
Noname manuscript No.
(will be inserted by the editor)

New Subexponential Algorithms for Factoring in SL(2,F2n)

Jean-Charles Faugère∗ · Ludovic Perret∗ · Christophe Petit† ·
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Abstract Cayley hash functions are a particular kind of cryptographic hash functions with very appealing properties.
Unfortunately, their security is related to a mathematical problem whose hardness is not very well understood, the
factorization problem in finite groups. Given a group G, a set of generators S for this group and an element g ∈G, the
factorization problem asks for a “short” representation of g as a product of the generators. In this paper, we provide
a new algorithm for solving this problem for the group G := SL(2,F2n). We first reduce the problem to the resolution
of a particular kind of multivariate equation over F2n . Then, we introduce a dedicated approach to solve this equation
with Gröbner bases. We provide a complexity analysis of our approach that is of independent interest from the point
of view of Gröbner basis algorithms. Finally, we give the first subexponential time algorithm computing polynomial-
length factorizations of any element g with respect to any generator set S of SL(2,F2n). Previous algorithms only
worked for specific generator sets, ran in exponential time or produced factorizations that had at least a subexponential
length. In practice, our algorithm beats the birthday-bound complexity of previous attacks for medium and large values
of n.

1 Introduction

Hash functions are a very important cryptographic primitive, essential for many applications including digital sig-
natures or message authentication codes. Currently used hash functions, like the American standard SHA, follow
a heuristic design, somehow similar to block ciphers. Although there exist hash functions based on well-established
“hard” number theory problems [32, 19, 17], these functions are too slow in practice compared to “heuristic” functions
like the five finalists of NIST’ SHA-3 competition1.

The Tillich-Zémor hash function was proposed at the CRYPTO conference back in 1994 [48]. The function has a
strong mathematical structure based on the matrix group SL(2,F2n). It is rather efficient compared to other “mathemat-
ical hash functions”. Moreover, the computation of large messages can be efficiently parallelized, a unique property.
Although not related to classical assumptions like discrete logarithm or integer factoring, its security relied on the
hardness of a mathematical problem, the factorization problem in finite groups, in particular in the group SL(2,F2n).
Given a finite group G, a set of generators S for this group and an element g ∈ G, the factorization problem asks for
a “short” representation of g as a product of the generators.
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The hardness of this problem is nowadays a widely open problem for essentially all groups G and all generator
sets S . The few exceptions include the parameters corresponding to the Tillich-Zémor hash function [35, 44] and the
parameters of two other hash functions following the same design [49, 43] (these functions are called Cayley hash
functions). However, as pointed out in [44], the broken parameters are all very special in some senses and the problem
remains open in general. Given the appealing properties of these functions, the factorization problem in finite groups
deserves further study.

Another motivation for studying this problem comes from graph theory, in particular from a conjecture of Babai
on the diameter of Cayley graphs [1]. The conjecture has recently been proved in many groups of interest [36, 12, 46]
but all the proofs that apply to generic parameters are non constructive. The factorization problem in a finite group can
in fact be seen as a constructive version of Babai’s conjecture for this group. Finally, the problem can also be seen as
a routing problem in the Cayley graphs associated to G and S . Cayley graphs have a lot of applications in computer
science, particularly because of their good expander properties [37]. A routing algorithm will certainly be useful for
these applications.

For efficiency reasons, the group SL(2,F2n) is the most appealing one for cryptography. In this paper, we develop
and significantly improve the work initiated in [42] for generic generator sets of that group.

1.1 Definitions and Notations

Let F2n be the finite field with 2n elements. We denote by K[x1,x2, . . . ,xk] the ring of multivariate polynomials in the
variables x1, . . . ,xk whose coefficients are in a field K. The special linear group G := SL(2,F2n) is the group of 2×2
matrices with determinant 1 and coefficients in F2n . A generator set of G is a set of elements that multiplicatively
generate the whole group. We call Euclidean algorithm matrices the matrices:{

E(t) :=
(

t 1
1 0

)
|t ∈ F2n

}
.

These matrices naturally appear when applying the Euclidean algorithm to a couple of elements of F2[X ]. Given a
matrix A :=

(
a b
c d

)
∈ SL(2,F2n), we write A′ for its transpose matrix (a c

b d ).
Given a set of polynomials f1, . . . , f` ∈K[x1,x2, . . . ,xk], the ideal generated by f1, . . . , f` – denoted I( f1, . . . , f`) –

is the set of polynomials ∑
`
i=1 gi fi where gi ∈ K[x1,x2, . . . ,xk]. Any element ∏

k
i=1 xei

i where ei ∈ N is called a mono-
mial. A monomial ordering on K[x1,x2, . . . ,xk] is an ordering < such that m1 < m2⇒ m1m3 < m2m3 for any mono-
mials m1,m2,m3 and m > 1 for any monomial m. The lexicographic ordering with x1 > x2 > .. . > xk is defined
by ∏

k
i=1 xei

i <Lex ∏
k
i=1 x fi

i if the first non-zero term in e1 − f1,e2 − f2, . . . ,ek − fk is negative. The reverse lexico-
graphic ordering of x1, . . . ,xk with x1 > x2 > .. . > xk is defined by ∏

k
i=1 xei

i <GrevLex ∏
k
i=1 x fi

i if ∑i ei < ∑i fi or if
∑i ei = ∑i fi and the last non zero term in e1− f1,e2− f2, . . . ,ek − fk is positive. For any I ⊂ {1, . . . ,k}, an elimi-
nation ordering of the variables {xi, i ∈ I} is an ordering > on K[x1, . . . ,xk] such that for any ei, fi ∈ Z+, we have
∏i∈I xei

i > ∏i∈I x fi
i ⇒∏i∈I xei

i ∏i/∈I xei
i > ∏i∈I x fi

i ∏i/∈I x fi
i . The leading term LT( f ) of a polynomial f ∈K[x1,x2, . . . ,xk]

for a given ordering is equal to the term that is the largest one for the ordering. For any polynomial f ∈K[x1,x2, . . . ,xk],
we write Mon( f ) for the set of monomials terms of f .

Consider a partition of n1n2 variables {xi j}1≤i≤n2
1≤ j≤n1

into n2 blocks

Xi := {xi j| j = 1, . . . ,n1}.

We say that a monomial m ∈ F2[x11, . . . ,xn2n1 ] has block-degree at most (d1, . . . ,dn2) if its degree with respect to
the variables of Xi is di for any i,1 ≤ i ≤ n2. We say that a polynomial f ∈ F2[x11, . . . ,xn2n1 ] has block-degree at
most (d1, . . . ,dn2) if it is a sum of monomials of block-degree at most (d1, . . . ,dn2). We will also consider the natural
extension of this definition to blocks of variables with different sizes.

For any irreducible polynomial p of degree n, the field F2n can be seen as the quotient F2[X ]/(p(X)). It is a
vector space over F2. We write Vec(w1, . . . ,wk) for the vector subspace generated by the w1, . . . ,wk ∈ F2n When the
polynomial p is fixed, any variable xi over F2n can be naturally “deployed” through the substitutions xi = ∑

n−1
i=0 xi, jX j,

where the variables xi j belong to F2. Similarly, any multivariate polynomial f ∈ F2n [x1,x2, . . . ,xk] can be naturally
deployed as n multivariate polynomials [ f ]↓i ∈ F2[x1,1, . . . ,xk,n], i = 0, . . . ,n−1 where

f

(
n−1

∑
i=0

x1, jX i, . . . ,
n−1

∑
i=0

xk, jX i

)
=

n−1

∑
i=0

[ f ]↓i X i.
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We write [ f ]↓ for the vector ([ f ]↓1 , . . . , [ f ]↓n).
The parameter n will be taken as a complexity or security parameter. We write PPT for probabilistic polynomial

time in n. We write O for the “big O” notation: given two functions f and g of n, we say that f = O(g) if there exist
N,c ∈ Z+ such that n > N⇒ f (n)≤ cg(n). We write o for the “small O” notation: given two functions f and g of n,
we say that f = o(g) if for any ε ∈ R, there exists N ∈ Z+ such that | f (n)| < ε|g(n)| for all n > N. We write

(n
k

)
for

the binomial value n!
k!(n−k)! . We write ω for the linear algebra constant. Depending on the algorithm used for linear

algebra, we have 2.376≤ ω ≤ 3.

