How to Delegate and Verify in Public:
Verifiable Computation from Attribute-based Encryption

Bryan Parno Mariana Raykova Vinod Vaikuntanathah
Microsoft Research Columbia University University of Toronto
par no@ri crosoft.com mari ana@s. col unbi a. edu vi nodv@s. t oront o. edu
Abstract

The wide variety of small, computationally weak devicesd &me growing number of computa-
tionally intensive tasks makes the delegation of companatid large data centers a desirable solution.
However, computation outsourcing is useful only when therreed result can be trusted, which makes
verifiable computation (VC) a must for such scenarios. I8 thork we extend the definition of veri-
fiable computation in two important directionpublic delegatiorand public verifiability, which have
important applications in many practical delegation sdesa Yet, existing VC constructions based on
standard cryptographic assumptions fail to achieve thesgepties.

As the primary contribution of our work, we establish an imtpat (and somewhat surprising) con-
nection between verifiable computation and attribute-tb@seryption (ABE), a primitive that has been
widely studied. Namely, we show how to construct a VC scheritie public delegation and public ver-
ifiability from any ABE scheme. The VC scheme verifies any fiorcin the class of functions covered
by the permissible ABE policies. This scheme enjoys a vefigieft verification algorithm that de-
pends only on the output size. Strengthening this conngatie show a construction ofraulti-function
verifiable computation scheme from an ABE with outsourcechgl#ion, a primitive defined recently
by Green, Hohenberger and Waters (USENIX Security 2011).utiffunction VC scheme allows the
verifiable evaluation of multiple functions dhe same preprocessed input

In the other direction, we also explore the constructionroA8E scheme from verifiable computa-
tion protocols.

*Supported by an NSERC Discovery Grant and by DARPA under Ageeérmumber FA8750-11-2-0225. The U.S. Government
is authorized to reproduce and distribute reprints for Governmentpbpas notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the author and slobbe interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of DARPA or tBeGbvernment.

1 Introduction

In the modern age of cloud computing and smartphones, asymmetry in compotireg geems to be the
norm. Computationally weak devices such as smartphones gather informationhan they need to store
the voluminous data they collect or perform expensive computations orttajrthey outsource the storage
and computation to a large and powerful server (a “cloud”, in moderampes). Typically, the clients have
a pay-per-use arrangement with the cloud, where the cloud chargedigheproportional to the effort
involved in the computation.

One of the main security issues that arises in this setting is — how can the cliettth&uthe cloud
performed the computation correctly? After all, the cloud has the financihiive to run an extremely fast
but incorrect computation (perhaps, once in a while), freeing up veduwampute time for other transac-
tions. Is there a way teerifiably outsourceomputations, where the client can, without much computational
effort, check the correctness of the results provided by the cloudfdtarore, can this be done without re-
quiring much interaction between the client and the cloud? This is the problapnehteractive verifiable
computation which was considered implicitly in the early work on efficient arguments by Kili#] and
computationally sound proofs (CS proofs) by Mic&P], and which has been the subject of much attention
lately [1-4,9,11,14,15].

The starting point of this paper is that while the recent solutions considksalwe the bare-bones
verifiable computation problem in its simplest form, there are a number of besfieatures that they fail
to achieve. We consider two such properties — nanpellglic delegatabilityandpublic verifiability.

Public Delegatability. Everyone should be able to delegate computations to the cloud. In some of the
protocols [, 3,9,11], a client who wishes to delegate computation of a funckois required to first run

an expensive pre-processing phase (wherein her computation is itintreer size of the circuit foF) to
generate a (small) secret kBY and a (large) evaluation kéyKg. This large initial cost is then amortized
over multiple executions of the protocol on different inpitsand the client needs the secret K& in

order to initiate each such execution. In other wodlignts can delegate computation to the cloud only if
they put in a large initial computational investmerithis makes sense only if the client wishes to run the
same computation on many different inputs. Can clients delegate computationttituing to make such

a large initial commitment of resources?

As an example of a scenario where this might come in handy, consider a cithi@awloctor and a
number of lab assistants, which wishes to delegate the computation of a cepaimsize data analysis
functionF to a cloud service. Although the doctor determines the structure and spetHicit is in reality
the lab assistants that come up with inputs to the function and perform the titateda this scenario, we
would like to ask the doctor to run the (expensive) pre-processingepbrase and for all, and generate a
(small)public key Pk and an evaluation kelgKe. The public key lets anyone, including the lab assistants,
delegate computation df to the cloud, and verify the results. Thus, once the doctor puts in the initial
investment, any of the lab assistants can delegate computations to the cloud thigslightest involvement
of the doctor. Needless to say, the cloud cannot cheat even if it kneysuthlic keyPKg.

Goldwasser, Kalai and Rothblumi4] present a publicly delegatable verifiable computation protocol
(In fact, their protocol does not require a pre-processing phasdyfictions in the complexity clagsC
(namely, functions that can be computed by circuits of degjpthlog(n)). However, as mentioned above,
the protocols in 1, 3,9, 11] are not publicly delegatable Computationally sound proofs achieve public
delegatability, however the known constructions of CS proofs are eittieeirandom oracle mode¥)], or
rely on non-standard “knowledge of exponent” type assumptihis]. Indeed, this seems to be an inherent
limitation of solutions based on CS proofs since Gentry and WitBsghowed recently that CS proofs
cannot be based on any falsifiable cryptographic assumption (usinglalima security reduction). Here,
we are interested in standard model constructions, based on staradgifiifle) cryptographic assumptions.

Public Verifiability. In a similar vein, the delegator should be able to produce a (public) “verdickey”
that enables anyone to check the cloud’s work. In the context of threraabove, when the lab assistants
delegate a computation on inpxtthey can also produce a verification Ré¥, that will let the patients,
for example, obtain the answer from the cloud and be able to check trectwss of the answer. Neither
the lab assistants nor the doctor need to be involved in the verification prddesdless to say, the cloud
cannot cheat even if it knows the verification Réigy.

Neither the Goldwasser-Kalai-Rothblum protocbd nor any of the later worksl] 3,9, 11] seem to be
publicly verifiable. In fact, we are not aware of any non-interactivefiadle computation protocol (for a
general class of functions) secure in the standard model which pedvadk public delegatability and public
verifiability.

Put together, a verifiable computation protocol that is both publicly delelgatetnl publicly verifiable is
called apublic verifiable computatioprotocol. Note that we still require the party who performs the initial
function preprocessing (the doctor in the example above) to be trusted$sy delegating inputs and veri-
fying outputs. In addition, those verifying results must trust the party (#g.lab assistant) that provided
the verification key.

As a bonus, a public verifiable computation protocol is immune to the “rejectiaiolgm” that affects
the constructions ofl],9, 11]. A problem with the protocols ofl], 9, 11] is that they do not provide reusable
soundness, i.e. a malicious cloud that is able to observe the result of ifieati@n procedure (namely, the
accept/reject decision) on polynomially many inputs can eventually brealothelsess of the protocol —
this is called the “rejection problem”. It is an easy observation that publifialele computation protocols
do not suffer from the rejection problem. Roughly speaking, the reiggbiat verification in such protocols
depends only on the public key and some (instance specific) randomeresaigd by the delegator, and not
on any long-term secret state. Thus, obtaining the result of the verifigatazedure on one instance does
not help break the soundness on a different instance.

This paper is concerned with the design of public (non-interactive) ablficomputation protocols.

