times a keyword occurs in a document collection. The parse algorithm takes the document
collection (D1, . . . , Dn) as input and outputs a set of input pairs (i,Di)i. Each mapper receives an input pair
(i,Di) and outputs a set of intermediate pairs (wj , 1)j for each word wj found in Di. All the intermediate
pairs are then partitioned by the partition operation into sets {Pl}, where Pl consists of all the intermediate
pairs with label wl. The reducers receive a set Pl of intermediate pairs and sum the values of each pair.
The result is a count of the number of times the word wl occurs in the document collection. The merge
algorithm then concatenates all these counts and returns the result.

4.2 Syntax and Security Definitions

A MR-parallel HE scheme is a HE whose evaluation operation can be computed using a MapReduce
algorithm. We formalize this in the following definition.

Definition 4.2 (MR-parallel HE). A private-key MR-parallel F-homomorphic encryption scheme is a
tuple of polynomial-time algorithms PHE = (Gen,Enc,Eval,Dec), where (Gen,Enc,Dec) are as in a private-
key encryption scheme and Eval = (Parse,Map,Part,Red,Merge) is a MapReduce algorithm. More precisely
we have:

K ← Gen(1k): is a probabilistic algorithm that takes as input a security parameter k and that returns
a key K.

c ← Enc(K,x): is a probabilistic algorithm that takes as input a key K and an input x from some
message space X, and that returns a ciphertext c. We sometimes write this as c← EncK(x).

(`i, vi)i ← Parse(f, c): is a deterministic algorithm that takes as input a function f ∈ F and a
ciphertext c, and that returns a sequence of input pairs.

(λj , γj)j ← Map(`, v): is a (possibly probabilistic) algorithm that takes an input pair (`, v) and that
returns a sequence of intermediate pairs.

h← Part(λ, γ): is a (possibly probabilistic) algorithm that takes as input an intermediate pair (λ, γ)
and that returns a value h in some space H.

(λ, z) ← Red(λ, P ): is a (possibly probabilistic) algorithm that takes a label λ and a partition P of
intermediate values and returns an output pair (λ, z).

c′ ← Merge
(
(λt, zt)t

)
: is a deterministic algorithm that takes as input a set of output pairs and

returns a ciphertext c′.

y ← Dec(K, c′): is a deterministic algorithm that takes a key K and a ciphertext c′ and that returns
an output y. We sometimes write this as y ← DecK(c′).

We say that PHE is correct if for all k ∈ N, for all f ∈ Fk, for all K output by Gen(1k), for all x ∈ X, for
all c output by EncK(x), DecK

(
Eval(f, c)

)
= f(x).

To be usable in the setting of private outsourced computation, a PHE scheme should guarantee that its
ciphertexts reveal no useful information about the input x or the output f(x). We note that in this setting
it is sufficient for this to hold with respect to a single input. In the context of outsourced computation, as
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opposed that of secure communication, the cost of generating a new key per input is negligible. As such,
our security definitions only guarantee security for a single input (which could be, e.g., a massive dataset).

Another issue to consider in the context of HE is the possibility side-channels during the evaluation.
Such leakage can occur if some aspect of the evaluation of f is data-dependent (e.g., the amount of space
used or the time needed to complete) so some care has to be taken to make the evaluation “leakage-
resilient”. In the case of arithmetic FHE, side-channels are not a concern since evaluation is done by
executing a circuit which is a data-oblivious operation. This is not the case for MR-parallel HE, however,
since many “natural” MapReduce algorithms appear to be very data-dependent. Consider, for instance,
the simple frequency count algorithm described above. The number of intermediate pairs immediately
reveals the number of words in a document and the sizes of the partition elements reveal the counts for all
the words.

Definition 4.3 (CPA1-security). Let PHE = (Gen,Enc,Token,Map,Part,Red,Merge,Dec) be a MR-parallel
F-homomorphic encryption scheme and consider the following probabilistic experiments where A is an
adversary and S is a simulator:

RealPHE,A(k): the challenger begins by running Gen(1k) to generate a key K. A outputs an input x
and receives a ciphertext c ← EncK(x) from the challenger. A returns a bit b that is output by the
experiment.

