
How to Delegate and Verify in Public:
Verifiable Computation from Attribute-based Encryption

Bryan Parno
Microsoft Research

parno@microsoft.com

Mariana Raykova
Columbia University

mariana@cs.columbia.edu

Vinod Vaikuntanathan∗

University of Toronto
vinodv@cs.toronto.edu

Abstract

The wide variety of small, computationally weak devices, and the growing number of computa-
tionally intensive tasks makes the delegation of computation to large data centers a desirable solution.
However, computation outsourcing is useful only when the returned result can be trusted, which makes
verifiable computation (VC) a must for such scenarios. In this work we extend the definition of veri-
fiable computation in two important directions:public delegationandpublic verifiability, which have
important applications in many practical delegation scenarios. Yet, existing VC constructions based on
standard cryptographic assumptions fail to achieve these properties.

As the primary contribution of our work, we establish an important (and somewhat surprising) con-
nection between verifiable computation and attribute-based encryption (ABE), a primitive that has been
widely studied. Namely, we show how to construct a VC scheme with public delegation and public ver-
ifiability from any ABE scheme. The VC scheme verifies any function in the class of functions covered
by the permissible ABE policies. This scheme enjoys a very efficient verification algorithm that de-
pends only on the output size. Strengthening this connection, we show a construction of amulti-function
verifiable computation scheme from an ABE with outsourced decryption, a primitive defined recently
by Green, Hohenberger and Waters (USENIX Security 2011). A multi-function VC scheme allows the
verifiable evaluation of multiple functions onthe same preprocessed input.

In the other direction, we also explore the construction of an ABE scheme from verifiable computa-
tion protocols.

∗Supported by an NSERC Discovery Grant and by DARPA under Agreement number FA8750-11-2-0225. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of DARPA or the U.S. Government.

1 Introduction

In the modern age of cloud computing and smartphones, asymmetry in computing power seems to be the
norm. Computationally weak devices such as smartphones gather information, and when they need to store
the voluminous data they collect or perform expensive computations on theirdata, they outsource the storage
and computation to a large and powerful server (a “cloud”, in modern parlance). Typically, the clients have
a pay-per-use arrangement with the cloud, where the cloud charges theclient proportional to the effort
involved in the computation.

One of the main security issues that arises in this setting is – how can the clients trust that the cloud
performed the computation correctly? After all, the cloud has the financial incentive to run an extremely fast
but incorrect computation (perhaps, once in a while), freeing up valuable compute time for other transac-
tions. Is there a way toverifiably outsourcecomputations, where the client can, without much computational
effort, check the correctness of the results provided by the cloud? Furthermore, can this be done without re-
quiring much interaction between the client and the cloud? This is the problem ofnon-interactive verifiable
computation, which was considered implicitly in the early work on efficient arguments by Kilian [19] and
computationally sound proofs (CS proofs) by Micali [22], and which has been the subject of much attention
lately [1–4,9,11,14,15].

The starting point of this paper is that while the recent solutions consider and solve the bare-bones
verifiable computation problem in its simplest form, there are a number of desirable features that they fail
to achieve. We consider two such properties – namely,public delegatabilityandpublic verifiability.

Public Delegatability. Everyone should be able to delegate computations to the cloud. In some of the
protocols [1, 3, 9, 11], a client who wishes to delegate computation of a functionF is required to first run
an expensive pre-processing phase (wherein her computation is linearin the size of the circuit forF) to
generate a (small) secret keySKF and a (large) evaluation keyEKF . This large initial cost is then amortized
over multiple executions of the protocol on different inputsxi , and the client needs the secret keySKF in
order to initiate each such execution. In other words,clients can delegate computation to the cloud only if
they put in a large initial computational investment. This makes sense only if the client wishes to run the
same computation on many different inputs. Can clients delegate computation without having to make such
a large initial commitment of resources?

As an example of a scenario where this might come in handy, consider a clinic with a doctor and a
number of lab assistants, which wishes to delegate the computation of a certain expensive data analysis
functionF to a cloud service. Although the doctor determines the structure and specifics ofF , it is in reality
the lab assistants that come up with inputs to the function and perform the delegation. In this scenario, we
would like to ask the doctor to run the (expensive) pre-processing phase once and for all, and generate a
(small)public key PKF and an evaluation keyEKF . The public key lets anyone, including the lab assistants,
delegate computation ofF to the cloud, and verify the results. Thus, once the doctor puts in the initial
investment, any of the lab assistants can delegate computations to the cloud without the slightest involvement
of the doctor. Needless to say, the cloud cannot cheat even if it knows the public keyPKF .

Goldwasser, Kalai and Rothblum [14] present a publicly delegatable verifiable computation protocol
(In fact, their protocol does not require a pre-processing phase) for functions in the complexity classNC
(namely, functions that can be computed by circuits of depthpolylog(n)). However, as mentioned above,
the protocols in [1, 3, 9, 11] are not publicly delegatable. Computationally sound proofs achieve public
delegatability, however the known constructions of CS proofs are either inthe random oracle model [22], or
rely on non-standard “knowledge of exponent” type assumptions [4,15]. Indeed, this seems to be an inherent
limitation of solutions based on CS proofs since Gentry and Wichs [12] showed recently that CS proofs
cannot be based on any falsifiable cryptographic assumption (using a black-box security reduction). Here,
we are interested in standard model constructions, based on standard (falsifiable) cryptographic assumptions.

1

Public Verifiability. In a similar vein, the delegator should be able to produce a (public) “verification key”
that enables anyone to check the cloud’s work. In the context of the example above, when the lab assistants
delegate a computation on inputx, they can also produce a verification keyVKx that will let the patients,
for example, obtain the answer from the cloud and be able to check the correctness of the answer. Neither
the lab assistants nor the doctor need to be involved in the verification process. Needless to say, the cloud
cannot cheat even if it knows the verification keyVKx.

Neither the Goldwasser-Kalai-Rothblum protocol [14] nor any of the later works [1,3,9,11] seem to be
publicly verifiable. In fact, we are not aware of any non-interactive verifiable computation protocol (for a
general class of functions) secure in the standard model which provides both public delegatability and public
verifiability.

Put together, a verifiable computation protocol that is both publicly delegatable and publicly verifiable is
called apublic verifiable computationprotocol. Note that we still require the party who performs the initial
function preprocessing (the doctor in the example above) to be trusted by those delegating inputs and veri-
fying outputs. In addition, those verifying results must trust the party (e.g.,the lab assistant) that provided
the verification key.

As a bonus, a public verifiable computation protocol is immune to the “rejection problem” that affects
the constructions of [1,9,11]. A problem with the protocols of [1,9,11] is that they do not provide reusable
soundness, i.e. a malicious cloud that is able to observe the result of the verification procedure (namely, the
accept/reject decision) on polynomially many inputs can eventually break the soundness of the protocol –
this is called the “rejection problem”. It is an easy observation that public verifiable computation protocols
do not suffer from the rejection problem. Roughly speaking, the reasonis that verification in such protocols
depends only on the public key and some (instance specific) randomness generated by the delegator, and not
on any long-term secret state. Thus, obtaining the result of the verification procedure on one instance does
not help break the soundness on a different instance.

This paper is concerned with the design of public (non-interactive) verifiable computation protocols.

1.1 Our Results and Techniques

Our main result is a (somewhat surprising) connection between the notions of attribute-based encryption
(ABE) and verifiable computation (VC). In particular, we show that any attribute-based encryption scheme
for a class of functionsF (that is closed under complement) can be used to construct apublic verifiable
computation protocol forF .