1.1 Our Results and Techniques

Our main result is a (somewhat surprising) connection between the nofi@tsibute-based encryption
(ABE) and verifiable computation (VC). In particular, we show that anylaite-based encryption scheme
for a class of functiongF (that is closed under complement) can be used to constrpablc verifiable
computation protocol fofF.

Attribute based encryption schemes, a notion introduced by Goyal, Pabalesi and Waterd p, 24],
are a generalization of identity based encryption where secretd@lsSKr associated to (Boolean) func-
tions F can decrypt ciphertexts that encrypt a messagender “identity” x if and only if F(x) = 1. By
now, there have been a number of constructions of ABE schemes fousalasses of functions, the most
general being an ABE scheme whérés any function that can be computed by a polynomial-size Boolean
formula [16, 20].

Theorem 1 (Main Theorem, Informal) Assume the existence one-way functions, and key-policy ABE schemes
for a class of functiong closed under complement. Then, there is a public verifiable computatiocot
for F.

The core idea of our construction is simple: attribute-based encrypti@ms&shnaturally provide a way
to “prove” thatF (x) = 1. Say the server is given the secret RE.SKg for a functionF, and a ciphertext
that encrypts aandom message mnder the identitk. The server will succeed in decrypting the ciphertext
and recoveringn if and only if F(x) = 1. If F(x) = 0, he fares no better at finding the message than a
random guess. The server can then provefa} = 1 by returning the decrypted message.

More precisely, this gives an effective way for the server to conviheeclient thaf (x) = 1. The pre-
processing phase for the functiéngenerates a master public k&BE.MPK for the ABE scheme (which
acts as the public key for the verifiable computation protocol) and the desyrdBE.SKg for the function
F (which acts as the evaluation key for the verifiable computation protocollenGhe public key and an
input x, the delegator encrypts a random messagender the “identity”x and sends it to the server. If
F(x) = 1, the server manages to decrypt and retatyut otherwise, he returns. Now,

e If the client gets back the same message that she encrypted, she is ednveyond doubt that
F(x) = 1. This is because, F(x) were 0, the server could not have foumdexcept with negligible
probability, assuming the message is long enough).

e However, if she receives no answer from the server, it could haea becausg (x) = 0 and the
server is truly unable to decrypt, or becalg®) = 1 but the server intentionally refuses to decrypt.

Thus, we have a protocol with one-sided error F({k) = 0, the server can never cheat, bug{fx) = 1,
he can.

A verifiable computation protocol with no error can be obtained from thiseipgating the above pro-
tocol twice, once for the functioR and once for its complemeRt. A verifiable computation protocol for
functions with many output bits can be obtained by repeating the one-bitcptabove for each of the
output bits.

The key observation about this protocol is that the client's computation isipaiial in the length of
its inputx, the length of the public kePKr and the security parameter — none of which depend on the
complexity of the functior being evaluated. Thus, the client’s computational complexity is independent
of the complexity of the functior. Furthermore, with existing ABE schemes, the computation done by
both the client and the worker is significantly cheaper than in any previchanse, since we avoid the
overhead of PCPs and FHE.

Thus far, most ABE schemet§, 24] are proven secure only in a selective-security model. As a result,
instantiating the protocol above with such a scheme would inherit this limitation. \Wlsldelieved that
the ABE scheme of Goyal et all§] can be proven adaptively secure in the generic group m@l [
the only scheme currently known to be adaptively secure is that of Letvab R0]. Unfortunately, the
protocol expands the attribute space such that there is essentially ongafpeinstanceof each variable
in the Boolean formula. Thus, the amount of work required to generate@yion is proportional to
the size of the formula, making this scheme unattractive for outsourcing datigpu Nonetheless, given
the amount of interest in and effort devoted to new ABE schemes, weElkpther improvements in both
the efficiency and security of these schemes. Our result demonstrates¢thamprovements will benefit
verifiable computation as well.

Multi-Function Verifiability and ABE with Outsourcing. The definition of verifiable computation fo-
cuses on the evaluation of a single function over multiple inputs. In many cetistis B, 9, 11] the eval-
uated function is embedded in the parameters for the VC scheme that arfeutedinput processing for
the computation. Thus evaluations of multiple functions on the same input wapldeaepeated invoca-
tion for the ProbGen algorithm. A notable difference are approached based on PL P4, L5] that may
require a single offline stage for input processing and then allow multiplgtibmevaluations. However,
such approaches inherently require verification work proportionaldad#pth of the circuit, which is at
least logarithmic in the size of the function and for some functions can be edponional to the size of
the circuit. Further these approaches employ either fully homomorphic @iamyor private information
retrieval schemes to achieve their security properties.

Using the recently introduced definition of ABE with outsourciad][we achieve multi-function verifi-
able computation scheme that decouples the evaluated function from thegpersiof the scheme necessary
for the input preparation. This VC scheme provides separate algorithrmgpig and function preparation,

which subsequently can be combined for multiple evaluations. The verificalgmmithm for the scheme
is very efficient and its complexity is linear in the output size but indepenaletfie input length and the
complexity of the computation. Multi-function VC provides significant efficiemprovements whenever
multiple functions are evaluated on the same input, since a traditional VC scheute meed to invoke
ProbGen for every function.

Attribute-Based Encryption from Verifiable Computation. We also consider the opposite direction of
the ABE-VC relation: can we construct an ABE scheme from a VC schem@&ppendixB, we show that
we can indeed construct an ABE scheme from a VC scheme with a wealofonuiti-function verifiability.
Both VC schemes that we present in this paper can be modified so that thieyeathe weak verifiability
notion, and hence they can be used to instantiate the ABE construction.

1.2 Related Work

The goal of a VC scheme is to provide a way to efficiently verify work that been outsourced to an
untrusted party. Solutions for this problem have been proposed in ga#dtings. These include interactive
proofs [L0,14,21,25] and interactive argument§,[L8,22]. However, in the context of delegated computation,
a non-interactive approach for verifiability is much more desirable. C8f@f[a2] realize a non-interactive
argument in the random oracle model where the verification work is logaritimiiee complexity of the
computation performed by the worker. Goldwasser, Kalai and Rothblidincpnstruct a two message
(non-interactive) protocol for functions MC, where the verifier's running time depends on the depth of the
circuit for the evaluated function.

The first solutions that provide verifiable computation schemes secure sighdard model for any
polynomial-time computable function are the works of Gennaro, Gentry, ambMfL1] and Chung, Kalai,
and Vadhan9]. Both constructions employ fully homomorphic encryption for the evaluaticihe dele-
gated function, and neither can safely provide oracle access to theatwifi algorithm. This problem is
resolved by Chung et al8], who consider the setting of memory delegation, where all inputs aregrepr
cessed and given to the worker who will later execute multiple computationseam t8imilar to the non-
interactive solution of Goldwasser et al4], the effort required to verify results from memory delegation
is proportional to the depth of the computation’s circuit, which for certaictions may be proportional to
the circuit size (e.g., exponentiation). The recent works of Bitanskly ptJand Goldwasser et allf] also
achieve reusable soundness, though they rely on non-falsifiablevi&dge of exponent” type assumptions
to so. Specifically, Bitansky et al] present a construction for succinct non-interactive argumentsltwase
a combination of PCP and PIR techniques, while Goldwasser ethlgive a construction for designated
verifier CS proofs for polynomial functions, which also employs leveldlg omomorphic encryption.