1.2 The Factorization Problem in Finite Groups

The factorization problem in SL(2,F2n) can be defined as follows.

Problem 1 Let S = {A0, . . . ,Ak−1} ∈ SL(2,F2n) be a set of generators of SL(2,F2n) and let L ∈Z. Find an algorithm
that, given any element g ∈ SL(2,F2n), returns a word m1 . . .mL with mi ∈ {0, . . . ,k−1} such that

L

∏
i=1

Ami = g.

Without loss of generality, we can assume that S = {A0,A1} for two matrices A0 and A1. The hardness of this
problem clearly depends on n and L. As the parameter n increases, we would like an algorithm running in time
T ≤ p1(n) and returning factorizations of length L ≤ p2(n) where p1, p2 are polynomials. When the factors A−1

0 and
A−1

1 are allowed as well, polynomial length factorizations exist due to a proof of Babai’s conjecture that applies to
SL(2,F2n) [1, 46, 12]. However, the proof is not constructive and no polynomial-time algorithm is known to return
these factorizations.

Polynomial time algorithms returning polynomial length factorizations are only known for specific generator
sets [44, 2]. For generic generator sets, the algorithm of [45] produces polynomial-length factorizations but only
in exponential time, essentially equal to 2n/2. On the other hand, the algorithm in [42] runs in subexponential time but
it only produces subexponential length (not polynomial length) factorizations. This last result exploits self-reductions
of the problem from generic generator sets S and generic elements g to a class of sets S̃ and elements g̃ with some
special structures.

In this paper, we provide a subexponential time algorithm producing polynomial length factorizations for any S
and any g. To obtain this result, we first extend the work of [42] and we reduce the factorization problem to solving
a multivariate polynomial equation over F2n with additional constraints on the solutions. We call this equation the
trapdoor equation. After deploying it over F2, we obtain a system of polynomial equations that can be naturally
tackled with Gröbner basis techniques.

1.3 Gröbner Basis Algorithms

In the following, we suppose that an ordering on the monomials has been fixed. A Gröbner basis [14, 13, 15, 16, 18]
of an ideal I( f1, . . . f`) is a basis { f ′1, . . . , f ′`′} of this ideal such that

∀ f ∈ I( f1, . . . f`),∃i ∈ {1, . . . , `′} such that LT( f ′i )|LT( f ).

The usual strategy to solve a polynomial system is to compute a “triangular” basis for the ideal generated by the
equations, that is a set of polynomials { f ′1, . . . , f ′`′} that generate the same ideal, such that f ′i only depends on the
variables {x j | j ∈ Ii} where I`′ ⊂ I`′−1 ⊂ ·· · ⊂ I1 = {1, . . . ,k}. Such a form allows efficiently computing the zeros of
the ideal. In fact, Gröbner bases for the lexicographic ordering have this triangular form [13, 15, 18].

Since the notion of Gröbner bases is defined by the existence of relatively small leading terms, the task of comput-
ing a Gröbner basis is essentially that of finding new elements in the ideal with smaller leading terms until no more
such elements can be found. Buchberger proved in his PhD thesis [13, 15] that Gröbner bases can be computed by
considering only specific polynomials, the so-called S-polynomials [13, 15, 18]. These polynomials are designed to
cancel leading terms and they thus potentially produce new elements in the ideal with lower leading terms. In many
cases, the degree of the polynomials (named critical pairs) used for producing S-polynomials may increase during the
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computation, even if the resulting basis only contains polynomials with small degrees. This is the reason why it is
sometimes preferable to consider truncated d-Gröbner basis. A subset { f ′1, . . . , f ′`′} is said to be a truncated d-Gröbner
basis of the ideal I( f1, . . . f`) if it is obtained from a Gröbner basis computation by ignoring critical pairs whose degree
is greater than d (see [21]). In general, a truncated d-Gröbner basis is not a basis of the given ideal I. However in
the case of a homogeneous ideal, i.e. when the polynomials f1, . . . f` are homogeneous, this set corresponds to the
polynomials up to degree d in the Gröbner basis of I. In particular, it verifies

∀ f ∈ I( f1, . . . f`)such thatdeg f ≤ d,∃i ∈ {1, . . . , `′} such that LT( f ′i )|LT( f ).

More recently, improved algorithms have been proposed by Faugère: the F4 and F5 algorithms [21, 22]. These
algorithms are considered today as the most efficient ones to compute Gröbner bases. In practice, a lexicographic
Gröbner basis is never computed directly. Instead, a Gröbner basis is first computed for the reverse lexicographic
ordering and then converted into a lexicographic Gröbner basis with the FGLM algorithm [20].

The complexity of a Gröbner basis computation is

O
((

n+d
d

)ω)
, (1)

where ω is the linear algebra constant and d is the regularity degree of the ideal [4, 5, 6, 8]. Roughly speaking, the
regularity degree is the maximum degree reached during the computation of a Gröbner basis. In special cases, this
quantity can be estimated. For a generic (or random) ideal I( f1, . . . , f`), the regularity degree is

d = 1+
`

∑
i=1

(deg( fi)−1), if `≤ n. (2)

Further estimations are known for overdefined sytems i.e. when ` ≥ n. However, none of these estimations holds for
ideals with special structures – which is typically the case of systems coming from real-life applications. In practice,
it is always challenging to a priori estimate the degree of regularity for a given system.

In the last two decades, Gröbner basis algorithms have succesfully attacked various cryptographic challenges.
They were used in the cryptanalysis of HFE [25, 34] and multi-HFE [9], the Isomorphism of Polynomials [29, 11],
McEliece variants [28], the Hidden Matrix cryptosystem [27], algebraic side-channel attacks [33], elliptic curve dis-
crete logarithm [31],. . . In all these applications, the occuring algebraic systems were not generic and could be solved
much more efficiently than generic systems, i.e. the regularity degree was much smaller than what is expected for a
generic system of the same size.

The trapdoor equation occuring in this paper somehow resembles HFE equations [41, 25, 34]. In both cases, a
polynomial equation over F2n is deployed as a system of polynomial equations over F2. In our context however, the
equation is multivariate and not linear as in HFE. Besides, the solutions of our trapdoor equation are constrained to
belong to some vector subspace of Fn

2/F2. Our trapdoor equation also has the particular property to be affine in each
variable over F2n . This induces a so-called multi-linear structure. We mention, that bilinear and bi-affine equations
were extensively studied in [30] and used against McEliece variants and MinRank [28, 24]. However, the more general
multi-linear structure has not been thoroughly investigated so far.

1.4 Contributions of this Paper

The contributions of this paper are three-fold. First, we reduce the factorization problem in SL(2,F2n) for arbitrary
generator sets to the resolution of some multivariate polynomial equation over F2n with additional constraints on the
solution. We call this equation the trapdoor equation. To do so, we develop the reductions of [42] to first replace any
generic generator set S by a particular set S̃ containing Euclidean algorithm matrices, i.e.