Attribute based encryption schemes, a notion introduced by Goyal, Pandey, Sahai and Waters [16,24],
are a generalization of identity based encryption where secret keysABE.SKF associated to (Boolean) func-
tions F can decrypt ciphertexts that encrypt a messagem under “identity” x if and only if F(x) = 1. By
now, there have been a number of constructions of ABE schemes for various classes of functions, the most
general being an ABE scheme whereF is any function that can be computed by a polynomial-size Boolean
formula [16,20].

Theorem 1 (Main Theorem, Informal) Assume the existence one-way functions, and key-policy ABE schemes
for a class of functionsF closed under complement. Then, there is a public verifiable computation protocol
for F .

The core idea of our construction is simple: attribute-based encryption schemes naturally provide a way
to “prove” thatF(x) = 1. Say the server is given the secret keyABE.SKF for a functionF , and a ciphertext
that encrypts arandom message munder the identityx. The server will succeed in decrypting the ciphertext
and recoveringm if and only if F(x) = 1. If F(x) = 0, he fares no better at finding the message than a
random guess. The server can then prove thatF(x) = 1 by returning the decrypted message.

2

More precisely, this gives an effective way for the server to convincethe client thatF(x) = 1. The pre-
processing phase for the functionF generates a master public keyABE.MPK for the ABE scheme (which
acts as the public key for the verifiable computation protocol) and the secretkeyABE.SKF for the function
F (which acts as the evaluation key for the verifiable computation protocol). Given the public key and an
input x, the delegator encrypts a random messagem under the “identity”x and sends it to the server. If
F(x) = 1, the server manages to decrypt and returnmbut otherwise, he returns⊥. Now,

• If the client gets back the same message that she encrypted, she is convinced beyond doubt that
F(x) = 1. This is because, ifF(x) were 0, the server could not have foundm (except with negligible
probability, assuming the message is long enough).

• However, if she receives no answer from the server, it could have been becauseF(x) = 0 and the
server is truly unable to decrypt, or becauseF(x) = 1 but the server intentionally refuses to decrypt.

Thus, we have a protocol with one-sided error – ifF(x) = 0, the server can never cheat, but ifF(x) = 1,
he can.

A verifiable computation protocol with no error can be obtained from this by repeating the above pro-
tocol twice, once for the functionF and once for its complement̄F . A verifiable computation protocol for
functions with many output bits can be obtained by repeating the one-bit protocol above for each of the
output bits.

The key observation about this protocol is that the client’s computation is polynomial in the length of
its input x, the length of the public keyPKF and the security parameter – none of which depend on the
complexity of the functionF being evaluated. Thus, the client’s computational complexity is independent
of the complexity of the functionF . Furthermore, with existing ABE schemes, the computation done by
both the client and the worker is significantly cheaper than in any previous scheme, since we avoid the
overhead of PCPs and FHE.

Thus far, most ABE schemes [16,24] are proven secure only in a selective-security model. As a result,
instantiating the protocol above with such a scheme would inherit this limitation. Whileit is believed that
the ABE scheme of Goyal et al. [16] can be proven adaptively secure in the generic group model [26],
the only scheme currently known to be adaptively secure is that of Lewko et al. [20]. Unfortunately, the
protocol expands the attribute space such that there is essentially one attribute perinstanceof each variable
in the Boolean formula. Thus, the amount of work required to generate an encryption is proportional to
the size of the formula, making this scheme unattractive for outsourcing computation. Nonetheless, given
the amount of interest in and effort devoted to new ABE schemes, we expect further improvements in both
the efficiency and security of these schemes. Our result demonstrates that such improvements will benefit
verifiable computation as well.

Multi-Function Verifiability and ABE with Outsourcing. The definition of verifiable computation fo-
cuses on the evaluation of a single function over multiple inputs. In many constructions [3,9,11] the eval-
uated function is embedded in the parameters for the VC scheme that are usedfor the input processing for
the computation. Thus evaluations of multiple functions on the same input would require repeated invoca-
tion for theProbGen algorithm. A notable difference are approached based on PCPs [4, 14, 15] that may
require a single offline stage for input processing and then allow multiple function evaluations. However,
such approaches inherently require verification work proportional to the depth of the circuit, which is at
least logarithmic in the size of the function and for some functions can be also proportional to the size of
the circuit. Further these approaches employ either fully homomorphic encryption or private information
retrieval schemes to achieve their security properties.

Using the recently introduced definition of ABE with outsourcing [17] we achieve multi-function verifi-
able computation scheme that decouples the evaluated function from the parameters of the scheme necessary
for the input preparation. This VC scheme provides separate algorithms for input and function preparation,

3

which subsequently can be combined for multiple evaluations. The verificationalgorithm for the scheme
is very efficient and its complexity is linear in the output size but independentof the input length and the
complexity of the computation. Multi-function VC provides significant efficiency improvements whenever
multiple functions are evaluated on the same input, since a traditional VC scheme would need to invoke
ProbGen for every function.

Attribute-Based Encryption from Verifiable Computation. We also consider the opposite direction of
the ABE-VC relation: can we construct an ABE scheme from a VC scheme? In AppendixB, we show that
we can indeed construct an ABE scheme from a VC scheme with a weak formof multi-function verifiability.
Both VC schemes that we present in this paper can be modified so that they achieve the weak verifiability
notion, and hence they can be used to instantiate the ABE construction.

1.2 Related Work

The goal of a VC scheme is to provide a way to efficiently verify work that has been outsourced to an
untrusted party. Solutions for this problem have been proposed in various settings. These include interactive
proofs [10,14,21,25] and interactive arguments [6,18,22]. However, in the context of delegated computation,
a non-interactive approach for verifiability is much more desirable. CS proofs [22] realize a non-interactive
argument in the random oracle model where the verification work is logarithmicin the complexity of the
computation performed by the worker. Goldwasser, Kalai and Rothblum [14] construct a two message
(non-interactive) protocol for functions inNC, where the verifier’s running time depends on the depth of the
circuit for the evaluated function.

The first solutions that provide verifiable computation schemes secure in thestandard model for any
polynomial-time computable function are the works of Gennaro, Gentry, and Parno [11] and Chung, Kalai,
and Vadhan [9]. Both constructions employ fully homomorphic encryption for the evaluation of the dele-
gated function, and neither can safely provide oracle access to the verification algorithm. This problem is
resolved by Chung et al. [8], who consider the setting of memory delegation, where all inputs are prepro-
cessed and given to the worker who will later execute multiple computations on them. Similar to the non-
interactive solution of Goldwasser et al. [14], the effort required to verify results from memory delegation
is proportional to the depth of the computation’s circuit, which for certain functions may be proportional to
the circuit size (e.g., exponentiation). The recent works of Bitansky et al. [4] and Goldwasser et al. [15] also
achieve reusable soundness, though they rely on non-falsifiable “knowledge of exponent” type assumptions
to so. Specifically, Bitansky et al. [4] present a construction for succinct non-interactive arguments based on
a combination of PCP and PIR techniques, while Goldwasser et al. [15] give a construction for designated
verifier CS proofs for polynomial functions, which also employs leveled fully homomorphic encryption.

Barbosa and Farshim [2] construct a verifiable computation protocol for arbitrary functions (without the
rejection problem) from fully homomorphic encryption and functional encryption. Similar to the proposal
of Applebaum, Ishai, and Kushilevitz [1], their protocol calculates a verifiable MAC over the computation’s
result, allowing efficient verification. However, this approach relies on powerful functional encryption func-
tionality (e.g., the ability to compute MACs) that are currently not known to be achievable, whereas our
approach needs only ABE.