IdealPHE,A,S(k): A outputs an input x. Given |x|, S generates and returns a ciphertext c to A. A returns
a bit b that is output by the experiment.

We say that PHE is secure against a single-message chosen-plaintext attack if for all ppt adversaries A,
there exists a ppt simulator S such that

|Pr [ RealPHE,A(k) = 1 ]− Pr [ IdealPHE,A,S(k) = 1 ]| ≤ negl(k),

where the probabilities are over the coins of Enc, A and S.

A delegated PHE scheme is a PHE scheme that supports computation on encrypted data in such a way
that the function being computed is hidden. We provide a formal definition below.

Definition 4.4 (Delegated MR-parallel HE). A delegated MR-parallel F-homomorphic encryption scheme
is a tuple of nine polynomial-time algorithms PHE = (Gen,Enc,Token,Parse,Map,Part,Red,Merge,Dec)
such that (Gen,Enc,Map,Part,Red,Merge,Dec) are as in Definition 4.2 and that Token and Parse are as
follows:

τ ← Token(K, f): is a probabilistic algorithm that takes as input a key K and a function f and that
returns a token τ . We can write this as τ ← TokenK(f).

(`i, vi)i ← Parse(τ, c): is a deterministic algorithm that takes as input a token τ and a ciphertext c,
and that returns a sequence of input pairs.

We say that PHE is correct if for all k ∈ N, for all f ∈ Fk, for all K output by Gen(1k), for all x ∈ X,
for all c output by EncK(x), for all tokens τ output by Token(K, f), DecK

(
Π(τ, c)

)
= f(x), where Π =

(Parse,Map,Part,Red,Merge).

In addition to CPA1-security, a delegated PHE scheme should also hide the function being evaluated.
This is formally captured in the following definition.
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Definition 4.5 (CPFA1-security). Let PHE = (Gen,Enc,Token,Map,Part,Red,Merge,Dec) be a delegated
MR-parallel F-homomorphic encryption scheme and consider the following probabilistic experiments where
A is an adversary and S is a simulator:

Real?PHE,A(k): the challenger begins by running Gen(1k) to generate a key K. A outputs an input x and
receives a ciphertext c← EncK(x) from the challenger. The adversary chooses a polynomial number
of functions f ∈ F and, for each f , receives a token τ ← TokenK(f) from the challenger. Note that
each choice of f is done adaptively, i.e., as a function of c, the previously chosen functions and the
previously received tokens. Finally, A returns a bit b that is output by the experiment.

Ideal?PHE,A,S(k): A outputs an input x. Given |x|, S generates and returns a ciphertext c to A. The
adversary chooses a polynomial number of functions f ∈ F and, for each function f , the simulator is
given deg(f). The simulator returns a token τ . Again, A chooses the functions adaptively. Finally,
A returns a bit b that is output by the experiment.

We say that PHE is secure against a single-message chosen-plaintext and function attacks if for all ppt
adversaries A, there exists a ppt simulator S such that∣∣Pr

[
Real?PHE,A(k) = 1

]
− Pr

[
Ideal?PHE,A,S(k) = 1

]∣∣ ≤ negl(k),

where the probabilities are over the coins of Enc, Token, A and S.

5 Randomized Reductions for Polynomials

In this section, we formally define randomized reductions [11, 12, 13] and then present our fully-hiding
constructions for univariate and multivariate polynomials. Our definitions follow closely the ones given by
Beaver, Feigenbaum, Killian and Rogaway [13].

Let t, n ∈ N such that t ≤ n. A function f : X → Y is (t, n)-locally random reducible to a function
g : X̃ → Ỹ if there exists two polynomial-time algorithms RR = (Scatter,Recon) that work as follows.
Scatter is a probabilistic algorithm that takes as input an element x ∈ X and a parameter n ∈ N, and
returns a sequence s ∈ X̃n and some state information st. Recon is a deterministic algorithm that takes
as input some state st and a sequence y ∈ Ỹ n and returns an element y ∈ Y . In addition, we require that
RR satisfy the following properties:

• (Correctness) for all x ∈ X,

Pr
[

Recon
(
st, g(s1), . . . , g(sn)

)
= f(x) : (s, st)← Scatter(x, n)

]
≥ 3/4,

where the probability is over the coins of Scatter. We depart slightly from the original definition [13]
in that here Recon does not need to take x as input.