S̃ :=
{( t+ti 1

1 0

)
|ti ∈Vn1

}
where Vn1 is some vector subspace of Fn

2/F2. We then apply – a slight modification of – Proposition 11 of [42] to
obtain a multivariate polynomial equation over F2n with additional (linear) constraints on the solutions, namely

f (t1, . . . , tn2) := (1 1)

[
n2

∏
i=1

( t+ti 1
1 0

)](
1
1

)
= 0, ti ∈Vn1 .
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Our second contribution is a specific technique to solve such equations for which we can provide an exact complexity
analysis. For appropriately balanced parameters n1,n2, our algorithm has a complexity:

O
(

2
ω

n2 logn logn1
log(n/n1)

)
,

where ω is the linear algebra constant. The idea of the algorithm is to deploy the equation f = 0 over F2. We then add
to this system many others equations of the form m j f = 0, with monomials m j of the type:

m j :=
n2

∏
i=1

t
ei j
i .

We then prove that we can linearize the problem over F2 by adding enough equations and choosing the monomials
m j appropriately. With such suitable choices, the number of equations exceeds the number of monomials involved in
the equations. The linear independence of the equations is confirmed by experimental results. In fact, our algorithm
can be seen as a specialization of generic Gröbner basis algorithms exploiting the particular structure of the problem.
Indeed, we show that all the equations that we generate from the equation m j f = 0 are in fact algebraic combinations
of the original equations obtained from the equation f = 0. Generic Gröbner basis algorithms will therefore recover
the same relations, but only after “blindly” generating a lot of high degree relations. By choosing the monomials m j
appropriately, our algorithm takes advantage of two specificities of the problem, namely the block structure and the
existence of low degree algebraic relations related to the Frobenius transform. For medium-size parameters, we present
some heuristic ideas inspired by the hybrid method [10] that seem to improve the complexity even further.

Using our Gröbner basis algorithm to solve the trapdoor equation, we obtain a new algorithm for the factorization
problem in SL(2,F2n), the third contribution of this paper. Our algorithm is not yet a dramatic threat for current
practical parameters of Cayley hash functions. However, it warns that the hardness of the problem does not scale
as well as previously expected when the parameter sizes increase. In particular for appropriately chosen parameters,
our algorithm can produce polynomial length factorizations in subexponential time for any generator set S and any
matrix g. Moreover, balancing the parameters in different ways provides various interesting trade-offs between time
and factorization lengths. In contrast, all previous algorithms either produced subexponential length factorizations [42],
ran in exponential time [45, 42] or were limited to specific generator sets [3, 44].

1.5 Roadmap

The remaining of this paper is organized as follows. In Section 2, we reduce the factorization problem to what we
call the trapdoor equation. We study and solve the trapdoor equation in Sections 3 and 4. In Section 5, we give a new
algorithm for factoring in SL(2,F2n) and we conclude the paper in Section 6.

2 Reduction to a Multilinear Equation over F2n

2.1 Euclidean Algorithm Matrices

To avoid considering a distinct factorization problem for every generator set S , it is useful to reduce some instances
of the problem to other ones from a limited set. In this section, we show that it is sufficient to consider generator sets
with a particularly simple special structure.

For any w∈F2n , let O(w) :=
(w+1 w

w w+1

)
. The matrices {O(w)|w∈F2n} form the orthogonal subgroup of SL(2,F2n).

It was shown in [42] that any factorization problem in SL(2,F2n) can be reduced to another factorization problem
in SL(2,F2n) for a generator set containing one symmetric matrix and a subgroup of the orthogonal subgroup of
SL(2,F2n).

Proposition 2 [42] Let S := {A,B} generating SL(2,F2n). Let n1 < n. The factorization problem for S is re-
ducible to another factorization problem in SL(2,F2n) for S̃ = {M} ∪On1 where M is a symmetric matrix and
On1 = {O(wi)|i = 1, ...,n1} for some w1, ...,wn1 ∈ F2n .
Given an algorithm that returns factorizations for S̃ containing at most L matrices M, the factorizations for S
returned by the reduction algorithm have a length bounded by 4(n1 +1)3n1−1L.
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We deduce the following.

Proposition 3 Let S := {A,B} generating SL(2,F2n). The factorization problem in SL(2,F2n) for S is reducible to
a factorization problem for

S̃ := {E(t + ti)|ti ∈Vn1} (3)

where Vn1 is some vector subspace of F2n/F2 and t ∈ F2n . The reduction increases the bound on the factorization
lengths by a factor at most 4(n1 +1)3n1−1.

PROOF: The proof mainly follows the proof of Proposition 12 in [42]. By Proposition 2, we can start from a set
S2 := {M}∪{O(wi)|1 ≤ i ≤ n1} where M is a symmetric matrix. Let t be the trace of M. Lemma 6 in [42] implies
the existence of w̃ ∈ F2n such that

O(w̃)MO(w̃) =
(

t 1
1 0

)
.

Let
S :=

( w̃+1 w̃
w̃ w̃+1

)(
1 1
1 1+t

)
.

We have
S−1MS =

(
t 1
1 0

)
Moreover, for any w ∈ F2n , we have

S−1O(w)S =
(

1 1
1 1+t

)−1 O(w̃)O(w)O(w̃)
(

1 1
1 1+t

)
=
(

1 1
1 1+t

)−1 O(w)
(

1 1
1 1+t

)
=
(

1 wt
0 1

)
and

S−1O(w)MS = S−1O(w)S ·S−1MS =
(

1 wt
0 1

)(
t 1
1 0

)
=
(

t+tw 1
1 0

)
.

Let g ∈ SL(2,F2n) and suppose there exists a factorization algorithm for S̃ := {E(t + t j)|t j ∈ Vn1} where Vn1 :=
Vec(tw1, ..., twn1). Applying this algorithm to S−1gS, we deduce a factorization of g as a product of the elements of
S3 = {O(w)M,w ∈ F} hence of S2. The bound on the factorization lengths follows by Proposition 2. �

We point out the similarity of this generator set with the generators of the Tillich-Zémor hash function, broken
in [35, 44]:

ST Z := {
(

X 1
1 0

)
,
(

X+1 1
1 0

)
}.

However, in order to generalize the attacks against the Tillich-Zémor hash function to S̃ , we would first need to
generalize Mesirov and Sweet’s algorithm [40] to arbitrary partial quotients. The results of Lauder [38] imply that
this is only possible for very few sets of partial quotients. We therefore use a different approach to tackle generic
parameters.

2.2 Trapdoor Matrices for the Factorization Problem

Trapdoor matrices are matrices such that factoring any single one of them would allow factoring any element in the
group [42]. Proposition 11 of [42] provides an interesting class of trapdoor matrices. We slightly modify it as follows.

Proposition 4 Let S be a generator set of SL(2,F2n) containing only symmetric matrices. Suppose that we know the
factorization of a matrix T that has

(
1
1

)
as eigenvector and suppose that the corresponding eigenvalue has algebraic

degree n. Then we can factor any matrix as a product of the elements of S .