Barbosa and Farshin2] construct a verifiable computation protocol for arbitrary functions (autithe
rejection problem) from fully homomorphic encryption and functional eption. Similar to the proposal
of Applebaum, Ishai, and Kushilevit], their protocol calculates a verifiable MAC over the computation’s
result, allowing efficient verification. However, this approach reliesammgyful functional encryption func-
tionality (e.g., the ability to compute MACs) that are currently not known to béesahle, whereas our
approach needs only ABE.

The solutions of Benabbas, Gennaro, and Vat8]sand Papamanthou, Tamassia, and Triandopou-
los [23] provide verifiable computation schemes for smaller classes of functiohgjgmials and set op-
erations respectively, but using more efficient tools than FHE or PCP ineohiwith a single server PIR.
Although VC schemes with reusable soundness protect against cheatimgvben the worker learns the
output of the verification algorithm, they do not provide public verifiability wvehanyone can check the
correctness of the result. The only exception is the work of Papamantfau[23] which allows anyone
who receives the result of the set operation to verify its correctness.

4

2 Definitions

We propose extended definitions for verifiable computation. We also sunardefnitions for attribute-
based encryption, since we explore its relationship with verifiable computation

2.1 Public Verifiable Computation

Verifiable computation schemes enable a client to outsource the computatifumetianF to an untrusted
worker, and verify the correctness of the results returned by theewdBk9, 11, 14, 22]. Critically, the
outsourcing and verification procedures must be significantly more effitde the client than performing
the computation by itself.

We propose two new properties of verifiable computation schemes, namely

e Public Delegationwhich allows arbitrary parties to submit inputs for delegation, and

e Public Verifiability, which allows arbitrary parties (and not just the delegator) to verify theecthess

of the results returned by the worker.

Together, a verifiable computation protocol that satisfies both propertiesléxi apublic verifiable

computatiorprotocol. The following definition captures these two properties.

Definition 1 (Public Verifiable Computation) A public verifiable computation schen#éCyp is a four-
tuple of probabilistic polynomial-time algorithni{&eyGen, ProbGen, Compute, Verify) which work as fol-
lows:

e KeyGen(F,1") — (PKg,EKg): The randomizedey generatioralgorithm takes as input a security
parameterA and the function F, and outputs a short public key PK that will be used fott idele-
gation and a public evaluation key EKwhich will be used for the evaluation of the function F (the
length of this key will depend on the function).

e ProbGenpk. (X) = (0x,V Kx): The problem generatioalgorithm uses the public key RKo encode
the function input x as a public valug, which is given to the worker to compute with, and a public
value VK, which is used for verification.

o Computegy. (0x) — Oy: Using the public evaluation key and the encoded input, the warerputes
an encoded version of the function’s output ¥ (x).

e Verifyy (0y) — Yy U L: Using the public verification key V{Kthepublic verificationalgorithm con-
verts the worker’s output into the output of the functica i (x), or outputsL indicating thatoy does
not represent the valid output of F on x.

The changes relative to the original definition of verifiable computatidhdre with respect t&eyGen,
ProbGen andVerify. In the original definitionKeyGen produced a secret key that was used as an input to
ProbGen. ProbGen, in turn, produced a secret verification value needed/teify; that verification value
could not be shared with the worker. Indeed, previous schemes fierajeverifiable computatiord][11]
could be attacked given just oracle access to the verification functiaa.cébld be remedied by requiring
the client to generate new parameters for the scheme, whenever the wgodaeight cheating, but this
is unattractive, given the computational overhead of generating pamamétepublic verification key, in
contrast, allows any party holding it to verify a computational result, evereifpdrty that originally ran
ProbGen is no longer online. Thus, this definition is strictly stronger than the earliermofisecurity with
verification accesslfl], which only gives the worker access to a verification oracle.

Providing public delegation and verifiability for outsourced computationsduoizes a new threat model
in which the worker will be able to run the verification algorithm on any outpat thintends to return.
Accordingly, we modify the original security definition for verifiable comgiaia[11] and require that even
if the adversary can ruRrobGen on his own, and he receives the verification key for the challenge input, h
still cannot return an incorrect output that passes verification.

5

Definition 2 (Public Verifiable Computation Security) Let 2/C = (KeyGen, ProbGen, Compute, Verify)
be a public verifiable computation scheme.

ExperimenExp, > "1 ¢, F,A|

(PKe,EKg) & KeyGen(F,\);

X < A(PKg,EKg);

(0x,VKx) < ProbGenpk. (X);

Oy < A(PKr,EKg,04,VK);

y < Verifyy i (Gy)

If y £ 1 andy # F(x), output ‘1’, else ‘0’;
In the experiment above, we define the advantage of an adversamring in probabilistic polynomial
time and making a polynomial number of queries g, as:

A public verifiable computation scheri& is securefor a function F, if
A"V C,F A, Q) < negl(M). 2)

wherenegl () is a negligible function of its input.

Efficiency requirements. For outsourcing work via verifiable computation to make sense, the client must
to less work than that done by the worker. Thus, we retain the earlieileefficrequirementsll]; namely
ProbGen and Verify must have smaller computational complexity tf@mpute. However, forKeyGen,

we ask only that the complexity &(|F|); thus, we employ aamortizedcomplexity model, in which the
client invests a larger amount of computational work in an offline phasedier o obtain efficiency during

the online phase.

Remark 1 Definition2 s strictly stronger than the original definition of verifiable computatitd][Hence
any scheme satisfying Definiti@will also satisfy the earlier definition.

2.2 Multi-Function Verifiable Computation

The original definition of verifiable computatiod]] assumed that multiple inputs would be prepared for
a single function; here, we expand this definition to efficiently allow workengerifiably apply multiple
functions to a single input. In other words, previously, to eval&te andG(x), the client needed to run
KeyGen for F, KeyGen for G, and then rurProbGen on x twice, once forF and once foiG (since the
public keyPK used for the input preprocessingRrobGen depends on the function that is evaluated). Our
new definition only requires the client to rdtrobGen once, and yet still allows the client to verify that a
particular output was the output of a particular function on a particulatinpu

We present the multi-function property in the secret key setting of the otigafanition of verifiable
computation 11], but note that it is orthogonal to the public delegation and verification eléfin Sec-
tion 2.1, and hence a scheme may have both properties, none, or one but atiteahe

Since the original definition embeds the function to be computed in the scheanaragters, we separate
the generation of the parameters for the scheme, which will be useeirGen, into aSetup stage, and
the generation of tokens for the evaluation of different functions inkGeygGen routine, which could be
executed multiple times using the same parameters for the scheme. This allowsltiai@v of multiple
functions on the same instance producedbybGen.

Definition 3 (Multi-Function Verifiable Computation) A VC schemd’C = (Setup, KeyGen, ProbGen,
Compute, Verify) is a multi-function verifiable computation scheme if it has the following properties

6

e Setup(A) — (PKparam SKparam): Produces the public and private parameters that do not depend on
the functions to be evaluated.

o KeyGenpy_, ...sk.anF) — (PKe, SKe): Produces a keypair for evaluating and verifying a specific
function F.

o ProbGenpk,,.mSkeram(X) — (Ox,Tx): The algorithm requires the secret gifam Which is independent
of the function that will be computed. It generates both the encadgljrigr the input, and the secret
verification keyrty.

o Computepy_,...PK (ox) — oy: The computation algorithm uses both parts of the public key to produce
an encoding of the outputy F(x).

e Verifysy 1, (0y) =y U L: Using the private, function-specific key SKnd the private, input-specific
valuety, the verification algorithm converts the worker’s output inte i (x), or outputsL to indicate
that oy does not represent a valid output of F on x.