• (t-hiding) for all I ⊆ [n] such that |I| = t, and all x1 and x2 in X such that |x1| = |x2|,{
〈si〉i∈I : (s, st)← Scatter(x1, n)

}
≈
{
〈si〉i∈I : (s, st)← Scatter(x2, n)

}
where the distributions are over the coins of Scatter. If t = n, we sometimes say that f is fully
hiding. If the distributions are identically distributed we say that f is perfectly hiding, and if the
distributions are computationally indistinguishable we say f is computationally hiding.
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If g = f , then RR is a randomized self reduction (RSR). Furthermore, if there exists a pair of algorithms
RSR = (Scatter,Recon), such that for every function f in some class C, RSR is a random self reduction for
f , then we say that RSR is a universal random self reduction over C. All of our constructions are universal.

5.1 A Perfect Randomized Self Reduction for Univariate Polynomials

In this section, we present a fully-hiding randomized reduction for univariate polynomials. As far as we
know, the best hiding threshold previously achieved by any RR for univariate polynomials of degree q is
t ≤ (n− 1)/q which is achieved by the construction of Beaver, Feigenbaum, Killian and Rogaway [12, 13].
Like the construction presented in [12, 13], our randomized reduction is universal and self-reducing.

Let Q be a degree q univariate polynomial over a finite field F such that |F| ≥ 2q + 1 and |F|2 − 1 ≡ 1

(mod 2), and let δ[Fn]
def
=
{
v ∈ Fn : vi 6= vj for all i, j ∈ [n]

}
. Consider the random self reduction

Poly1q = (Scatterq,Reconq) defined as follows:

• Scatterq(x): let n = 2q + 1 and sample a vector α uniformly at random from δ [Fn]. For all i ∈ [n],
compute si := D2(αi,−x/2) = α2

i + x. Output (s1, . . . , sn) and st = α.

• Reconq(st, y1, . . . , yn): output y =
∑n

i=1 yi · Lαi(0).

Theorem 5.1. Poly1q is a perfect and fully-hiding randomized self reduction.

Proof. Towards showing correctness, let Q̂(α)
def
= Q

(
D2(α,−x/2)

)
(for some x ∈ F) and note that Q̂(0) =

Q(x). We therefore have:

y =

2q+1∑
i=1

yi · Lαi(0) =

2q+1∑
i=1

Q
(
D2(αi,−x/2)

)
· Lαi(0) =

2q+1∑
i=1

Q̂(αi) · Lαi(0) = Q̂(0) = Q(x),

since deg(Q̂) = 2q. We now consider perfect hiding. Let n = 2q + 1 and note that for fixed q ∈ N and
x ∈ F, Scatter evaluates the vector-valued function fx,q : δ[Fn]→ δ[Fn] defined as

fx,q(α) =

(
D2

(
α1,−x/2

)
, ...,D2

(
αn,−x/2

))
,

for a random α. Note that fx,q is a permutation over δ[Fn] since D2(α, β) is a permutation over F for any
β (this follows from the fact that |F|2 − 1 ≡ 1 (mod 2)). Let U be the uniform distribution over δ[Fn]. In
the following, for visual clarity we drop the subscript q and denote fx,q by fx. For all x1 and x2 in F,

SD
(
fx1(U), fx2(U)

)
= max

S⊂δ[Fn]
|Pr [ fx1(U) ∈ S ]− Pr [ fx2(U) ∈ S ]|

= max
S⊂δ[Fn]

∣∣Pr
[
U ∈ f−1

x1 (S)
]
− Pr

[
U ∈ f−1

x2 (S)
]∣∣

≤ max
V,V ′⊂δ[Fn]
|V |=|V ′|

∣∣Pr [U ∈ V ]− Pr
[
U ∈ V ′

]∣∣
= 0

where the last equality follows from the fact that fx1 and fx2 are permutations over δ[Fn].
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5.2 A Computational Randomized Self Reduction for Multivariate Polynomials

We now present a fully-hiding RSR for multi-variate polynomials. The best known hiding threshold
previously achieved is from a construction of [12, 13] which achieves t ≤ n · c log(m)/m for c and m greater
than 1. Our construction is universal and self-reducing.