PROOF: The proof closely follows the proof of Proposition 11 of [42] so we only sketch it here and we refer the reader
to [42] for the details. Since the generators are symmetric, we obtain a factorization of the transpose of T by reading the
factorization of T in reverse order. Since T has eigenvector

(
1
1

)
, the matrix T kT ′k is orthogonal for any k. Moreover,

the whole orthogonal subgroup can be generated as a product of at most n matrices from the set {T kT ′k|k = 1, ...,n}.
Finally, any matrix of SL(2,F2n) can be decomposed as a product of 4 orthogonal matrices and 3 arbitrary matrices. �
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Note that the proof is quite efficient: if the factorization of T has length L, then we obtain factorizations of any
element with lengths bounded by 8n2L+3. We remark that the condition “T =

(
a b
c d

)
has eigenvector

(
1
1

)
” is equivalent

to a+b = c+d or a+b+ c+d = 0. Propositions 3 and 4 therefore lead to the following trapdoor equation:

f (t1, ..., tn2) := (1 1)

[
n2

∏
i=1

( t+ti 1
1 0

)](
1
1

)
= 0, ti ∈Vn1 (4)

where Vn1 is a vector subspace of Fn
2/F2 with dimension n1. This is in fact a multivariate polynomial equation with

additional linear constraints on the solutions.

3 Solving the Trapdoor Equation: First Observations

We present in this part a dedicated technique for solving Equation (4). We first remark that (4) has total degree n2 and
degree 1 in each variable ti. It also has a symmetry property f (t1, . . . , tn2) = f (tn2 , . . . , t1).

Let {θ1, . . . ,θn} be a basis of F2n as a vector space over F2 and let {v1, . . . ,vn1} be a basis of Vn1 . We introduce
binary variables ti j, i = 1, . . . ,n2, j = 1, . . . ,n1 such that ti = ∑

n
j=1 ti jv j. We consider Equation (4) both over F2n and as

a system of polynomial equations in the variables ti j. Indeed, we can write

0 = f

(
n1

∑
j=1

t1 jv j, . . . ,
n1

∑
j=1

tn2 jv j

)
=

n−1

∑
k=0

[ f ]↓k θk (5)

where [ f ]↓k ∈ F2[t11, . . . , tn2n1 ]. This implies

[ f ]↓0 = 0, [ f ]↓1 = 0, . . . , [ f ]↓n−1 = 0. (6)

Each of these equations has total degree at most n2 and degree at most 1 in each block of variables {ti1, . . . , tin1}.
In our analysis, we will treat Vn1 as a randomly chosen vector subspace of dimension n1, an assumption that was

also taken in [42]. Assuming that the distribution of f (t11, . . . , tn2n1) is close to uniform for random assignments of the
variables ti j, we approximate the number of solutions of Equation (4) by 2n1n2−n. We will therefore usually assume
n1n2 ≥ n.

According to Proposition 3, the parameter n1 should be kept as small as possible to decrease the factorization
lengths. On the other hand, the degree of regularity a priori increases with the degree of the equations. As a conse-
quence, we would also like to keep n2 as small as possible.

3.1 Regularity Degree: First Experimental Results

We first study the influence of n1, n2 and n on the degree of regularity of System (6). In our experiments, we chose
n∈ {10,15,20,25,30} and we progressively decreased n1 starting from n1 := n. For each value n1, we picked a random
Vn1 and we chose n2 = d n

n1
e. When n was larger than n1n2, we randomly fixed the last binary variables of tn2 . We tried

to solve System (6) using Magma’s implementation of the F4 algorithm [21]. When the computation exceeded a few
hours, we stopped it and we changed the current value of n for the next one. When the computation was successful
and the number of solutions was minimal (1 in general but 2 sometimes due to the symmetry), we recorded the degree
of regularity. Three data points were collected for each parameter set.

The results are shown in Figure 1. Despite some variability within identical experiences, two observations can be
made. First, the degree of regularity seems to increase more or less linearly with n2 when n is fixed. The proportionality
constant seems to be slightly larger than 1. Second, this constant seems to increase slowly with n. System (6) therefore
seems much easier to solve than generic systems (a.k.a random system). Indeed, its degree of regularity would be
equal to 1 + n(n2− 1) if it was generic [5, 6, 8, 4]. This experimentally shows that Gröbner basis computations on
System (6) terminate at a particularly low degree compared to generic systems. Before explaining this phenomenon,
we try to accelerate the Gröbner basis computation by overdetermining the system using new low-degree equations.
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Fig. 1 Experimental degree of regularity (each point is randomly perturbed to make the figure more readable).

3.2 Useless Equations: Frobenius Transforms

Adding new equations is a common way to decrease the cost of a Gröbner basis computation. However, the new
equations only help if they are linearly independent of the initial ones. For instance, we consider the Frobenius images
of Equation (4). Interestingly, these images produce new equations over F2 of degree n2. However, we have

0 = f 2 =
(
[ f ]↓1 θ1 + · · ·+[ f ]↓n θn

)2
=
(
[ f ]↓1
)2

θ
2
1 + · · ·+

(
[ f ]↓n
)2

θ
2
n

= [ f ]↓1 θ
2
1 + · · ·+[ f ]↓n θ

2
n

since for any i, [ f ]↓i is a polynomial over F2. The set {θ 2
1 , . . . ,θ 2

n } is another basis of F2n as a vector space over F2.
Thus, we can write θ 2

i = ∑
n
j=1 ai jθ j for some ai j ∈ F2. We finally obtain

0 = f 2 =

(
n

∑
i=1

ai1 [ f ]↓i

)
θ1 + · · ·+

(
n

∑
i=1

ain [ f ]↓i

)
θn.

Hence
n

∑
i=1

ai j [ f ]↓i = 0, ∀ j,1≤ j ≤ n.

We see that the new equations obtained this way are linear combinations – over F2 – of the equations occuring in
System (6). For this reason, they fail in accelerating the Gröbner basis computation. We now describe a more successful
method.

3.3 Adding New Equations

To illustrate the main idea behind our linearization algorithm, let us consider the equation t1 f (t1, . . . , tn2) = 0 over F2n .
Since f is affine in each variable, we can write

f (t1, . . . , tn2) = t1 f1(t2, . . . , tn2)+ f2(t2, . . . , tn2)

for some f1, f2 ∈ F2n [t2, . . . , tn2 ]. It follows that

t1 f (t1, . . . , tn2) = t2
1 f1(t2, . . . , tn2)+ t1 f2(t2, . . . , tn2). (7)

As t2
1 = ∑

n1
j=1 t1 jv2

j , Equation (7) is deployed over F2 as a set of n multivariate polynomials with block-degrees
(1, . . . ,1). Interestingly, the new equations are a priori linearly independent of the equations of System (6). Indeed, ev-
ery monomial in every new equation is divisible by exactly one variable among {t11, . . . , t1n1}, whereas a priori many
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Table 1 Adding n2n2 equations: time and memory improvements.

n equations n2n2 equations Gain
time (s) mem. (MB) time (s) mem. (MB) time mem.

n = 20,n1 = 6 350 3200 5 72 70 44
n = 20,n1 = 5 1200 6400 25 212 48 30
n = 20,n1 = 4 86500 206000 187 2540 462 81

terms in the equations of System (6) have degree 0 in all of these variables. More precisely, there are (n1 + 1)n2−1

monomials with degree 0 in {t11, . . . , t1n1} that can appear in the equations of System (6). These terms can not all be
canceled via linear combinations of the n equations.

Similarly, we obtain n2n2 new equations with degrees 1 in each block of variables by deploying one equation
m f = 0 for each m ∈ F2n [t1, . . . , tn2 ] which is a monomial of degree at most 1 in every variable. With the help of these
new equations, we obtain substantial practical improvements in time and memory as can be seen in Table 1. We can
obtain even more equations if we multiply f by monomials of higher degree, but this time at the cost of rising the
block-degrees in the deployed equations.

