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A New Class of Hyper-bent Boolean Functions with
Multiple Trace Terms

Baocheng Wang, Chunming Tang, Yanfeng Qi, Yixian Yang, Maozhi Xu

Abstract—Introduced by Rothaus in 1976 as interesting combi-
natorial objects, bent functions are maximally nonlinear Boolean
functions with even numbers of variables whose Hamming
distance to the set of all affine functions equals 2n−1 ± 2

n
2
−1.

Not only bent functions are applied in cryptography, such as
applications in components of S-box, block cipher and stream
cipher, but also they have relations to coding theory. Hence
a lot of research have been paid on them. Youssef and Gong
introduced a new class of bent functions the so-called hyper-bent
functions which have stronger properties and rarer elements. It
seems that hyper-bent functions are more difficult to generate.
Moreover, (hyper)-bent functions are not classified. Charpin and
Gong studied a class of hyper-bent functions f defined on F2n by
f =

∑
r∈R

Trn1 (arx
r(2m−1)), n = 2m and ar ∈ F2n , where R is a

subset of a set of representatives of the cyclotomic cosets modulo
2m+1 for which each coset has the full size n. Further, Mesnager
contributed to the knowledge of a class of hyper-bent functions fb
defined over F2n by fb =

∑
r∈R

Trn1 (arx
r(2m−1)) + Tr21(bx

2n−1
3 ),

b ∈ F4, n = 2m and ar ∈ F2m . In this paper, we study a
new class of the hyper-bent functions fb defined over F2n by
fb =

∑
r∈R

Trn1 (arx
r(2m−1)) + Tr41(bx

2n−1
5 ), b ∈ F16, n = 2m and

ar ∈ F2m .

Index Terms—Boolean functions, bent functions, hyper-bent
functions, Walsh-Hadamard tranformation, Dickson polynomials.

I. INTRODUCTION

Bent functions with even numbers of variables are max-
imally nonlinear Boolean functions, that is, their hamming
distance to the set of all affine functions equals 2n−1±2

n
2 −1.

Bent functions were defined and named by Rothaus [28] in the
study of combinatorial objects. They have been extensively
studied for their applications in cryptography, but have also
been applied to spread spectrum, coding theory [3], [24] and
combinatorial design. The recent study of bent functions along
with properties and constructions of bent functions can be
found in [2], [11], [24]. A bent function can be seemed as a
function defined on Fn

2 , F2m×F2m , or F2n (n = 2m). Thanks
to the different structures of the vectorspace Fn

2 and the Galois
field F2n , bent functions can be well studied. However, it is
not yet clear on the general structure of bent functions over
F2n . Further, it seems impossible to classify bent functions. As
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a result, many research works are devoted to the description
of new class of bent functions [1], [6], [7], [9], [10], [12],
[13], [18], [19], [25], [23], [22], [24], [26], [30]. Youssef and
Gong [29] introduced a class of bent functions called hyper-
bent functions, which achieve the maximal minimum distance
to all the coordinate functions of all bijective monomials (i.e.,
functions of the form Trn1 (ax

i) + ϵ, gcd(c, 2n − 1) = 1).
Actually, it is Gong and Golomb [14] who, based on a
property of the extended Hadamard transform of Boolean
functions, presented the definition of hyper-bent functions. The
classification of hyper-bent function has not been achieved yet.

Many related problems are still open. Many research focus
on the characterization of bentness of Boolean functions. The
monomial bent functions in the form Trn1 (ax

s) are considered
in [1], [18]. Leander [18] described the necessary conditions
for s such that Trn1 (ax

s) is a bent function. In particular, when
s = r(2m − 1) and (r, 2m + 1) = 1, the monomial functions
Trn1 (ax

s) (i.e., the Dillon functions) were extensively studied
in [6], [9], [18]. A class of quadratic functions over F2n in

polynomial form
n
2 −1∑
i=1

aiTr
n
1 (x

1+2i) + an
2
Tr

n
2
1 (x

n
2 +1) (ai ∈

F2) was described and studied in [8], [15], [16], [17], [20],
[30]. Dobbertin et al. [12] constructed a class of binomial bent
functions of the form Trn1 (a1x

s1 + a2x
s2), (a1, a2) ∈ (F∗

2n)
2

with Niho power functions. Garlet and Mesanager [5] studied
the duals of the Niho bent functions in [12]. In [22], [23],
[26], Mesnager considered the binomial functions of the form
Trn1 (ax

r(2m−1)) + Tr21(bx
2n−1

3 ), where a ∈ F∗
2n and b ∈ F∗

4.
Then he gave the link between the bentness property of
such functions and Kloosterman sums. Leander and Kholosha
[19] generalized one of the constructions proven by Dob-
bertin et al. [12] and presented a new primary construction
of bent functions consisting of a linear combination of 2r

Niho exponents. Carlet et al. [4] computed the dual of the
Niho bent function with 2r exponents found by Leander and
Kholosha [19] and showed that this new bent function is
not of the Niho type. Charpin and Gong [6] presented a
characterization of bentness of Boolean functions over F2n

of the form
∑
r∈R

Trn1 (arx
r(2m−1)), where R is a subset of

the set of representatives of the cyclotomic cosets modulo
2m + 1 of maximal size n. These functions include the
well-known monomial functions with the Dillon exponent as
a special case. Then they described the bentness of these
functions with the Dickson polynomials. Mesnager et al. [24],
[25] generalized the results of Charpin and Gong [6] and
considered the bentness of Boolean functions over F2n of the
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form
∑
r∈R

Trn1 (arx
r(2m−1)) + Tr21(bx

2n−1
3 ), where n = 2m,

ar ∈ F2m and b ∈ F4. Further, they presented the link between
the bentness of such functions and some exponential sums
(involving Dickson polynomials).