Definition 4 (Multi-Function Verifiable Computation Security) Let?/C = (Setup, KeyGen, ProbGen, Compute,
Verify) be a multi-function verifiable computation scheme. We define security vidltheifig experiment.

ExperimenExpy""™e" [1/¢,A]
(PKparamSKparam) <E KeyGen(M);
(X, F’ 6y) — AOKeyGen (')70ProbGen(') (PKparam);
¥ « Verifygy. 1, (Gy)
If £ 1 andy # F(x), output ‘1’, else ‘0’;
We define the adversary’s advantage and the scheme’s security mntteefashion as DefinitioR.

In the experiment, the adversary has oracle acceS&dgen(F), which callsKeyGenpy_, .. sk,aam(F)
returnsPKg, and storesSK:=. Similarly, the adversary can access g obcen(-) Oracle, which calls
ProbGens,,..(X), returnsoy, and storegy. Eventually, the adversary returns an encodiggvhich pur-
ports to be an output & applied tox. The challenger rungerify with the corresponding values of and
SKg, and the adversary wins if this check passes.

2.3 Key-Policy Attribute-Based Encryption

Introduced by Goyal et al.1p], Key-Policy Attribute-Based Encryption (KP-ABE) can be thought sf a
associating a functior with each user’'s key, and a set of attributes with each ciphertext. A key will
decrypt a particular ciphertext only if the key’s function evaluates tofiou¢he attributes associated with
the ciphertext. In this sense, KP-ABE can be thought of as a specebt&sinctional Encryptionq].

2.3.1 Basic KP-ABE

Currently known KP-ABE constructions support functions that are-gsagd Boolean formulagin n vari-
ables; ciphertexts are associated with attributes of the fe#r(ey, . . ., z,) € {0,1}". However, this restricted
set of functions is not inherent in the definition of KP-ABE. Thus, we stadollowing definitions, adapted
from the definitions of Goyal et al1p] and Lewko et al. 20], in terms of a general policy function.

Definition 5 (Key-Policy Attribute-Based Encryption) An attribute-based encryption sche@8E is a
tuple of algorithmgSetup, Enc, KeyGen, Dec) defined as follows:
e Setup(A,U) — (PK,MSK) : Given a security parametex and the set of all possible attributes U,
output a public key PK and a master secret key MSK.
e Encpk(M,y) — C: Given a public key PK, a message M, and a set of attribytestput ciphertext C.
e KeyGenysk(F) — SKe: Given a function F and the master secret key MSK, output a decryptjon ke
SKe associated with that function.

e Decsi. (C) — M U L: Given a ciphertext C= Encpik(M,y) and a secret key SKfor function F,
output M if F(y) = 1, or L, otherwise.

Below, we give the natural definition for KP-ABE security. Early KP-AB&hemes were proven secure
in the weaker “selective-security” model, but the stronger definition bales/recently achieved by Lewko
et al. [20].

Definition 6 (KP-ABE Security) Let ABE = (Setup, Enc,KeyGen, Dec) be a key-policy attribute-based
encryption scheme. We define security via the following experiment.

ExperimenExpaSE[ABE,F,U]
(PK,MSK) & Setup(A,U);
(Mg, M1, V) ¢ AOkecen()(PK);
b+« {0,1};

b < A%%eycen () (PK, Encpk (Mp));
If b= b, output ‘1", else ‘0’;

In the experiment, the adversary has access to an 0@¢lgzen (F), which invokes SK« KeyGenysk(F)
and returns SK. Eventually,4 chooses two messages,Ml; of equal length and a set of challenge at-
tributesy, and he receives the encryption of one of two messages. Ultimately,steleride which of the
two plaintext messages was encrypted.

We consider the experimevalid if YSK= € R : F(y) # 1, where® = {SKe} is the set of responses to
the oracle. In other words, the adversary cannot hold a key that trivé@lyrypts messages encrypted under
the challenge attributg.

We define the advantage of the adversary in all valid experiments as

Advz(4BE,U,\) = |Prlb=1]

_ 1‘
We say thata BE is a secure key-policy attribute-based encryption scheme i Ad8E,U,\) < negl(A).

2.3.2 KP-ABE With Outsourcing

Green, Hohenberger, and Waters define a notion of ABE with outsauirciwhich the party performing the
decryption can offload most of the decryption work to an untrusted thirty p&7]; the third party learns
nothing about the underlying plaintext, and the party holding the secret&eyomplete the decryption
very efficiently, in time independent of the size of the formula associated vétkejr Although they define
and construct ABE with outsourcing for both CP-ABE and KP-ABE, belee/focus on the definitions for
KP-ABE, which will be relevant for our work. We also give an IND-CBAcurity definition, since we do
not require the stronger RCCA they defined. Note that Green et ah&rmtion [L7] is selectively secure,
but they provide a sketch, based on Lewko et al.'s w@®#,[to show that their scheme can also be made
adaptively secure.

Note that in this context the outsourcing done is for the very specific funofidBE partial decryption.
The definitions also do not include a notion of integrity or verification, as rifiable computation, but
instead are concerned with the secrecy of the underlying plaintext.

Definition 7 (Key-Policy Attribute-Based Encryption With Outsourcin g [17])) A KP-ABE scheme with
outsourcing ABE, is a tuple of algorithmgSetup, Enc, KeyGen, Transform, Dec) defined as follows:

e Setup(\,U) — (PK,MSK) : Given a security parametex and the set of all possible attributes U,
output a public key PK and a master secret key MSK.

e Encpk(M,y) — C: Given a public key PK, a message M, and a set of attribytestput ciphertext C.

o KeyGenysk(F) — (SKe, TKg): Given a function F and the master secret key MSK, output a decryp-
tion key Sk and a transformation key TKassociated with that function.

e Transformrtk. (C) — C' U L: Given a ciphertext C= Encpk (M,y) and a transformation key TKfor
function F, output a partially decrypted ciphertexti€F (y) = 1, or L, otherwise.

e Decsk (C') - M U L: Given a partially decrypted ciphertext €& Transformtk. (Encpk(M,Y)) and
a secret key SKfor function F, output M if Ky) = 1, or L, otherwise.

Definition 8 (KP-ABE With Outsourcing IND-CPA Security) LetA4BE = (Setup, Enc, KeyGen, Transform, Dec)
be a key-policy attribute-based encryption scheme with outsourcing.efiveedsecurity via the following
experiment.
ExperimenExpa25 O ABE,F,U |

(PK,MSK) & Setup(A,U);

(Mo, My, y) 4= AkeyGen()-Ocomupt () (PK);

b+« {0,1};

b < AOkeyGen():Ocomunt () (PK Encpk (M, Y)) ;

If b= b, output ‘1", else ‘0’;

In the experiment, the adversary has access to two oracke§gen (F) invokeg SKe, TKg) « KeyGenysk(F),
stores S and returns TIK. Ocorrupt (F) returns Sk if the adversary previously invoke&®ke,cen(F) and
returns L otherwise. Eventuallyd chooses two messages,Ml; of equal length and a set of challenge
attributesy, and he receives the encryption of one of two messages. Ultimatelysueecide which of the
two plaintext messages was encrypted.

We consider the experimevdlid if VSK= € R : F(y) # 1, whereR = {SK:} is the set of valid responses
to the Ocorrupt (F) oracle. In other words, the adversary cannot hold a key that triviallgrgets messages
encrypted under the challenge attribyte

We define the advantage of the adversary in all valid experiments as

L1
Advz(ABE,U,\) = |Prb=Db]— ‘ .

