
Improving Additive and Multiplicative Homomorphic Encryption
Schemes Based on Worst-Case Hardness Assumptions

Carlos Aguilar Melchor1, Slim Bettaieb1, Philippe Gaborit1, and Javier Herranz2

1 XLIM-DMI, Université de Limoges,
123, av. Albert Thomas

87060 Limoges Cedex, France
{carlos.aguilar,slim.bettaieb,philippe.gaborit}@xlim.fr

2 Dept. Matemàtica Aplicada IV,
Universitat Politècnica de Catalunya,

C/ Jordi Girona, 1-3, 08034 Barcelona, Spain
jherranz@ma4.upc.edu

Abstract. In CRYPTO 2010, Aguilar et al. proposed a somewhat homomorphic encryption scheme,
i.e. an encryption scheme allowing to compute a limited amount of sums and products over encrypted
data, with a security reduction from LWE over general lattices. General lattices (as opposed to ideal
lattices) do not have an inherent multiplicative structure but, using a tensorial product, Aguilar et al.
managed to obtain a scheme allowing to compute products with a polylogarithmic amount of operands.
In this paper we present an alternative construction allowing to compute products with polynomially-
many operands while preserving the security reductions of the initial scheme. Unfortunately, despite
this improvement our construction seems to be incompatible with Gentry’s seminal transformation
allowing to obtain fully-homomorphic encryption schemes.
Recently, Brakerski et al. used the tensorial product approach introduced by Aguilar et al. in a new
alternative way which allows to radically improve the performance of the obtained scheme. Based
on this approach, and using two nice optimizations, their scheme is able to evaluate products with
exponentially-many operands and can be transformed into an efficient fully-homomorphic encryption
scheme while being based on general lattice problems. However, even if these results outperform the
construction presented here, we believe the modifications we suggest for Aguilar et al.’s schemes are of
independent interest.

Keywords: homomorphic encryption, secure function evaluation, lattices.

1 Introduction

The problem of Homomorphic Encryption arises in many practical applications where privacy is required
for some functionality, including cloud computing, private information retrieval, (private) search on en-
crypted/streaming data, etc. The input for a server, Alice, is some function f , whereas the input of a client,
Bob, is some value x in the domain of f . This problem involves three steps.

1. Bob uses some randomized algorithm Enc to produce and send to Alice an encrypted version of x,
c1 ← Enc(pk, x).

2. Alice applies some evaluation algorithm Eval to her input f and the value c1, to produce c2 ← Eval(f, c1),
which is sent back to Bob.

3. Finally, Bob uses a decryption algorithm Dec(sk, c2) to extract from c2 the reply’s value y.

The paradigm works correctly if y = f(x) for any value of x in the domain of f , any keypair (pk, sk) and
any ciphertext c1 ∈ Enc(pk, x). The interest of a homomorphic encryption scheme is based on three criteria:
the variety of functions for which correctness is ensured, the privacy obtained by Alice and Bob, and the
compactness of the communications.

Considering privacy, there are two desirable properties. On one hand, if Alice does not obtain any infor-
mation on x, then the protocol enjoys privacy. On the other hand, if Bob does not obtain any information on

1

f (other than what can be deduced from f(x)), then the protocol enjoys function privacy. If both conditions
are respected the protocol enjoys symmetric privacy. Compactness is a more complex issue. If the size of
Eval’s output is independent of the size of the function evaluated |f | we say the protocol is perfectly compact.
However, for most of the schemes allowing to evaluate a wide variety of functions, the size of Eval depends
on various parameters of the evaluated function. We say that such protocols are compact for a given family
of functions if for these functions Eval’s output is below |f |. If there is no function for which this is true, the
scheme is said to be non-compact.

Without privacy (for Bob’s input), it is trivial to build a protocol that ensures both function privacy
and perfect compactness for any function f : Bob sends x to Alice, which replies with f(x). It is also trivial
to build a scheme that ensures perfect privacy for Bob’s input if neither function privacy, nor compactness
are required. Indeed, Bob can request the function f to Alice without sending any information about x, and
compute directly f(x). Thus we will only consider schemes that ensure privacy for Bob’s input and either
function privacy, or some degree of compactness (or both).

There are classic encryption schemes [24, 25, 9] with fundamental homomorphic properties (they are group
homomorphisms between the plaintext and ciphertext space), which are by themselves perfectly-compact
homomorphic encryption schemes for very specific families of functions such as multivariate monomials of
arbitrary degree, or multivariate polynomials of degree one. The first approach allowing to evaluate any
function was proposed by Yao in 1986 [30]: creating garbled circuits with a generic encryption scheme. This
results in a homomorphic encryption scheme ensuring symmetric privacy and correctness for any function f ,
but which is non-compact, as Eval’s output is linear in |f |. Obtaining schemes that provide some compactness
for a larger set of functions than monomials or polynomials of degree one has been a long standing open issue.
Two proposals provide generic constructions that adapt group homomorphic encryption schemes in order to
deal with larger families of functions such as boolean circuits with logarithmic (in the security parameter)
depth [26], or branching programs with polynomial (in the security parameter) length [16]. On the other
hand, Boneh, Goh and Nissim presented a pairing based encryption scheme (not a generic construction)
allowing to obtain perfectly-compact evaluations of multivariate polynomials with degree 2 [4], as long as
the output size of the polynomial is logarithmic in the security parameter.

Between 2009 and 2011, lattice-based cryptography has provided a large set of interesting results on
the homomorphic encryption field. Among these, there is of course the groundbreaking construction for
fully-homomorphic encryption by Gentry [10]. This generic construction provides homomorphic encryption
schemes that are perfectly-compact and symmetrically secure for any multivariate polynomial (hence the
name, fully-homomorphic). However, the initial instantiation proposed by Gentry, as well as the first variants
and instantiations of his scheme [29, 27, 11, 28, 13, 8] were based on relatively non-standard problems, among
which the sparse (or low-weight) subset sum problem (SSSP). Very recently, in a work to appear in FOCS
2011 [12], Gentry and Halevi have managed to circumvent the sparse subset sum problem, which is a major
step towards a completely standard proof of security. However, their construction, as all of the current fully
homomorphic schemes, assumes that the underlying scheme is circularly secure. Obtaining a scheme such
that this assumption can be proved is the the last open problem for a completely standard proof of security.

Building up a fully-homomorphic encryption scheme using Gentry’s construction involves a step, boot-
strapping, that has a very important impact on performance. Thus, obtaining schemes that allow to evaluate
compactly polynomials without bootstrapping is an interesting line of research (even if this implies a bound
on the polynomial degree), as we may hope to evaluate these polynomials more efficiently than using the
costly fully-homomorphic schemes. In 2010, Gentry et al. proposed an alternative to [4] for the evaluation
of degree 2 polynomials [14] (with arbitrarily large output) and Aguilar et al.’s proposed a generic construc-
tion [1] which allows to evaluate polynomials with a degree bounded above by a polylogarithmic function on
the security parameter.

The different instantiations of Gentry’s construction all provide means to evaluate polynomials of bounded
degree. In particular, in [11] Gentry presents a variant of his somewhat homomorphic encryption scheme
that is based on the quantum worst-case hardness of the shortest independent vector problem (SIVP) on
ideal lattices over a given ring. When considering polynomials with many monomials, Gentry’s somewhat
homomorphic encryption scheme is able to provide a compact evaluation as long as the degree is bounded by

2

a polynomial on the security parameter. Aguilar et al.’s additive and d-operand multiplicative construction
also provides means to do a compact evaluation of multivariate polynomials, but the bound of the degree
with their construction is polylogarithmic in the security parameter (instead of polynomial as in Gentry’s
scheme). On the other hand, their construction’s security relies on more standard security assumptions such
as the quantum hardness of SIVP over integer lattices instead of ideal lattices.

In [11], working with ideal lattices restricts the hardness assumptions to this setting but, on the other
hand, provides an inherent multiplicative structure that can be used when computing monomials of a given
degree. This is not the case in integer lattices in which there is a need to overcome this lack of multiplicative
structure. In order to do this, Aguilar et al. use a tensorial-like multiplication which results at first in
an exponential ciphertext growth, and ultimately in the polylogarithmic limitation on the degree of the
polynomials evaluated. Whereas it seems clear that there is a price to pay to build a multiplicative structure
over an integer lattice, one may ask whether this price must be as steep as in Aguilar et al.’s construction.

In this paper, following the ideas presented in [1], we give an alternative way of chaining d encryption
schemes with additively homomorphic properties. The resulting chained schemes are homomorphic encryp-
tion schemes able to evaluate degree d polynomials, with a communication cost which is polynomial in d
(instead of exponential for [1]).