In this paper, we consider a class of Boolean functions over
F2n in Dn. These Boolean functions are given by the form∑
r∈R

Trn1 (arx
r(2m−1)) + Tr41(bx

2n−1
5 ), where n = 2m, m ≡ 2

(mod 4), ar ∈ F2m and b ∈ F16. When b = 0, Charpin
and Gong [6] described the bentness and hyper-bentness of
these functions with some character sums involving Dickson
polynomial. Generally, it is elusive to give a characterization of
bentness and hyper-bentness of Boolean functions in Dn. This
paper presents the bentness and hyper-bentness of functions in
Dn in two cases: (1) b = 1 and b4 + b+1 = 0; (2) ar ∈ Fm

2
.

The rest of the paper is organized as follows. In Section
II, we give some notations and review some knowledge on
bent functions. In Section III, we consider the bentness and
hyper-bentness of Boolean functions in Dn in two cases: (1)
b = 1 and b4 + b + 1 = 0; (2) ar ∈ Fm

2
. The bentness and

hyper-bentness of these functions for the two cases are related
to some character sums involving Dickson polynomials and
some equations on the weights of some Boolean functions. In
Section IV, we list some examples. Finally, Section V makes
a conclusion for the paper.

II. PRELIMINARIES

Let n be a positive integer. Fn
2 is a n-dimensional vector

space defined over finite field F2. Take two vectors in Fn
2

x = (x1, · · · , xn) and y = (y1, · · · , xn). Their dot product is
defined by

⟨x, y⟩ :=
n∑

i=1

xiyi.

F2n is a finite field with 2n elements and F∗
2n is the multi-

plicative group of F2n . Let F2k be a subfield of F2n . The trace
function from F2n to F2k , denoted by Trnk , is a map defined
as

Trnk (x) := x+ x2k + x22k + · · ·+ x2n−k

.

When k = 1, Trn1 is called the absolute trace. The trace
function Trnk satisfies the following properties.

Trnk (ax+ by) = aTrnk (x) + bTrnk (y), a, b ∈ F2k , x, y ∈ F2n .

Trnk (x
2k) = Trnk (x), x ∈ F2n .

When F2k ⊆ F2r ⊆ F2n , the trace function Trnk satisfies the
following transitivity property.

Trnk (x) = Trrk(Tr
n
r (x)), x ∈ F2n .

A Boolean function over Fn
2 or F2n is an F2-valued function.

The absolute trace function is a useful tool in constructing
Boolean functions over F2n . From the absolute trace function,
a dot product over F2n is defined by

⟨x, y⟩ := Trn1 (xy), x, y ∈ F2n .

A Boolean function over F2n is often represented by the
algebraic normal form (ANF):

f(x1, · · · , xn) =
∑

I⊆{1,··· ,n}

aI(
∏
i∈I

xi), aI ∈ F2.

When I = ∅, let
∏
i∈I

= 1. The terms
∏
i∈I

xi are called monomi-

als. The algebraic degree of a Boolean function f is the globe
degree of its ANF, that is, deg(f) := max{#(I)|aI ̸= 0},
where #(I) is the order of I and #(∅) = 0.

Another representation of a Boolean function is of the form

f(x) =

2n−1∑
j=0

ajx
j .

In order to make f a Boolean function, we should require
a0, a2n−1 ∈ F2 and a2j = a2j , where 2j is taken modulo 2n−
1. This makes that f can be represented by a trace expansion
of the form

f(x) =
∑
j∈Γn

Tr
o(j)
1 (ajx

j) + ϵ(1 + x2n−1

)

called its polynomial form, where
• Γn is the set of integers obtained by choosing one element

in each cyclotomic class of 2 module 2n − 1 (j is often
chosen as the smallest element in its cyclotomic class,
called the coset leader of the class);

• o(j) is the size of the cyclotomic coset of 2 modulo 2n−1
containing j;

• aj ∈ F2o(j) ;
• ϵ = wt(f) (mod 2), where wt(f) := #{x ∈

F2n |f(x) = 1}.
Let wt2(j) be the number of 1’s in its binary expansion. Then

deg(f) =

{
n, ϵ = 1
max{wt2(j)|aj ̸= 0}, ϵ = 0.

The ”sign” function of f is defined by

χ(f) := (−1)f .

When f is a Boolean function over Fn
2 , the Walsh Hadamard

transform of f is the discrete Fourier transform of χ(f), whose
value at w ∈ F2n is defined by

χ̂f (w) :=
∑
x∈Fn

2

(−1)f(x)+⟨w,x⟩.

When f is a Boolean function over F2n , the Walsh Hadamard
transform of f is defined by

χ̂f (w) :=
∑

x∈F2n

(−1)f(x)+Trn1 (wx),

where w ∈ F2n . Then we can define the bent functions.

Definition A Boolean function f : F2n → F2 is called a bent
function, if χ̂f (w) = ±2

n
2 (∀w ∈ F2n).

If f is a bent function, n must be even. Further, deg(f) ≤ n
2

[2]. Hyper-bent functions are an important subclass of bent
functions. The definition of hyper-bent functions is given
below.
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Definition A bent function f : F2n → F2 is called a hyper-
bent function, if, for any i satisfying (i, 2n − 1) = 1, f(xi) is
also a bent function.

[3] and [29] proved that if f is a hyper-bent function, then
deg(f) = n

2 . For a bent function f , wt(f) is even. Then
ϵ = 0, that is,

f(x) =
∑
j∈Γn

Tr
o(j)
1 (ajx

j).

If a Boolean function f is defined on F
2

n
2
× F

2
n
2

, then we
have a class of bent functions.

Definition The Maiorana-McFarland class M is the set of
all the Boolean functions f defined on F

2
n
2
× F

2
n
2

of the
form f(x, y) = ⟨x, π(y)⟩ + g(y), where x, y ∈ F

2
n
2

, π is a
permutation of F

2
n
2

and g(x) is a Boolean function over F
2

n
2

.

For Boolean functions over F
2

n
2
× F

2
n
2

, we have a class of
hyper-bent functions PSap [3].