2

We say thatd‘BE is a secure key-policy attribute-based encryption scheme with outsguféidva (ABE,U,) <
negl(A).

3 Public Verifiable Computation from Attribute-Based Encryption

The security definition of KP-ABE guarantees that decryption will onlyceed when the function asso-
ciated with a secret key evaluates to a particular check value (traditiond)lpfilthe attribute associated
with the ciphertext. Seen in this light, we can view the decrypted plaintext vedued KP-ABE ciphertext
as an efficiently verifiable proof that the result of applying the key'sfiom to the attribute value is equal
exactly to the check value.

Thus, in the verifiable computation setting, if we give the worker a key &ggocwith the function
we wish to evaluate, then we can encrypt random messages, using agestile input values for the
computation. The worker’s response will simply be the decryptions that Imagea to obtain. The only
valid plaintext values that he can return will be associated with attributesatisfyshe check value for the
function evaluation. We can make this scheme publicly verifiable by definingettiication tokens to be
the result of applying a one-way function to the plaintexts. Indeed thisftiamation applies to any VC
scheme in which verification consists of a simple comparison operation.

One problem with this approach is that the worker may still cheat by returmotigng; i.e., claiming
that none of the ciphertexts decrypted successfully, even when sorsadtided. To address this problem,

9

consider a functiorf : X — {0, 1} with binary output. We can compute the complement funcfipwhich
always outputs the opposite bit of the outputfof If we give the worker secret keys fawoth f and f,
and encrypt twalifferentrandom messages, then the worker must return exactly one of the nessage
exactly one of the ciphertexts will always decrypt successfully. Tp kiee ciphertexts distinct, we generate
the keys forf andf (and the corresponding encryptions) using two distinct master keypaitssf KP-ABE
system.

To extend this idea to functions with multi-bit outputs, we decompose each farketito subfunctions
f1,..., fn wheref; represents the function that computesitA@utput bit of F. Alternately, if the KP-ABE
scheme supports attribute hiding (also known as predicate encryptioa)@dasis of functions that includes
MACs, then we can defirfe’(x) = MACk (F (x)) and verifyF’ instead, similar to the constructions suggested
by Applebaum, Ishai, and Kushilevit]] and Barbosa and Farshirg]|]

An attribute hiding ABE or predicate encryption scheme would also give ug &pd output privacy,
without the need for fully-homomorphic encryption. Attribute hiding naturaieg us input privacy, since
we encode the function’s input in the attribute. By randomly permuting thedies/and ciphertexts we give
out, we can also hide whether a successful decryption correspoadsdo 1 output.

We present a construction of a public verifiable computation scheme fotidas with one bit output
from a KP-ABE scheme follow. The extension to multi-bit outputs is straightiodvas described above.

Construction 1 (¥ Cage) LetABE = (ABE.Setup, ABE.Enc, ABE.KeyGen, ABE.Dec) be a KP-ABE scheme
for a class of function# that is closed under complement with possible attributes from the set U, egqnd le
be a one-way function.

Then there is a public verifiable computation schet€ = (VCKeyGen, ProbGen, Compute, Verify)
for the same class of functiorfs, which is defined as follows.

e VCKeyGen(f%A) — (PKg,EKg), where P € # is such that $: {0,1}" — {0,1}:
1. Generate two key pairs by running
(MPK% o, MSKS,) < ABE.Setup(1*,1") and (MPKZ,,MSKL) « ABE.Setup(1*,U)
2. Set o .
SKpe= ABE KeyGenysa (%) and SK, = ABE KeyGenygia (f%)
where f denotes the complement of the functi@nife., f*(x) = 1if and only if (x) = 0.
3. Letthe public key for the verifiable computation bePK(MPKS, MPKY,) and the evaluation
key be EK = (SK'p. SKL).
e ProbGenpk. (X) — (0Ox,VKy):
1. Generate a pair of random messages, m;) & {0,11* x {0, 1}*.
2. Compute ciphertexts e= ABE.Encypro (Mo, X) and g = ABE.Encypys (Mg, X).
3. Output(ay,V Ky), whereay = (Co,c1) and VK = (g(mo),g(my)).
e Computegy_(0x) — Oy :
1. Parse Ek as(SK;ge,SK;e) andoy as(Co,Cy).
2. Compute g= ﬂlﬂ%Z.DecSK;o (co) and d = ﬂlﬂ?E.DecSKﬁ (c1).

be be

3. Outputoy = (do,d1).
o Verifyy (0Oy) = yU L:
1. Parse VK as(g(mp),g(m)) andaoy as(do,ds).
2. If g(do) = g(mp) then y= 0, else if dd;) = g(m), then y= 1, else outputL.

10

Efficiency. To be a true verifiable computation schermié; age must satisfy the efficiency requirements
from Section2.1; specifically, the running time dProbGen and Verify must be less than computing the
function itself. SinceVerify simply requires two one-way function computations and two equality checks,
the runtime is independent of the function. For any “reasonable” KP-s8@tEme, the runtime ¢frobGen
should be independent &f as well, since all of the inputs tnc are independent d3.

To prove the security of/Cage, we show that a VC attacker must break the security of the one-way
functiong or of the KP-ABE scheme. Intuitively, if an adversary can bré&Ragg, then he will return the
decryption of a message encrypted with an attribute that does not satigfynttteon being verified. This
decryption can then be used to decide which plaintext was encrypted irPHABE challenge.

Theorem 2 LetABE = (Setup, Enc, KeyGen, Dec) be a secure (according to Definitid@) key-policy attribute-
based encryption scheme for a class of functfonLet 7’ Cage = (KeyGen, ProbGen, Compute, Verify) be

the verifiable computation scheme obtained frd®E using Constructiorl. Then?Cage IS secure ac-
cording to Definition2.

The proof of Theoren2 is given in AppendixA.

Remark 2 If we employ a KP-ABE scheme that is selectively secure, then the adimsirand proof above
still go through, as long as the KP-ABE scheme’s attribute domain has sigegmial in the security
parameter. In that casegage Simply guesses the attribute the VC adversary will cheat on. Sipgeheats
with non-negligible probability, and the probability that he will cheat at ﬁ% it follows that 4agg will
also have non-negligible advantage in the ABE security game.

Remark 3 If we employ a KP-ABE scheme that is selectively secure with a largeridpthan the con-
struction and proof above still go through if we adopt a notion of “seletyipgecure” verifiable computation
in which the VC adversary commits in advance to the input on which he plahe&b.

4 Multi-Function Verifiable Computation from KP-ABE With Outsourcing

The original definition of KP-ABE does not readily lend itself to multi-functiorrifiable computation.
Specifically, it does not allow the client an easy way to verify which functi@s used to compute an
answer. For example, suppose the client gives out E#¢sand SKs for functionsF andG. Following
Constructionl, to outsource computation on inpxjtthe client gives out (among other things) a ciphertext
Encpk (Mo, X). Now, supposé (x) = 1, butG(x) # 1. The worker can us8Ke to obtainMp, but claim that
this output corresponds to a computation®fln essence, Constructidngives us a way to verify that an
output corresponds to a particular input, but if we give out more tharseaeet key, it cannot distinguish
between functions. One remedy would be to run two parallel instancesrsit@otionl, but then we need
to runProbGen for each function we wish to compute on a given input.

