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Abstract. RFID security is currently one of the major challenges cryptography has to face, often
solved by protocols assuming that an on-tag hash function is available. In this article we present the
PHOTON lightweight hash-function family, available in many different flavors and suitable for extremely
constrained devices such as passive RFID tags. Our proposal uses a sponge-like construction as domain
extension algorithm and an AES-like primitive as internal unkeyed permutation. This allows us to obtain
the most compact hash function known so far (about 1120 GE for 64-bit collision resistance security),
reaching areas very close to the theoretical optimum (derived from the minimal internal state memory
size). Moreover, the speed achieved by PHOTON also compares quite favorably to its competitors. This
is mostly due to the fact that unlike for previously proposed schemes, our proposal is very simple to
analyze and one can derive tight AES-like bounds on the number of active Sboxes. This kind of AES-like
primitive is usually not well suited for ultra constrained environments, but we describe in this paper
a new method for generating the column mixing layer in a serial way, lowering drastically the area re-
quired. Finally, we slightly extend the sponge framework in order to offer interesting trade-offs between
speed and preimage security for small messages, the classical use-case in hardware.

Key words: lightweight, hash function, sponge function, AES.

1 Introduction

RFID tags are likely to be deployed widely in many different situations of everyday life and they represent
a great business opportunity for various markets. However, this rising technology also provides new security
challenges that the cryptography community has to handle. RFID tags can be used to fight product coun-
terfeiting by authenticating them and on the other hand, we would also like to guarantee the privacy of the
users.

These two security aspects have already been studied considerably and, interestingly, in most of the
privacy-preserving RFID protocols proposed [5, 36, 46] a hash function is required. Informally, such a primitive
is a function that takes an arbitrary length input and outputs a fixed-size value. While no secret is involved
in the computation, one would like that finding collisions (two distinct messages hashing to the same value)
or (second)-preimages (a message input that hashes to a given challenge output value) is computationally
intractable for an attacker. More precisely, for an n-bit ideal hash function we expect to perform 2n/2 and 2n

computations in order to find a collision and a (second)-preimage respectively. While not as mature as block-
ciphers, the research on hash functions saw a rapid development lately, mainly due to the groundbreaking
attacks on standardized primitives [71, 69, 70]. At the present time, most of the attention of the symmetric
key cryptography academic community is focused on the SHA-3 competition organized by NIST [55], which
should provide a potential replacement of the MD-SHA family.

In parallel, nice advances have also been made in the domain of lightweight symmetric key primitives in
the last years. Protocol designers now have at disposal PRESENT [16], a 64-bit block-cipher with 80-bit key
whose security has already been analyzed intensively and that can be as compact as 1075 GE [64]. Stream-
ciphers are not outcast with implementations [33] with 80-bit security requiring about 1300 GE and 2600
GE reported for GRAIN [35] and TRIVIUM [23] respectively, two candidates selected in the final eSTREAM
hardware portfolio. However, the situation is not as bright in the case of hash functions.

? The authors were supported in part by the Singapore National Research Foundation under Research Grant NRF-
CRP2-2007-03.



As already pointed out in [30] and echoed in [17], the community lacks very compact hash functions.
Standardized primitives such as SHA-1 [53] or SHA-2 [54] are much too large to fit in very constrained
hardware (5527 GE [56] and 10868 GE [30] for 80 and 128-bit aimed security respectively) and even compact-
oriented proposals such as MAME [72] require 8100 GE for 128-bit security. While hardware is not an important
criteria in the selection process, one can not expect the SHA-3 finalists to be much more compact. At the
present time, all SHA-3 finalists require more than 12000 GE for 128-bit security (smaller versions of KECCAK
that have not been submitted to the competition provide for example 64-bit security with 5090 GE [40]). Note
that a basic RFID tag may have a total gate count of anywhere from 1000-10000 gates, with only 200-2000
gates budgeted for security [39].