We also present in the Appendix (one detailed, two undetailed) examples of instantiations of the new
generic construction, in which the security relies on the worst-case hardness of the Learning With Errors
problem3 (LWE) over integer lattices. Such instantiations allow to securely evaluate degree d polynomials as
long as d is bounded above by a polynomial in the security parameter (instead of a polylogarithmic function
for [1]). Moreover, it is possible to introduce some additional steps in the evaluation protocol that provide
symmetric privacy, a feature that was not possible in [1]. The ciphertext size is logarithmic on the number
of monomials of the evaluated polynomial, and, if the evaluated polynomial has degree d and the variables
are binary, the ciphertext size is on Õ(d2). The protocol requires Bob to send Õ(d3) ciphertexts for the
evaluation to be possible. Therefore, the total communication cost is Õ(d5). This is much better than in [1]
where the cost is in 2O(d).

Very recently, Brakerski et al. [5] (based on works of Brakerski and Vaikuntanathan [7, 6]) used the
tensorial product approach introduced by Aguilar et al. in a new alternative way which allows to radically
improve the performance of the obtained scheme. Based on this approach, and using two nice optimizations,
their scheme is able to evaluate products with exponentially-many operands and can be transformed into
an efficient fully-homomorphic encryption scheme while being based on general lattice problems. However,
even if these results outperform the construction presented here, we believe the modifications we suggest for
Aguilar et al.’s schemes are of independent interest.

2 Basic Idea

Notations. We denote scalars by roman letters (a, b, ...), vectors by bold letters (a, b, ...), and the associated
coordinates with a parenthesized exponent (b = (b(1), . . . , b(n))). Ciphertexts, which in this paper will always
be vectors, are noted as greek bold letters (α, β, ...). To a keypair (pk, sk) of a given encryption scheme PKC
we implicitly associate the instance of the scheme described by this keypair. We say that an instance (pk, sk)
is an m-limited homomorphism via addition if the sum of up to m ciphertexts (possibly modulo a given
integer) decrypts to the sum (possibly modulo another integer) of the corresponding plaintexts. Finally, for
integer values a < b, we denote as [a, b] the set {a, a+ 1, . . . , b− 1, b}.

A note on scalar operators. Let PKC1 = (KeyGen1,Enc1,Dec1) be an encryption scheme, and (pk1, sk1)
an m-limited homomorphic instance such that the plaintext and ciphertext spaces are Zp1 and Zn2

p2 with

3 This problem can be reduced from the worst-case quantum hardness of SIVP over integer lattices (see [23]). Note
that LWE has also a classical reduction from SIVP (see [21]), but this reduction requires a modulus exponential
in the security parameter and does not work with our proposal as is. Obtaining an encryption scheme compatible
with this reduction is beyond the scope of this paper.

3

p2 > p1m. For any a, b ∈ Zp1 such that b < m and any α ∈ Enc1(pk1, a) we have

bαmod p2 decrypts to (bmod p2)amod p1 = abmod p1

where bαmod p2 means adding α to itself b times over the integers, and replacing each coordinate with its
residue modulo p2. The assertion on the decryption is a direct consequence of the definition of an m-limited
homomorphism, and the second equality comes from the fact that p1m < p2 and thus b < m implies b < p2.
This formulation may seem awkward, as we use b as an integer and then we apply a modular operation
mod p2 and a second modular operation mod p1 without any relationship between p1 and p2. The intuition
is that b is never seen as an element of Zp2 , but just used as a scalar in Z bounded above by p1 (and also by
p2 as p1 < p2).

2.1 The AMGH Construction

The basic idea underlying the results that Aguilar et al. present in [1] is to apply several encryption layers
to a given plaintext, in a process that they call chaining. If the encryption schemes used have a given set of
properties, which is common in lattice based cryptography, it is possible to combine two ciphertexts into a
new (much larger) ciphertext which can be seen as an encryption of the product of the associated plaintexts.
It is possible to sum many of these large ciphertexts in order to evaluate a multivariate polynomial, and if
there are enough monomials the evaluation will be compact.

Suppose that we have two encryption schemes such that: plaintexts are integers, ciphertexts are vectors
of integers, the null vector is an encryption of zero, and it is possible to obtain instances which are m-limited
homomorphisms via addition. Let PKC1 = (KeyGen1,Enc1,Dec1) and PKC2 = (KeyGen2,Enc2,Dec2) be two
cryptosystems with such properties. The idea is to start from encryptions α ∈ Enc1(pk1, a),β ∈ Enc2(pk2, b)
of two bits a, b ∈ {0, 1}, and compute then a chained encryption of the product, γ ∈ Enc((pk1, pk2), ab),
being Enc = chain(Enc1,Enc2) a new encryption function.

Suppose that ciphertexts of PKC2 are vectors in Zn2 , so we have βT = (β(1), . . . , β(n2)). If (α(1), . . . , α(t))
is the bit-representation of the ciphertext α ∈ Enc1(pk1, a), then the idea is to compute the product between
vectors β ∈ Enc2(b) ∈ Zn2 and (α(1), . . . , α(t)). The resulting ciphertext is

γ =

 β(1)

...
β(n2)

 · (α(1), . . . , α(t)) =

 ↑ . . . ↑
α(1)β . . . α(t)β
↓ . . . ↓

Note that the columns of matrix γ are either β or a column with zeros, depending on the value of each

bit of α. Given such a ciphertext γ, the decryption algorithm Dec2 is applied to each column, which results
in the vector of bits (α(1)b, . . . , α(t)b). Finally, an element in the ciphertext space of PKC1 is reconstructed
from this vector of bits, and algorithm Dec1 is applied to it. If b = 0, then the obtained plaintext is 0 = ab. If
b = 1, the obtained plaintext is a = ab. Summing up, γ is decrypted, through this chained procedure, to the
product ab. As the ciphertexts obtained through this product operation are sets of ciphertexts of Enc2, which
is an m-limited homomorphism, it is possible to add up many such products and the result will decrypt to
the evaluation of a multivariate polynomial of degree 2 if m is large enough.

This method generalizes to compute an encryption of a product a1 · · · ad of d bits, by chaining d instances
of such encryption schemes. However, this chaining procedure (i.e. expanding one of the initial ciphertexts in
bits) necessarily leads to ciphertexts whose size is exponential with respect to d. The reason for this is that
we encode α very inefficiently with a binary representation {0,β}. The idea of this paper is that much more
efficient encodings may be used. Indeed, we can encode more than one bit at a time using a larger alphabet
{0,β, . . . , (2` − 1)β} if Enc2 has the correct properties, or even encode the entire ciphertext α into a single
ciphertext of Enc2 as shown in the following section.

4

2.2 Informal Description of the New Approach

Let n2, n3, p1, p2, p3 be five positive integers, and (pk1, sk1), (pk2, sk2) two keypairs of two encryption schemes
PKC1 = (KeyGen1,Enc1,Dec1) and PKC2 = (KeyGen2,Enc2,Dec2) such that:

– the plaintext and ciphertext spaces associated to (pk1, sk1) are Zp1 and Zn2
p2

– the plaintext and ciphertext spaces associated to (pk2, sk2) are Zn2
p2 and Zn3

p3

Moreover, suppose that for a given integer M ≥ 1, (pk1, sk1) is a p1M -limited homomorphism via addition
modulo p2 and (pk2, sk2) is a p2n2M -limited homomorphism via addition modulo p3. As we use lattice-based
encryption schemes4 we will therefore have p2 > p1 ·(p1M) and p3 > p2 ·(p2n2M). Thus, both of the instances
described above will have an expansion factor bounded below by 2n2 and 2(n3/n2).

The idea is that when computing a product, we may use the plaintext space associated to (pk2, sk2) to
encode the ciphertexts associated to (pk1, sk1) more efficiently than with the bit-by-bit approach proposed in
the AMGH construction, as both spaces have the same structure. In order to do that, to the first multiplicand
a ∈ Zp1 we will associate a ciphertext using Enc1, and to the second multiplicand b ∈ Zp1 we will associate
a set of ciphertexts using Enc2, one for each vector bei with (e1, . . . , en2) the canonical basis of Zn2

p2 . More
formally, let a, b ∈ Zp1 and

– α ∈ Enc1(pk1, a) with αT = (α(1), . . . , α(n2)) and α(i) ∈ Zp2 ;
– (β1, . . . ,βn2

) ∈ Enc2(pk2, b · e1)× · · · × Enc2(pk2, b · en2
).