Let Q be a m-variate degree q polynomial over a finite field F such that |F| ≥ n+1, for n ∈ N. Consider
the randomized self reduction Polymq = (Scatterq,Reconq) defined as follows:

• Scatterq(x): let n = 2q + 1 and sample m univariate polynomials (p1, . . . , pm) of degree 2 such

that pi(0) = xi for all i ∈ [m]. Let N = ω(n · (n/q)m) and α
$← δ[Fn]. For all j ∈ [n], set

zj :=
(
p1(αj), . . . , pm(αj)

)
and for all j ∈ [n + N ] set zj

$← Fm. Let S = (s1, . . . , sn+N ) be the
sequence that results from permuting the elements of Z = (z1, . . . , zn+N ) at random and let Γ be the
locations in S of the elements in Z that were chosen at random in Fm. Output S and st = (α,Γ).

• Reconm,q(st, y1, . . . , yn+N ): parse st as (α,Γ) and output y =
∑

i 6∈Γ yi · Lαi(0).

The security of our randomized reduction is based on the multi-dimensional noisy curve reconstruction
assumption from Ishai, Kushilevitz, Ostrovsky and Sahai [36], which extends the polynomial reconstruction
(PR) assumption from Naor and Pinkas [45].

Assumption 5.2 (Multi-dimensional noisy curve reconstruction [36, 45]). The multi-dimensional noisy
curve reconstruction (CR) assumption is defined in terms of the following experiment where x is a m-
dimensional vector over a finite field F, d > 1, and t = t(k) and z = z(k) are functions of k:

CurveRec(k,x, d, n,N,m): sample a vector α
$← Fn and a random subset of N indices Γ chosen from

[n + N ]. Choose m random univariate polynomials (p1, . . . , pm) such that each pi is of degree at
most d and that pi(0) = xi. For all j ∈ [n], set zj = (p1(αj), . . . , pm(αj)) and for all j ∈ [n + N ]

set zj
$← Fm. Let S = (s1, . . . , sn+N ) be the sequence that results from permuting the elements of

Z = (z1, . . . , zn+N ) uniformly at random. The output of the experiment is (s1, . . . , sn+N ).

We say that the CR assumption holds over F with parameters (d, n,N,m) if for all x1 and x2 in Fm,{
CurveRec(k,x1, d, n,N,m)

}
c
≈
{

CurveRec(k,x2, d, n,N,m)

}
We note that the CR assumption is believed to hold when N is ω(n · (n/d)m) and |F| = N [36].

Remark. Setting n and N to be polynomial in k, the CR assumption is believed to hold as long as
m = polylog(k). We note, however, that the parameters provided in [36] and used in this work are for the
stronger “augmented CR” assumption which outputs, in addition to the vectors (s1, . . . , sn+N ), the evalu-
ation points (α1, . . . , αn) together with N random values. It is therefore plausible that the CR assumption
could hold for a wider range of parameters and, in particular, for m = poly(k).

In the following theorem, we show that Polymq is a fully-hiding and universal RSR for the class of multi-
variate polynomials with a poly-logarithmic number of variables.

Theorem 5.3. Polymq is a computational and fully-hiding random self reduction.
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Proof. Since the fully-hiding property follows directly from the CR assumption we only show correctness.

Let Q̂(α)
def
= Q

(
p1(α), . . . , pm(α)

)
and note that Q̂(0) = Q(x1, . . . , xm). We therefore have

y =
∑
i 6∈Γ

yi · Lαi(0) =
∑
i 6∈Γ

Q
(
p1(αi), . . . , pm(αi)

)
· Lαi(0) =

∑
i 6∈Γ

Q̂(αi) · Lαi(0) = Q̂(0) = Q(x1, . . . , xm),

since deg(Q̂) = 2q and |[n+N ] \ Γ| = 2q + 1.

6 MR-Parallel HE from Randomized Reductions

We now show how to construct a MR-parallel HE scheme from any F-homomorphic encryption scheme and
any fully-hiding RR between functions f and g whose reconstruction algorithm is in F . At a high-level,
the construction works as follows.