This compactness problem in hash algorithms is partly due to the fact that it widely depends on the
memory registers required for the computation. Most hash functions proposed so far are software-oriented
and output at least 256 bits in order to be out of reach of any generic collision search in practice. While
such an output size makes sense where high level and long-term security are needed, RFID use-cases could
bear much smaller security parameters. This is for example the path taken in [17], where the authors instan-
tiate lightweight hash functions using literature-based constructions [37, 62] with the compact block-cipher
PRESENT [16]. With SQUASH [66], Shamir proposed a compact keyed hash function inspired by the Rabin en-
cryption scheme that processes short messages (at most 64-bit inputs) and that provides 64 bits of preimage
security, without being collision resistant. At CHES 2010, the lightweight hash-function family ARMADILLO [6]
was proposed, but has recently been shown to present serious security weaknesses [15]. At the same confer-
ence, Aumasson et al. published the hash function QUARK [4], using sponge functions [7] as domain extension
algorithm, and an internal permutation inspired from the stream-cipher GRAIN [35] and the block-cipher
KATAN [22]. Using sponge functions as operating mode is another step towards compactness. Indeed, classical
n-bit hash function constructions like the MD-SHA family utilize a Merkle-Damg̊ard [51, 28] domain exten-
sion algorithm with a compression function h built upon an n-bit block-cipher E in Davies-Meyer mode
(h(CV,M) = EM (CV ) ⊕ CV ), where CV stands for the chaining variable and M for the current message
block. Avoiding any feed-forward like for sponge constructions saves a lot of memory registers at the cost of
an invertible iterative process which induces a lower (second)-preimage security for the same internal state
size. All in all, designers have to deal with a trade-off between security and memory requirements.

In this article, we describe a new hardware-oriented hash-function family: PHOTON. We chose to use the
sponge functions framework in order to keep the internal memory size as low as possible. However, we extend
this framework so as to provide very interesting trade-offs in hardware between preimage security and small
messages hashing speed (small message scenario is a classical use-case and can be problematic for sponge
functions because of their squeezing process that can be very slow in practice). The internal permutations
of PHOTON can be seen as AES-like primitives especially derived for hardware: our columns mixing layer can
be computed in a serial way while maintaining optimal diffusion properties. Overall, as shown in Table 5 in
Section 5.3, not only PHOTON is easily the smallest hash function known so far, but it also achieves excellent
area/throughput trade-offs.

In terms of security, it is particularly interesting to use AES-like permutations as we can fully leverage
all the previous cryptanalysis performed on AES and on AES-based hash functions. Moreover, we can directly
derive very simple bounds on the number of active Sboxes for 4 rounds of the permutation. These bounds
being tight, we can confidently set an appropriate number of rounds that ensures a comfortable security
margin.

2 Design Choices

In tag-based applications, one typically does not require high security primitives, such as a 512-bit output
hash function. In contrary, 64 or 80-bit security is often appropriate considering the value of objects an RFID
tag is protecting and the use cases. Moreover, a designer should use exactly the level that he expects from
his primitive, so as to avoid any waste of area or computing power. This is the reason why we chose to
precisely instantiate several security levels for PHOTON, ranging from 64-bit preimage resistance security to
128-bit collision resistance security.

2.1 Extended Sponge functions

Sponge functions have been introduced by Bertoni et al. [7] as a new way of building hash functions from
a fixed permutation (later more applications were proposed [10]). The internal state S of t bits, composed



of the c-bit capacity and the r-bit bitrate (t = c + r), is first initialized with some fixed value. Then, after
having appropriately padded and split the message into r-bit chunks, one simply and iteratively processes
all r-bit message chunks by xoring them to the bitrate part of the internal state and then applying the t-bit
permutation P . Once all message chunks have been handled by this absorbing phase, one successively outputs
r bits of the final hash value by extracting r bits from the bitrate part of the internal state and then applying
the permutation P on it (squeezing process).

When the internal permutation P is modeled as a randomly chosen permutation, a sponge function has
been proven to be indifferentiable from a random oracle [8] up to 2c/2 calls to P . More precisely, for an
n-bit sponge hash function with capacity c and bitrate r, when the internal primitive is modeled as a random
permutation, one obtains min{2n/2, 2c/2} as collision resistance bound and min{2n, 2c/2} as (second)-preimage
bound. However, in the case of preimage, there exists a gap between this bound and the best known generic
attack3. Therefore, we expect the following complexities in the generic case:

• Collision: min{2n/2, 2c/2}
• Second-preimage: min{2n, 2c/2}
• Preimage: min{2min{n,t},max{2min{n,t}−r′ , 2c/2}}

Moreover, sponge functions can be used as a Message Authentication Code with MACK(M) = H(K||M),
where K ∈ {0, 1}k stands for the key and M for the message. It has been shown [11] that as long as the
amount of message queries is limited to 2a with a � c/2, then no attack better than exhaustive key search
exists if c ≥ k + a+ 1.