As noted in the beginning of this section, the fact that b belongs to Zp1 and is encrypted with Enc2 which
has as plaintext space Zn2

p2 may seem strange as we generally will not have p1 | p2. Again, b is just a small
scalar b < p1 < p2 (and thus such that bmod p2 = b) for the basis vectors ei which are the plaintexts. The
idea of this construction is that the matrix-vector product

(β1, . . . ,βn2
) α =

β

(1)
1 . . . β

(1)
n2

... · · ·
...

β
(n3)
1 . . . β

(n3)
n2

 α(1)

...
α(n2)

 =
∑
i

α(i)βi

decrypts to ab(mod p1). Indeed,
∑
i α

(i)βi (mod p3) decrypts to bα (mod p2) through Dec2 as bα =
∑
i α

(i)bei,
and bα (mod p2) decrypts to ab (mod p1). Finally, as (pk1, sk1) and (pk2, sk2) are respectively p1M -limited
and p2n2M -limited homomorphisms, up to M of such encrypted products can be added up to obtain a
sum of ciphertexts (modulo p3) that decrypts to the evaluation of a degree 2 polynomial (with up to M
monomials).

Of course, the product computation can be iterated to compute d operand multiplications, if we have
enough instances that chain their respective plaintext and ciphertext spaces and are K-limited homomor-
phisms for K large enough.

2.3 Expansion Factor

Note that unlike in the construction proposed in [1], in this construction there is no constraint on the size of
the final ciphertext, beyond the fact that the global expansion factor is the product of the expansion factors
of the used schemes. In fact, this construction can be instantiated with schemes such as [2, 14] for which
(ni+1/ni) · (logpi+1/logpi) is (roughly) a small constant k > 2.

The fact that k is bounded away from 1 is a major issue as it prevents us from having an expansion factor
linear in d. Indeed, by chaining instances with shrinking expansion factors, (2, 3/2, ..., (d−1)/(d−2), d/(d−1)),
the product of the expansion factors of d chained schemes would be d. In the next section we see how to
modify this idea to solve this issue.

4 With current lattice-based encryption schemes, ciphertexts have an underlying error which expands at each ho-
momorphic operation, and beyond a given amount of operations the error may increase to a point of non-return,
breaking decryption correctness. In order to avoid that, we choose a ciphertext space large enough to avoid errors
from overflowing into data, which results in a constraint such as pi+1 > pi ·m, m being a bound on the amount of
homomorphic operations.

5

2.4 Reducing the Number of Homomorphic Operations

First, suppose that n2/n1 can be set asymptotically close to 1. As noted before, the issue is that in lattice
based schemes, the number of homomorphic operations that can be done has an impact on ciphertext
size (to ensure decryption correctness despite the growth of the underlying error). For example, in [14],
with some modifications (namely, dropping the “multiplication for free” property), it is possible to have
p2 ' p1 ·m · poly(κ), κ being the dimension of the underlying lattice. However, our construction requiring
the instance of PKC1 to be at least a p1-limited homomorphism, we have p2 = O(p2

1) and thus an expansion
factor bounded below by 2.

Thus, the idea is to reduce the number of sums done to absorb the scalars that appear in the components
of ciphertexts of PKC1 (such scalars live in Zp2). In fact, this is pretty easy to do! Indeed, in order to absorb
a coordinate α(i) of α into an encryption of bei, we must do p2 homomorphic operations (possibly through
a double-and-add protocol). But, if we have a fresh encryption of 2jbei for each j ∈ [0, dlogp2e − 1] we just
need to add the encryptions corresponding to the bits of α(i) which are non null, and therefore we just need
to do dlogp2e homomorphic operations!

Of course this allows us to have p3 = p2dlogp2e · poly(κ) and thus an (almost) linear growth of the
ciphertext sizes on d as we iteratively define p1, p2, p3, . . .

3 Fully Chainable Schemes

3.1 Definition and Instantiations

In this subsection we define the notion of fully chainable scheme, which gathers the required properties to
create ciphertext chains with our construction. The notion of chainable (instead of fully-chainable) scheme,
described in [1], requires the plaintext space to be a subset of Z (in practice Zp for some p), which is
incompatible with our construction. Fully chainable schemes must be able to provide instances with plaintext
space Znp for any positive integers p, n. This could be seen as an extra constraint, possibly limiting the number
of schemes fulfilling the requisites. In practice, most schemes, including the instantiations of [1] based on [14,
2] already provide such a property, and in order to fit into the definition of chainable schemes the plaintext
space was artificially reduced to Zp by leaving unused some of the plaintext coordinates.

Definition 1. A scheme PKC = (KeyGen,Enc,Dec) is said (fn, fp)-fully-chainable for two integer functions
fn, fp if:

– The key generation algorithm KeyGen takes as input a security parameter κ and three positive integers
m,n, p;

– The integers n′ = fn(κ,m, n, p), p′ = fp(κ,m, n, p) are defined for any set of parameters of KeyGen;
– For any keypair (pk, sk) ∈ KeyGen(1κ,m, n, p) the following holds:
• The plaintext space is Znp ;

• The ciphertext space is a subset of Zn′

p′ and 0n
′ ∈ Enc(pk,0n);

• m-limited homomorphism via addition modulo p′: for any ` ≤ m, a1, . . . ,a` ∈ Znp and any α1, . . . ,α`
with αi ∈ Enc(pk,ai), the vector α =

∑
iαi mod p′ is decrypted via Dec to the integer vector a =∑

i ai mod p.

The ciphertext space associated to an instance (pk, sk) of a fully-chainable scheme is a subset of Zn′

p′ for

given p′, n′ but, in order to simplify, we will sometimes just say that Zn′

p′ is the ciphertext space. For a ∈ Znp
and a strictly positive integer ` ∈ Z+ we denote as Enc(pk,a)+` the subset of Zn′

p′ corresponding to the sums,
modulo p′, of exactly ` ciphertexts whose plaintexts sum up to a modulo p. As a result of the m-limited
homomorphism property, any α ∈ Enc(pk,a)+` decrypts to a as long as ` ≤ m.

Theorem 1. There is an (fn, fp)-fully-chainable scheme PKC = (KeyGen,Enc,Dec) with:

– fn(κ,m, n, p) = n+ κ

6

– fp(κ,m, n, p) ∈ [6κ2mp · log(κmp), 12κ2mp · log(κmp)]

Suppose that parameters m,n, p are such that n is bounded above by a polynomial in κ and m, p are arbitrary
functions of κ. A quantum attacker able to break the indistinguishability of this scheme is able to approximate
the decision version of the shortest vector problem (GapSVP) and the shortest independent vectors problem
(SIVP) to within Õ(κ5/2mp) in the worst case.

Proof. Direct consequence of Propositions 4 and 5 in Appendix A, using m′ slightly above 2κmlogq as
suggested in the public key realization section (Appendix A.5).

In Appendix A, besides the intermediate results that lead to this theorem, the reader can find other
alternatives and the details of how to instantiate our construction with a very simple scheme, with security
reduced from LWE (and thus from quantum SIVP or quantum GapSVP).

3.2 Chaining Schemes

In this subsection we describe an algorithm that chains two encryption schemes PKC1,PKC2 that are respec-
tively (fn, fp)-fully-chainable and (gn, gp)-fully-chainable, into a (hn, hp)-fully-chainable scheme PKC (for
given hn, hp). The instances of this scheme are just the composition of an instance of PKC1 and an instance
of PKC2 such that the ciphertext space of the first instance is (roughly) the plaintext space of the second.

Unlike in [1], a ciphertext of an instance ((pk1, pk2), (sk1, sk2)) of PKC is a ciphertext of the instance
(pk2, sk2) of PKC2. Of course the ciphertext/plaintext expansion factor is larger for the instance of PKC as
it is the product of the expansion factors of (pk1, sk1) and (pk2, sk2) which are both strictly larger than 1
(as the schemes are randomized). However, if both expansion factors are close to 1 the product will be close
to 1 too, and thus the resulting expansion factor can be comparable to the ones of the instances chained.

Chaining Algorithm: PKC = chain(PKC1,PKC2)

Input :
- An (fn, fp)-fully-chainable scheme PKC1 = (KeyGen1,Enc1,Dec1)
- An (gn, gp)-fully-chainable scheme PKC2 = (KeyGen2,Enc2,Dec2)

Output :
- An (hn, hp)-fully-chainable scheme PKC = (KeyGen,Enc,Dec) with
(hn, hp)(κ,m, n, p) = (gn, gp)(κ,m, fn(κ,m, n, p), fp(κ,m, n, p)).