The RR’s scatter algorithm is applied to each element xi of the input x. This results in a sequence si
and a state sti. The latter is encrypted using the F-homomorphic encryption scheme and each mapper
receives a pair composed of a label ` = i and a value v of the form (si[j], ei) for some i ∈ [#x] and j ∈ [n]
and where ei is a F-homomorphic encryption of sti. The mapper evaluates g on si[j] and returns an
intermediate pair with label λ = i and value γ =

(
g(si[j]), ei

)
. After the shuffle operation, each reducer

receives a pair composed of a label i and a partition

P =

((
yi,j , ei

)
, . . . ,

(
yi,n, ei

))
,

where yi,j = g(si[j]) for j ∈ [n]. Since Recon is in F , the reducer can evaluate Recon(ei, yi,1, . . . , yi,n)
homomorphically which results in an encryption of f(xi).

Note that this approach yields a function-private MR-parallel HE scheme so it can be used in the
context of private function evaluation. To be useful for server-aided computation, however, the running
time of the reduction’s scatter algorithm and of the HE scheme’s decryption algorithm must be less than
the fastest known algorithm for computing f . If the reduction is C-universal, however, the client can
evaluate multiple functions on the same encrypted input if we include a description of the function in the
input value. We describe this variant in Figure 1.

Theorem 6.1. If HE is CPA-secure and if RR is fully-hiding, then PHE as described in Figure 1 is secure
against single-message chosen-plaintext attacks.

Proof sketch: Consider the simulator S that simulates ciphertexts in an Ideal(k) experiment as follows.
Given #x it generates (pk′, sk′) ← Gen(1k) and, for all i ∈ [#x], it computes (s′i, st

′
i) ← Scatter(0)

and e′i ← HE.Encpk′(st
′
i). It outputs c′ = (pk′, s′1, . . . , s

′
#x, e

′
1, . . . , e

′
#x). The fully-hiding property of RR

guarantees that the s′i’s are indistinguishable from the si’s generated in a Real(k) experiment. Similarly,
the CPA-security of HE guarantees that the e′i’s are indistinguishable from the ei’s generated in a Real(k)
experiment.

7 An Efficient Delegated MR-Parallel HE Scheme for NC0
1,eq

It is easy to see that instantiating the RR and the HE scheme in our general construction with our
universal and fully-hiding RSR for univariate polynomials (from section 5.1) and a FHE scheme yields a
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Let HE = (Gen,Enc,Eval,Dec) be a public-key F-homomorphic encryption scheme and let RR = (Scatter,Recon)
be a C-universal (t, n)-local randomized reduction from f to g such that Recon ∈ F . Consider the
multi-use MR-parallel C-homomorphic encryption scheme PHE = (Gen,Enc,Eval,Dec), where PHE.Eval =
(Parse,Map,Part,Red,Merge), defined as follows:

• Gen(1k): compute (pk, sk)← HE.Gen(1k). Output K = (sk, pk).

• Enc(K,x): for all i ∈ [#x], compute (si, sti) ← Scatter(xi) and ei ← HE.Encpk(sti). Output c =
(pk, s1, . . . , s#x, e1, . . . , e#x).

• Parse(f, c): for all i ∈ [#x] and j ∈ [n], set `i,j := i and vi,j := (f, pk, si[j], ei). Output (`i,j , vi,j)i,j .

• Map(`, v): parse v as (f, s, e) and compute a← HE.Encpk(g(s)). Output λ := ` and γ := (a, e).

• Red(λ, P ): parse P as (ar, er)r and compute z ← HE.Eval(Recon, er, (ar)r). Output (λ, z).

• Merge
(
(λt, zt)t

)
: output c′ := (zt)t.

• Dec(K, c′): for all i ∈ [#c′], compute yi := HE.Decsk(zi). Output y = (y1, . . . , y#c′).

Figure 1: MR-parallel HE from RR and HE

multi-use MR-parallel HE scheme for functions in NC0
1,eq since all functions f ∈ NC0

1,eq can be computed
by evaluating a single univariate polynomial. In addition, the resulting construction can be made delegated
by encrypting the coefficients of the polynomial using the FHE scheme and having the mappers perform
their computations homomorphically.