For example, the equations obtained by deploying

t2
1 f (t1, . . . , tn2) = t3

1 f1(t2, . . . , tn2)+ t2
1 f2(t2, . . . , tn2)

have block-degrees at most (2,1, . . . ,1) since t3
1 is deployed as a quadratic polynomial over F2. Similarly, the equa-

tions obtained by deploying t2k

1 f where k ∈ {1, . . . ,n} also have block-degrees at most (2,1, . . . ,1) and the equations

obtained by deploying
(

∏
n2
i=1 t2ki

i

)
f where ki ∈ {1, . . . ,n} have block degree at most (2, . . . ,2). More generally, we

consider the equations obtained by deploying (
n2

∏
i=1

tei
i

)
f . (8)

Thus, if
max

1≤i≤n2
max

(
HW(ei),HW(ei +1)

)
≤ d,

where HW(e) is the Hamming weight of the binary representation of e, then the equations obtained by deploying (8)
have block-degrees at most (d, . . . ,d). Interestingly – and in a first approximation – the number of equations obtained
evolves with d as

n
(

2nd−1
)n2

whereas the number of monomials involved in the equations evolves roughly as(
(n1 +1)d

)n2
.

We will give exact estimates in Section 4. As d increases, the number of equations goes beyond the number of mono-
mials involved in these equations. Unless unexpected linear dependencies exist between the equations, Equation (4)
can then be solved by a simple linearization strategy.

3.4 Another Look at the New Equations

Let us once again consider the monomial m = ∏
n2
i=1 tei

i ∈ F2n [t1, . . . , tn2 ]. This monomial is deployed over F2 as follows:

m =
n

∑
i=1

pi(t11, . . . , tn2n1)θi

for some polynomials pi ∈ F2[t11, . . . , tn2n1 ] having a block-degree at most
(
HW(e1), . . . ,HW(en2)

)
.
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Let a(k)
i j ∈ F2 be such that θiθ j = ∑

n
k=1 a(k)

i j θk. By multiplying Equation (5) by m we get

0 = m f (t1, . . . , tn2) =
n

∑
i, j=1

pi(t11, . . . , tn2n1) [ f ]↓j θiθ j =
n

∑
i, j,k=1

a(k)
i j · pi(t11, . . . , tn2n1) [ f ]↓j θk.

Hence
n

∑
j=1

p jk(t11, . . . , tn2n1) [ f ]↓j = 0, ∀k,1≤ k ≤ n. (9)

where the polynomials p jk := ∑
n
i=1 a(k)

i j pi have block-degrees at most
(
HW(e1), . . . ,HW(en)

)
. We deduce that each

new equation is an algebraic combination of Equations (6). The new equations can therefore be recovered by any
standard Gröbner basis algorithm. However, even though the new equations have total degree at most

n2

∑
i=1

max(HW(ei),HW(ei +1)),

they would only be recovered by generic Gröbner basis algorithm at the degree

n2 +
n2

∑
i=1

HW(ei).

since the polynomials p jk have block-degrees at most
(
HW(e1), . . . ,HW(en)

)
. For appropriately chosen exponents,

the degree drop in the new equations can be as large as n2 (a degree drop of 1 per block of variables).

3.5 Analyzing Linear Dependencies

A linearization strategy only succeeds if most equations involved in the system are linearly independent. In this sec-
tion, we identify two causes of linear dependencies. However, we also argue that they can be easily prevented with an
appropriate choice of the monomials used to generate the new equations.

The first kind of linear dependencies are due to what we call a saturation effect. To understand this effect, let us
suppose that we increase the degree of the equations with respect to the first block only. Let

Md :=

{
n2

∏
i=1

tei
i |max

(
HW(e1),HW(e1 +1)

)
≤ d

}
, for some fixed e2, . . . ,en2 ∈ N.

Let g :=
(

∏
n2
i=2 tei

i

)
f and let [g]↓j , j = 1, . . . ,n be the n equations obtained by deploying g over F2. Following the

analysis of the previous section, each of the n|Md | equations obtained by deploying m · f for each m ∈Md can be
written as

n

∑
j=1

pm, j(t11, . . . , t1n1) [g]↓j = 0

for some polynomials pm, j involving only variables of the first block and that have degree at most d.
Let µ(d) be the number of monomials of degree d in the variables {t11, . . . , t1n1}. Clearly the polynomials pm, j are

linear combinations of these monomials. Hence the number of linearly independent equations that can be generated
from Md is bounded by n · µ(d), even if many more equations could at first sight be obtained from different mono-
mials. We call this phenomenon the saturation effect. The effect independently appears in each block of variables. As
soon as we increase the degree of the equations with respect to one block of variables, the ratio between the number
of linearly independent equations and the number of monomials involved in these equations may first increase by an
exponential factor (roughly (n/n1)d) but it will then necessarily saturate to some constant value. When the first block
of variables is saturated, the ratio can still grow up to 1 by adding new equations with higher degrees with respect to
the other blocks. Note that if we simultaneously increase the degree in each block, saturation in the individual blocks
will not occur before the total number of equations exceeds the number of monomials.
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A second type of linear dependencies is related to the Frobenius transforms investigated in Section 3.2. As an
example, let us consider the equations obtained by deploying

(
∏

n2
i=1 ti

)
f = 0 over F2. We have(

n2

∏
i=1

ti

)
f = f 2 + ∑

m∈Mon( f )\{∏
n2
i=1 ti}

m f .

Hence [(
n2

∏
i=1

ti

)
f

]↓
=
[

f 2]↓ + ∑
m∈Mon( f )\{∏

n2
i=1 ti}

[m f ]↓.

Since the equations obtained by deploying f 2 = 0 or f = 0 are equivalent, it is useless to deploy both the equation
t1 · · · tn2 f = 0 and all the equations m f = 0 for m ∈Mon( f )\

{
∏

n2
i=1 ti

}
.

More generally if e1, . . . ,en2 ∈ Z are all odd, we have(
n2

∏
i=1

tei
i

)
f =

[(
n2

∏
i=1

tbei/2c
i

)
f

]2

+ ∑
m∈Mon

((
∏

n2
i=1 t

ei−1
i

)
f 2
)
\{∏

n2
i=1 t

ei
i }

m f .

So, the equations obtained by deploying the left-hand term are linear combinations of the equations obtained by
deploying other multiples of f with lower degrees.

This second kind of dependencies only appear when e1, . . . ,en2 are all odd, so they can be easily prevented by
discarding a small fraction of all the monomials leading to equations of some given degrees.

Finally and like in any algebraic system, some linear dependencies necessarily occur between the new equations
because of trivial syzygies, i.e. for example [ f ]↓i [ f ]↓j = [ f ]↓j [ f ]↓i [22]. Similarly, the multilinearity structure of the sys-
tem is likely to give additional linear dependencies [30]. All these dependencies seem hard to prevent at the time of
generating the equations (with an appropriate choice of the monomials). On the other hand, their effect also seems
smaller than the previous ones. Below, we will experimentally show that a simple randomization strategy does effec-
tively prevent them.

4 Solving the Trapdoor Equation: Algorithm and Analysis

We now give a dedicated new algorithm for solving Equation (4). As suggested above, our algorithm linearizes Sys-
tem (5) by generating enough randomly chosen new equations. We first present the algorithm, then we rigourously
analyze its complexity based on a linear independence hypothesis and we experimentally validate this hypothesis. Fi-
nally, we describe an improved version of the algorithm and we give some running times for medium-size parameters.

4.1 A Linearization Algorithm

Let n,n1,n2 be the parameters of Equation (4). We assume that n1n2 ≥ n. Let ∆ be a small integer. Our algorithm
works as follows:

1. Fix d as the smallest integer such that E(d)−M(d) ≥ ∆ where M(d) and E(d) are defined in Equations (12)
and (13) below.