Return a description the encryption scheme PKC:

KeyGen(1κ,m, n1, p1):
1 Set (pk1, sk1)← KeyGen1(1κ,m, n1, p1)
2 Define n2 = fn(κ,m, n1, p1) and p2 = fp(κ,m, n1, p1)
3 Set (pk2, sk2)← KeyGen2(1κ,m, n2, p2)
4 Return ((pk1, pk2), (sk1, sk2))

Enc((pk1, pk2),a ∈ Zn1
p1) :

1 Return β ← Enc2(pk2,α) with α← Enc1(pk1,a)

Dec((sk1, sk2),β ∈ Zn3
p3) with (n3, p3) = (gn, gp)(κ,m, n2, p2):

1 Return a← Dec1(sk1,α) with α← Dec2(sk2,β)

Proposition 1. PKC is (hn, hp)-chainable, with

(hn, hp)(κ,m, n, p) = (gn, gp)(κ,m, fn(κ,m, n, p), fp(κ,m, n, p))

7

Proof. Trivial.

An interesting question is how the chaining procedure impacts on ciphertext size. If PKC2 is the scheme
of Theorem 1, we have:

– gn(κ,m, n, p) = n+ κ
– gp(κ,m, n, p) ∈ [6κ2mp · log(κmp), 12κ2mp · log(κmp)]

and therefore, noting (z) = (κ,m, n, p) for clarity, it can be easily verified that in this case:

– hn(z) = fn(z) + κ
– fp(z) < hp(z) ≤ fp(z)log(fp(z)) · 12κ2mlog(κm)

In other words, if PKC2 is the scheme of Theorem 1, the growth in the number of coordinates when passing
from PKC1 to PKC is independent of PKC1, and the number of bits by coordinate added, log(hp(z)) −
log(fp(z)), seems to be a very slowly growing parameter (it is double-logarithmic in fp(z) and logarithmic
in κ and m). We can thus hope that chaining the scheme of Theorem 1 to itself several times will result in
a reasonable ciphertext growth (as it will be shown in Section 4.3).

Let us prove now that the chained scheme PKC resulting from PKC1 and PKC2 is IND-CPA secure if
either of PKC1, PKC2 is IND-CPA secure (see Appendix A for a formal definition). The proof is, in fact, just
a simplification of the one of Proposition 2 in [1].

Proposition 2 (IND-CPA Security). PKC = chain(PKC1,PKC2) is IND-CPA secure if either of PKC1,
PKC2 is IND-CPA secure.

Proof. Let us assume that there exists a CPA attacker A against PKC and let us prove, then, that neither
of PKC1, PKC2 can be IND-CPA. Specifically, we can construct CPA attackers A1,A2 against the schemes
PKC1 and PKC2.

For PKC1, the attacker A1 is trivial as a random keypair of PKC1 can be transformed in a random keypair
of PKC by adding a random keypair of PKC2. Moreover, the choice of the two plaintexts by A is maintained
by A1, and the challenge ciphertext received from Enc1 can be transformed into a challenge ciphertext for
Enc just by encrypting it through Enc2. Finally, as the plaintexts are the same, Attacker A1 will output the
same guess as A will, and the success probability of both attackers will be exactly the same.

For PKC2, the idea is very similar. Again, an attacker A2 can transform a random keypair of PKC2 into a
random keypair of PKC by adding a random keypair of PKC1. If A chooses two plaintexts a0,a1, attacker A2

chooses for his attack the plaintexts α0 ← Enc1(pk1,a0) and α1 ← Enc1(pk1,a1). The challenge ciphertext
received by A2 is a valid challenge ciphertext for A. The answer (guess) of A is taken by A2 as his answer
to his game. The success probability of both attackers is again the same. ut

4 Computing with Chained Schemes

4.1 Products

In this section we show how to compute an encryption of the value a1a2 mod p1, under PKC = chain(PKC1,PKC2),
starting from an encryption of a1 ∈ Zp1 under PKC1 and a2 ∈ Zp1 under PKC2. First we show how to deal
with the case a1, a2 ∈ {0, 1} ⊂ Zp1 for any p1 ≥ 2, and then we describe how to modify our protocol to take
into account larger plaintexts.

Computing with binary values. If a1, a2 ∈ {0, 1} ⊂ Zp1 we can compute an encryption of the value
a1a2 mod p1, under PKC = chain(PKC1,PKC2), starting from an encryption of a1 ∈ Zp1 under PKC1 and
multiple encryptions of a2 ∈ Zp1 under PKC2. Note that in many applications such as computationally-
Private Information Retrieval [18] (cPIR) or private searching [20], a polynomial is evaluated over encrypted
data on Zp1 for large values of p1 (in order to retrieve information with small expansion factors), but the

8

variables are always binary (namely 0 for the elements we are not interested in, and 1 for the elements we
want to retrieve/search). Such a setting is therefore not just of theoretical interest, and this basic protocol
is enough for many applications.

Without loss of generality, we assume that the plaintext space of the first encryption scheme PKC1 in the
chain is Zp1 (i.e. n1 = 1), by encoding if necessary a value a ∈ Zp1 as a vector a = (a, 0, . . . , 0) ∈ Zn1

p1 . The
output of the product algorithm will be a sum of ciphertexts; thus, in order to be able to use the product
algorithm recursively (to compute products of more than two elements), we suppose that one of the inputs
of the algorithm is already a sum of (up to) `1 ciphertexts. We determine the correctness of the result (i.e.
whether it decrypts to the product of the plaintexts) based on `1 and on the homomorphic capacity of the
used instances.

Product Computation Algorithm: γ = product(α,βi,j)

Setting :
- PKC1 (fn, fp)-fully-chainable scheme
- PKC2 (gn, gp)-fully-chainable scheme
- PKC = (KeyGen,Enc,Dec) = chain(PKC1,PKC2)
- ((pk1, pk2), (sk1, sk2))← KeyGen(1κ,m, 1, p1)
- Zp1 , Zn2

p2 resp. plaintext and ciphertext spaces of (pk1, sk1)
- Zn2

p2 , Zn3
p3 resp. plaintext and ciphertext spaces of (pk2, sk2)

Input :
- α ∈ Enc1(pk1, a1)+`1 , where a1 ∈ {0, 1} ⊂ Zp1
- βi,j ∈ Enc2(pk2, 2

ja2ei) for (i, j) ∈ [1, n2]× [0, dlogp2e − 1], where a2 ∈ {0, 1} ⊂ Zp1
Output :
- γ ∈ Enc((pk1, pk2), a1a2 mod p1)+`2 for `2 = max{`1, n2dlogp2e}

1 For each coordinate α(i) ∈ Zp2 of α = (α(1), . . . , α(n2)) compute

γi =

dlogp2e−1∑
j=0

α(i,j)βi,j mod p3, noting α(i) =

dlogp2e−1∑
j=0

2jα(i,j)

2 Return γ =
∑n2

i=1 γi mod p3

The proposition below guarantees that the output of the protocol decrypts to the product of plaintexts
if m ≥ `2. The main idea of the proof is to show that the output, as asserted in the protocol, verifies

γ ∈ Enc((pk1, pk2), a1a2 mod p1)+`2 for `2 = max{`1, n2dlogp2e}

and then the proposition becomes trivial. In order to obtain this proof, we must suppose that the encryption
schemes satisfy the following property:

For all integers ` ≤ `′ and i ∈ {1, 2}, Enci(pk, a)+` ⊂ Enci(pk, a)+`′ (*)

All the instantiations proposed in Appendix A satisfy the above-mentioned property.

Proposition 3. If m ≥ `2, the output of the above-described protocol product decrypts through Dec((sk1, sk2),γ)
to a1a2 mod p1.