A more elegant solution is to use an ABE scheme that requires an extra stepryptda ciphertext.
Thus, we show how to build multi-function verifiable computation from KP-ABEhvoutsourcing 17]
(see Sectior2.3.). We use the transformation key to allow the worker to compute, and theneaisedhet
key as a verification key for the function. This allows us to verify both thetigmd specific function used
to compute a particular result returned by the worker.

Interestingly, a similar scheme can be constructed from Chase’s multi-aytA®E [7], by using
function identifiers (e.g., a hash of the function description, or a uniquesHigned by the client) in place
of user identifiers, and using the “user key” generated by the Centridofity as a verification token for
a particular function. However, since this approach does not employ thieauthority ABE scheme in a
black-box fashion, in this section, we focus on the construction fronABE-with outsourcing.

We specify the construction in detail below. For clarity, we only considactions with single-bit
outputs, but the construction can be generalized just as we did in S&ction

11

Construction 2 Let ABE = (Setup, Enc, KeyGen, TransformDec) be a KP-ABE scheme with outsourcing
with attribute universe U. We construct a multi-function verifiable computatberse as follows:

e Setup(A) — (PKparam SKparam) : RUNABE.Setup(A,U) twice to obtain PK?, MSKP) and (PK!,MSK?).
Set PKyaram= (PK®, PK?) and SKaram= (MSK®, MSK).

o KeyGenpy, .. Skoman(F) — (PKe, SKe) : Compute(SK2, TK?) +— ABE KeyGenysyo(F) and(SKEL, TKE)
ABE.KeyGenyski (F), whereF is the complement of F.
Output Pk = (TK2, TK) and Sk = (SK2,SKL). In other words, the public key will be the trans-
formation keys, and the secret verification key will be the “true” secegsk

® ProbGenpk,,.mSkeam(X) — (Ox,Tx): Generate a pair of random messag@do, M) & {0,1}* x
{0,1}*. Compute ciphertextsiG— ABE.Encpk,(Mo,x) and G < ABE.Encpy, (M1, X).
Outputoy = (Cp,C1) and 1y = (Mg, M1).

e Computepy, .. Pk (Ox) — Oy: Parse Pk as (TK,Q,TK%). Compute ¢ = ﬂQ%Z.TransformTKg(Co)
andC = ﬁl’BE.TransformTK%(Cl). Outputoy = (C;,CY).

o Verifysy, 1, (0y) —y: Parse Sk as(SK2, SKb), x as(Mo, M1), andoy as(Cp, Cy). If ABE.Decgyo (Co) =
Mo, then output y= 0. If ﬂiBZ.Decs@_(C{)) = Mj, then output y= 1. Otherwise, output..

The above construction will provide the efficiency property requirefdC scheme (verification that
is more efficient than the delegated computation) as long a3theform algorithm is computationally
more expensive than tiencandDecalgorithms of the ABE scheme. However, this requirement is inherent
in the definition of ABE with outsourcing.

Remark 4 Construction2 is publicly delegatable, sincRrobGen only makes use of Bfram 1.€., it only
employs the public ABE keys to perfoRrobGen, so anyone may do so. However, the verification function
cannot be made public. Specifically, giving outSKGreen et al's ABE schemé&T] would directly allow

the worker to lie about the function used, i.e., claim that an output computedRmitias the result of
applying G. Even so, the adversary would still be unable to lie about the tait@lue

Proof Intuition. The proof of security looks very similar to Proéf. The intuition for input security
is the same as before, i.e., the revelation of one of the two random messagemted with @robGen
invocation demonstrates that the computation was performed on that paritiqularUnlike with a regular
ABE scheme, we can also verify the function used, since decrypting withydHat does not match the
transformation key used will not produce the expected message. Thiwideual by the security of the ABE
with outsourced decryption, which guarantees semantic security of tingogéext messages even when the
adversary sees the transformation keys used for the outsourcecdhpairtice decryption.

5 Conclusions and Future Work

In this work, we introduced new notions for verifiable computatipablic delegationpublic verifiability,
andmulti-functionVC. We demonstrate that ABE implies public VC, and ABE with outsourcing implies
multi-function VC. The relationship offers much more efficient VC schemeshi® class of functions sup-
ported by ABE.

Our work leaves open several interesting problems. First, can we aghikVic verifiability for a multi-
function VC scheme? Second, it would be desirable to show a MAC schemeatihde supported by an
ABE scheme’s class of functions, so that we can improve the efficienegrdfing multi-bit outputs.

12

References

[1] B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soussin&fficient verification via
secure computation. IRroceedings of the International Colloquium on Automata, Languagds an
Programming (ICALP)2010.

[2] M. Barbosa and P. Farshim. Delegatable homomorphic encryption wglcapons to secure out-
sourcing of computation. Cryptology ePrint Archive, Report 2011/2081.

[3] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegatiommiptitation over large datasets. In
Proceedings of CRYPTQO011.

[4] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractatllesion resistance to succinct
non-interactive arguments of knowledge, and back again. CryptolggteArchive, Report 2011/443,
2011.

[5] D. Boneh, A. Sahai, and B. Waters. Functional encryption: Defimitiand challenges. Proceedings
of the IACR Theory of Cryptography Conference (TCXO[L1.

[6] G. Brassard, D. Chaum, and C.é&peau. Minimum disclosure proofs of knowledgé@ournal of
Computer and System Scienc&g(2), 1988.

[7] M. Chase. Multi-authority attribute based encryption Pimceedings of the IACR Theory of Cryptog-
raphy Conference (TCC2007.

[8] K.-M. Chung, Y. Kalai, F.-H. Liu, and R. Raz. Memory delegation Piroceedings of CRYPTQO011.

[9] K.-M. Chung, Y. Kalai, and S. Vadhan. Improved delegation of cotapon using fully homomorphic
encryption. InProceedings of CRYPT@ug. 2010.

[10] L. Fortnow and C. Lund. Interactive proof systems and alternditimg-space complexity. IRroceed-
ings of the Symposium on Theoretical Aspects of Computer Sciend@35T891.

[11] R. Gennaro, C. Gentry, and B. Parno. Non-interactive vetdiabmputation: Outsourcing computa-
tion to untrusted workers. IRroceedings of CRYPT®@ug. 2010.

[12] C. Gentry and D. Wichs. Separating succinct non-interactiveraegts from all falsifiable assump-
tions. INSTOC pages 99-108, 2011.

[13] O. Goldreich and L. Levin. A hard-core predicate for all onepiianctions. InProceedings of the
ACM Symposium on Theory of Computing (STAOB9.

[14] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computatioteractive proofs for
muggles. InProceedings of the ACM Symposium on the Theory of Computing (SZQEB).

[15] S. Goldwasser, H. Lin, and A. Rubinstein. Delegation of computatidmowrt rejection problem from
designated verifier CS-proofs. Cryptology ePrint Archive, Rep01t1/456, 2011.

[16] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-basedyption for fine-grained access
control of encrypted data. IRroceedings of the ACM Conference on Computer and Communications
Security (CCS)2006.

[17] M. Green, S. Hohenberger, and B. Waters. Outsourcing theyplian of ABE ciphertexts. IrPro-
ceedings of the USENIX Security Symposipei 1.

[18] J. Kilian. A note on efficient zero-knowledge proofs and arguiséextended abstract). Rroceedings
of the ACM Symposium on Theory of Computing (STQ€92.

[19] J. Kilian. Improved efficient arguments (preliminary version)Phoceedings of CRYPTQ995.