2. Initiate an empty list of exponents E and an empty list of equations S.
3. For k = 1, . . . ,

⌈
M(d)+∆

n

⌉
do

(a) Randomly pick an exponent e := (e1, . . . ,en2) ∈ {0, . . . ,2n−2}n2 such that e /∈ E, ∏
n2
i=1 ei = 0 mod 2 and

max
i=1,...,n2

max
(
HW(ei),HW(ei +1)

)
≤ d.
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(b) Deploy the equation (
n2

∏
i=1

tei
i

)
f (t1, . . . , tn2) = 0

over F2.
(c) Add the resulting n equations to S and add e to E.

4. Build a linear system over F2 with the equations of S, each equation corresponding to one row and each monomial
term of degree at most (d, . . . ,d) corresponding to one column.

5. Use a linear algebra algorithm over F2 to solve the linear system.

The values of M(d) and E(d) will be derived in Section 4.3. The condition in Step 1 ensures that the linear system
constructed in Step 4 has more rows than columns. The purpose of the (at least) ∆ additional equations is to compensate
the expected rank defect of a random square matrix over F2. In practice, ∆ = 10 is sufficient with a probability 99.9%.
The algorithm maintains a list with all the monomials already used in order to avoid duplicating equations. The
condition “∏

n2
i=1 ei = 0 mod 2” in Step 3 prevents possible linear combinations caused by Frobenius transforms. The

saturation effect is prevented too since the degree bound in the equations is the same with respect to all blocks of
variables. Trivial syzygies and the additional syzygies coming from the multilinear structure will be ignored in the
algorithm and its analysis. We now show that their effect is small and only appears when E(d) is very close to M(d).

4.2 Validating the Linear Independence Hypothesis

To validate the linear independence hypothesis, we implemented our algorithm in Magma and we tested it on various
values of the parameters. The results are presented in Table 2. For all these experiments, we fixed ∆ := 10. For each
value of n and n1 in the table, the value n2 was set to dn/n1e. When n1n2 was larger than n, we randomly fixed the
last variables of the last block. The value of h was then fixed according to Equation (10) rather than Equation (12). We
generated new equations of block-degree at most (d, . . . ,d) from randomly chosen monomials as in the algorithm of
Section 4.1.

To compute the rank of the corresponding linear system using Magma, we first multiplied each equation by a power
of a homogenization variable (in such a way that all the equations were homogeneous and had the same degree). We
then computed a truncated Gröbner basis up to the degree n2d and we counted the number of elements in this basis.
Since the system was homogeneous and we limited the computation to its degree, the program could only perform
linear algebra. The rank deffect of the original system was deduced as the number of monomials of block-degree at
most (d, . . . ,d) minus the number of elements in the truncated basis. Finally, we recovered all the solutions of the
system by computing a Gröbner basis of the dezhomogenized truncated Gröbner basis and the field equations. For
each set of parameters, we repeated our experiments three times.

Table 2 Experimental rank deffect and number of solutions

n n1 n2 d M(d) E(d) Rank deffect Nb Sol
Exp1 Exp2 Exp3 Exp1 Exp2 Exp3

10 2 5 1 243 310 0 2 2 0 2 2
10 3 4 1 128 150 3 2 5 1 0 3
10 3 4 2 686 1400000 0 4 2 0 4 2
10 4 3 2 484 70000 1 0 0 1 0 0
11 4 3 2 847 102487 2 0 2 2 0 2
12 4 3 2 1331 145152 0 4 0 0 4 0
13 4 4 2 2662 5198102 0 0 4 0 0 4
13 5 3 2 1792 199927 1 2 0 1 2 0
14 5 3 2 2816 268912 1 2 0 1 2 0
16 7 3 2 3332 458752 1 1 1 1 1 1

For all but one set of parameters, we observed that the rank deffect was equal to the number of solutions of the sys-
tem, supporting therefore the linear independence hypothesis. For the only “pathological” parameters (n,n1) = (10,3),
we observed a difference of 2 between the rank deffect and the number of solutions. We repeated this experiment 20
times more and we observed a difference of 2 for 19 of them and a difference of 3 in the remaining case. When we
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tried to increase ∆ to 20, we still observed a difference of 2 in all cases. On the other hand, the difference disappeared
when we increased d to 2.

These experiments validate the linear independence hypothesis between the new equations. The rank deffects
observed when (n,n1) = (10,3) are smaller than n, so they cannot be due to linear dependencies between one full
block of n equations (corresponding to one monomial over F2n ) and one or more other blocks of equations. For these
parameters, E(d) was very close to M(d). Therefore, trivial syzygies and syzygies coming from the block structure
(that were not taken into account in our analysis) may have decreased the number of equations available over F2 below
the number of monomials. Although these syzygies may make a strict linearization strategy fail to a small extend in
borderline cases, they also a priori accelerate Gröbner basis algorithms [30].

The study of syzygies coming from the block structure is beyond the scope of this paper. We emphasize that
syzygies are classically ignored in the complexity analysis of Gröbner basis algorithms, because they do not change
the general (asymptotical) behavior of Gröbner basis computation. For instance, the complexity given in (1) (Section
1.3) ignore the effect of trivial syzygies. Similarly, our experimental results seem to indicate the same in our context for
syzygies coming from the block structure. They only rarely and marginally affect the linear independence hypothesis.

4.3 Complexity Analysis

Since we ignore trivial syzygies, the complexity analysis of our algorithm simply amounts to some combinatorics. The
number of monomials of F2[t11, . . . , tn2n1 ] with degree exactly d1 in the variables of the first block, degree exactly d2 in
the variables of the second block, . . . , degree exactly dn2 in the variables of the last block is

n2

∏
i=1

(
n1

di

)
.

If the blocks have sizes n1,1, . . . ,n1,n2 , the number of monomials of F2[t11, . . . , tn2n1 ] with degrees at most d with respect
to each block is

M(d) :=
n2

∏
j=1

(
d

∑
i=0

(
n1, j

i

))
. (10)

If all the blocks are of the same size – and of degree at most d with respect to each block – this simplifies to:

M(d) :=

(
d

∑
i=0

(
n1

i

))n2

. (11)

The exponents e ∈ {0, . . . ,2n−1} such that the maximum of HW(e) and HW(e+1) is equal to d can be separated in
two categories. If e is even, those exponents must have Hamming weight equal to d− 1. If e is odd, they must have
Hamming weight equal to d. The two conditions together are equivalent to the following one: the first n−1 bits of e
have Hamming weight d−1. Therefore, the number of such exponents is

2
(

n−1
d−1

)
and exactly half of them are odd. Due to the Fröbenius effect explained in Section 3.5, we remove the monomials such
that all the exponents are odd. The number of equations available for Step 3 is therefore:

E(d) := n(2n2 −1)

(
d−1

∑
i=0

(
n−1

i

))n2

.

For small values of d we have E(d) < M(d). However, E(d) clearly increases much faster than M(d). Therefore,
there exists an integer d such that E(d) > M(d). The complexity of Steps 1 to 4 in our algorithm is not much higher
than the time to write the matrix constructed; that is essentially M(d)2. The following proposition summarizes the
results of this section:
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Proposition 5 Let M(d) be the number of monomials in F2[t11, . . . , tn2n1 ] with degree at most d with respect to each
block, i.e.

M(d) :=

(
d

∑
i=0

(
n1

i

))n2

. (12)

Let E(d) be the number of equations generated by the algorithm in degree less than d, that is

E(d) := n(2n2 −1)

(
d−1

∑
i=0

(
n−1

i

))n2

. (13)

The total time of the linearization-based algorithm described in Section 4.1 is determined by the linear algebra in
Step 5 and is bounded by

O(M(d)ω)

where d is the minimal integer such that E(d)≥M(d) and w is the linear algebra constant. The total memory cost is
M(d)2.