Sponge functions seem a natural choice in order to minimize the amount of memory registers in hardware
since they can offer speed/area/security trade-offs. Indeed, the only memory required for the internal state
is t = c+ r bits, while for a classical Davies-Meyer construction using an m-bit block cipher with a k-bit key
input one needs to store 2m+k bits, out of which m bits are required for the feed-forward. For an equivalent
ideal collision security level (thus setting m = c = n) and by minimizing the area (r and k are very small),
the sponge function requires only about half of the memory. Note that if one looks for a perfectly (second)-
preimage resistant hash function (up to the 2n ideal bound), then it is required that c ≥ 2 · n (which implies
that the n-bit hash function built is indifferentiable from an n-bit random oracle anyway). In that particular
case the sponge functions are not better than the Davies-Meyer construction in terms of area requirements
and therefore in this work we will not focus on this scenario. Instead, we will build hash functions that may
have ideal resistance to collision, but not for (second)-preimage. The typical shape will be a capacity c equal
to the hash output n and a very small bitrate r. This security/area trade-off, already utilized by the QUARK

designers, will allow us to aim at extremly low area requirements, while maintaining security expectations
very close to ideal.

In [17], the authors identify that in most RFID applications the user will not hash a large amount of data,
i.e. in general less than 256 bits. Consider for example the electronic product code (EPC) number, which is
a 96-bit string that is meant to identify globally any tag/product. In this particular case of small messages,
sponge functions with a small bitrate r seem to be slow since one needs to call (dn/re− 1) times the internal
permutation to complete the final squeezing process. This is for example the case with U-QUARK, that has
a throughput of 1.47 kbps for very long messages which drops to 0.63 kbps for 96-bit inputs. On the other
side, this “small messages” effect is reduced by the fact that having a small bitrate will reduce the amount of
padding actually hashed (the padding simply consists in adding a “1” and as many “0” required to fill the last
message block). Note that lightweight proposals based on classical Davies-Meyer construction that include
the message length as suffix padding are also slow for small messages: DM-PRESENT-80 has a throughput of
14.63 kbps for very long messages which drops to 5.85 kbps for 96-bit inputs, because in the latter case many
of the compression function calls are spent in order to handle padding blocks.

In order to allow more flexibility about this issue, we propose to slightly extend the sponge framework by
allowing the number r′ of bits extracted during each iteration of the squeezing process to be different from
the bitrate r4 (see Figure 1). Increasing r′ will directly reduce the time spent in the squeezing process, but

3 The 2min{n,t}−r term for preimage comes from the fact that in order to invert the hash function the attacker will
have to invert the squeezing process and the best known generic attack to solve this “multiblock constrained-input
constrained-output problem” [9] requires 2n−r computations when t ≥ n, and 2t−r otherwise. When the internal
state just before the squeezing process has been recovered, the attacker can run a meet-in-the-middle attack with
2c/2 computations. If the attacker does not invert the squeezing process, then he will have to pay the generic
preimage cost 2n when t ≥ n, and 2t otherwise.

4 A recent work from Andreeva et al. [2] also independently proposed such an extension of the sponge model.
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Fig. 1. The extended sponge framework, the domain extension algorithm used by the PHOTON hash-function family.

might also reduce the preimage security. On the contrary, decreasing r′ might improve the preimage bound
at the cost of a speed drop for small messages. As long as the preimage security remains in an acceptable
bound, this configuration can be interesting in many scenarios where only tiny inputs are to be hashed. More
precisely, in this new model, the best known generic attacks require the following amount of computations:

• Collision: min{2n/2, 2c/2}
• Second-preimage: min{2n, 2c/2}
• Preimage: min{2min{n,t},max{2min{n,t}−r′ , 2c/2}}