Definition Let n = 2m, the PSap class is the set of all the
Boolean functions of the form f(x, y) = g(xy ), where x, y ∈
F2m and g is a balanced Boolean functions (i.e., wt(f) =
2m−1) and g(0) = 0. When y = 0, let x

y = xy2
n−2 = 0.

Each Boolean function f in PSap satisfies f(βz) = f(z) and
f(0) = 0, where β ∈ F∗

m and z ∈ Fm×Fm. Youssef and Gong
[29] studied these functions over F2n and gave the following
property.

Proposition 2.1: Let n = 2m, α be a primitive element
in F2n and f be a Boolean function over F2n such that
f(α2m+1x) = f(x)(∀x ∈ F2n) and f(0) = 0, then f is a
hyper-bent function if and only if the weight of (f(1),f(α),
f(α2),· · · , f(α2m)) is 2m−1.
Further, [3] proved the following result.

Proposition 2.2: Let f be a Boolean function defined in
Proposition 2.1. If f(1) = 0, then f is in PSap. If f(1) = 1,
then there exists a Boolean function g in PSap and δ ∈ F∗

2n

satisfying f(x) = g(δx).
Let PS#

ap be the set of hyper-bent functions in the form of
g(δx), where g(x) ∈ PSap, δ ∈ F∗

2n and g(δ) = 1. Charpin
and Gong expressed Proposition 2.2 in a different version
below.

Proposition 2.3: Let n = 2m, α be a primitive element
of F2n and f be a Boolean function over F2n satisfying
f(α2m+1

x) = f(x) (∀x ∈ F2n) and f(0) = 0. Let ξ be
a primitive 2m + 1-th root in F∗

2n . Then f is a hyper-bent
function if and only if the cardinality of the set {i|f(ξi) =
1, 0 ≤ i ≤ 2m} is 2m−1.
In fact, Dillon [9] introduced a bigger class of bent functions
the Partial Spreads class PS− than PSap and PS#

ap.
Theorem 2.4: Let Ei(i = 1, 2, · · · , N) be N subspaces in

F2n of dimension m such that Ei ∩ Ej = {0} for all i, j ∈
{1, · · · , N} with i ̸= j. Let f be a Boolean function over

F2n . If the support of f is given by supp(f) =
N∪
i=1

E∗
i , where

E∗
i = Ei\{0}, then f is a bent function if and only if N =

2m−1.
The set of all the functions in Theorem 2.4 is defined by PS−.

Now we recall the knowledge of Dickson polynomials over
F2. For r > 0, Dickson polynomials are given by

Dr(x) =

⌊ r
2 ⌋∑

i=0

r

r − i

(
r − i

i

)
xr−2i, r = 2, 3, · · · .

Further, Dickson polynomials can be also defined by the
following recurrence relation.

Di+2(x) = xDi+1 +Di(x)

with initial values

D0(x) = 0, D1(x) = x.

Some properties of Dickson polynomials are given below.
• deg(Dr(x)) = r.
• Drp(x) = Dr(Dp(x)).
• Dr(x+ x−1) = xr + x−r.

The first few Dickson polynomials with odd r are

D1(x) = x,

D3(x) = x+ x3,

D7(x) = x+ x5 + x7,

D9(x) = x+ x5 + x7 + x9,

D11(x) = x+ x3 + x5 + x9 + x11.

III. THE BENTNESS OF A NEW CLASS OF BOOLEAN
FUNCTIONS WITH MULTIPLE TRACE TERMS

A. Boolean functions in Dn

Let n = 2m and m ≡ 2 (mod 4). Let E be the set of
representing elements in each cyclotomic class of 2 module
2n − 1. Let Dn be the set of Boolean functions fb over F2n

of the form

fb(x) :=
∑
r∈R

Trn1 (arx
r(2m−1)) + Tr41(bx

2n−1
5 ) (1)

where R ⊆ E, ar is in F2m and b ∈ F16.
Note that the cyclotomic coset of 2 module 2n−1 containing

2n−1
5 is { 2n−1

5 , 2 · 2n−1
5 , 22 · 2n−1

5 , 23 · 2n−1
5 }. Then its size

is 4, that is, o( 2
n−1
5 ) = 4. Hence, the Boolean function fb is

not in the class considered by Charpin and Gong [6].
From m ≡ 2 (mod 4), 2m + 1 ≡ 0 (mod 5). Then every

Boolean function fb satisfies

fb(α
2m+1x) = fb(x),∀x ∈ F2n ,

where α is a primitive element of F2n .
Note that fb(0) = 0. Then the hyper-bentness of fb can be

characterized by the following proposition.
Proposition 3.1: Let fb ∈ Dn. Set the character sum of the

form
Λ(fb) :=

∑
u∈U

χ(fb(u)) (2)

where U is the group of 2m+1-th roots of unity in F2n , that is,
U = {x ∈ F2n |x2m+1 = 1}. Then fb is a hyper-bent function
if and only if Λ(fb) = 1. Further, a hyper-bent function fb
lies in PSap if and only if Tr41(b) = 0.
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Proof: From Proposition 2.3, we have that fb is a hyper-
bent function if and only if its restriction to U has Hamming
weight 2m−1. From the definition of Λ(fb),

Λ(fb) =
∑
x∈U

χ(fb(u))

= #{u ∈ U |fb(u) = 0} −#{u|fb(u) = 1}
= #U − 2#{u|fb(u) = 1}
= 2m + 1− 2#{u|fb(u) = 1}.

Hence, the restriction of fb to U has Hamming weight 2m−1 if
and only if Λ(fb) = 1. As a result, fb is a hyper-bent function
if and only if Λ(fb) = 1.

As for the second part of the proposition, we compute

fb(1) =
∑
r∈R

Trn1 (ar) + Tr41(b)

=
∑
r∈R

Trm1 (ar + a2
m

r ) + Tr41(b)

=Tr41(b).