4.4 Asymptotic Complexity Estimates

We now derive asymptotic bounds on the maximal degree d reached in the computation when n1 and n2 are fixed as
particular functions of n. We will need the following well-known result on binomial coefficients.

Lemma 6 Let n be an integer and let δ ,0 < δ < 1/2 be a number such that δn ∈N. Let ν := δ

1−δ
. Then the following

inequalities hold: (
n

δn

)
<

δn

∑
i=0

(
n
i

)
<

1
1−ν

(
n

δn

)
.

PROOF: Let f be the function defined by f (d) = d
n+1−d for d,1 ≤ d 6 n. The function f is increasing and it satisfies( n

d−1

)
= f (d)

(n
d

)
. For any d,06 d 6 δn, we obtain(

n
d−1

)
= f (d)

(
n
d

)
6 f (δn)

(
n
d

)
<

δn
n−δn

(
n
d

)
= ν

(
n
d

)
.

We deduce that
( n

d−i

)
6 ν i

(n
d

)
for all i ∈ {0, . . . ,d}. Since 0 < ν < 1, we finally get

δn

∑
i=0

(
n
i

)
<

δn

∑
i=0

ν
δn−i

(
n

δn

)
<

1
1−ν

(
n

δn

)
.

�

We deduce:

Proposition 7 Let either

(a) n1 := dαnα ′e and n2 := dβnβ ′e for some constant α,β ,α ′,β ′ satisfying 0 < α ′,β ′ < 1 and α,β > 0;
(b) n1 := dk logne and n2 := dn/n1e for some constant k > 0;
(c) n2 := dk logne and n1 := dn/n2e for some constant k > 0.

Let also d := d log(n−n1)
log((n−n1)/n1)e and let M(d) and E(d) be as in Proposition 5. For any large enough n value, we have

E(d)≥M(d).

PROOF: Let us suppose by contradiction that M(d) > E(d). From the definitions of M and E, we get

d

∑
i=0

(
n1

i

)
> (2n2 −1)

1
n2 n

1
n2

d−1

∑
i=0

(
n−1

i

)
> n

1
n2

d−1

∑
i=0

(
n−1

i

)
.
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Let δ := d
n1

and let ν := δ

1−δ
. For each case of the proposition, we have δ < 1

3 when n is large enough. Therefore we
also have ν < 1

2 and 1
1−ν

< 2. Using Lemma 6, we get

2
n1(n1−1) · · ·(n1−d +1)

d!
= 2
(

n1

d

)
>

1
1−ν

(
n1

d

)
> n

1
n2

(
n−1
d−1

)
= n

1
n2

(n−1)(n−2) · · ·(n−d +1)
(d−1)!

hence
2nd

1 > dn
1

n2 (n−d +1)d−1 > dn
1

n2 (n−n1)d−1.

Taking logarithms, we obtain

1+d logn1 > logd +
logn
n2

+(d−1) log(n−n1)

hence
d log((n−n1)/n1) < log(n−n1)− (logd−1)− logn

n2
< log(n−n1)

and finally

d <
log(n−n1)

log((n−n1)/n1)
,

which provides a contradiction. �

From this, we immediately have:

Corollary 8 Let n1,n2 be as in Proposition 7. Then the asymptotic time complexity of the linearization-based algo-
rithm described in Section 4.1 is:

O(2ωτ), where τ =
n2 log(n−n1) log2n1

log((n−n1)/n1)
≈ n2 logn logn1

log(n/n1)
. (14)

Remark 1 We point out that if System (5) was generic, its resolution with Gröbner basis algorithms would take a time
2ωτ ′ with τ ′ = (n2n− n + 1) logn ≈ n2n logn. Our algorithm saves a factor n log(n/n1)

logn1
in the exponent thanks to the

particular structure of the problem! For example in Case (a) of Proposition 7, we obtain τ ≈ βα ′

1−α ′ n
β ′ log(n) instead of

τ ′ ≈ βn1+β ′ log(n).

4.5 Experimental Results for “Medium” Parameters

The above linearization algorithm provides complexity upper bounds for solving Equation 4. In practice, substantial
improvements can often be obtained with Gröbner basis algorithms. However, we emphasize that Gröbner bases must
be used with caution over F2. Except when the regularity degree of the input system is “abnormally small”2, Gröbner
basis algorithms should usually not be used directly. Over small finite fields, the so-called hybrid method [10] (a tricky
mix of exhaustive search and Gröbner basis computations) can typically save an exponential factor both in theory and
in practice. In the Boolean case, recent work [7] has shown that the hybrid method even allows solving a system of
quadratic equations more efficiently than with the exhaustive search, in the sense that the complexity becomes lower
than the 2n barrier.

The equations produced by the algorithm described in Section 4.1 are highly structured. They have a multilinear
structure. In fact, the systems have a multihomogeneous structure, but it is enough in practice to apply a Gröbner basis
algorithm to a subset of the whole system consisting of the multilinear equations only. The system of equations is also
greatly overdetermined, i.e. the number of equations is much bigger than the number of variables. Finding the best
algorithm for solving multilinear equations over finite fields and determining its complexity is an open problem that
is beyond the scope of the present paper. Instead, we design a new specific algorithm based on our experiments and
intuition.

We now roughly describe the idea behind our algorithm. As a first step, let us first consider the bilinear case. Let
F be a set of bilinear equations, i.e. each f ∈ F is linear with respect to each block of variables Xi for i = 1,2. In [30],

2 For instance, this is the case of the HFE problem [26] where the regularity degree is a constant when the degree of the secret polynomial is
fixed.
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it was proved that the complexity of computing a Gröbner basis of F strongly depends on min(#X1,#X2). Therefore,
a natural strategy for solving an overdetermined bilinear Boolean system is to introduce asymmetry by fixing some
variables in one block. This is made at the cost of an exhaustive search on the values of these variables. More formally,
let k and d be two parameters that we will fix later. Let us assume that #X1 = #X2 = n1. Our algorithm does the
following:

1. Compute a truncated d-Gröbner basis G of F for an elimination ordering X � (X1\X)∪X2 where X contains the
first k elements of X1. Hence, G⊂ F2[X ′1∪X2] where X ′1 := X1\X .

2. Perform an exhaustive search on X ′1 and compute the resulting Gröbner basis:
for all z = (z1, . . . ,zn1−k) ∈ Fn1−k

2
compute a Gröbner basis of G after substituting each variable x ∈ X ′1 by the corresponding z

For the parameters, we can choose d = 2 and the maximal k such that G is not empty. Since we obtain a linear system
in the last step (all the variables of X1 have been eliminated or specified), the complexity of the algorithm is simply
O(2n1−knω

1 ).

In the general case (multilinear case), the strategy we used to perform actual computations is a natural generalisa-
tion of the previous algorithm. Let us assume that all blocks have the same size n1. Let [d1, . . . ,dn2 ] and [k1, . . . ,kn2 ] be
two lists of integer parameters to be fixed later. Suppose we are given G0, a multilinear system over F2[X1, . . . ,Xn2 ],
i.e. each g ∈ G0 is linear with respect to each block Xi.

For i ∈ {1, . . . ,n2−1} do
– Compute a truncated di-Gröbner basis Hi of Gi−1 for an elimination ordering X (i)� (Xi\X)∪Xi+1∪·· ·∪Xn2

where X (i) contains the first ki elements of Xi. Hence Hi ⊂ F2[X ′1∪·· ·X ′i ∪Xi+1∪·· ·∪Xn2 ] where X ′i := Xi\X (i).
– Perform an exhaustive search on X ′i and compute the resulting Gröbner basis:

for all z = (z1, . . . ,zn1−ki) ∈ Fn1−ki
2

Gi := a truncated di−Gröbner basis of Hi computed after substituting
each variable x ∈ X ′i by the corresponding element of z.