The solutions of Benabbas, Gennaro, and Vahlis [3] and Papamanthou, Tamassia, and Triandopou-
los [23] provide verifiable computation schemes for smaller classes of functions, polynomials and set op-
erations respectively, but using more efficient tools than FHE or PCP combined with a single server PIR.
Although VC schemes with reusable soundness protect against cheating even when the worker learns the
output of the verification algorithm, they do not provide public verifiability where anyone can check the
correctness of the result. The only exception is the work of Papamanthou et al. [23] which allows anyone
who receives the result of the set operation to verify its correctness.

4

2 Definitions

We propose extended definitions for verifiable computation. We also summarize definitions for attribute-
based encryption, since we explore its relationship with verifiable computation.

2.1 Public Verifiable Computation

Verifiable computation schemes enable a client to outsource the computation of afunctionF to an untrusted
worker, and verify the correctness of the results returned by the worker [3, 9, 11, 14, 22]. Critically, the
outsourcing and verification procedures must be significantly more efficient for the client than performing
the computation by itself.

We propose two new properties of verifiable computation schemes, namely
• Public Delegation, which allows arbitrary parties to submit inputs for delegation, and
• Public Verifiability, which allows arbitrary parties (and not just the delegator) to verify the correctness

of the results returned by the worker.
Together, a verifiable computation protocol that satisfies both properties iscalled apublic verifiable

computationprotocol. The following definition captures these two properties.

Definition 1 (Public Verifiable Computation) A public verifiable computation schemeV C pub is a four-
tuple of probabilistic polynomial-time algorithms(KeyGen, ProbGen,Compute,Verify) which work as fol-
lows:

• KeyGen(F,1λ)→ (PKF ,EKF): The randomizedkey generationalgorithm takes as input a security
parameterλ and the function F, and outputs a short public key PK that will be used for input dele-
gation and a public evaluation key EKF , which will be used for the evaluation of the function F (the
length of this key will depend on the function).
• ProbGenPKF (x)→ (σx,VKx): Theproblem generationalgorithm uses the public key PKF to encode

the function input x as a public valueσx, which is given to the worker to compute with, and a public
value VKx, which is used for verification.
• ComputeEKF

(σx)→ σy: Using the public evaluation key and the encoded input, the workercomputes
an encoded version of the function’s output y= F(x).
• VerifyVKx

(σy)→ y∪ ⊥: Using the public verification key VKx, thepublic verificationalgorithm con-
verts the worker’s output into the output of the function y= F(x), or outputs⊥ indicating thatσy does
not represent the valid output of F on x.

The changes relative to the original definition of verifiable computation [11] are with respect toKeyGen,
ProbGen andVerify. In the original definition,KeyGen produced a secret key that was used as an input to
ProbGen. ProbGen, in turn, produced a secret verification value needed forVerify; that verification value
could not be shared with the worker. Indeed, previous schemes for general verifiable computation [9, 11]
could be attacked given just oracle access to the verification function. This could be remedied by requiring
the client to generate new parameters for the scheme, whenever the worker is caught cheating, but this
is unattractive, given the computational overhead of generating parameters. A public verification key, in
contrast, allows any party holding it to verify a computational result, even if the party that originally ran
ProbGen is no longer online. Thus, this definition is strictly stronger than the earlier notion of security with
verification access [11], which only gives the worker access to a verification oracle.

Providing public delegation and verifiability for outsourced computations introduces a new threat model
in which the worker will be able to run the verification algorithm on any output that it intends to return.
Accordingly, we modify the original security definition for verifiable computation [11] and require that even
if the adversary can runProbGen on his own, and he receives the verification key for the challenge input, he
still cannot return an incorrect output that passes verification.

5

Definition 2 (Public Verifiable Computation Security) Let V C = (KeyGen,ProbGen,Compute,Verify)
be a public verifiable computation scheme.

ExperimentExpPubVeri f
A [V C ,F,λ]

(PKF ,EKF)
R
← KeyGen(F,λ);

x← A(PKF ,EKF);
(σx,VKx)← ProbGenPKF (x);
σ̂y← A(PKF ,EKF ,σx,VK);
ŷ← VerifyVKx

(σ̂y)
If ŷ 6=⊥ andŷ 6= F(x), output ‘1’, else ‘0’;

In the experiment above, we define the advantage of an adversary A,running in probabilistic polynomial
time and making a polynomial number of queries q, as:

AdvPubVeri f
A (V C ,F,λ,q) = Pr[ExpPubVeri f

A [V C ,F,λ] = 1] (1)

A public verifiable computation schemeV C is securefor a function F, if

AdvPubVeri f
A (V C ,F,λ,q)≤ negl(λ). (2)

wherenegl() is a negligible function of its input.

Efficiency requirements. For outsourcing work via verifiable computation to make sense, the client must
to less work than that done by the worker. Thus, we retain the earlier efficiency requirements [11]; namely
ProbGen andVerify must have smaller computational complexity thanCompute. However, forKeyGen,
we ask only that the complexity beO(|F|); thus, we employ anamortizedcomplexity model, in which the
client invests a larger amount of computational work in an offline phase in order to obtain efficiency during
the online phase.

Remark 1 Definition2 is strictly stronger than the original definition of verifiable computation [11]. Hence
any scheme satisfying Definition2 will also satisfy the earlier definition.

2.2 Multi-Function Verifiable Computation

The original definition of verifiable computation [11] assumed that multiple inputs would be prepared for
a single function; here, we expand this definition to efficiently allow workersto verifiably apply multiple
functions to a single input. In other words, previously, to evaluateF(x) andG(x), the client needed to run
KeyGen for F , KeyGen for G, and then runProbGen on x twice, once forF and once forG (since the
public keyPK used for the input preprocessing inProbGen depends on the function that is evaluated). Our
new definition only requires the client to runProbGen once, and yet still allows the client to verify that a
particular output was the output of a particular function on a particular input.

We present the multi-function property in the secret key setting of the original definition of verifiable
computation [11], but note that it is orthogonal to the public delegation and verification defined in Sec-
tion 2.1, and hence a scheme may have both properties, none, or one but not theother.

Since the original definition embeds the function to be computed in the scheme’s parameters, we separate
the generation of the parameters for the scheme, which will be used inProbGen, into aSetup stage, and
the generation of tokens for the evaluation of different functions into aKeyGen routine, which could be
executed multiple times using the same parameters for the scheme. This allows the evaluation of multiple
functions on the same instance produced byProbGen.

Definition 3 (Multi-Function Verifiable Computation) A VC schemeV C = (Setup, KeyGen, ProbGen,
Compute, Verify) is a multi-function verifiable computation scheme if it has the following properties:

6

• Setup(λ)→ (PKparam,SKparam): Produces the public and private parameters that do not depend on
the functions to be evaluated.
• KeyGenPKparam,SKparam

(F)→ (PKF ,SKF): Produces a keypair for evaluating and verifying a specific
function F.
• ProbGenPKparam,SKparam(x)→ (σx,τx): The algorithm requires the secret SKparam, which is independent

of the function that will be computed. It generates both the encodingσx for the input, and the secret
verification keyτx.
• ComputePKparam,PKF

(σx)→σy: The computation algorithm uses both parts of the public key to produce
an encoding of the output y= F(x).
• VerifySKF ,τx

(σy)→ y∪⊥: Using the private, function-specific key SKF and the private, input-specific
valueτx, the verification algorithm converts the worker’s output into y=F(x), or outputs⊥ to indicate
that σy does not represent a valid output of F on x.

Definition 4 (Multi-Function Verifiable Computation Security) LetV C =(Setup,KeyGen,ProbGen,Compute,
Verify) be a multi-function verifiable computation scheme. We define security via the following experiment.