Proof. On the one hand, since a2 ∈ {0, 1} ⊂ Zp1 and α ∈ Enc1(pk1, a1)+`1 , and assuming that property (∗)
is satisfied, we have

a2αmod p2 ∈ Enc1(pk1, a1a2 mod p1)+`1 ⊂ Enc1(pk1, a1a2 mod p1)+`2 (1)

9

On the other hand, because of the definition of βi,j , α
(i,j), and α(i), we have

γ =

n2∑
i=1

γi =

n2∑
i=1

dlogp2e−1∑
j=0

α(i,j)βi,j

end thus we have γi ∈ Enc2(pk2, α
(i)a2ei)

+dlogp2e and γ ∈ Enc2(pk2, a2αmod p2)+n2dlogp2e. Using property
(∗), we obtain

γ ∈ Enc2(pk2, a2αmod p2)+`2 (2)

Finally, the definition of PKC = chain(PKC1,PKC2) ensures that

Enc((pk1, pk2), a1a2 mod p1)+`2 =
⋃

α̃∈Enc1(pk1,a1a2 mod p1)+`2

Enc2(pk2, α̃)+`2 (3)

This is where we need the definition of Enc(pk,a)+` as the sums of exactly ` ciphertexts whose plaintexts
sum up to a. If we had defined Enc(pk,a)+` as the sums of up to ` ciphertexts, then Equation (3) would
not hold. Joining Equations (1), (2) and (3), we get γ ∈ Enc((pk1, pk2), a1a2 mod p1)+`2 , which decrypts to
a1a2 mod p1 if m ≥ `2. ut

Computing with arbitrary values. Note that if we have a1, a2 ∈ Zp1 without the restriction a1, a2 ∈
{0, 1}, the product protocol works as long as we set `2 = max{`1(p1 − 1), n2dlogp2e}. Indeed, the only part
of the proof that would change is

a2αmod p2 ∈ Enc1(pk1, a1a2 mod p1)+`1(p1−1) ⊂ Enc1(pk1, a1a2 mod p1)+`2

The main issue with such a protocol is that it results in O(p1) homomorphic operations. For a single
product this is not a big problem, but when computing d products iteratively, as we will do in Section 4.2,
we would need to do O(pd1) homomorphic operations. It is possible to lower the number of homomorphic
operations to O(dlogp1ed), which is below p1 as long as d ≤ logp1/(log(logp1)), by using a splitting technique
such as the one used in Section 2.4, but the resulting protocol is complex and does not lower the amount of
operations to a polynomial in d.

It is therefore possible to compute with arbitrary values, but in this case one of the contributions of our
construction (providing means to have polynomial gaps) is lost. Of course with our current instantiations this
is not much of a difference as they result nevertheless in gaps which are exponential in d for other reasons.
However, we prefer to split the two cases apart; this allows us to highlight that, in the binary case, with a
better instantiation we could obtain a scheme with polynomial gaps in d which is interesting from a security
point of view.

4.2 Iterating Products, and Evaluating Polynomials

One can use a single (fn, fp)-fully-chainable encryption scheme PKC chained to itself iteratively to evaluate
degree d polynomials. Indeed, if we set PKC1,1 = PKC and PKC1,h = chain(PKC1,h−1,PKC) for h ∈ [2, d],
it is possible to compute an encryption of a1 . . . ad mod p1, starting from γ1 ∈ Enc(pk1, a1) and βh,i,j ∈
Enc(pkh, 2

jahei), for h ∈ [2, d], appropriate values of i, j, being ((pk1, . . . , pkd), (sk1, . . . , skd)) an instance of
PKC1,d. Executing iteratively the product protocol we compute for h ∈ [2, d],

γh = product(γh−1,βh,i,j), with γh ∈ Enc1,h((pk1, . . . , pkh), a1 . . . ah mod p1)`h

This can be done for different products, and the results, which are sums of ciphertexts of the fully-chainable
scheme PKC1,d, can be added up to obtain an encrypted evaluation of a polynomial P =

∑M
i=1 piXi1 . . . Xid ∈

Zp1 [X1, . . . , Xv] on v variables, with degree d and M monomials. We omit the details, because an almost
identical (detailed) protocol can be found in [1]. Intuitively, if Alice holds this polynomial, and Bob wants

10

Alice to securely evaluate it on an input point (a1, . . . , av) ∈ {0, 1}v ⊂ Zvp1 , Bob will encrypt the different

plaintexts needed for the product protocols (i.e. the plaintexts 2jahei for appropriate values of h, i, j) under
the different public keys pk1, . . . , pkd associated to an instance of PKC1,d.

Since the encryptions that Bob sends to Alice are fresh (i.e. `1 = 1), the reply that Alice sends
back is in Enc((pk1, . . . , pkd), P (a1, . . . , av) mod p1)+Mp1`d , where `i is recursively defined as `1 = 1 and
`h+1 = max{`h, nh+1dlogph+1e}. If the instance of PKC1,d associated to (pk1, . . . , pkd) is an m-limited ho-
momorphism with m > M(p1 − 1)`d, then Alice’s reply decrypts to P (a1, . . . , av) mod p1.

4.3 On the Size and Amount of Ciphertexts

In the protocol for the secure evaluation of a degree d polynomial, sketched in the previous section, the
final ciphertext that Alice sends to Bob is a vector in the ciphertext space Znd+1

pd+1 of PKC1,d. The size of this
ciphertext is therefore nd+1logpd+1 bits.

Note that these values nd+1, pd+1 are determined by the full-chainability of the employed encryption
schemes PKC1, . . . ,PKCd, in particular by the behavior of the functions fn and fp. If the scheme of Theorem 1
is chained to itself iteratively, all the schemes will have the same function:

– fn(κ,m, n, p) = n+ κ

– fp(κ,m, n, p) ∈ [6κ2mp · log(κmp), 12κ2mp · log(κmp)]

Then we have ni+1 = fn(κ,m, ni, pi) and pi+1 = fp(κ,m, ni, pi), for i = 1, . . . , d. Using the bounds on the
growth of the number of coordinates and on the number of bits provided in Section 3.2 we obtain:

– ni+1 = ni + κ and ni+1 > ni,

– pi+1 ≤ pilog(pi) · 12κ2mlog(κm) and pi+1 > pi.

The first relation trivially shows that nd+1 = 1 + dκ. Obtaining a tight bound for logpd+1 is a little trickier.
However, it is possible to provide easily a gross approximation, using the monotony of ni and pi as i grows,
we can say that

pd+1 ≤ p1(log(pd) · 12κ2mlog(κm))d and thus,

logpd+1 < logp1 + d · F (d, κ,m)

where F (d, κ,m) is a function which depends just logarithmically on each of its inputs. Thus, as κ is a free
parameter, we only need to show that m is bounded above by a polynomial in d to prove that logpd+1 is
roughly linear in d. Indeed, when chaining d schemes in order to evaluate a polynomial of degree d with M
monomials, as shown in the previous section, we must have

– `1 = 1, `h+1 = max{`h, nh+1dlogph+1e},
– and m > M(p1 − 1)`d.

Based on the monotony of ni and pi we will have `d = nddlogpde, and thus m is bounded above by a
polynomial in d. As noted above this implies that F just depends logarithmically in d and thus that logpd+1

is in Õ(d) and ciphertext size is in Õ(d2). Note that this size is relative to a ciphertext of PKC1,d which
corresponds to Alice’s reply in an homomorphic encryption protocol. When using the evaluation protocol
proposed in [1], in order to compute the different products, Alice needs to have many ciphertexts that will be
sent by Bob. Indeed, for each variable, Bob sends a set of ciphertexts corresponding to each instance PKC1,i

in the chain, and each set contains nidlogpie ciphertexts. In other words, Bob sends Õ(d3) ciphertexts and
thus the total communication cost for the evaluation of the degree d polynomial is in Õ(d5).

11

5 Putting All the Pieces Together

The results of Sections 3 and 4 can be combined with the specific instantiations that we provide in Appendix
A, so that we obtain the following result.

Theorem 2. There exists a public key encryption scheme allowing to evaluate homomorphically polynomials
with M monomials and degree d such that:

– The semantic security of the scheme relies on the quantum hardness to approximate the decision version
of GapSVP or the quantum hardness of SIVP to within Õ(κd+5/2 ·Md) in the worst case.

– The secure evaluation of a polynomial has a communication cost when the variables are binary in Õ(d5).
– By increasing the approximation factor by a sub-exponential function in κ it is possible to modify the

scheme to provide formula privacy.

Proof. (Sketch.) Let PKC be the fully-chainable encryption scheme from Theorem 1. We can chain d ap-
propriate instantiations of this same scheme defining PKC1,1 = PKC and PKC1,h = chain(PKC1,h−1,PKC)
for h ∈ [2, d]. Each of the chained instantiations of PKC is associated to a key pair (skh, pkh), a plaintext
space Znhph and a ciphertext space Znh+1

ph+1 . According to Theorem 1, the semantic security of this particular
h-th instantiation is based on the quantum hardness to approximate the decision version of GapSVP or the
quantum hardness of SIVP to within Õ(κ5/2Mph) in the worst case.