The last step (when i = n2) reduces to solving a linear system. In Table 3, we report some real experiments. To perform
the Gröbner basis computations, we used the FGb package [23]. This software allows displaying the exact number of
word operations needed for computing each Gröbner basis. Therefore, we can accurately estimate the complexity of
the whole algorithm. For instance when n = 51, n1 = 17 and n2 = 3 we chose d1 := 3,k1 := 0, d2 := 2,k2 := 7. The
whole complexity was 217 · (37429+217−7 ·24) = 232.9 word operations.

Table 3 Experimental number of operations to solve the Boolean system

n n1 n2 Nb. of Operations
50 25 2 226.7

100 50 2 253.7

51 17 3 232.9

72 24 3 246.3

81 27 3 252.8

60 15 4 244.9

80 20 4 257.1

100 25 4 271.1

5 A New Algorithm for Factoring in SL(2,F2n)

We can now come back to our original problem, namely the factorization problem in SL(2,F2n).
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5.1 Algorithm

Let S := {A,B} be a generator set for SL(2,F2n) and let g ∈ SL(2,F2n). The results of Sections 2 and 4 together lead
to the following factoring algorithm:

1. Fix n2 < n and n1 := d n
n2
e.

2. Replace S by some S̃ := {E(t + ti)|ti ∈Vn1} where Vn1 is some vector subspace of F2n/F2 obtained with Propo-
sition 3. Similarly, replace g by some g̃.

3. Arbitrarily fix one variable in the last n1n2−n blocks.
4. Solve Equation 4 using the algorithm of Section 4.1 (extended to arbitrary block sizes).
5. Factor g̃ as a product of the elements of S̃ using Proposition 4.
6. Deduce a factorization of g as a product of A and B using Proposition 3.

5.2 Complexity Analysis

The value n2 determines the trade-off between time and message lengths. The solution of Equation (4) in Step 4
provides a factorization of length n2 of a matrix with eigenvector

(
1
1

)
that can be used in Proposition 4. Therefore,

Step 5 computes factorizations of lengths roughly bounded by 8n2n2. According to Proposition 3, Step 6 provides
factorizations of length bounded by

32(n1 +1)n2n23n1−1.

These factorizations can always be returned in polynomial-time about

4n1(n1 +1)n2n2

if they are not returned explicitly but in the form of straight-line programs [39] (see [42]). A closer look at the proofs
of Propositions 10 and 11 in [42] shows that the factorizations lengths are in fact bounded by 32n2n23n1−1 and can be
returned in time 4n1n2n2.3 The overall time and memory complexities are therefore dominated by Step 4, studied in
the previous section. Exact values can be computed with the formulae of Section 4.3.

The results for ω = 2.807 (corresponding to Strassen’s algorithm [47]), n∈ {160,256,512,1024} and n2,2≤ n2 ≤
n are shown in Figure 5.2 together with the 2n/2 bound of the “birthday search” attacks of [45, 42]. As expected,
the parameter n2 determines the tradeoff between shorter time and memory complexities on one side and shorter
factorization lengths on the other side. For “small” parameters including the size n ≈ 160 originally proposed by
Tillich and Zémor, the time complexity of our new attack does not improve very much the 2n/2 time complexity of
the attacks of [45] and [42], whereas the factorizations produced here are larger. However, the interest of our attack
increases for larger values of n. For example for n = 1024 and n2 = 6, we obtain factorizations of length 2306 using time
2332 and memory 2236. These numbers should be taken with some caution due to small constants that may be hidden
in our estimates, particularly regarding Strassen’s algorithm. The unexpected “teeth” in the figures happen when the d
value fixed in Step 2 of the algorithm described in Section 4.1 decreases from 2 to 1 or from 3 to 2.

In practice, better complexities can probably be obtained for medium-sized parameters with the heuristic ideas
described in Section 4.5.

5.3 Asymptotic Estimates

Asymptotically, our algorithm takes time and memory respectively 2ωτ and 22τ where

τ ≈ n2 logn logn1

log(n/n1)
.

As long as n1n2 ≥ n, we can balance the parameters n1 and n2 in different ways. We thereby obtain various tradeoffs
between factorization lengths and computing time and memory.

3 The reason is that any factorization returned by our algorithm for the set S̃ = {M}∪On1 of Proposition 2 contains each orthogonal matrix an
even number of times. Therefore, its normal form (as defined in the proof of Proposition 10 of [42]) does not contain any orthogonal matrix and the
precomputing phase in the proof of Proposition 10 of [42] can be avoided.
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Fig. 2 Complexity bounds for factoring in SL(2,F2n )

In particular, by fixing n1 = k logn and n2 = n
n1

, for some “large” k ∈ N, we obtain factorizations with polynomial
lengths in subexponential time and memory respectively 2ωτ and 22τ , where

τ ≈ n log(k logn)
k log( n

k logn )
.

In contrast, all previous algorithms [45, 42] working for any generator sets either produced at least subexponential
length factorizations or ran in exponential time. On the other hand by fixing n2 = k logn and n1 = n

n2
, for some k ∈ N,

we obtain factorizations of subexponential lengths in time and memory respectively 2ωτ and 22τ where τ is bounded by
log3 n. More generally by choosing n2 = nα and n1n2 ≈ n for any α,0≤ α ≤ 1, we obtain subexponential factorization
lengths about

32n33n1−α

in subexponential time and memory roughly

2ω(α−1−1)nα logn and 22(α−1−1)nα logn.

This largely improves over the subexponential algorithm of [42] that asymptotically produces factorizations of length
3

n
α logn in time and memory roughly 2

n
α logn .

6 Conclusion

In this paper, we proposed a new algorithm for solving the factorization problem in the group SL(2,F2n) for any
generator set. Our algorithm is the first one to produce factorizations of polynomial lengths in subexponential time. All
previous algorithms either ran in exponential time, produced subexponential length factorizations in subexponential
time, or were specific to particular generator sets.
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To obtain our results, we first reduced the factorization problem in SL(2,F2n) to the resolution of some constrained
multi-linear equation over F2n . Then, we developed and analyzed a new Gröbner basis algorithm dedicated to the
resolution of this equation. Compared to generic Gröbner basis algorithms, our algorithm takes advantage of both the
multi-linear structure of the problem and the existence of low degree algebraic relations between the equations.

Our factorization algorithm shows that the factorization problem in SL(2,F2n) is not as hard as previously expected,
even for generic parameters. Our Gröbner basis algorithm is of independent interest.
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ceedings of the 2002 international symposium on Symbolic and algebraic computation, ISSAC ’02, pages 75–83,
New York, NY, USA, 2002. ACM.

23. J.-C. Faugère. FGb: A Library for Computing Gröbner Bases. In K. Fukuda, J. Hoeven, M. Joswig, and
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46. L. Pyber and E. Szabó. Growth in finite simple groups of Lie type. arXiv:1001.4556v1, Jan 2010.
47. V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–356, 1969.
48. J.-P. Tillich and G. Zémor. Hashing with SL2. In Y. Desmedt, editor, CRYPTO, volume 839 of Lecture Notes in

Computer Science, pages 40–49. Springer, 1994.
49. J.-P. Tillich and G. Zémor. Collisions for the LPS expander graph hash function. In N. P. Smart, editor, EURO-

CRYPT, volume 4965 of Lecture Notes in Computer Science, pages 254–269. Springer, 2008.