Hence, fb(1) = 0 if and only if Tr41(b) = 0. From Proposition
2.2, we have a hyper-bent function fb lies in PSap if and only
if Tr41(b) = 0.

B. The characterization of Boolean functions in Dn

Our goal is to present a characterization of hyper-bentness
of Boolean functions fb (b ̸= 0) in Dn. In this section we
analyze properties of Λ(fb) for the characterization. We now
give some notations first.

Let α be a primitive element in F2n . Then β = α
2n−1

5 is
a primitive 5-th root of unity in U and U is a cyclic group
generated by ξ = α2m−1. Let V be a cyclic group generated
by α5(2m−1). Then

U = ∪4
i=0ξ

iV, F∗
2n = F∗

2m × U.

Next, we introduce the character sums

Si =
∑
v∈V

χ(f0(ξ
iv)).

Note that

S0 + S1 + S2 + S3 + S4 =
∑
u∈U

χ(f0(u)) = Λ(f0). (3)

For any integer i, Si = Si (mod 5). The following lemma gives
the property of Si.

Lemma 3.2: S1 = S4, S2 = S3.
Proof: Noth that Trn1 (x

2m) = Trn1 (x), then

Si =
∑
v∈V

χ(
∑
r∈R

Trn1 (ar(ξ
iv)r(2

m−1)))

=
∑
v∈V

χ(
∑
r∈R

Trn1 (a
2m

r (ξi2
m

v2
m

)r(2
m−1))).

From ar ∈ F2m , a2
m

r = ar. Since m ≡ 2 (mod 4)
and 2m ≡ −1 (mod 5), hence i2m ≡ −i (mod 5) and
ξi2

m

v2
m

= ξ−i(ξi(2
m+1)v2

m

), where ξi(2
m+1) ∈ V . The map

v 7−→ ξi(2
m+1)v2

m

is a permutation of V . Consequently,

Si =
∑
v∈V

χ(
∑
r∈R

Trn1 (ar(ξ
−iv)r(2

m−1))) = S−i.

We just take i = 1, 2. Then this lemma follows.
From Lemma 3.2 and (3), the following corollary follows.

Corollary 3.3: S0 + 2(S1 + S2) = Λ(f0).
Generally, Λ(fb) is a linear combination of S0, S1 and S2.

Proposition 3.4: Λ(fb) can be expressed by a linear com-
bination of S0, S1 and S2, that is,

Λ(fb) =χ(Tr41(b))S0 + (χ(Tr41(bβ
2)) + χ(Tr41(bβ

3)))S1

+ (χ(Tr41(bβ)) + χ(Tr41(bβ
4)))S2.

Proof: From (2), we have

Λ(fb) =
∑
u∈U

χ(f0(u) + Tr41(bu
2n−1

5 ))

=
∑
u∈U

χ(Tr41(bu
2n−1

5 ))χ(f0(u))

=
4∑

i=0

∑
v∈V

χ(Tr41(b(ξ
iv)

2n−1
5 ))χ(f0(ξ

iv)) (From (3))

=
4∑

i=0

∑
v∈V

χ(Tr41(b(α
i(2m−1))

2n−1
5 ))χ(f0(ξ

iv)) (ξ = α2m−1)

=

4∑
i=0

∑
v∈V

χ(Tr41(bβ
i(2m−1)))χ(f0(ξ

iv)) (β = α
2n−1

5 )

Since 2m + 1 ≡ 0 (mod 5), hence 2m − 1 ≡ 3 (mod 5). We
have

Λ(fb) =

4∑
i=0

∑
v∈V

χ(Tr41(bβ
3i))χ(f0(ξ

iv))

=
4∑

i=0

χ(Tr41(bβ
3i))

∑
v∈V

χ(f0(ξ
iv))

From the definition of Si, we obtain

Λ(fb) =
4∑

i=0

χ(Tr41(bβ
3i))Si.

From Lemma 3.2, this proposition follows.
Assume that ar ∈ F2m1 for every r ∈ R, where m1 = m/2.
Further, we have the following proposition.

Proposition 3.5: Assume ar ∈ F2m1 , where r ∈ R, m1 =
m/2, then

S1 = S2, S0 + 4S1 = Λ(f0).

Proof: From ar ∈ F2m1 , Trn1 (arx
r(2m−1)) =

Trn1 (arx
2m1r(2m−1)). Then we have

Si =
∑
v∈V

χ(
∑
r∈R

Trn1 (ar(ξ
iv)r(2

m−1)))

=
∑
v∈V

χ(
∑
r∈R

Trn1 (ar(ξ
2m1 iv2

m1
)r(2

m−1))).

In particular, take i = 1, then

S1 =
∑
v∈V

χ(
∑
r∈R

Trn1 (ar(ξ
2m1

v2
m1

)r(2
m−1))).
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Since 2m + 1 ≡ 0 (mod 5), (2m1)2 ≡ −1 (mod 5) and
2m1 ≡ ±2 (mod 5).

When 2m1 ≡ 2 (mod 5), then

S1 =
∑
v∈V

χ(
∑
r∈R

Trn1 (ar(ξ
2ξ2

m1−2v2
m1

)r(2
m−1))).

The map
v 7−→ ξ2

m1−2v2
m1

is a permutation of V . Consequently,

S1 =
∑
v∈V

χ(
∑
r∈R

Trn1 (ar(ξ
2v)r(2

m−1))) = S2.

When 2m1 ≡ −2 (mod 5), we can similarly obtain S1 =
S3.

As a result, S1 = S2. From Corollary 3.3, S0 + 4S1 =
Λ(f0).
For Λ(fb), the proposition below gives some properties.