Current FHE constructions, however, are not yet practical enough for our purposes so we present a
direct construction based only on 2DNF-HE. The direct construction also has the advantage that the input
values sent to the mappers are smaller than what would result from our general construction. We describe
our scheme in detail in Figure 2 but, at a high level, it works as follows. First, recall that Poly1q scatters an
input x by using it to choose a polynomial D from a family of permutation polynomials of degree 2. This
polynomial is then evaluated at n = 2q+1 distinct locations α = (α1, . . . , αn) chosen uniformly at random.
This results in a sequence s = (s1, . . . , sn) which, together with α, are the output of the scatter operation.
Reconstruction consists recovering Q(x) from y =

(
Q(s1), . . . ,Q(sn)

)
and α using interpolation. The main

difficulty in using the general approach is that it is unclear how to evaluate the reconstruction algorithm
(i.e., interpolation of Q(x) from y and α) homomorphically without making use of FHE.

Our approach, therefore, will be to have the client perform some additional work in order to make the
reconstruction algorithm simpler and computable using a weaker HE scheme. In particular, the client will
itself compute the Lagrangians needed for the interpolation and include them (encrypted) as part of the ci-
phertext. Notice that given y and a sequence of encrypted Lagrangians

(
EncK(Lα1(0)), . . . ,EncK(Lαn(0))

)
,

the value Q(x) can be interpolated homomorphically using only scalar multiplication and addition since

Q(x) =
∑
i

yi · Lαi(0).

To make the scheme delegated, however, we would also like to encrypt the coefficients of Q in such a way
that yi = Q(si) =

∑n
j=0 aj ·s

j
i can be evaluated homomorphically. These two constraints essentially require

that we be able to perform one multiplication (between an encrypted yi and an encrypted Lagrangians)
and multiple additions homomorphically which we can do relatively efficiently using a 2DNF-HE scheme.

In the following Theorem we prove the security of our construction.
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Let DNF = (Gen,Enc,Eval,Dec) be a private-key 2DNF-homomorphic encryption scheme and consider the
delegated MR-parallel NC0

1,eq-homomorphic encryption scheme PHE = (Gen,Enc,Eval,Dec), where PHE.Eval =
(Token,Parse,Map,Shuffle,Red,Merge), defined as follows:

• Gen(1k): compute and output K ← DNF.Gen(1k).

• Enc(K,x): for all i ∈ [#x] sample αi
$← δ[Fn] and compute

si :=

(
D2

(
α1,−xi/2

)
, . . . ,D2

(
αn,−xi/2

))
and

ei :=

(
EncK

(
Lαi[1](0)

)
, . . . ,EncK

(
Lαi[n](0)

))
,

where Enc refers to the encryption scheme of DNF. Output c =
(
(si[j], ei[j])

)
i,j

.

• Token(K, f): parse f as (Q, . . . ,Q) and let (a0, . . . , aq) be the coefficients of Q. For 0 ≤ i ≤ q, compute
τi ← DNF.EncK(ai). Output τ := (τ0, . . . , τq).

• Parse(τ , c): For i ∈ [#x] and j ∈ [n], set `i,j := i and vi,j := (τ , si[j], ei[j]). Output (`i,j , vi,j)i,j .

• Map(`, v): parse v as (τ , s, e) and compute

h := Eval(+, τ0, τ1 · s, . . . , τq · sq) = EncK

( q∑
i=0

ais
i

)
= EncK

(
Q(s)

)
,

and

γ := Eval(×, h, e) = EncK

(
Q(s) · Lαj

(0)

)
,

where Eval and Enc refer to the evaluation and encryption algorithms of DNF and where j is some value
in [n]. Output λ := ` and γ.

• Red(λ, P ): parse P as (γ1, . . . , γn) and output

z := Eval(+, γ1, . . . , γn) = EncK

(
n∑
i=1

Q(si) · Lαi(0)

)
= EncK

(
Q(xi)

)
,

for some i ∈ [n] and where Eval and Enc refer to the evaluation and encryption algorithms of DNF.

• Merge
(
(λt, zt)t

)
: output c′ := (λt, zt)t.

• Dec(K, c′): for all i ∈ [#c′], compute yi := HE.DecK(zi). Output y = (y1, . . . , y#c′).