[20] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fagéigure functional encryption:
Attribute-based encryption and (hierarchical) inner product encnyptioProceedings of EuroCrypt
2010.

[21] C. Lund, L. Fortnow, and H. Karloff. Algebraic methods for intetree proof systemsJournal of the
ACM, 39(4):859-868, 1992.

13

[22] S. Micali. CS proofs (extended abstract). Rroceedings of the IEEE Symposium on Foundations of
Computer Sciengd 994.

[23] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Optimal #dficof operations on dynamic
sets. InProceedings of CRYPTQO011.

[24] A. Sahai and B. Waters. Fuzzy identity-based encryptiore WROCRYPTpages 457-473, 2005.
[25] A. Shamir. IP = PSPACEJournal of the ACM39(4):869-877, 1992.
[26] B. Waters. Private communications, 2011.

A Proof of Security for the ABE to VC Construction

Proof of Theorem 2:

Suppose there exists an adversaiy: who succeeds in the VC security game (Definit&)mwith non-
negligible probability when the VC scheme is instantiated with the ABE-basedh&ctiem Construction.
We first argue that if the ABE scheme is secure, tiigg cannot distinguish between the following two
games:

Game 0.We run the real security game for the VC construction.

Game 1. We run the real security game for the VC scheme with the following modificatiohe\the
adversary supplies us with the challenge ingunstead of returning an encryption ot and an encryp-
tion of my, we choose a random message# mp, my, letr be such thaf'(x) = 0, and replace; with
ﬂ@Z.EnCpK;be(m,X).

If 4y, c succeeds in distinguishing between these two games with non-negligiblépitgbie., if
|Pr [Exp[VC,F,\]] —Pr [Expa[VC,F,A]]| >3

whered is non-negligible i\, then we can construct an adversalyge against the ABE scheme as follows.
1. Aage interacts with the challenge? in the ABE security game and acts as the challenge®&gyin
the security game for the verifiable computation.
2. Ange receives a public kepKS,. from ¢, and runsaBE.Setup(A,U) on its own to generate a second
pair of keys(PK1 ,MSKL). B
3. Let fO be the function we wish to verifydage computesf! < 0, the complement function .

4. Apge chooses a random bitd {0,1} and generateSK;;e: ﬂQBE.KeyGenMSK;be(f’) using his own
master secret key. He then makes a call'tto obtainSKﬂ{tl,;r = ﬁleZ:.KeyGenMS,gbe(fl—r). AnsE

sendsPKe = {PKO,_ PKY } andEKe = {SK',_" . SK' } to avc.

5. Upon receiving the challenge inpxit 4age chooses three random messagesm andny. Aage
sendsmg, My, and attributey = x to its challenger and receives challenge ciphertexthich is the
encryption ofm,. Aage setsoy < (C, ﬁlQSZ.EncPK;be(mz,y)), chooses a random& {0,1}, sets
VK < (g(m),g(my)), and send$oy, V Ky) to 4y c.

6. Aage receives the resutly from 4yc.

. If g(dy) = g(m), thenAage guessed’ «—t. Otherwise Aage guessed’ «— 1—t.

\l

We observe that if = b, the distribution of the above experiment coincides with Game D=IfL — b,

14

the distribution is the same as Game 1. Thus, we have:

Prlb’=b] = Prft =b]Pr[b’ = bt =b]+Pr|t # b|Pr[b’ = b|t # b]
1 . 1 .
= éPr[g(Gy) =g(m)[t =b] + QPV[Q(Gy) # g(m)[t # b
1 1 .
= SEXpRIVCFA + 5 (1 Prig(dy) = g(m)]t # b))
= %Expf\[‘l/c’, F, A+ %(1— Expi[VC,F.\)
= %(Expg[‘VC, F,A] — Expa[VC,F A +1)
= %(Expg[‘VC, F,A] — Expa[VC,F A +1)
1
> 6+
which implies
1 1 1 e}

Thus, if 4,c distinguishes between these two games, tlgge can distinguish which ciphertext his chal-
lenger encrypted with non-negligible probability.

Now, since4yc cannot distinguish between Game 0 and Game 1, we can run him in Game keand u
him to invert the one-way functiog. Specifically, suppose we are gives- g(w), and we want to finav.
We run Game 1 witha,c using ABE keys we have generated, and we define w. Thus, we will give4y
the valuez as the verification token for output Sincef!~"(x) = 1, a legitimate worker would retunmy_,,
so to cheat in the VC experiment, tilgc must returrm, such thag(my) = z In other words, the valuey,
he returns must be, and hence we will invert the one-way function with non-negligible prdatigb

Thus, assuming the ABE scheme and the one-way function are secusy@ionl is also secure.

[|

B Attribute-based Encryption from Verifiable Computation

Given that we have shown how to construct a verifiable computation (V&dgol from an attribute-based
encryption (ABE) scheme, it is natural to ask whether the reverse implidagilois. In other words, can we
construct an ABE scheme, given a VC scheme? At first sight, the k@eproof a VC scheme — namely,
efficient verification — does not seem to have anything to do with attribigeebancryption.

Despite this apparent mismatch of functionality, we show how to transforimi¢hy) verifiable com-
putation protocols of a special form — that we call weak “multi-function \asié computation” — into an
attribute-based encryption scheme for the same class of functionsmhailfgra weak multi-function VC
protocol has the following features:

e The output ofProbGen on an inputx can be used to compute many different functions.onhus, in
some sensérobGen is agnostic of the function that will be computed on the input.
In particular, we now have a setup algorithm that generates a pair of @uigisecret parameters, a
key generation algorithideyGen (as before) that generates a secret&Ky for a functionF given the
secret parameters, an®eobGen algorithm that (as before) given an inptaind the public parameters

15

generates an encoding wtogether with a verification key. ThuBrobGen does not know about
andKeyGen does not know abowt Indeed, this is the crucial property that gives us ABE.

The verification key for an input consists of a paifV K?,VK}), and the verification algorithm con-
sists of simply applying some functidt to the server’s respongg and checking if it equalg K? or
VKL,

Indeed, the VC scheme that we constructed from ABE has both the abmyerfies.

The high level idea for the construction of an ABE scheme from a multi-fundfiGnscheme is as
follows: in order to encrypt a message under a particular attribute (in thHe gdBeme), we first generate
a key that can be computed only if the output of the server in the VC protaeidles correctly. Now,
decryption of the ciphertext will succeed only if the decryptor correatifgrms the evaluation of the key’s
function on the attribute associated with the ciphertext, and the output vallne cdmputation satisfies the
decryption condition, in which case he will have the correct decryptigrfdethe ciphertext.

Put another way, the security of a VC scheme implies it should be difficudtrf@adversary to produce an
output that does not correspond to a legitimate computation of a function artieutar input. If we make
decryption of a ciphertext dependent on having a particular outputttileezomputation possible given a key
for the function and an attribute/input either legitimately produces the expeutpdt, allowing decryption
of the ciphertext, or produces some other output, and it is infeasible tagedthe output necessary to
decrypt the ciphertext.

We define the notion of a weak multi-function VC protocol below. The “wealsti in the definition
comes from the fact that we only need a multi-function VC scheme that vettiis particular output is
legitimate forsomeoutsourced function (i.e., a function given as inpulKeyGen), rather than for a specific
function.

Below, we combine these requirements in a single definition, demonstrate th& dmostructiond and
2 satisfy this definition, and finally show how to use such a definition to corisaruABE scheme.