Proposition 3.6: Λ(fb) satisfies the following properties.
(1) Λ(fb4) = Λ(fb).
(2) If b a primitive element in F216 and Tr41(b) = 0, then

Λ(fb2) = Λ(fb) = S0.
Proof: From b ∈ F16, Tr41(b

4) = Tr41(b). Further,

Tr41(b(β
2 + β3)) = Tr41(b

4(β8 + β12)) = Tr41(b
4(β2 + β3))

and

Tr41(b(β + β4)) = Tr41(b
4(β4 + β16)) = Tr41(b

4(β + β4)).

From the expressions of Λ(fb4) and Λ(fb) in Proposition 3.4,
Λ(fb4) = Λ(fb).

(2) For an element b in F16 such that Tr41(b) = 0, it is easy
to verify that b satisfies the following equation.

b4 + b+ 1 = 0.

Hence, we have

Tr41(b(β
2 + β3)) =Tr21(b

4(β2 + β3) + b(β2 + β3))

=Tr21((b+ b4)(β2 + β3))

=Tr21(β
2 + β3).

The minimal polynomial of β over F2 is β4+β3+β2+β+1 =
0. Hence,

Tr21(β
2 + β3) = β2 + β3 + β4 + β6 = 1.

Then we have Tr41(b(β
2 + β3)) = 1. Similarly, Tr41(b(β +

β4)) = 1.
Therefore, we obtain χ(Tr41(bβ

2)) + χ(Tr41(bβ
3)) = 0

and χ(Tr41(bβ)) + χ(Tr41(bβ
4)) = 0. From Proposition 3.4,

Λ(fb) = S0.
If b is a primitive element in F216 such that Tr41(b) = 0,

b2 is also a primitive element in F216 such that Tr41(b) = 0.
Naturally, we obtain Λ(fb2) = Λ(fb) = S0.
In fact, we have more explicit results on Λ(fb).

Proposition 3.7: Let b ∈ F∗
16, then

(1) If b = 1, then Λ(fb) = S0−2(S1+S2) = 2S0−Λ(f0).
(2) If b ∈ {β + β2, β + β3, β2 + β4, β3 + β4}, that is, b is

a primitive element such that Tr41(b) = 0, then Λ(fb) = S0.
(3) If b = β or β4, then Λ(fb) = −S0 − 2S1.

(4) If b = β2 or β3, then Λ(fb) = −S0 − 2S2.
(5) If b = 1 + β or 1 + β4, then Λ(fb) = −S0 + 2S1.
(6) If b = 1 + β2 or 1 + β3, then Λ(fb) = −S0 + 2S2.
(7) If b = β + β4, then Λ(fb) = S0 + 2S1 − 2S2.
(8) If b = β2 + β3, then Λ(fb) = S0 − 2S1 + 2S2.

Proof: From the expression of Λ(fb) in Proposition 3.4,
these results follows.
Assume that ar ∈ F2m1 for every r ∈ R. We have more
simplified results than Proposition 3.7.

Proposition 3.8: Assume that ar ∈ F2m1 , where r ∈ R,
then

(1) If b = 1, then Λ(fb) = 2S0 − Λ(f0).
(2) If b ∈ {β, β2, β3, β4}, then Λ(fb) = −S0 − 2S1 =

−S0+Λ(f0)
2 .

(3) If b ∈ {1 + β, 1 + β2, 1 + β3, 1 + β4}, then Λ(fb) =

−S0 + 2S1 = −3S0−Λ(f0)
2 .

(4) If b ∈ {β+β2, β+β3, β2+β4, β3+β4, β+β4, β2+β3},
then Λ(fb) = S0.

Proof: Proposition 3.5 gives that S1 = S2. From Propo-
sition 3.7, these results in Proposition 3.8 follow.

Corollary 3.9: Assume ar ∈ F2m1 , where r ∈ R, then
Λ(fb2) = Λ(fb).

Proof: From Proposition 3.8, this corollary follows.
To characterize the hyper-bentness of fb with character sums

over F2m , we now introduce some results on the character
sums by Mesnager [25].

Lemma 3.10: Let n = 2m. f0 is the function over F2n

defined by (1) with b = 0. Let g0 be a Boolean function
defined on F2m by

g0(x) =
∑
r∈R

Trm1 (arDr(x)),

where Dr(x) is the Dickson polynomial of degree r. U is the
group of 2m+1-th roots of unity in F∗

2n . Then for any positive
integer p, we have∑

u∈U

χ(f0(u
p)) = 1 + 2

∑
x∈F∗

2m
,Trm1 (x−1)=1

χ(g0(Dp(x))).

From Lemma 3.10, we have the following proposition.
Proposition 3.11: fb is the function defined by (1). Let g0

be a Boolean function defined on F2m by

g0(x) =
∑
r∈R

Trm1 (arDr(x)), (4)

where Dr(x) is the Dickson polynomial of degree r. Then
(1) If b is a primitive element in F16 such that Tr41(b) = 0,

then

Λ(fb) =
1

5
[1 + 2

∑
x∈F∗

2m
,Trm1 (x−1)=1

χ(g0(D5(x)))].

(2) If b = 1, then

Λ(fb) =
1

5
[4

∑
x∈F∗

2m
,Trm1 (x−1)=1

χ(g0(D5(x)))

− 10
∑

x∈F∗
2m

,Trm1 (x−1)=1

χ(g0(x))− 3].
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Proof: (1) From Proposition 3.7, when b is the primitive
element such that Tr41(b) = 0, we have

Λ(fb) = S0 =
∑
v∈V

χ(f0(v)) =
1

5

∑
u∈U

χ(f0(u
5)).

From Lemma 3.10, we obtain

Λ(fb) =
1

5
[1 + 2

∑
x∈F∗

2m
,Trm1 (x−1)=1

χ(g0(D5(x)))].

(2) From Proposition 3.7, when b = 1, we have

Λ(fb) =2S0 − Λ(f0)

=2
∑
v∈V

χ(f0(v))−
∑
u∈U

χ(f0(u))

=
2

5

∑
u∈U

χ(f0(u
5))−

∑
u∈U

χ(f0(u)).