The public key encryption scheme whose existence we claim in this theorem is simply the cartesian
product of the above d instantiations of PKC. That is, the secret key is (sk1, . . . , skd) and the public key
is (pk1, . . . , pkd). A “fresh” ciphertext for a plaintext a ∈ Zp1 is the concatenation of all the ciphertexts
Enc(pkh, 2

jaei), for h ∈ [1, d] and (i, j) ∈ [1, nh]× [0, dlogp2e− 1], where ei is the i-th vector of the canonical
basis of Znhph . A formal definition of the decryption function is cumbersome as usual for secure evaluation
schemes. Informally, the outcome of a computation will always be a ciphertext of one of the chained schemes
PKC1,h and we will use the associated decryption function.

Using a standard hybrid argument, the semantic security of this public key encryption scheme relies
therefore on the security of the weakest scheme in the chain. As in the chained schemes security is always
based in the same lattice problems but with growing gaps, the weakest will be the last one. According to
the discussion provided in Section 4.3, if we want to use the scheme for the secure evaluation of a degree d
polynomial, pd may be in Õ((κ ·M)d). Combining this argument with the result stated in Theorem 1, we
obtain that the semantic security of the new public key encryption scheme relies on the quantum hardness
to approximate the decision version of GapSVP or the quantum hardness of SIVP to within Õ(κ5/2 · (κ ·M)d)
in the worst case.

The way how this public key encryption scheme can be used to securely evaluate a polynomial with up
to M monomials and degree d is described in Sections 4.1 and 4.2. As we have argued in Section 4.3, in the
case where the evaluation point is a binary vector, the communication cost of the evaluation protocol is in
Õ(d5).

Finally, this basic protocol can be modified to enjoy formula privacy; that is, the client Bob does not
obtain information about the polynomial to be evaluated by the server Alice. Such modification is now
somewhat standard (see Section 7 of [10]) and works if the encryption schemes used in the chain are based
on LWE (which is the case here). The idea is that adding to a given ciphertext an encryption of zero with
an error super-polynomially larger than the error used in usual ciphertexts results in a ciphertext that still
decrypts to the same result but statistically hides which ciphertext was initially given. Such a property is
typically used to blind a ciphertext after a computation so that the final ciphertext only provides information
about the result of the computation and not about how this result is obtained. ut

Security relies on the hardness of solving two lattice problems with an approximation factor in Õ(κd+5/2 ·
Md). These problems are known to be hard as long as this factor is not exponential in the security parameter
κ. We therefore need to suppose that Md is bounded above by a sub-exponential function in κ to resist to
these attacks. In particular, d will be bounded above by a polynomial in κ.

12

6 Acknowledgments

We would like to thank the anonymous reviewers who gave us many interesting recommendations in the
previous versions of this paper. Given the recent results in the field some of the recommended modifications
have not been done but will come in a future version of the paper.

References

1. Carlos Aguilar, Philippe Gaborit, and Javier Herranz. Additively homomorphic encryption with d-operand
multiplications. In CRYPTO’10, volume 6223 of Lecture Notes in Computer Science, pages 138–154. Springer,
2010.

2. Carlos Aguilar Melchor, Guilhem Castagnos, and Philippe Gaborit. Lattice-based homomorphic encryption of
vector spaces. In The 2008 IEEE International Symposium on Information Theory (ISIT’08), Toronto, Ontario,
Canada, pages 1858–1862. IEEE Computer Society Press, 2008.

3. Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives and circular-secure
encryption based on hard learning problems. In CRYPTO’09, pages 595–618, Berlin, Heidelberg, 2009. Springer.

4. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In Theory of Cryp-
tography Conference, TCC’2005, volume 3378 of Lecture Notes in Computer Science, pages 325–341. Springer,
2005.

5. Zvika Brakerski, Craig Gentry, and Shai Halevi. Fully homomorphic encryption without bootstrapping. In ITCS
2012 (to appear). Available at http://eprint.iacr.org/2011/277, 2012.

6. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard) lwe. In
FOCS 2011 (to appear). Available at http://eprint.iacr.org/2011/344, 2011.

7. Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-lwe and security for key
dependent messages. In Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, volume
6841, page 501, 2011.

8. Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully homomorphic encryption
over the integers with shorter public keys. In Proceedings of the 31st annual conference on Advances in cryptology,
CRYPTO’11, pages 487–504, Berlin, Heidelberg, 2011. Springer-Verlag.

9. Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans-
actions on Information Theory, 31(4):469–472, 1985.

10. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of STOC’09, pages 169–178.
ACM Press, 2009.

11. Craig Gentry. Toward basing fully homomorphic encryption on worst-case hardness. In CRYPTO’10, volume
6223 of Lecture Notes in Computer Science, pages 116–137. Springer, 2010.

12. Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using depth-3 arithmetic
circuits. In FOCS 2011 (to appear). Available at http://eprint.iacr.org/2011/279, 2011.

13. Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption scheme. In EURO-
CRYPT’2011, volume 6632 of Lecture Notes in Computer Science, pages 129–148. Springer, 2011.

14. Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. A simple BGN-type cryptosystem from LWE. In EU-
ROCRYPT’2010, volume 6110 of Lecture Notes in Computer Science, pages 506–522. Springer, 2010.

15. Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from lattice reduction problems.
In CRYPTO’ 97, volume 1294 of Lecture Notes in Computer Science, pages 112–131. Springer, 1997.

16. Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In Theory of Cryptography
Conference, TCC’2007, volume 4392 of Lecture Notes in Computer Science, pages 575–594. Springer, 2007.

17. Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Multi-bit cryptosystems based on lattice problems. In Pub-
lic Key Cryptography, PKC’2007, volume 4450 of Lecture Notes in Computer Science, pages 315–329. Springer,
2007.

18. Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database, computationally-private
information retrieval (extended abstract). In FOCS: IEEE Symposium on Foundations of Computer Science
(FOCS), pages 364–373, 1997.

19. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over rings. In
EUROCRYPT’2010, volume 6110 of Lecture Notes in Computer Science, pages 1–23. Springer, 2010.

20. Rafail Ostrovsky and William E. Skeith III. Private searching on streaming data. J. Cryptology, 20(4):397–430,
2007.

13

21. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In Proceedings of STOC’09,
pages 333–342. ACM Press, 2009.

22. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable oblivious
transfer. In CRYPTO’08, volume 5157 of Lecture Notes in Computer Science, pages 554–571. Springer, 2008.

23. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM,
56(6):article 34, 2009.

24. R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public key cryptosystems.
Communications of the ACM, 21(2):120–126, 1978.

25. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270–299,
1984.

26. Tomas Sander, Adam Young, and Moti Yung. Non-interactive CryptoComputing for NC1. In Proceedings of the
40th Symposium on Foundations of Computer Science (FOCS), pages 554–567, New York, NY, USA, October
1999. IEEE Computer Society Press.

27. Nigel Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively small key and ciphertext
sizes. In Public Key Cryptography, PKC’2010, volume 6056 of Lecture Notes in Computer Science, pages 420–443.
Springer, 2010.

28. Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In Masayuki Abe, editor, Advances in
Cryptology - ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages 377–394. Springer,
2010.

29. Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic encryption over
the integers. In EUROCRYPT’2010, volume 6110 of Lecture Notes in Computer Science, pages 24–43. Springer,
2010.

30. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th Annual Symposium
on Foundations of Computer Science, pages 162–167, Toronto, Ontario, Canada, 27–29 October 1986. IEEE.

A Specific Realizations from LWE

In this appendix, after introducing the LWE problem, we describe a set of encryption schemes based on
it, which can be used to instantiate our construction. The first one we introduce is a secret key encryption
scheme, and then we succinctly present two public key alternatives. Even if the first encryption scheme cannot
be considered fully-chainable, as it is a secret key scheme, the fact is that in the homomorphic encryption
setting, and in most of the associated applications, there is no need to have a public key scheme as Bob is
the only user encrypting and decrypting data. Thus it has an interest by itself, as it could be used as is.
However, even if most of the claims and proofs in this paper can be straightforwardly adapted to the secret
key setting, in order to be consistent with the protocols, we provide a modification which is a public key
scheme.

A.1 Problem Definition

In [23], Oded Regev introduced a new problem, close to the learning from parity with noise problem on
random linear codes, which has had a great impact on the lattice based cryptography community due to
its simplicity and versatility: the Learning With Errors problem. There is a small set of possible definitions
for this problem depending on whether we are interested on the decision or search version and whether we
consider the average-case or the worst-case problem. The security of our encryption scheme, as usual in
LWE-based schemes, is reduced from the average-case decisional version of the problem :

Definition 2 (Average-Case Decisional LWEq,χ). Let q, κ ∈ Z+ be positive integers, and let χ : Zq →
R+ be a probability distribution. Given a vector s ∈ Zκq , let us consider the following distribution

As,χ = {(a, b) | a $← Zκq , b = 〈a, s〉+ e, with e
χ← Zq}

Given access to an oracle which samples Zκq × Zq uniformly or following As,χ, decide which of the two
distributions the oracle follows for a non-negligible fraction of the s.