ExperimentExpMultVeri f
A [V C ,λ]

(PKparam,SKparam)
R
← KeyGen(λ);

(x,F, σ̂y)← AOKeyGen(·),OProbGen(·)(PKparam);
ŷ← VerifySKF ,τx

(σ̂y)
If ŷ 6=⊥ andŷ 6= F(x), output ‘1’, else ‘0’;

We define the adversary’s advantage and the scheme’s security in the same fashion as Definition2.

In the experiment, the adversary has oracle access toOKeyGen(F), which callsKeyGenPKparam,SKparam
(F),

returnsPKF , and storesSKF . Similarly, the adversary can access theOProbGen(·) oracle, which calls
ProbGenSKparam(x), returnsσx, and storesτx. Eventually, the adversary returns an encodingσ̂y which pur-
ports to be an output ofF applied tox. The challenger runsVerify with the corresponding values ofτx and
SKF , and the adversary wins if this check passes.

2.3 Key-Policy Attribute-Based Encryption

Introduced by Goyal et al. [16], Key-Policy Attribute-Based Encryption (KP-ABE) can be thought of as
associating a functionF with each user’s key, and a set of attributes with each ciphertext. A key will
decrypt a particular ciphertext only if the key’s function evaluates to truefor the attributes associated with
the ciphertext. In this sense, KP-ABE can be thought of as a special-case of Functional Encryption [5].

2.3.1 Basic KP-ABE

Currently known KP-ABE constructions support functions that are poly-sized Boolean formulasφ in n vari-
ables; ciphertexts are associated with attributes of the form~z= (z1, . . . ,zn)∈{0,1}n. However, this restricted
set of functions is not inherent in the definition of KP-ABE. Thus, we statethe following definitions, adapted
from the definitions of Goyal et al. [16] and Lewko et al. [20], in terms of a general policy function.

Definition 5 (Key-Policy Attribute-Based Encryption) An attribute-based encryption schemeABE is a
tuple of algorithms(Setup,Enc,KeyGen,Dec) defined as follows:

• Setup(λ,U)→ (PK,MSK) : Given a security parameterλ and the set of all possible attributes U,
output a public key PK and a master secret key MSK.
• EncPK(M,γ)→C: Given a public key PK, a message M, and a set of attributesγ, output ciphertext C.
• KeyGenMSK(F)→ SKF : Given a function F and the master secret key MSK, output a decryption key

SKF associated with that function.

7

• DecSKF (C)→ M ∪ ⊥: Given a ciphertext C= EncPK(M,γ) and a secret key SKF for function F,
output M if F(γ) = 1, or⊥, otherwise.

Below, we give the natural definition for KP-ABE security. Early KP-ABEschemes were proven secure
in the weaker “selective-security” model, but the stronger definition belowwas recently achieved by Lewko
et al. [20].

Definition 6 (KP-ABE Security) Let ABE = (Setup,Enc,KeyGen,Dec) be a key-policy attribute-based
encryption scheme. We define security via the following experiment.

ExperimentExpABE
A [ABE ,F,U,λ]

(PK,MSK)
R
← Setup(λ,U);

(M0,M1, γ̂)← AOKeyGen(·)(PK);
b←{0,1};
b̂← AOKeyGen(·)(PK,EncPK(Mb));
If b = b̂, output ‘1’, else ‘0’;

In the experiment, the adversary has access to an oracleOKeyGen(F), which invokes SKF←KeyGenMSK(F)
and returns SKF . Eventually,A chooses two messages M0,M1 of equal length and a set of challenge at-
tributesγ, and he receives the encryption of one of two messages. Ultimately, he must decide which of the
two plaintext messages was encrypted.

We consider the experimentvalid if ∀SKF ∈ R : F(γ) 6= 1, whereR = {SKF} is the set of responses to
the oracle. In other words, the adversary cannot hold a key that triviallydecrypts messages encrypted under
the challenge attributeγ.

We define the advantage of the adversary in all valid experiments as

AdvA(ABE ,U,λ) =
∣

∣

∣

∣

Pr[b= b′]−
1
2

∣

∣

∣

∣

.

We say thatABE is a secure key-policy attribute-based encryption scheme if AdvA(ABE ,U,λ)< negl(λ).

2.3.2 KP-ABE With Outsourcing

Green, Hohenberger, and Waters define a notion of ABE with outsourcing in which the party performing the
decryption can offload most of the decryption work to an untrusted third party [17]; the third party learns
nothing about the underlying plaintext, and the party holding the secret keycan complete the decryption
very efficiently, in time independent of the size of the formula associated with the key. Although they define
and construct ABE with outsourcing for both CP-ABE and KP-ABE, below, we focus on the definitions for
KP-ABE, which will be relevant for our work. We also give an IND-CPAsecurity definition, since we do
not require the stronger RCCA they defined. Note that Green et al.’s construction [17] is selectively secure,
but they provide a sketch, based on Lewko et al.’s work [20], to show that their scheme can also be made
adaptively secure.

Note that in this context the outsourcing done is for the very specific function of ABE partial decryption.
The definitions also do not include a notion of integrity or verification, as in verifiable computation, but
instead are concerned with the secrecy of the underlying plaintext.

Definition 7 (Key-Policy Attribute-Based Encryption With Outsourcin g [17]) A KP-ABE scheme with
outsourcing,ABE , is a tuple of algorithms(Setup,Enc,KeyGen,Transform,Dec) defined as follows:

• Setup(λ,U)→ (PK,MSK) : Given a security parameterλ and the set of all possible attributes U,
output a public key PK and a master secret key MSK.

• EncPK(M,γ)→C: Given a public key PK, a message M, and a set of attributesγ, output ciphertext C.

8

• KeyGenMSK(F)→ (SKF ,TKF): Given a function F and the master secret key MSK, output a decryp-
tion key SKF and a transformation key TKF associated with that function.

• TransformTKF (C)→C′ ∪ ⊥: Given a ciphertext C= EncPK(M,γ) and a transformation key TKF for
function F, output a partially decrypted ciphertext C′ if F (γ) = 1, or⊥, otherwise.

• DecSKF (C
′)→M ∪ ⊥: Given a partially decrypted ciphertext C′ = TransformTKF (EncPK(M,γ)) and

a secret key SKF for function F, output M if F(γ) = 1, or⊥, otherwise.

Definition 8 (KP-ABE With Outsourcing IND-CPA Security) LetABE =(Setup,Enc,KeyGen,Transform,Dec)
be a key-policy attribute-based encryption scheme with outsourcing. We define security via the following
experiment.

ExperimentExpABE−Out
A [ABE ,F,U,λ]

(PK,MSK)
R
← Setup(λ,U);

(M0,M1,γ)← AOKeyGen(·),OCorrupt (·)(PK);
b←{0,1};
b̂← AOKeyGen(·),OCorrupt (·)(PK,EncPK(Mb,γ)) ;
If b = b̂, output ‘1’, else ‘0’;

In the experiment, the adversary has access to two oracles.OKeyGen(F) invokes(SKF ,TKF)←KeyGenMSK(F),
stores SKF and returns TKF . OCorrupt (F) returns SKF if the adversary previously invokedOKeyGen(F) and
returns⊥ otherwise. Eventually,A chooses two messages M0,M1 of equal length and a set of challenge
attributesγ, and he receives the encryption of one of two messages. Ultimately, he must decide which of the
two plaintext messages was encrypted.

We consider the experimentvalid if ∀SKF ∈R : F(γ) 6= 1, whereR = {SKF} is the set of valid responses
to theOCorrupt (F) oracle. In other words, the adversary cannot hold a key that trivially decrypts messages
encrypted under the challenge attributeγ.

We define the advantage of the adversary in all valid experiments as

AdvA(ABE ,U,λ) =
∣

∣

∣

∣

Pr[b= b′]−
1
2

∣

∣

∣

∣

.