From Lemma3.10, we obtain

Λ(fb) =
2

5
[1 + 2

∑
x∈F∗

2m
,Trm1 (x−1)=1

χ(g0(D5(x)))]

−[1 + 2
∑

x∈F∗
2m

,Trm1 (x−1)=1

χ(g0(x))]

=
1

5
[4

∑
x∈F∗

2m
,Trm1 (x−1)=1

χ(g0(D5(x)))

−10
∑

x∈F∗
2m

,Trm1 (x−1)=1

χ(g0(x))− 3].

To have another version of Proposition 3.11, we first introduce
the following lemma.

Lemma 3.12: For any Boolean function g(x) over F2m ,∑
x∈F∗

2m
,Trm1 (x−1)=1

χ(g(x)) =
1

2
[
∑

x∈F2m

χ(g(x))−

∑
x∈F2m

χ(Trm1 (x−1) + g(x))].

Proof: For any x, y ∈ F2, χ(x+ y) = χ(x)+χ(y). Then
we have ∑

x∈F2m

χ(g(x))−
∑

x∈F2m

χ(Trm1 (x−1) + g(x))

=
∑

x∈F2m

χ(g(x))−
∑

x∈F2m

χ(Trm1 (x−1))χ(g(x))

=
∑

x∈F2m

χ(g(x))− (
∑

x∈F2m ,Trm1 (x−1)=0

χ(g(x))

+
∑

x∈F∗
2m

,Trm1 (x−1)=1

(−1)χ(g(x)))

= 2
∑

x∈F∗
2m

,Trm1 (x−1)=1

χ(g(x)).

Hence, this lemma follows.
Proposition 3.13: fb and g0 are functions defined by (1)

and (4) respectively. Then,

(1) If b is a primitive element in F16 such that Tr41(b) = 0,
then

Λ(fb) =
1

5
[1 +

∑
x∈F2m

χ(g0(D5(x)))

−
∑

x∈F2m

χ(Trm1 (x−1) + g0(D5(x)))].

(2) If b = 1, then

Λ(fb) =
1

5
[2

∑
x∈F2m

χ(g0(D5(x)))− 2
∑

x∈F2m

χ(Trm1 (x−1)

+g0(D5(x)))− 5
∑

x∈F2m

χ(g0(x))

+5
∑

x∈F2m

χ(Trm1 (x−1) + g0(x))− 3].

Proof: From Proposition 3.11 and 3.12, this proposition
follows.
Note that for any Boolean function g(x) over F2m ,∑
x∈F2m

χ(g(x)) = 2m − 2wt(g(x)). Hence, we have the

following corollary.
Corollary 3.14: fb and g0 are functions defined by (1) and

(4) respectively. Then,
(1) If b is a primitive element in F16 such that Tr41(b) = 0,

then

Λ(f0) =
1

5
[1+2wt(Trm1 (x−1)+g0(D5(x)))−2wt(g0(D5(x)))].

(2) If b = 1, then

Λ(f0) =
1

5
[4wt(Trm1 (x−1) + g0(D5(x)))− 4wt(g0(D5(x)))

+ 10wt(g0(x))− 10wt(Trm1 (x−1) + g0(x))− 3].

Proof: From Proposition 3.13, this corollary follows.

C. The hyper-bentness of Boolean functions in Dn

In this subsection, we give a characterization of hyper-
bentness of Boolean functions in Dn.

Theorem 3.15: Let n = 2m and m ≡ 2 (mod 4). Let b
is a primitive element in F16 such that Tr41(b) = 0, that
is, b4 + b + 1 = 0. fb is the function defined on F2n

by (1). Let g0 be a Boolean function defined on F2m by
g0(x) =

∑
x∈R Trm1 (arDr(x)), where Dr(x) is the Dickson

polynomial of degree r. Then, the following assertions are
equivalent.

(1) fb is hyper-bent.
(2)

∑
x∈F∗

2m
,Trm1 (x−1)=1

χ(g0(D5(x))) = 2.

(3) wt(Trm1 (x−1) + g0(D5(x))) − wt(g0(D5(x))) = 2,
where Trm1 (x−1) + g0(D5(x)) and g0(D5(x)) are functions
over F2m .

Proof: From Proposition 3.1, Proposition 3.11 and Corol-
lary 3.14, this theorem follows.

When b = 1, we have the following theorem.
Theorem 3.16: Let n = 2m and m ≡ 2 (mod 4). f1 is the

function defined on F2n by (1) with b = 1. Let g0 be a Boolean
function defined on F2m by g0(x) =

∑
x∈R Trm1 (arDr(x)),
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where Dr(x) is the Dickson polynomial of degree r. Then,
the following assertions are equivalent.

(1) f1 is hyper-bent.
(2) 2

∑
x∈F∗

2m
,Trm1 (x−1)=1

χ(g0(D5(x))) −

5
∑

x∈F∗
2m

,Trm1 (x−1)=1

χ(g0(x)) = 4.

(3) 2wt(Trm1 (x−1) + g0(D5(x))) − 2wt(g0(D5(x))) +
5wt(g0(x))− 5wt(Trm1 (x−1) + g0(x)) = 4.

Proof: From Proposition 3.1, Proposition 3.11 and Corol-
lary 3.14, this theorem follows.

The following proposition gives relations of the hyper-
bentness of different functions in Dn.

Proposition 3.17: Let n = 2m and m ≡ 2 (mod 4). Let d
be a positive integer coprime to 2m+1

5 . Let b be a primitive
element in F16 such that Tr41(b) = 0, that is, b4+b+1 = 0. fb
is the function defined by (1). Let hb be a Boolean function
defined by ∑

r∈R

Trn1 (arx
dr(2m−1)) + Tr41(bx

2n−1
5 ),

where ar ∈ F2m . Then, hb is hyper-bent if and only if fb is
hyper-bent.