14

Similarly we can define the worst-case decisional version in which for any s the attacker must distinguish
both distributions with overwhelming probability, and the search versions in which the attacker must output
s given samples of As,χ (for a non-negligible fraction of the s in the average case, and for any s with
overwhelming probability in the worst case).

In [23], Regev reduces the average-case decisional version given above from the worst-case search version.
This reduction is done in two steps. First, the average-case decisional version is reduced from the worst-case
decisional version (Lemma 4.1 in [23]). Then, the worst-case decisional version is reduced from the worst-case
search version (Lemma 4.2 in [23]). This part of the reduction requires q to be prime and polynomial in the
security parameter (whereas the first part of the reduction has no specific requirements).

In order to connect the hardness of the worst-case search version of the problem to other standard lattice
problems, Regev used a particular distribution χ: a folded and discretized Gaussian of parameter α ∈ R+.
Consider the following folded Gaussian

∀r ∈ [0, 1), Ψα(r) =

+∞∑
k=−∞

1

α
· exp

(
−π(

r − k
α

)2

)
We can now define Ψ̄α : Zq → R+ as the discrete probability distribution obtained by: sampling from Ψα,
multiplying the result by q, and finally rounding to the closest integer modulo q. For χ = Ψ̄α, Regev proved
that the worst-case hardness of search LWE, for adequate parameters, can be related to the worst-case
quantum hardness of well established problems, as the following theorem, proved in [23], states.

Theorem 3. Let κ, q be integers and α ∈ (0, 1) be such that αq > 2
√
κ. If there exists an efficient algorithm

that solves worst-case search LWEq,Ψ̄α then there exists an efficient quantum algorithm that approximates
the decision version of the shortest vector problem (GapSVP) and the shortest independent vectors problem
(SIVP) to within Õ(κ/α) in the worst case.

A.2 A Secret Key Instantiation Based on LWE

We start presenting a secret key scheme which is a simple variation of the scheme proposed by Regev in [23]
using different folklore improvements [17, 22] to obtain an asymptotic expansion factor of 1. This scheme
illustrates how simply we can obtain a scheme based on LWE compatible with our construction, and can be
easily transformed into a scheme based on other problems close to LWE, such as Ring-LWE [19].

Secret Key Scheme SKC−LWEκ,m,n,p

KeyGen(κ,m, n, p):
We choose a prime number q > κmp and define χ = Ψ̄α, where α = 2/(

√
κmp). The secret key is a set of n

vectors s1, . . . , sn ∈ Zκq chosen uniformly at random.

Enc((s1, . . . , sn),x) for x = (x(1), . . . , x(n)) ∈ Znp :

Choose a random vector a ∈ Zκq uniformly. Sample n times χ to obtain n values e(1), . . . , e(n) and output

(a, b) with b = (b(1), . . . , b(n)) and b(i) =< a, si > +pe(i) + x(i) mod q.

Dec((s1, . . . , sn), (a, b)):
Output x = (x(1), . . . , x(n)) with x(i) = (b(i)− < a, si > mod q) mod p.

Note that the n secret keys s1, · · · , sn allow to encrypt multiple elements of Zp in a single ciphertext
(a, (b(1), . . . , b(n))) and thus to amortize a as n grows (which is a standard technique). However, in order to
reduce an attack on such ciphertexts (using an hybrid argument) from the decisional LWE setting in which
we have a pair (a, b) (b being a scalar encoding a single element of Zp), we must take the n secret keys
independently and thus the secret key grows linearly in n.

15

A.3 Indistinguishability

Let us prove now that this scheme is IND-CPA secure. We recall first the standard notion of indistin-
guishability under chosen-plaintext attacks (IND-CPA security), for a public key encryption scheme PKC =
(KeyGen,Enc,Dec). We use the following game that an attacker A plays against a challenger:

(pk, sk)← KeyGen(1κ)
(St, a0, a1)← A(find, pk)
b← {0, 1} at random
c∗ ← Enc(pk, ab)
b′ ← A(guess, c∗, St).

The advantage of such an adversary A is defined as

Adv(A) =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ .
A public key encryption scheme enjoys IND-CPA security if Adv(A) is a negligible function of the security

parameter κ, for any attacker A running in polynomial time (in κ). For a secret key encryption scheme the
game is trivially translated with a major exception. In the last phase of the game, the attacker must have
access to an encryption oracle for the secret key involved in the game.

In order to reduce the indistinguishability of SKC−LWE from standard problems we will first reduce it
from average-case decisional LWE in Lemma 1. We will then reduce this problem from worst-case search
LWE in Lemma 2 for parameters for which the reduction given by Regev in [23] is not valid, and finally we
will note that our parameters allow to use Theorem 3 to reduce this problem from GapSVP and SIVP. In the
following lemmas, κ will be the security parameter, n a parameter of the encryption scheme polynomial in
κ, and m, p two other parameters of the scheme which are (possibly exponential) functions of κ.

Lemma 1. SKC−LWEκ,m,n,p enjoys indistinguishability against chosen-plaintexts attacks if the average-case
decisional LWEq,Ψ̄α problem is hard for q ∈ [κmp, 2κmp) prime and α = 2/(

√
κmp).

Proof (Sketch.). Suppose that an attacker given access to an encryption oracle, can distinguish with a non-
negligible advantage the encryptions of two plaintexts x1,x2 ∈ Znp . Using a standard hybrid argument, we
can say that the attacker can distinguish with a non-negligible advantage between encryptions of xi and
elements uniformly chosen in Zκq × Znq for i = 1 or i = 2. Suppose, w.l.o.g., that we have i = 1. Again, using
a standard hybrid argument and the fact that n is polynomial in κ, we can say that there is a coordinate
j ∈ [1, n] such that the attacker can distinguish with a non-negligible advantage between pairs (a, b(j)), (a, b)
being a random encryption of x1, and uniform elements in Zκq × Zq. Such a distinguisher can be used for
decisional LWEq,χ. Indeed, consider the transformation that takes an element from Zκq ×Zq, multiplies it by

p (which is coprime with q) and adds to the second coordinate x
(j)
1 . This transformation takes the uniform

distribution to itself on the one hand and As,χ to the pairs (a, b(j)) for (a, b) a random encryption of x1 on
the other hand.

The original distinguisher needs access to an encryption oracle, but in decisional LWEq,χ the available
oracle might just provide uniform elements of Zκq ×Zq. However, testing the performance of the distinguisher
with trial cases, as done by Regev in [23] (Lemma 5.4), we can ensure that this reduces the advantage of the
final distinguisher by at most a constant factor. ut

The construction provided in this paper requires instances of SKC−LWE with q sub-exponential in κ. This
implies that we cannot use the Lemma 4.2 given by Regev in [23] to reduce worst-case decisional LWEq,χ
to worst-case search LWEq,χ. The next step in our reduction process therefore uses the first part of the
reduction given by Regev (Lemma 4.1 in [23]) and then a Lemma by Applebaum et al. given in [3].

Lemma 2. Assume that there exists a polynomial-time algorithm W solving the average-case decisional
version of LWEq,Ψ̄α , q ∈ [κmp, 2κmp) being prime and α = 2/(

√
κmp). Then, there is a polynomial-time

algorithm solving the worst-case search version of LWEq,Ψ̄α .

16

Proof. Suppose that we have access to the algorithmW . Using the transformation provided in [23] (Lemma 4.1),
we can use W to solve decisional LWEq,χ in the worst-case as the reduction given works for any q and χ.
We note the algorithm obtained W ′. Suppose that we have a challenge for the worst-case search version of
LWEq,χ. We can sample As,χ for a given s and we must find s with overwhelming probability.

As noted before we cannot use the approach of Regev which consists on trying to guess one by one the
coordinates of s and using the distinguisher W ′ to know if we have done the right choice. Indeed, there may
be a sub-exponential number of possibilities (because q may be sub-exponential in κ) for each coordinate
and we can only test a negligible fraction of them in polynomial time.