Finally, in most tag-based applications the collision resistance is not a requirement, while only the one-
wayness of the function must be ensured. However, as we previously explained, for lightweight scenarios
the sponge construction does not maintain the (second)-preimage security at the full level of its capacity c.
This is due to the output process of the sponge operating mode. Of course, performing a Davies-Meyer like
feed-forward just after the final truncation would do the job, but that would also double the memory area
required (which is precisely what we are trying to avoid). The nice trick of squeezing in the sponge functions
framework permits to avoid any feed-forward while somehow rendering the process non-invertible, up to some
extend (see multiblock constrained-input constrained-output problem in [9]). One solution to reach the full
capacity preimage security would be to add one more squeezing iteration, thus increasing the output size of
the hash by r′ bits.5 Then, the best known generic preimage attack for this (n + r′)-bit hash function will
run in

min{2min{n+r′,t},max{2min{n,t−r′}, 2c/2}} ≥ 2n when c+ r − r′ ≥ n

and one has to note that this hash output extension has no influence on the second-preimage resistance.
In this article, we will provide five sizes of internal permutations and one PHOTON flavor for each of them.

The four biggest versions fit the classical sponge model and will ensure 2n/2 collision and second preimage
resistance and 2n−r concerning preimage. However, in order to illustrate the powerful trade-offs allowed by
our extended model, the smaller PHOTON variant will have different input/output bitrates and an extended
hash size. Using the five permutations defined in the next Section, one can derive its own PHOTON flavor
depending on the collision / (second)-preimage / MAC security required, the maximal area and the maximal
hash output size allowed. The process to obtain the optimal parameters is given in Appendix A. Note that
the area required will only depend on the internal permutation chosen.

2.2 An AES-like internal permutation

We define an AES-like function to be a fixed key permutation P applied on an internal state of d2 elements of
s bits each, which can be represented as a (d× d) matrix. P is composed of Nr rounds, each containing four
layers as depicted in Figure 3: AddConstants (AC), SubCells (SC), ShiftRows (ShR), and MixColumnsSerial

5 This generalization has been independently utilized by the QUARK designers in a revised version of their original
article.



(MCS). Informally, AddConstants simply consists in adding fixed values to the cells of the internal state,
while SubCells applies an s-bit Sbox to each of them. ShiftRows rotates the position of the cells in each of
the rows and MixColumnsSerial linearly mixes all the columns independently.

We chose to use AES-like permutations because they offer much confidence in the design strategy as
one can leverage previous cryptanalysis works done on AES and on AES-like hash functions. Moreover, AES-
like permutations allow to derive very simple proofs on the number of active Sboxes over four rounds of
the primitive. More precisely, if the matrix underlying the MixColumnsSerial layer is Maximum Distance
Separable (MDS), then one can immediately show that at least (d + 1)2 Sboxes will be active for any 4-
round differential path [27]. This bound is tight, and we already know differential paths with only (d + 1)2

active Sboxes for four rounds (we will use them later for security analysis purposes). Moreover, note that
the permutations we will design are fixed-key, so we naturally get rid of related-key attacks or any issue that
might arise from the construction of a key-schedule [12, 13].
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Fig. 2. One round of a PHOTON permutation.

AddConstants. The constants have been chosen such that each of the Nr round computations are differ-
ent, and such that the classical symmetry between columns in AES-like designs are destroyed (without the
AddConstants layer, an input with all columns equal would maintain this property through any number of
rounds). Also, the round constants can be generated by a combination of very compact Linear Feedback Shift
Registers. For performance reasons, only the first column of the internal state is involved.

SubCells. Our choice of the Sboxes was mostly motivated by their hardware quality. 4-bit Sboxes can be
very compact in hardware while the acceptable upper limit on the cell size is s = 8. We avoided to use an
Sbox size s which is odd, because this leads to odd message block size or capacity when d is also odd. This
leaves us with s = 4, 6, 8, but we also believe that reusing some already trusted and well analyzed components
increases the confidence in the security of the scheme and saves a lot of time for cryptanalysts. Finally, we
will use two types of Sboxes: the 4-bit PRESENT Sbox SBOXPRE and the 8-bit AES Sbox SBOXAES the latter being
only utilized for high security levels (at least 128 bits of collision resistance). Note also that s = 4, 8 allows
simpler and faster software implementations.

ShiftRows. The choice of the ShiftRows constants is very simple for PHOTON since our internal state is
always a square of cells. Therefore, row i will classically be rotated by i positions to the left, i counts from 0.

MixColumnsSerial. The matrix underlying the AES MixColumns function is a circulant matrix with low
hamming weight coefficients. Even if those coefficients and the irreducible polynomial used to create the
Galois field for the AES MixColumns function have been chosen so as to improve the hardware footprint of
the cipher, it can not be implemented in an extremely compact way. One of the main reason is that the byte-
serial implementation of this function is not compact. Said in other words, if we write the AES MixColumns
matrix as the composition of d operations each updating a single byte at a time in a serial way, then the
coefficients of these d matrices will be very bad for small area implementations.