Proof: From Proposition 3.1 and (2) in Proposition 3.7,
hb is hyper-bent if and only if

∑
v∈V

χ(h0(v)) = 1 for the func-

tion h0 =
∑
r∈R

Trn1 (arx
dr(2m−1)). Since d and the cardinality

of V 2m+1
5 are coprime, the map v 7→ vd is a permutation of

V . Therefore,∑
v∈V

χ(h0(v)) =
∑
v∈V

χ(
∑
r∈R

Trn1 (arv
dr(2m−1)))

=
∑
v∈V

χ(
∑
r∈R

Trn1 (arv
r(2n−1)))

=
∑
v∈V

χ(f0(v)).

Consequently,
∑

v∈V χ(h0(v)) = 1 if and only if∑
v∈V

χ(f0(v)) = 1. From Proposition 3.1 and (2) in Propo-

sition 3.7, hb is hyper-bent if and only if fb is hyper-bent.

When b = 1, we have the following proposition.
Proposition 3.18: Let n = 2m and m ≡ 2 (mod 4). Let

d be a positive integer coprime to 2m + 1. f1 is the function
defined by (1) with b = 1. Let h1 be a Boolean function
defined by ∑

r∈R

Trn1 (arx
dr(2m−1)) + Tr41(x

2n−1
5 ),

where ar ∈ F2m . Then, h1 is hyper-bent if and only if f1 is
hyper-bent.

Proof: Set h0 =
∑
r∈R

Trn1 (arx
dr(2n−1)). From Proposition

3.1 and (1) in Proposition 3.7, h1 is hyper-bent if and only
if 2

∑
v∈V

χ(h0(v)) −
∑
u∈U

χ(h0(u)) = 1. From the process

of proof in Proposition 3.17,
∑
v∈V

χ(h0(v)) =
∑
v∈V

χ(f0(v)).

Since (d, 2m + 1) = 1, we can have∑
u∈U

χ(h0(u)) =
∑
u∈U

χ(f0(u)).

Therefore, h1 is hyper-bent if and only if f1 is hyper-bent.
Further, we assume 5|d in Proposition 3.17. Then we can

get the following proposition.
Proposition 3.19: Let n = 2m and m ≡ 2 (mod 4). Let

d be a positive integer coprime to 2m+1
5 and 5|d. Let b be a

primitive element in F16 such that Tr41(b) = 0, that is, b4+b+
1 = 0. fb is the function defined by (1). Let hb′ be a Boolean
function defined by∑

r∈R

Trn1 (arx
dr(2m−1)) + Tr41(b

′x
2n−1

5 ), (5)

where b′ ∈ F16. Then
(1) h0 and hβi(i = 0, 1, 2, 3, 4) are not bent functions,

where β is the primitive 5-th root of unity in F16.
(2) hb′ (b′ ∈ F16\{0, 1, β, β2, β3, β4}) have the same

hyper-bentness. Further, they are hyper-bent if and only if fb
is hyper-bent.

Proof: Set h0(x) =
∑
r∈R

Trn1 (arx
d(2m−1)). Let S

′

i :=∑
v∈V

χ(h0(ξ
iv)). Then

S
′

i =
∑
v∈V

χ(
∑
r∈R

Trn1 (ar(ξ
idvd)r(2

m−1))).

Since 5|d and (d, 2m+1
5 ) = 1, the map v 7→ ξidvd is a

permutation of V . Therefore,

S
′

i =
∑
v∈V

χ(
∑
r∈R

Trn1 (arv
r(2m−1))) =

∑
v∈V

χ(f0(v)) = S0.

From (3), Λ(h0) = 5S
′

i = 5S0. From (1), (3) and (4) in
Proposition 3.7, Λ(hβi) = −3S0. Obviously, 5S0 and −3S0

are not equal to 1. Since S0 is odd. From Proposition 3.1, h0

and hβi(i = 0, 1, 2, 3, 4) are not bent functions.
From (2), (5), (6), (7) and (8) in Proposition 3.7, when

b′ ∈ F16\{0, 1, β, β2, β3, β4}, Λ(hb′) = S′
0 = S0. Then from

Proposition 3.1 and (2) in 3.7, (2) in this proposition follows.

Assume ar ∈ F2m1 for any r ∈ R. We have the hyper-
bentness of fb (b ∈ {β, β2, β3, β4}) in the following theorem.

Theorem 3.20: Let n = 2m, m ≡ 2 (mod 4) and m =
2m1. Let b ∈ {β, β2, β3, β4}. fb is the function defined on
F2n by (1), where ar ∈ F2m1 and r ∈ R. Let g0 be a Boolean
function over F2m defined by

g0(x) =
∑
r∈R

Trm1 (arDr(x)),

where Dr(x) is the Dickson polynomial of degree r. Then the
following assertions are equivalent.

(1) fb is hyper-bent.
(2)

∑
x∈F∗

2m
,Trm1 (x−1)=1

χ(g0(D5(x))) +

5
∑

x∈F∗
2m

,Trm1 (x−1)=1

χ(g0(x)) = −8.

(3) wt(Trm1 (x−1) + g0(D5(x))) − wt(g0(D5(x))) +
5wt(Trm1 (x−1) + g0(x))− 5wt(g0(x)) = −8.

Proof: From (2) in Proposition 3.8, Λ(fb) = −1
2 (S0 +

Λ(f0)) = − 1
2 (2S0 − Λ(f0)) − 3

2S0. From (1) in Proposition



8

3.7 and (2) Proposition 3.11,

2S0 − Λ(f0) =
1

5
[4

∑
x∈F∗

2m
,Trm1 (x−1)=1

χ(g0(D5(x)))

− 10
∑

x∈F∗
2m

,Trm1 (x−1)=1

χ(g0(x))− 3]. (6)

From (2) in Proposition 3.7 and (1) in 3.11,

S0 =
1

5
[1 + 2

∑
x∈F∗

2m
,Trm1 (x−1)=1

χ(g0(D5(x)))]. (7)

Hence,

Λ(fb) =− 1

5
[

∑
x∈F∗

2m
,Trm1 (x−1)=1

χ(g0(D5(x)))

+ 5
∑

x∈F∗
2m

,Trm1 (x−1)=1

χ(g0(x)) + 3].