Figure 2: A delegated MR-parallel NC0
1,eq-homomorphic encryption.

Theorem 7.1. If DNF is CPA-secure, then PHE as described in Figure 2 is secure against single-input
chosen-plaintext and function attacks.

Proof sketch: Consider the simulator S that simulates ciphertexts and tokens in an Ideal?(k) experiment
as follows. Given #x, it generates a key K ′ ← DNF.Gen(1k) and, for all i ∈ [#x] and j ∈ [n], computes
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(s′i,α
′
i)← Poly1q.Scatter(0) and

e′i :=

(
EncK

(
Lα′i[1](0)

)
, . . . ,EncK′

(
Lα′i[n](0)

))
.

It then returns c′ = (s′i[j], e
′
i[j])i,j . Given q, it returns τ ′ = (τ ′1, . . . , τ

′
q), where τ ′i = EncK′(0).

The fully-hiding property of Poly1q guarantees that the s′i,j ’s are indistinguishable from the si,j ’s gen-
erated in a Real? experiment. Similarly, the CPA-security of DNF guarantees that the e′i,j ’s are indistin-
guishable from the ei,j ’s in a Real?(k) experiment. Finally, the CPA-security of DNF also guarantees that
each τ ′ is indistinguishable from the τ generated in a Real?(k) experiment.

Efficiency. The most efficient approach for evaluating a polynomial on multiple points using the Fast
Fourier Transform (FFT) takes time O(q log q) for the evaluation of a degree q polynomial on q points.
Thus, the costs to evaluate a univariate polynomial Q of degree q over a sequence x using our construction
are O(#x · log q) for encryption, O(q) for token generation and O(#x) for decryption.

Therefore, in the setting of server-aided computation, our scheme can reduce the client’s work from
O(w ·#x · log q) to O(#x · log q+w · (q+ #x)) when evaluating f = (Q1, . . . ,Qw) in NC0

1,eq and #x� q.

8 A MR-Parallel HE Scheme for NC0
m

Similarly to the case of NC0
1,eq functions, our general construction yields a multi-use MR-parallel HE

scheme for functions in NC0
m if we instantiate its RR and HE scheme with a fully-hiding RR for multi-

variate polynomials (as our construction in section 5.2) and a FHE scheme.
To avoid the use of FHE, we present a direct construction that only makes use of additively HE. The

high-level approach is similar to our direct construction for NC0
1,eq functions: we make the client compute

the Lagrangians in order to simplify the computation that has to be performed homomorphically by the
reducers. Our construction is described in detail in Figure 3.

Theorem 8.1. If AHE is CPA-secure and if the multi-dimensional noisy curve reconstruction assumption
holds, then PHE as described in Figure 3 is secure against single-message chosen-plaintext attacks.

Proof sketch: Consider the simulator S that simulates ciphertexts in an Ideal(k) experiment as follows.
Given #x and q, it starts by generating a key K ′ ← AHE.Gen(1k). Then, for all i ∈ [#x] it (1)
generates s′i by running a CurveRec(k,0, 2, n,N,m) experiment (where 0 ∈ Fm); and (2) computes
e′i :=

(
EncK′(0), . . . ,EncK′(n + N)

)
, where Enc refers to the encryption algorithm of AHE. Finally, S

outputs the ciphertext c′ := (s′i, e
′
i)i.

The CR assumption and the CPA-security of AHE guarantee that the s′i’s and e′i’s generated by S are
indistinguishable from the si’s and ei’s in a Real(k) experiment.

Efficiency. The costs to evaluate a function f ∈ NC0
m of degree q and such that f = (Q1, . . . ,Qw) using

our construction are O(#x ·m ·q) for encryption and O(w) for decryption. Therefore, using our scheme, the
client can reduce its work from O(#x · qm) (using, e.g., the multivariate Horner rule) to O(#x ·m · q+w).
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Let AHE = (Gen,Enc,Eval,Dec) be a private-key additively homomorphic encryption scheme and consider
the MR-parallel NC0

m-homomorphic encryption scheme PHE = (Gen,Enc,Eval,Dec), where PHE.Eval =
(Parse,Map,Shuffle,Red,Merge,Dec), defined as follows:

• Gen(1k): output K ← AHE.Gen(1k).