We say thatABE is a secure key-policy attribute-based encryption scheme with outsourcing if AdvA(ABE ,U,λ)<
negl(λ).

3 Public Verifiable Computation from Attribute-Based Encryption

The security definition of KP-ABE guarantees that decryption will only succeed when the function asso-
ciated with a secret key evaluates to a particular check value (traditionally “1”) on the attribute associated
with the ciphertext. Seen in this light, we can view the decrypted plaintext value from a KP-ABE ciphertext
as an efficiently verifiable proof that the result of applying the key’s function to the attribute value is equal
exactly to the check value.

Thus, in the verifiable computation setting, if we give the worker a key associated with the function
we wish to evaluate, then we can encrypt random messages, using as attributes the input values for the
computation. The worker’s response will simply be the decryptions that he manages to obtain. The only
valid plaintext values that he can return will be associated with attributes that satisfy the check value for the
function evaluation. We can make this scheme publicly verifiable by defining theverification tokens to be
the result of applying a one-way function to the plaintexts. Indeed this transformation applies to any VC
scheme in which verification consists of a simple comparison operation.

One problem with this approach is that the worker may still cheat by returningnothing; i.e., claiming
that none of the ciphertexts decrypted successfully, even when some didsucceed. To address this problem,

9

consider a functionf : X→ {0,1} with binary output. We can compute the complement functionf̄ , which
always outputs the opposite bit of the output off . If we give the worker secret keys forboth f and f̄ ,
and encrypt twodifferentrandom messages, then the worker must return exactly one of the messages, since
exactly one of the ciphertexts will always decrypt successfully. To keep the ciphertexts distinct, we generate
the keys forf and f̄ (and the corresponding encryptions) using two distinct master keypairs for the KP-ABE
system.

To extend this idea to functions with multi-bit outputs, we decompose each function F into subfunctions
f1, ..., fn where fi represents the function that computes theith output bit ofF . Alternately, if the KP-ABE
scheme supports attribute hiding (also known as predicate encryption) anda class of functions that includes
MACs, then we can defineF ′(x)=MACK(F(x)) and verifyF ′ instead, similar to the constructions suggested
by Applebaum, Ishai, and Kushilevitz [1], and Barbosa and Farshim [2].

An attribute hiding ABE or predicate encryption scheme would also give us input and output privacy,
without the need for fully-homomorphic encryption. Attribute hiding naturally gives us input privacy, since
we encode the function’s input in the attribute. By randomly permuting the keypairs and ciphertexts we give
out, we can also hide whether a successful decryption corresponds toa 0 or 1 output.

We present a construction of a public verifiable computation scheme for functions with one bit output
from a KP-ABE scheme follow. The extension to multi-bit outputs is straightforward as described above.

Construction 1 (V C ABE) LetABE =(ABE.Setup,ABE.Enc,ABE.KeyGen,ABE.Dec) be a KP-ABE scheme
for a class of functionsF that is closed under complement with possible attributes from the set U, and let g
be a one-way function.

Then there is a public verifiable computation schemeV C = (VCKeyGen,ProbGen,Compute,Verify)
for the same class of functionsF , which is defined as follows.

• VCKeyGen(f 0,λ)→ (PKF ,EKF), where f0 ∈ F is such that f0 : {0,1}n→{0,1}:

1. Generate two key pairs by running

(MPK0
abe,MSK0

abe)← ABE.Setup(1λ,1n) and (MPK1
abe,MSK1

abe)← ABE.Setup(1λ,U)

2. Set
SKf 0

abe= ABE.KeyGenMSK0
abe
(f 0) and SKf 1

abe= ABE.KeyGenMSK1
abe
(f 1)

where f1 denotes the complement of the function f0, i.e., f1(x) = 1 if and only if f0(x) = 0.

3. Let the public key for the verifiable computation be PKF =(MPK0
abe,MPK1

abe) and the evaluation

key be EKF = (SKf 0

abe,SKf 1

abe).

• ProbGenPKF (x)→ (σx,VKx):

1. Generate a pair of random messages(m0,m1)
R
←{0,1}λ×{0,1}λ.

2. Compute ciphertexts c0 = ABE .EncMPK0
abe
(m0,x) and c1 = ABE .EncMPK1

abe
(m1,x).

3. Output(σx,VKx), whereσx = (c0,c1) and VKx = (g(m0),g(m1)).

• ComputeEKF
(σx)→ σy :

1. Parse EKF as(SKf 0

abe,SKf 1

abe) andσx as(c0,c1).

2. Compute d0 = ABE .Dec
SKf 0

abe

(c0) and d1 = ABE .Dec
SKf 1

abe

(c1).

3. Outputσy = (d0,d1).

• VerifyVKx
(σy)→ y∪ ⊥:

1. Parse VKx as(g(m0),g(m1)) andσy as(d0,d1).

2. If g(d0) = g(m0) then y= 0, else if g(d1) = g(m1), then y= 1, else output⊥.

10

Efficiency. To be a true verifiable computation scheme,V C ABE must satisfy the efficiency requirements
from Section2.1; specifically, the running time ofProbGen andVerify must be less than computing the
function itself. SinceVerify simply requires two one-way function computations and two equality checks,
the runtime is independent of the function. For any “reasonable” KP-ABEscheme, the runtime ofProbGen
should be independent ofF as well, since all of the inputs toEnc are independent ofF .

To prove the security ofV C ABE, we show that a VC attacker must break the security of the one-way
functiong or of the KP-ABE scheme. Intuitively, if an adversary can breakV C ABE, then he will return the
decryption of a message encrypted with an attribute that does not satisfy thefunction being verified. This
decryption can then be used to decide which plaintext was encrypted in the KP-ABE challenge.

Theorem 2 LetABE =(Setup,Enc,KeyGen,Dec) be a secure (according to Definition6) key-policy attribute-
based encryption scheme for a class of functionF . LetV C ABE = (KeyGen,ProbGen,Compute,Verify) be
the verifiable computation scheme obtained fromABE using Construction1. ThenV C ABE is secure ac-
cording to Definition2.

The proof of Theorem2 is given in AppendixA.

Remark 2 If we employ a KP-ABE scheme that is selectively secure, then the construction and proof above
still go through, as long as the KP-ABE scheme’s attribute domain has size polynomial in the security
parameter. In that case,AABE simply guesses the attribute the VC adversary will cheat on. SinceAVC cheats
with non-negligible probability, and the probability that he will cheat at x is1poly(λ) , it follows thatAABE will
also have non-negligible advantage in the ABE security game.

Remark 3 If we employ a KP-ABE scheme that is selectively secure with a larger domain, then the con-
struction and proof above still go through if we adopt a notion of “selectively-secure” verifiable computation
in which the VC adversary commits in advance to the input on which he plans tocheat.

4 Multi-Function Verifiable Computation from KP-ABE With Outsourcing

The original definition of KP-ABE does not readily lend itself to multi-function verifiable computation.
Specifically, it does not allow the client an easy way to verify which functionwas used to compute an
answer. For example, suppose the client gives out keysSKF andSKG for functionsF andG. Following
Construction1, to outsource computation on inputx, the client gives out (among other things) a ciphertext
EncPK(M0,x). Now, supposeF(x) = 1, butG(x) 6= 1. The worker can useSKF to obtainM0, but claim that
this output corresponds to a computation ofG. In essence, Construction1 gives us a way to verify that an
output corresponds to a particular input, but if we give out more than onesecret key, it cannot distinguish
between functions. One remedy would be to run two parallel instances of Construction1, but then we need
to runProbGen for each function we wish to compute on a given input.