In order to solve this issue, we took the problem the other way round. Let A be the matrix that updates
the last cell of the column vector with a linear combination of all of the vector cells and then rotates the
vector by one position towards the top. Our new MixColumnsSerial layer will be composed of d applications
of this matrix to the input column vector. More formally, let X = (x0, . . . , xd−1)T be an input column vector
of MixColumnsSerial and Y = (y0, . . . , yd−1)T be the corresponding output. Then, we have Y = Ad × X,
where A is a (d× d) matrix of the form:

A =



0 1 0 0 · · · 0 0 0 0

0 0 1 0 · · · 0 0 0 0
...

...

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 0 1

Z0 Z1 Z2 Z3 · · · Zd−4 Zd−3 Zd−2 Zd−1


where coefficients (Z0, . . . , Zd−1) can be chosen freely. We denote by Serial(Z0, . . . , Zd−1) such a matrix. Of
course, we would like the final matrix Ad to be MDS, so as to maintain as much diffusion as for the AES

initial design strategy. For each square size d we picked during the design of PHOTON, we used MAGMA [18]
to test all the possible values of Z0, . . . , Zd−1 and picked the most compact candidate making Ad an MDS
matrix. We also chose the irreducible polynomial with compactness as main criterion.

For design strategy comparison purposes, we can take as an example the AES case. By using our new
mixing layer design method, we were able to find the matrix A = Serial(1, 2, 1, 4) which gives the following
MDS final matrix:

(A)4 =


0 1 0 0

0 0 1 0

0 0 0 1

1 2 1 4


4

=


1 2 1 4

4 9 6 17

17 38 24 66

66 149 100 11


The smallest AES hardware implementation requires 2400 GE [52], for which 263 GE are dedicated to

MixColumns. It is possible to implement MixColumns of AES in a byte-by-byte fashion, which requires only
81 GE to calculate one byte of the output column. However, since AES uses a circulant matrix, at least three
additional 8-bit registers (144 GE), are required to hold the output, plus additional control logic, which
increases the area requirements significantly. That is why [52] does not use a serial MixColumns, but rather
processes one column at a time.

Please note that in general the choice of non-zero constants for any d× d MDS matrix on s-bit cells has
only a minor impact of the area consumption, since a multiplication by x consists of w XOR gates, where w
denotes the Hamming weight of the irreducible polynomial used. At the same time, (d− 1) · s XOR gates are
required to sum up the d individual terms of s bits each. It is no surprise, that multiplying with the constants
above accounts for only 21.3 GE out of the 74 GE required. In fact, the efficiency of our approach lies in the
shifting property of A, since this allows to re-use the existing memory with neither temporary storage nor
additional control logic required.

All in all, using our approach would provide a tweaked AES cipher with the very same diffusion properties
as the original one (the matrix being MDS), but that can fit in only 2210 GE, a total saving of around
8%. Moreover, for the deciphering process, a slightly modified hardware can be used in order to unroll the
MixColumnsSerial, further reducing the area footprint of such a PHOTON-based cipher. One might think that
the software implementations will suffer from this new layer. While our goal is to make a hardware-oriented
primitive, we would like to remark that most AES software implementations are precomputed tables-based
(applying both the Sbox and the MixColumns coefficients at the same time) and the very same method can
be applied to PHOTON. This is confirmed by our first software implementations, whose benchmarks are given
in Section 5.4.



3 The PHOTON Hash-Function Family

We describe in this section the PHOTON family of hash functions. Each variant will be fully defined by its hash
output size 64 ≤ n ≤ 256, its input and its output bitrate r and r′ respectively. Therefore we denote each
function PHOTON-n/r/r′. The internal state size t = (c + r) depends on the hash output size and can take
only 5 distinct values: 100, 144, 196, 256 and 288 bits. As a consequence, we only have to define 5 internal
permutations Pt, one for each internal state size.