• Enc(K,x):

1. let n = 2q + 1 and N = ω(n · (n/q)m)

2. choose a random permutation π over [n+N ]

3. sample a vector α
$← δ[Fn]

4. for all i ∈ [#x]:

(a) sample a univariate polynomial pi at random such that pi(0) = xi

(b) for all j ∈ [n],

i. compute zj := pi(αj) and z′j ← AHE.EncK(Lαj
(0))

(c) for all j ∈ [n+ 1, n+N ],

i. sample zj
$← F and compute z′j ← AHE.EncK(0).

(d) let si := π(z) and ei := π(z′)

(e) let Γ be the locations in si of the elements in z that were chosen at random

5. Output c := (si, ei)i

• Parse(f, c): parse f as (Q1, . . . ,Qw) and denote the locations on which Q depends by in(Q) . For all
i ∈ [w] and all j ∈ [n+N ], set `i,j = Qi and vi,j =

(
(sµ[j])µ∈in(Qi), ei[j]

)
. Output (`i,j , vi,j)i,j .

• Map(`, v): parse ` as Q and v as (s, e) and set λ := ` = Q and γ := Q(s) · e. Output (λ, γ).

• Red(λ, P ): parse λ as Q and P as (γ1, . . . , γn+N ) and output

z := Eval(+, γ1, . . . , γn+N ) = EncK

n+N∑
j=1

Q
(
si1 [j], . . . , sim [j]

)
· ζi,j

 = EncK
(
Q(x)

)
,

where (i1, . . . , im) are the indices of the elements on which Q depends and where ζi,j = Lαj

(
0
)

if j 6∈ Γ
and ζi,j = 0 if j ∈ Γ; and Eval and Enc refer to the evaluation and encryption algorithms of AHE.

• Merge((λt, zt)t): output c′ = (λt, zt)t.

• Dec(K, c′): for t ∈ [w], compute yt := AHE.DecK(zt). Output y := (y1, . . . , yw).

Figure 3: A MR-parallel NC0
m-homomorphic encryption scheme for m = polylog(k).

9 Applications of Our Constructions

In this section we discuss applications of our MR-parallel HE schemes. These applications do not depend
on any particular feature of our construction but can be achieved using any MR-parallel HE scheme for
NC0

1,eq and NC0
m. We show how to perform various queries over a n-element database x ∈ Fn.

Simple database queries. The simplest query we can support is for set membership. More precisely, if
S ⊆ F, the query Set(x, S) returns a n-bit string such that the ith bit indicates whether xi ∈ S. Note that
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the set S could encode a numerical range or a list of keywords. Our approach here is similar to that of
Kissner and Song for the purpose of secure two-party set intersection [41]. Using our NC0

1,eq-HE scheme,
it suffices to evaluate the function f = (Q1, . . . ,Qn) on x, where Q1 = ... = Qn is a univariate polynomial
whose roots are the values in S. Correctness follows from the fact that if xi ∈ S then Qi(xi) = 0 and if
xi 6∈ S then Qi(xi) 6= 0.

A slightly more complex query is OR(x, i1, . . . , im, w1, . . . xm) which outputs(
xi1 = w1

∧
· · ·
∧
xim = wm

)
.

The OR query can be computed using our NC0
m-HE scheme by evaluating the function Q(xi1 , . . . , xim) =

(w1 − xi1) × · · · × (wm − xim). Correctness follows from the fact that Q(xi1 , . . . , xim) = 0 if xij = wj for
some j and Q(xi1 , . . . , xim) 6= 0 otherwise.

Keyword search. A more complex query that can also be performed using our NC0
m construction with

m = 2 is keyword search. Here, let x =
(
(w1, v1), . . . , (wn, vn)

)
be a dataset where wi and vi are in F.

The query KS(x, w) outputs a sequence (z1, . . . , zn) such that zi = vi if wi = w and such that zi = 0 if
wi 6= w. The KS query can be handled using the approach of [26] which for every pair (wi, vi) computes

the polynomial Qw,r(wi, vi) = p1(vi) + r · p2(wi), where r
$← F, p1(v) returns v||0k and p2(w) = 0.
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