A more elegant solution is to use an ABE scheme that requires an extra step to decrypt a ciphertext.
Thus, we show how to build multi-function verifiable computation from KP-ABE with outsourcing [17]
(see Section2.3.2). We use the transformation key to allow the worker to compute, and then use the secret
key as a verification key for the function. This allows us to verify both the input and specific function used
to compute a particular result returned by the worker.

Interestingly, a similar scheme can be constructed from Chase’s multi-authority ABE [7], by using
function identifiers (e.g., a hash of the function description, or a unique IDassigned by the client) in place
of user identifiers, and using the “user key” generated by the Central Authority as a verification token for
a particular function. However, since this approach does not employ the multi-authority ABE scheme in a
black-box fashion, in this section, we focus on the construction from KP-ABE with outsourcing.

We specify the construction in detail below. For clarity, we only consider functions with single-bit
outputs, but the construction can be generalized just as we did in Section3.

11

Construction 2 Let ABE = (Setup,Enc,KeyGen,TransformDec) be a KP-ABE scheme with outsourcing
with attribute universe U. We construct a multi-function verifiable computation scheme as follows:

• Setup(λ)→ (PKparam,SKparam) : RunABE .Setup(λ,U) twice to obtain(PK0,MSK0) and(PK1,MSK1).
Set PKparam= (PK0,PK1) and SKparam= (MSK0,MSK1).

• KeyGenPKparam,SKparam
(F)→ (PKF ,SKF) : Compute(SK0

F ,TK0
F)←ABE .KeyGenMSK0(F) and(SK1

F̄ ,TK1
F̄)←

ABE .KeyGenMSK1(F̄), whereF̄ is the complement of F.
Output PKF = (TK0

F ,TK1
F̄) and SKF = (SK0

F ,SK1
F̄). In other words, the public key will be the trans-

formation keys, and the secret verification key will be the “true” secret keys.

• ProbGenPKparam,SKparam(x) → (σx,τx): Generate a pair of random messages(M0,M1)
R
← {0,1}λ ×

{0,1}λ. Compute ciphertexts C0← ABE .EncPK0(M0,x) and C1← ABE .EncPK1(M1,x).
Outputσx = (C0,C1) andτx = (M0,M1).

• ComputePKparam,PKF
(σx)→ σy: Parse PKF as (TK0

F ,TK1
F̄). Compute C′0 = ABE .TransformTK0

F
(C0)

and C′1 = ABE .TransformTK1
F̄
(C1). Outputσy = (C′0,C

′
1).

• VerifySKF ,τx
(σy)→ y: Parse SKF as(SK0

F ,SK1
F̄), τx as(M0,M1), andσy as(C′0,C

′
1). If ABE .DecSK0

F
(C′0)=

M0, then output y= 0. If ABE .DecSK1
F̄
(C′0) = M1, then output y= 1. Otherwise, output⊥.

The above construction will provide the efficiency property required for a VC scheme (verification that
is more efficient than the delegated computation) as long as theTransform algorithm is computationally
more expensive than theEncandDecalgorithms of the ABE scheme. However, this requirement is inherent
in the definition of ABE with outsourcing.

Remark 4 Construction2 is publicly delegatable, sinceProbGen only makes use of PKparam; i.e., it only
employs the public ABE keys to performProbGen, so anyone may do so. However, the verification function
cannot be made public. Specifically, giving out SKF in Green et al.’s ABE scheme [17] would directly allow
the worker to lie about the function used, i.e., claim that an output computed withF was the result of
applying G. Even so, the adversary would still be unable to lie about the output’s value.

Proof Intuition. The proof of security looks very similar to ProofA. The intuition for input security
is the same as before, i.e., the revelation of one of the two random messages associated with aProbGen
invocation demonstrates that the computation was performed on that particularinput. Unlike with a regular
ABE scheme, we can also verify the function used, since decrypting with a key that does not match the
transformation key used will not produce the expected message. This is provided by the security of the ABE
with outsourced decryption, which guarantees semantic security of the encrypted messages even when the
adversary sees the transformation keys used for the outsourced portion of the decryption.

5 Conclusions and Future Work

In this work, we introduced new notions for verifiable computation:public delegation, public verifiability,
andmulti-functionVC. We demonstrate that ABE implies public VC, and ABE with outsourcing implies
multi-function VC. The relationship offers much more efficient VC schemes for the class of functions sup-
ported by ABE.

Our work leaves open several interesting problems. First, can we achieve public verifiability for a multi-
function VC scheme? Second, it would be desirable to show a MAC scheme that can be supported by an
ABE scheme’s class of functions, so that we can improve the efficiency ofverifying multi-bit outputs.

12

References

[1] B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient verification via
secure computation. InProceedings of the International Colloquium on Automata, Languages and
Programming (ICALP), 2010.

[2] M. Barbosa and P. Farshim. Delegatable homomorphic encryption with applications to secure out-
sourcing of computation. Cryptology ePrint Archive, Report 2011/215, 2011.

[3] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over large datasets. In
Proceedings of CRYPTO, 2011.

[4] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resistance to succinct
non-interactive arguments of knowledge, and back again. Cryptology ePrint Archive, Report 2011/443,
2011.

[5] D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. InProceedings
of the IACR Theory of Cryptography Conference (TCC), 2011.

[6] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge.Journal of
Computer and System Sciences, 37(2), 1988.

[7] M. Chase. Multi-authority attribute based encryption. InProceedings of the IACR Theory of Cryptog-
raphy Conference (TCC), 2007.

[8] K.-M. Chung, Y. Kalai, F.-H. Liu, and R. Raz. Memory delegation. InProceedings of CRYPTO, 2011.
[9] K.-M. Chung, Y. Kalai, and S. Vadhan. Improved delegation of computation using fully homomorphic

encryption. InProceedings of CRYPTO, Aug. 2010.
[10] L. Fortnow and C. Lund. Interactive proof systems and alternatingtime-space complexity. InProceed-

ings of the Symposium on Theoretical Aspects of Computer Science (STACS), 1991.
[11] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computation: Outsourcing computa-

tion to untrusted workers. InProceedings of CRYPTO, Aug. 2010.
[12] C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable assump-

tions. InSTOC, pages 99–108, 2011.
[13] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. InProceedings of the

ACM Symposium on Theory of Computing (STOC), 1989.
[14] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation:interactive proofs for

muggles. InProceedings of the ACM Symposium on the Theory of Computing (STOC), 2008.
[15] S. Goldwasser, H. Lin, and A. Rubinstein. Delegation of computation without rejection problem from

designated verifier CS-proofs. Cryptology ePrint Archive, Report2011/456, 2011.
[16] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access

control of encrypted data. InProceedings of the ACM Conference on Computer and Communications
Security (CCS), 2006.

[17] M. Green, S. Hohenberger, and B. Waters. Outsourcing the decryption of ABE ciphertexts. InPro-
ceedings of the USENIX Security Symposium, 2011.

[18] J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). InProceedings
of the ACM Symposium on Theory of Computing (STOC), 1992.

[19] J. Kilian. Improved efficient arguments (preliminary version). InProceedings of CRYPTO, 1995.
[20] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fullysecure functional encryption:

Attribute-based encryption and (hierarchical) inner product encryption. In Proceedings of EuroCrypt,
2010.

[21] C. Lund, L. Fortnow, and H. Karloff. Algebraic methods for interactive proof systems.Journal of the
ACM, 39(4):859–868, 1992.

13

[22] S. Micali. CS proofs (extended abstract). InProceedings of the IEEE Symposium on Foundations of
Computer Science, 1994.

[23] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Optimal verification of operations on dynamic
sets. InProceedings of CRYPTO, 2011.

[24] A. Sahai and B. Waters. Fuzzy identity-based encryption. InEUROCRYPT, pages 457–473, 2005.

[25] A. Shamir. IP = PSPACE.Journal of the ACM, 39(4):869–877, 1992.