Then from Proposition 3.1, fb is hyper-bent if and only if (2)
in this theorem holds.

Further, from Proposition 3.11 and Corollary 3.14,∑
x∈F∗

2m
,Trm1 (x−1)=1

χ(g0(D5(x))) =wt(Trm1 (x−1) + g0(D5(x)))

− wt(g0(D5(x))) (8)

and ∑
x∈F∗

2m
,Trm1 (x−1)=1

χ(g0(x)) =wt(Trm1 (x−1) + g0(x))

− wt(g0(x)) (9)

Consequently, assertions (2) and (3) in this theorem are
equivalent. Hence, this theorem follows.
If b ∈ {1 + β, 1 + β2, 1 + β3, 1 + β4}, we have the following
theorem corresponding to Theorem 3.20.

Theorem 3.21: Let n = 2m, m ≡ 2 (mod 4) and m =
2m1. Let b ∈ {1 + β, 1 + β2, 1 + β3, 1 + β4}, that is, b is
the primitive element in F16 such that Tr41(b) = 1. fb is the
function over F2n by (1), where ar ∈ F2m1 and r ∈ R. Let
g0 be a Boolean function defined on F2m by

g0(x) =
∑
r∈R

Trm1 (arDr(x)),

where Dr(x) is the Dickson polynomial of degree r. Then the
following assertions are equivalent.

(1) fb is hyper-bent.
(2) 3

∑
x∈F∗

2m
,Trm1 (x−1)=1

χ(g0(D5(x))) −

5
∑

x∈F∗
2m

,Trm1 (x−1)=1

χ(g0(x)) = −4.

(3) 3wt(Trm1 (x−1) + g0(D5(x))) − 3wt(g0(D5(x))) −
5wt(Trm1 (x−1) + g0(x)) + 5wt(g0(x)) = −4.

Proof: From (3) in Proposition 3.8,

Λ(fb) = −1

2
(3S0 − Λ(f0)) = −1

2
(2S0 − Λ(f0))−

1

2
S0.

Then from (6) and (7),

Λ(fb) =− 1

5
[3

∑
x∈F∗

2m
,Trm1 (x−1)=1

χ(g0(D5(x)))

− 5
∑

x∈F∗
2m

,Trm1 (x−1)=1

χ(g0(x))− 1].

From Proposition 3.1, fb is hyper-bent if and only if (2) in
this theorem holds. Further, from (8) and (9), fb is hyper-bent
if and only if (3) in this theorem holds. Hence, this theorem
follows.

If b ∈ {β+β2, β+β3, β2+β4, β3+β4, β+β4, β2+β3}, we
have the following theorem corresponding to Theorem 3.20.

Theorem 3.22: Let n = 2m, m ≡ 2 (mod 4) and m =
2m1. Let b ∈ {β+β2, β+β3, β2+β4, β3+β4, β+β4, β2+β3},
that is, b is the primitive element such that Trm1 (b) = 1 or a
primitive 3-th root of unity. fb is the function over F2n by (1),
where ar ∈ F2m1 and r ∈ R. Let g0 be a Boolean function
defined on F2m by

g0(x) =
∑
r∈R

Trm1 (arDr(x)),

where Dr(x) is the Dickson polynomial of degree r. Then fb
is hyper-bent if and only if (2) and (3) in Theorem 3.15 hold.

Proof: From (4) in Proposition 3.8, Λ(fb) = S0. Hence,
from Theorem 3.15, this theorem follows.

IV. EXAMPLES OF HYPER-BENT FUNCTIONS IN Dn

In this section, we list some instances of hyper-bent func-
tions in Dn .

Let m1 = 3, then m = 6 and n = 12. F6 = F2[x]/(x
6 +

x4+x3+x+1), F4 = F2[x]/(x
4+x+1), Let α6 be a root of

x6+x4+x3+x+1 = 0. Let α4 be a root of x4+x+1 = 0.
Take R = {1}, a1 = α23

6 and b = α4 in (1). From Theorem
3.15, we have a hyper-bent function of the form

Tr121 (α23
6 x2m−1) + Tr41(α4x

2n−1
5 ).

Take R = {1, 3}, a1 = 1, a3 = α17
6 and b = α4 in (1).

From Theorem 3.15, we have a hyper-bent function of the
form

Tr121 (x2m−1) + Tr121 (α17
6 x3(2m−1)) + Tr41(x

2n−1
5 ).

Take R = {1}, a1 = 1 and b = β in (1). From Theorem
3.20, we have a hyper-bent function of the form

Tr121 (x2m−1) + Tr41(βx
2n−1

5 ),

where β is a primitive 5-th root of unity in F16.
Finally, take d = 5, R = {1} and a1 = α11

6 in (5). From
Proposition 3.19, we have a hyper-bent function of the form

Tr121 (α11
6 x5(2n−1)) + Tr41(bx

2n−1
5 ),

where b ∈ F16\{0, 1, β, β2, β3, β4}.
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V. CONCLUSION

In this paper, we consider a new class of Boolean functions
with multiple trace terms Dn. With some restrictions, we
present the characterization of hyper-bentness of functions in
Dn. We give a link between hyper-bent functions of Dn and
some character sums involving Dickson polynomials. Further,
we relate hyper-bentness of functions in Dn to some equations
on weights of Boolean functions involving Dickson polynomi-
als. This characterization of hyper-bentness of functions in Dn

provides more hyper-bent functions and enriches the theory of
hyper-bent functions. Naturally, further study on the charac-
terization is to investigate the hyper-bentness in other cases,
such as (1) ar ∈ F2m and b ∈ F∗

16\{b|(b+1)(b4+b+1) = 0};
(2)for some of r, ar ∈ F2n \ F2m .
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