In order to cover a wide spectrum of applications, we propose five different flavors of PHOTON, one for each
internal state size: PHOTON-80/20/16, PHOTON-128/16/16, PHOTON-160/36/36, PHOTON-224/32/32 and PHOTON-
256/32/32 will use internal permutations P100, P144, P196, P256 and P288 respectively. Note that the first
proposal is special in the sense that it is designed for the specific cases where 64-bit preimage security and
64-bit key MAC are considered to be sufficient.6 In contrary, the last proposal provides a high security level
of 128-bit collision resistance, thus making it suitable for generic applications.

3.1 The domain extension algorithm

The message M to hash is first padded by appending a “1” bit and as many zeros (possibly none) such that
the total length is a multiple of the bitrate r and we can finally obtain l message blocks m0, . . . ,ml−1 of r
bits each. The t-bit internal state S is initialized by setting it to the value S0 = IV = {0}t−24||n/4||r||r′,
where || denotes the concatenation and each value is coded on 8 bits. For implementation purposes, note that
each byte is interpreted in big-endian form.

Then, as for the classical sponge strategy, at iteration i we absorb the message block mi on leftmost part
of the internal state Si

7 and then apply the permutation Pt, i.e. Si+1 = Pt(Si ⊕ (mi||{0}c)). Once all l
message blocks have been absorbed, we build the hash value by concatenating the successive r′-bit output
blocks zi until we reach the appropriate output size n:

hash = z0|| . . . ||zl′−1

where l′ denotes the number of squeezing iterations, that is l′ = dn/r′e−1. More precisely, zi is the r′ leftmost
bits of the internal state Sl+i and we have Sl+i+1 = Pt(Sl+i) for 0 ≤ i < l′. If the hash output size is not a
multiple of r′, one just truncates zl′−1 to n mod r′ bits.

3.2 The internal permutations

We define here the internal permutations Pt, where t ∈ {100, 144, 196, 256, 288}. The internal state of the
Nr-round permutation is viewed as a (d × d) matrix of s-bit cells and the corresponding values depending
of t are given in Table 1. Note that we will always use a cell size of 4 bits, except for the largest version for
which we use 8-bit cells, and that the number of rounds is always Nr = 12, whatever the value of t is. The
internal state cell located at row i and column j is denoted S[i, j] with 0 ≤ i, j < d.

Table 1. The parameters of the internal permutations Pt, together with the internal constants ICd, the irreductible
polynomials and the Zi coefficients for the MixColumnsSerial computation.

t d s Nr ICd(·) irr. polynomial Zi coefficients

P100 100 5 4 12 [0, 1, 3, 6, 4] x4 + x+ 1 (1, 2, 9, 9, 2)

P144 144 6 4 12 [0, 1, 3, 7, 6, 4] x4 + x+ 1 (1, 2, 8, 5, 8, 2)

P196 196 7 4 12 [0, 1, 2, 5, 3, 6, 4] x4 + x+ 1 (1, 4, 6, 1, 1, 6, 4)

P256 256 8 4 12 [0, 1, 3, 7, 15, 14, 12, 8] x4 + x+ 1 (2, 4, 2, 11, 2, 8, 5, 6)

P288 288 6 8 12 [0, 1, 3, 7, 6, 4] x8 + x4 + x3 + x+ 1 (2, 3, 1, 2, 1, 4)

6 By sponge keying and using the security bound from [11], PHOTON-80/20/16 provides a secure 64-bit key MAC as
long as the number of messages to be computed is lower than 215. For a secure 64-bit key MAC handling more
messages (up to 227), one can for example go for a very similar PHOTON-80/8/8 version that also uses P100. This
version with capacity c = 92 would require the same area as PHOTON-80/20/16 but would be slower.

7 Please refer to Appendix E for a visualization.



One round is composed of four layers (see Figure 2): AddConstant (AC), SubCell (SC), ShiftRows (ShR)
and MixColumnsSerial (MCS).

AddConstant. At round number v (starting the counting from 1), we first XOR a round constant RC(v)
to each cell S[i, 0] of the first column of the internal state. Then, we XOR distinct internal constants ICd(i)
to each cell S[i, 0] of the same first column. Overall, for round v we have S′[i, 0] = S[i, 0]⊕ RC(v)⊕ ICd(i)
for all 0 ≤ i < d. The round constants are RC(v) = [1, 3, 7, 14, 13, 11, 6, 12, 9, 2, 5, 10]. The internal constants
depend on the square size d and on the row position i. They are given in Table 1. We give in the Appendix D
all the constants for all square sizes, round numbers, row positions and how they have been generated.