[26] B. Waters. Private communications, 2011.

A Proof of Security for the ABE to VC Construction

Proof of Theorem2:
Suppose there exists an adversaryAVC who succeeds in the VC security game (Definition2) with non-

negligible probability when the VC scheme is instantiated with the ABE-based scheme from Construction1.
We first argue that if the ABE scheme is secure, thenAVC cannot distinguish between the following two
games:

Game 0.We run the real security game for the VC construction.

Game 1. We run the real security game for the VC scheme with the following modification. When the
adversary supplies us with the challenge inputx, instead of returning an encryption ofm0 and an encryp-
tion of m1, we choose a random messagem′ 6= m0,m1, let r be such thatf r(x) = 0, and replacecr with
ABE .EncPKr

abe
(m′,x).

If AVC succeeds in distinguishing between these two games with non-negligible probability, i.e., if

∣

∣Pr
[

Exp0
A[V C ,F,λ]

]

−Pr
[

Exp1
A[V C ,F,λ]

]∣

∣> δ

whereδ is non-negligible inλ, then we can construct an adversaryAABE against the ABE scheme as follows.

1. AABE interacts with the challengerC in the ABE security game and acts as the challenger forAVC in
the security game for the verifiable computation.

2. AABE receives a public keyPK0
abe from C , and runsABE .Setup(λ,U) on its own to generate a second

pair of keys(PK1
abe,MSK1

abe).

3. Let f 0 be the function we wish to verify.AABE computesf 1← f̄ 0, the complement function off 0.

4. AABE chooses a random bitr
R
←{0,1} and generatesSKf r

abe= ABE .KeyGenMSK1
abe
(f r) using his own

master secret key. He then makes a call toC to obtainSKf 1−r

abe = ABE .KeyGenMSK0
abe
(f 1−r). AABE

sendsPKF = {PK0
abe,PK1

abe} andEKF = {SKf 1−r

abe ,SKf r

abe} to AVC.

5. Upon receiving the challenge inputx, AABE chooses three random messagesm0,m1 andm2. AABE

sendsm0,m1, and attributeγ = x to its challenger and receives challenge ciphertextc, which is the

encryption ofmb. AABE setsσx ← (c,ABE .EncPK1
abe
(m2,γ)), chooses a randomt

R
← {0,1}, sets

VKx← (g(mt),g(m2)), and sends(σx,VKx) to AVC.

6. AABE receives the result̂σy from AVC.

7. If g(σ̂y) = g(mt), thenAABE guessesb′← t. Otherwise,AABE guessesb′← 1− t.

We observe that ift = b, the distribution of the above experiment coincides with Game 0. Ift = 1−b,

14

the distribution is the same as Game 1. Thus, we have:

Pr[b′ = b] = Pr[t = b]Pr[b′ = b|t = b]+Pr[t 6= b]Pr[b′ = b|t 6= b]

=
1
2

Pr[g(σ̂y) = g(mt)|t = b]+
1
2

Pr[g(σ̂y) 6= g(mt)|t 6= b]

=
1
2

Exp0
A[V C ,F,λ]+

1
2
(1−Pr[g(σ̂y) = g(mt)|t 6= b])

=
1
2

Exp0
A[V C ,F,λ]+

1
2
(1−Exp1

A[V C ,F,λ])

=
1
2
(Exp0

A[V C ,F,λ]−Exp1
A[V C ,F,λ]+1)

=
1
2
(Exp0

A[V C ,F,λ]−Exp1
A[V C ,F,λ]+1)

≥
1
2
(δ+1)

which implies

AdvAABE =

∣

∣

∣

∣

Pr[b= b′]−
1
2

∣

∣

∣

∣

≥

∣

∣

∣

∣

1
2
(δ+1)−

1
2

∣

∣

∣

∣

=
δ
2

Thus, if AVC distinguishes between these two games, thenAABE can distinguish which ciphertext his chal-
lenger encrypted with non-negligible probability.

Now, sinceAVC cannot distinguish between Game 0 and Game 1, we can run him in Game 1, and use
him to invert the one-way functiong. Specifically, suppose we are givenz= g(w), and we want to findw.
We run Game 1 withAVC using ABE keys we have generated, and we definemr = w. Thus, we will giveAV

the valuez as the verification token for outputr. Since f 1−r(x) = 1, a legitimate worker would returnm1−r ,
so to cheat in the VC experiment, theAVC must returnmr such thatg(mr) = z. In other words, the valueσy

he returns must bew, and hence we will invert the one-way function with non-negligible probability.
Thus, assuming the ABE scheme and the one-way function are secure, Construction1 is also secure.

B Attribute-based Encryption from Verifiable Computation

Given that we have shown how to construct a verifiable computation (VC) protocol from an attribute-based
encryption (ABE) scheme, it is natural to ask whether the reverse implicationholds. In other words, can we
construct an ABE scheme, given a VC scheme? At first sight, the key property of a VC scheme – namely,
efficient verification – does not seem to have anything to do with attribute-based encryption.

Despite this apparent mismatch of functionality, we show how to transform (publicly) verifiable com-
putation protocols of a special form – that we call weak “multi-function verifiable computation” – into an
attribute-based encryption scheme for the same class of functions. Informally, a weak multi-function VC
protocol has the following features:

• The output ofProbGen on an inputx can be used to compute many different functions onx. Thus, in
some sense,ProbGen is agnostic of the function that will be computed on the input.
In particular, we now have a setup algorithm that generates a pair of publicand secret parameters, a
key generation algorithmKeyGen (as before) that generates a secret keySKF for a functionF given the
secret parameters, and aProbGen algorithm that (as before) given an inputx and the public parameters

15

generates an encoding ofx together with a verification key. Thus,ProbGen does not know aboutF
andKeyGen does not know aboutx. Indeed, this is the crucial property that gives us ABE.

• The verification key for an inputx consists of a pair(VK0
x ,VK1

x), and the verification algorithm con-
sists of simply applying some functionH to the server’s responseσy and checking if it equalsVK0

x or
VK1

x .

Indeed, the VC scheme that we constructed from ABE has both the above properties.
The high level idea for the construction of an ABE scheme from a multi-functionVC scheme is as

follows: in order to encrypt a message under a particular attribute (in the ABE scheme), we first generate
a key that can be computed only if the output of the server in the VC protocolverifies correctly. Now,
decryption of the ciphertext will succeed only if the decryptor correctly performs the evaluation of the key’s
function on the attribute associated with the ciphertext, and the output value ofthe computation satisfies the
decryption condition, in which case he will have the correct decryption key for the ciphertext.

Put another way, the security of a VC scheme implies it should be difficult foran adversary to produce an
output that does not correspond to a legitimate computation of a function on a particular input. If we make
decryption of a ciphertext dependent on having a particular output, thenthe computation possible given a key
for the function and an attribute/input either legitimately produces the expectedoutput, allowing decryption
of the ciphertext, or produces some other output, and it is infeasible to produce the output necessary to
decrypt the ciphertext.

We define the notion of a weak multi-function VC protocol below. The “weakness” in the definition
comes from the fact that we only need a multi-function VC scheme that verifiesthat a particular output is
legitimate forsomeoutsourced function (i.e., a function given as input toKeyGen), rather than for a specific
function.

Below, we combine these requirements in a single definition, demonstrate that both Constructions1 and
2 satisfy this definition, and finally show how to use such a definition to construct an ABE scheme.

Definition 9 (Weak Multi-Function Public Verifiable Computation) A VC schemeV C = (Setup,KeyGen,
ProbGen, Compute, Verify) is a weak multi-function public verifiable computation scheme if it has the fol-
lowing properties:

• Setup(λ)→ (PKparam,SKparam): Produces the public and private parameters that do not depend on
the functions to be evaluated.