Definition 9 (Weak Multi-Function Public Verifiable Computation) AVC schemé/C = (Setup, KeyGen,
ProbGen, Compute, Verify) is a weak multi-function public verifiable computation scheme if it has the fol-
lowing properties:

Setup(A) — (PKparam SKoaram): Produces the public and private parameters that do not depend on
the functions to be evaluated.

KeyGenpy .. Skoaam) — PKe: Produces a public key for evaluating a specific function F.

ProbGenpKam(X) — (0x,VKx = (VK?,VK})): The algorithm requires only the public parameters,
which are independent of the function that will be computed. It genebattsthe encodingy for

the input, and the public verification keys for each possible bit of the outptitisicase, simply VK

and VK.

ComputeprampKF (ox) — oy: The computation algorithm uses both parts of the public key to produce
an encoding of the outputy F(x).

Verify, k (0y) — y U L: Using the public input-specific value \,Khe verification algorithm outputs

0if VK? = H(ay), outputsl if VK = H(ay), and outputsL otherwise, to indicate thaty does not
represent a valid output of some function F, for whictyGen(F) has been invoked, on x

Definition 10 (Weak Multi-Function Public Verifiable Computation Security) Let?C = (Setup, KeyGen,
ProbGen, Compute, Verify) be a weak multi-function public verifiable computation scheme. We define sec
rity via the following experiment.

16

ExperimenExp\/’A\’ee‘k'\"“"Veri Ve

(PKparam SKoaram) & KeyGen(A);

X AOKeyGen(') (PKparam);

(0%, VKx) < ProbGenpi,,,.m(X);

By ¢ A%ercen () (PKparam, Ox, V Ky);

y < Verifyyg (Gy)

If y#1 andVF € R :y# F(X), output ‘1’, else ‘0’;

We define the adversary’s advantage and the scheme’s security ianttesfashion as DefinitioR

In the experiment, the adversary has oracle acce®&dg.n(F), which callsKeyGenpy__ . sk am(F)
returnsPKg, and store§ in the list®.. Eventually, the adversary returns an encodipgvhich purports to
be an output of some outsourced function applied.tdhe challenger runSerify with the corresponding
values ofV Ky, and the adversary wins if this check passes, but the output doesrmesmond to the output
of one of the functions in lis® .

Note that both Constructiorisand?2 satisfy this definition. Constructiohdoes not include any function
verification to begin with, but it still verifies that the output, i.e., the messagenautafter performing a
decryption, could not have been obtained without performing a legitimate watign (decryption) with
one of the keys generated ByyGen. In contrast, ConstructioB is too strong, since it verifies the specific
function used. To weaken it, we can simply add the private decryptiorSkeyto the computation key,
which was previouslyT K. This removes the ability to verify which function was used, and hence fits
within the definition above.

Below, we describe our construction from VC to ABE in more detail.

Construction 3 Let 7C = (Setup,KeyGen, ProbGen, Compute, Verify) be a weak multi-function public
verifiable computation scheme, and H be an injective one way function. Ng&rwat the following key-
policy attribute-based encryption schetA&BEyc.

e Setup(A,U) — (PK,MSK): Run¥C.Setup(A) — (PKparam, SKparam) and output PK= PKyaramand
MSK: SKparam.
e Encpk(M,y) — C where Me {0, 1}:
— Run(ox,VKy = (VK?,VK})) < 9 C.ProbGenpi,ams(X)-
— Let 0ans be such that Hoans) = VKE. Choose a random value r and compute=K(Gans, I')
where(-,-) denotes the inner product of two bit-strings (mod 2).
Output ciphertext C= (ox,r, K ®M).
° KeyGenMSK(F) — SK: Run PK: — ‘VC.KeyGenpraram1SKparam(F). Output Slﬁ = PKF
e Decsi. (C) = M U L: Parse C aq0y,r,D).
— RunGans +— ¥ C.Computepy, .. Pk: (0x)-
— Compute K« (Ogns,). Output K D.

Correctness follows from the fact thatkf(x) = 1, then the answes,ns produced by the server (upon
running % C.Compute) is such thaH (oans) = VK}. SinceH is an injective one-way functiof{gans ') @
D=M.

We now proceed to showing the security of the ABE scheme. First, we stat@dlueeich-Levin
lemma [L3].

Lemma 1 ([13]) Let f:{0,1}" — {0,1}" be a bijection computable by a circuit of size t and suppose there
is a circuit C of size s such that

Pryr [C(f(X),r) = (X,r)] = %—FS.

17

Then there is a circuit” of size Q(s+t) - poly(n,1/¢)) such that
Pr[C'(f(x) =x = .

Theorem 3 If VC = (Setup,KeyGen, ProbGen, Compute, Verify) is a secure weak multi-function public
VC scheme (see Definitiof§), thenABEy ¢, the ABE scheme obtained with Constructims IND-CPA
secure (Definitiors).

Proof Sketch. Assume for the sake of contradiction that there exists an advegiy that wins with
non-negligible probabilityi the security game from Definitiof We use this to break the soundness of the
VC protocol in two steps, conceptually.

First, using Lemmd., the existence afiage means that there is an adversary that, given a ciphertext of
the form (ox,r,D), predicts an inverse 8f K} under the functioH. Note that this transformation creates
an adversaryd, g that asks polynomially many more ABE secret key queries fhaig.

Since this adversary essentially predicts the message of the server,rthigenabe used to construct
an adversarydyc that breaks the soundness of the VC protocol (from DefinitiGhwith non-negligible
probability. For completeness, we describe both these transformations aljorithma, ¢ that usesiage:

1. Ayc receivesPKparam the output from?/C.Setup(A) from his challenger. He forward3Kparam to
AnBE-

2. On calls toOaBE KeyGen (F), Avc queries his owry c keycen (F) Oracle and returns the resultifggr.
3. Given the challenge messag@éo, M1) and attributesy, 4,c requests as his challenge,,V K, =
\% K$,V K\})) < ProbGenpi . (Y)-

4. Ayc runs the adversaryly to obtain the next value submitted to the oracléx(-). Avc chooses a

random bitd & {0,1} and returns the challenge ciphert€xt (r, 0y, d) to Aage.

5. Eventually,Aage Will return his guess bib. Ayc computesl & Mg and returns this value as an answer

to A4y.

6. WhenAg makes a new oracle querf,c rewinds the execution ofiage to Step4.

7. When4yc receives an answerp from Ay, he returns it as his output for the computation on input

(0, VKy = (VKO,VKD)).

The probability that4yc succeeds in cheating is the same as the probabilityApasucceeds in in-
vertingVK$ = H(op). By assumptiordage wins the security game from Definitighwith non-negligible
probability . Therefored, c returns the correct value far - r to Ag with probability . Then by Lemma
it follows that 4y will compute the correct outpuig with probability £, which is non-negligible. Hence

Ay c wins the security game from DefinitiakD with non-negligible probability. Alsodyc runs in polyno-
mial time since4y is a polynomial-time algorithm. |

18

	Introduction
	Our Results and Techniques
	Related Work

	Definitions
	Public Verifiable Computation
	Multi-Function Verifiable Computation
	Key-Policy Attribute-Based Encryption
	Basic KP-ABE
	KP-ABE With Outsourcing

	Public Verifiable Computation from Attribute-Based Encryption
	Multi-Function Verifiable Computation from KP-ABE With Outsourcing
	Conclusions and Future Work
	Proof of Security for the ABE to VC Construction
	Attribute-based Encryption from Verifiable Computation