We therefore use the deterministic polynomial-time transormation proposed in [3] (Lemma 2), which maps
As,χ to Ax̄,χ where x̄← χn and leaves the uniform distribution over Znq ×Zq unchanged. This transformation
also provides a matrix and a vector allowing to compute s from x̄ and thus to solve the search challenge we
only need to get x̄.

As χ = Ψ̄α the coordinates of x̄ will be bounded by qα×
√
κ < 2κ with overwhelming probability. We can

therefore use the approach given in [23] (Lemma 4.2) to test each coordinate at a time using W ′ to obtain
x̄ and thus s. ut

The choice of parameters provided on the key generation algorithm ensures that qα > 2
√
κ and thus that

Theorem 3 applies to our setting. Using this fact together with Lemmas 1 and 2 we obtain the following
proposition.

Proposition 4 (Indistinguishability). SKC−LWEκ,m,n,p enjoys indistinguishability against chosen-plaintexts
attacks, assuming the quantum hardness to approximate the decision version of GapSVP or the quantum hard-
ness of SIVP to within Õ(κ

√
κmp) in the worst case.

There is no polynomial-time algorithm known to solve these problems even for sub-exponential approx-
imation factors. As long as this remains true, our scheme is secure if n is polynomial and m, p are at most
sub-exponential in κ.

A.4 Correctness

We show now that decryption is correct with overwhelming probability even if m ciphertexts are added up.
This is dealt with in the following proposition.

Proposition 5 (m-limited homomorphism). Let (s1, . . . , sn) ← KeyGen(κ,m, n, p) be an instance of
SKC−LWE, and Zn′

p′ the closure of its ciphertext space. For any ` ≤ m, x1, . . . ,x` ∈ Znp and any β1, . . . ,β`
with βi ∈ Enc((s1, . . . , sn),xi), the vector β =

∑
i βi mod p′ is decrypted via Dec to the integer vector

x =
∑
i xi mod p.

Proof (Sketch.). We have β = (a, b) with a =
∑
i ai and b(j) =< a, sj > +p

∑
i e

(j)
i +

∑
i x

(j)
i mod q, using

the notations proposed in the algorithms of SKC−LWE. The decryption function returns

x′ with x′(j) = (b(j)− < a, sj > mod q) mod p = (p
∑
i

e
(j)
i +

∑
i

x
(j)
i mod q) mod p

Thus, in order to ensure correctness it is enough to have p
∑
i e

(j)
i +

∑
i x

(j)
i < q for each j ∈ [1, n] as in this

case we have p
∑
i e

(j)
i +

∑
i x

(j)
i mod q = p

∑
i e

(j)
i +

∑
i x

(j)
i (over the integers) and thus

x′(j) = (p
∑
i

e
(j)
i +

∑
i

x
(j)
i) mod p =

∑
i

x
(j)
i = x(j)

We therefore just need to prove that with overwhelming probability we have p
∑
i e

(j)
i +

∑
i x

(j)
i < q, for all

j ∈ [1, n].

17

A first trivial bound is
∑
i x

(j)
i < `p ≤ mp. In order to bound the other term, it is possible to use the same

argumentation as the one Regev uses in [23] (Claim 5.2), which put short says that p
∑
i e

(j)
i is p times a sum

of up to m roundings and thus the difference between this term and multiplying by q a sampling from Ψp
√
mα

is at most pm. The expected value of such a multiplied sample is p
√
mqα ' 2

√
κmp < q/(1/2

√
κ). Thus

the probability that p
∑
i e

(j)
i +

∑
i x

(j)
i > q is exponentially small in κ and thus negligible in the security

parameter. As n is polynomial in κ this remains true even when we consider all the coordinates. ut

We can therefore conclude that, apart from not being a public key encryption scheme, the properties of
a fully-chainable scheme are verified by SKC−LWE. Indeed, we can choose the parameters m,n, p, and the
ciphertext space is included in Zn

′

p′ with n′ = fn(κ,m, n, p) = κ+n and p′ = fp(κ,m, n, p) = κmnp+ε where
ε < κmnp by the Bertrand-Chebychev theorem on prime numbers. Moreover, the null ciphertext is clearly a
particular encryption of the null plaintext. Fortunately, it is pretty trivial to transform it into a public key
scheme.

A.5 Public-Key Realization

Two alternatives are possible in order to obtain a public key encryption scheme able to instantiate efficiently
our construction. Both will be presented here just succinctly because of their simplicity.

The first one is to transform the symmetric scheme presented in the previous subsection into a public
scheme using the same technique than Regev in [23]. That is, publish a large enough set of random encryptions
of the null vector as the public key, and keep the symmetric key as the secret key. In order to encrypt, it
is enough to do a random subset sum of the public key ciphertexts and add the message to the result.
The decryption algorithm remains the same than for the symmetric scheme. Because of the homomorphic
properties of the scheme, if we set the homomorphic parameter to m = Cm′, C being the number of
ciphertexts in the public key, we obtain an instance of a public key encryption scheme which is an m′-limited
homomorphism. The value proposed in [23] is C = (1 + ε)(κ + 1)logq for ε > 0. In order to simplify the
formulas in our work we set C = 2κlogq. The security proof, transforming an IND-CPA distinguisher into a
decision LWE distinguisher being the same as in [23] we don’t present here the details.

The second alternative is to modify the parameters of the encryption scheme proposed by Gentry et al.
in [14]. Indeed, their proposal satisfies all the properties needed for a fully-chainable encryption scheme (if we
transform `× ` matrices into vectors of `2 coordinates), but results in an expansion factor which is bounded
below by 2. Thus, even if it can be used with our construction, the expansion factor after chaining d schemes
is bounded below by 2d. This bound is a consequence of an extra functionality of their system which allows
to do a twisted multiplication. This property results in a protocol for the evaluation of degree 2 polynomials
over encrypted data, as in [4]. If we drop this functionality it is possible to change their parameters in order
to have an expansion factor arbitrarily close to 1 and therefore, when chaining d schemes, reach expansion
factors which are just polynomial in d.

B Toy Example

Let PKC1, PKC2 be chainable schemes such that Enc1 : Z5 → Z2
79 and Enc2 : Z2

79 → Zn3
p3 , for some integer

values p3, n3. That is, we have p1 = 5, p2 = 79 and n2 = 2. A protocol for the secure evaluation of the
product a1a2, being a1 = 3 and a2 = 4, would work as follows.

Bob computes an encryption α = (6, 38) ∈ Enc1(3). To encrypt a2 = 4, Bob computes encryptions
βi,j ∈ Enc2((4 · 2j)ei mod 79), for i = 1, 2 and j ∈ {0, 1, . . . , 6}. In other words:

β1,0 ∈ Enc2((4, 0)), β1,1 ∈ Enc2((8, 0)), β1,2 ∈ Enc2((16, 0)), β1,3 ∈ Enc2((32, 0)),
β1,4 ∈ Enc2((64, 0)), β1,5 ∈ Enc2((49, 0)), β1,6 ∈ Enc2((19, 0)),
β2,0 ∈ Enc2((0, 4)), β2,1 ∈ Enc2((0, 8)), β2,2 ∈ Enc2((0, 16)), β2,3 ∈ Enc2((0, 32)),
β2,4 ∈ Enc2((0, 64)), β2,5 ∈ Enc2((0, 49)), β2,6 ∈ Enc2((0, 19)).

18

The product protocol takes the first component α(1) = 6 of α, considers its bit representation 0110000
and computes

γ1 = β1,1 + β1,2 mod p3 ∈ Enc2((24, 0)).

Due to the homomorphic properties of PKC2, we indeed have γ1 ∈ Enc2((24, 0)). Analogously, since the
second component α(2) = 38 of α has bit representation 0110010, we would have

γ2 = β2,1 + β2,2 + β2,5 mod p3 ∈ Enc2((0, 73)).

The final ciphertext output by the product protocol is γ = γ1 + γ2, which satisfies γ ∈ Enc2((24, 73)),
due again to the homomorphic properties of PKC2.

If now we apply the decryption procedure Dec of PKC = chain(PKC1,PKC2) to the ciphertext γ, we first
run Dec2 on γ, which results in (24, 73), and then we run Dec1((24, 73)). Note that, due to the homomorphic
properties of PKC1, since we had (6, 38) ∈ Enc1(3), we know that

(6, 38) + (6, 38) + (6, 38) + (6, 38) mod 79 ∈ Enc1(3 + 3 + 3 + 3 mod 5).

Summing up, we have (24, 73) ∈ Enc1(2). Therefore, the final output of the decryption procedure would be
Dec1((24, 73)) = 2 = 3 · 4 mod 5 = a1a2 mod p1, as desired.

19