• KeyGenPKparam,SKparam
(F)→ PKF : Produces a public key for evaluating a specific function F.

• ProbGenPKparam(x)→ (σx,VKx = (VK0
x ,VK1

x)): The algorithm requires only the public parameters,
which are independent of the function that will be computed. It generatesboth the encodingσx for
the input, and the public verification keys for each possible bit of the output, inthis case, simply VK0x
and VK1

x .

• ComputePKparam,PKF
(σx)→σy: The computation algorithm uses both parts of the public key to produce

an encoding of the output y= F(x).

• VerifyVKx
(σy)→ y∪⊥: Using the public input-specific value VKx, the verification algorithm outputs

0 if VK0
x = H(σy), outputs1 if VK1

x = H(σy), and outputs⊥ otherwise, to indicate thatσy does not
represent a valid output of some function F, for whichKeyGen(F) has been invoked, on x

Definition 10 (Weak Multi-Function Public Verifiable Computation Security) LetV C =(Setup,KeyGen,
ProbGen,Compute,Verify) be a weak multi-function public verifiable computation scheme. We define secu-
rity via the following experiment.

16

ExperimentExpWeakMultVeri f
A [V C ,λ]

(PKparam,SKparam)
R
← KeyGen(λ);

x← AOKeyGen(·)(PKparam);
(σx,VKx)← ProbGenPKparam(x);
σ̂y← AOKeyGen(·)(PKparam,σx,VKx);
ŷ← VerifyVKx

(σ̂y)
If ŷ 6=⊥ and∀F ∈ R : ŷ 6= F(x), output ‘1’, else ‘0’;

We define the adversary’s advantage and the scheme’s security in the same fashion as Definition2.

In the experiment, the adversary has oracle access toOKeyGen(F), which callsKeyGenPKparam,SKparam
(F),

returnsPKF , and storesF in the listR . Eventually, the adversary returns an encodingσ̂y which purports to
be an output of some outsourced function applied tox. The challenger runsVerify with the corresponding
values ofVKx, and the adversary wins if this check passes, but the output does not correspond to the output
of one of the functions in listR .

Note that both Constructions1 and2 satisfy this definition. Construction1 does not include any function
verification to begin with, but it still verifies that the output, i.e., the message obtained after performing a
decryption, could not have been obtained without performing a legitimate computation (decryption) with
one of the keys generated byKeyGen. In contrast, Construction2 is too strong, since it verifies the specific
function used. To weaken it, we can simply add the private decryption keySKF to the computation key,
which was previouslyTKF . This removes the ability to verify which function was used, and hence fits
within the definition above.

Below, we describe our construction from VC to ABE in more detail.

Construction 3 Let V C = (Setup,KeyGen, ProbGen,Compute,Verify) be a weak multi-function public
verifiable computation scheme, and H be an injective one way function. We construct the following key-
policy attribute-based encryption schemeABEVC.

• Setup(λ,U)→ (PK,MSK): RunV C .Setup(λ)→ (PKparam,SKparam) and output PK= PKparam and
MSK= SKparam.
• EncPK(M,γ)→C where M∈ {0,1}:

– Run(σx,VKx = (VK0
x ,VK1

x))← V C .ProbGenPKparams(x).

– Let σans be such that H(σans) = VK1
x . Choose a random value r and compute K= 〈σans, r〉

where〈·, ·〉 denotes the inner product of two bit-strings (mod 2).

Output ciphertext C= (σx, r,K⊕M).
• KeyGenMSK(F)→ SKF : Run PKF ← V C .KeyGenPKparam,SKparam

(F). Output SKF = PKF .
• DecSKF (C)→M ∪ ⊥: Parse C as(σx, r,D).

– Runσans← V C .ComputePKparams,PKF
(σx).

– Compute K← 〈σans, r〉. Output K⊕D.

Correctness follows from the fact that ifF(x) = 1, then the answerσans produced by the server (upon
runningV C .Compute) is such thatH(σans) = VK1

x . SinceH is an injective one-way function,〈σans, r〉⊕
D = M.

We now proceed to showing the security of the ABE scheme. First, we state theGoldreich-Levin
lemma [13].

Lemma 1 ([13]) Let f : {0,1}n→{0,1}n be a bijection computable by a circuit of size t and suppose there
is a circuit C of size s such that

Prx,r [C(f (x), r) = 〈x, r〉] =
1
2
+ ε.

17

Then there is a circuitC ′ of size O((s+ t) · poly(n,1/ε)) such that

Prx[C
′(f (x)) = x] =

ε
4
.

Theorem 3 If V C = (Setup,KeyGen, ProbGen,Compute,Verify) is a secure weak multi-function public
VC scheme (see Definitions10), thenABEVC, the ABE scheme obtained with Construction3, is IND-CPA
secure (Definition6).

Proof Sketch. Assume for the sake of contradiction that there exists an adversaryAABE that wins with
non-negligible probabilityµ the security game from Definition6. We use this to break the soundness of the
VC protocol in two steps, conceptually.

First, using Lemma1, the existence ofAABE means that there is an adversary that, given a ciphertext of
the form(σx, r,D), predicts an inverse ofVK1

x under the functionH. Note that this transformation creates
an adversaryA ′ABE that asks polynomially many more ABE secret key queries thanAABE.

Since this adversary essentially predicts the message of the server, this can then be used to construct
an adversaryAVC that breaks the soundness of the VC protocol (from Definition10) with non-negligible
probability. For completeness, we describe both these transformations as one algorithmAVC that usesAABE:

1. AVC receivesPKparam, the output fromV C .Setup(λ) from his challenger. He forwardsPKparam to
AABE.

2. On calls toOABE.KeyGen(F), AVC queries his ownOVC.KeyGen(F) oracle and returns the resultingPKF .

3. Given the challenge messages(M0,M1) and attributesγ, AVC requests as his challenge(σγ,VKγ =
(VK0

γ ,VK1
γ))← ProbGenPKparam(γ).

4. AVC runs the adversaryAgl to obtain the next valuer submitted to the oracleOx(·). AVC chooses a

random bitd
R
←{0,1} and returns the challenge ciphertextC= (r,σγ,d) to AABE.

5. Eventually,AABE will return his guess bit̂b. AVC computesd⊕Mb̂ and returns this value as an answer
to Agl.

6. WhenAgl makes a new oracle query,AVC rewinds the execution ofAABE to Step4.

7. WhenAVC receives an answer̃σ0 from Agl, he returns it as his output for the computation on input
(σγ,VKγ = (VK0

γ ,VK1
γ)).

The probability thatAVC succeeds in cheating is the same as the probability thatAgl succeeds in in-
vertingVK0

γ = H(σ0). By assumptionAABE wins the security game from Definition6 with non-negligible
probabilityµ. ThereforeAVC returns the correct value forσ0 · r to Agl with probabilityµ. Then by Lemma1
it follows that Agl will compute the correct outputσ0 with probability ε

4, which is non-negligible. Hence
AVC wins the security game from Definition10 with non-negligible probability. AlsoAVC runs in polyno-
mial time sinceAgl is a polynomial-time algorithm.

18

	Introduction
	Our Results and Techniques
	Related Work

	Definitions
	Public Verifiable Computation
	Multi-Function Verifiable Computation
	Key-Policy Attribute-Based Encryption
	Basic KP-ABE
	KP-ABE With Outsourcing

	Public Verifiable Computation from Attribute-Based Encryption
	Multi-Function Verifiable Computation from KP-ABE With Outsourcing
	Conclusions and Future Work
	Proof of Security for the ABE to VC Construction
	Attribute-based Encryption from Verifiable Computation