SubCells. This layer simply applies an s-bit Sbox to each of the cells of the internal state, i.e. S′[i, j] =
SBOX(S[i, j]) for all 0 ≤ i, j < d. In the case of 4-bit cells, we use the PRESENT Sbox SBOXPRE [16] while for the
8-bit cells case we use the AES Sbox SBOXAES [27]. Both are given in the Appendix B.

ShiftRows. As for the AES, for each row i this layer rotates all cells to the left by i column positions.
Namely, S′[i, j] = S[i, (j + i) mod d] for all 0 ≤ i, j < d.

MixColumnsSerial. The final mixing layer is applied to each of the columns of the internal state
independently. For each column j input vector (S[0, j], . . . , S[d − 1, j])T , we apply d times the matrix
At = Serial(Z0, . . . , Zd−1). That is, for all 0 ≤ j < d:

(S′[0, j], . . . , S′[d− 1, j])T = Ad
t × (S[0, j], . . . , S[d− 1, j])T

where the coefficients Z0, . . . , Zd−1 are given in Table 1. In the case of 4-bit cells, the irreducible polynomial
we chose is x4 + x+ 1, while for the 8-bit case we chose the AES one, i.e. x8 + x4 + x3 + x+ 1. The matrices
At together with the overall MixColumnsSerial matrices Ad

t for each internal state size t are given in the
Appendix C. Note that all Ad

t matrices are Maximum Distance Separable.8

4 Security Analysis

The sponge-like domain extension algorithm allows us to fully trust the security of the PHOTON hash functions
as long as the internal permutation Pt does not present any structural flaw whatsoever (so-called “hermetic
sponge strategy”). In other words, the cryptanalysis work is made easy since in order to cover any instantiation
of PHOTON, one just has to study the security of the five internal permutations P100, P144, P196, P256 and
P288. However, we do not have to consider an adversary bounded to 2t computations, since for the flat sponge
claim9 no resistance is claimed for attacks requiring a workload of more than 2c/2 operations. Thus, in case of
PHOTON we only require the internal permutation to be indistinguishable from a randomly chosen permutation
on the same domain {0, 1}t up to 2c/2 operations.

The PHOTON hash functions security is extremely conservative: we chose a number of rounds with a
comfortable security margin such that this assumption on the internal permutations is fulfilled. However,
even if an attacker could find a structural flaw on Pt, this is not likely to become an issue for the whole
hash function. This argument is particularly true for our “small-r” sponge-like shape. Indeed, the amount
of freedom degrees available at the input of each internal permutation call during the absorbing phase is
extremely small. Thus, even if a flaw is found for the internal permutation, the amount of freedom degrees is
so thin that utilizing this flaw will very likely turn out to be intractable. The utilization of freedom degrees
has always been one of the most powerful cryptanalyst tool (for MD-SHA family of hash functions [71, 70, 69] or
even for sponge-like hash functions [60, 31]), thus reducing this ability as much as possible greatly increases
the confidence in PHOTON’s security.

The PHOTON hash functions are very simple to analyze so as to make the cryptanalyst work as easy as
possible. In the following subsections, we will study different attack scenarios for the internal permutations
Pt, in which we consider the attacker has all freedom degrees possible, that is all t bits of internal state.

8 One could wonder why we did not propose a version with d = 9 and s = 4. The reason is that there is no matrix
fulfilling the desired “serial MDS” properties for those parameters, whatever the irreducible polynomial chosen.

9 Flat sponge claim [8] with capacity c: the success probability of any attack should be smaller than or equal to the

maximum of that for a random oracle and of 1− e−N2·2−c+1

, with N the number of calls to the underlying function
(or its inverse).



4.1 Differential/Linear cryptanalysis

PHOTON’s internal primitives are AES-like permutations. Therefore, by reusing the extensive work done in the
past years on AES, it is very easy to compute a bound on the best differential path probability (where all
differences on the input and output of all rounds are specified) or even the best differential probability (where
only the input and output differences are specified).

We can obtain a bound on the number of active Sboxes (i.e. Sboxes with non-zero difference) for four
rounds of the PHOTON internal permutation by simply adapting the wide-trail strategy [27] to our parameters:
since our matrices underlying the MixColumnsSerial layer are MDS, at least (d + 1)2 Sboxes will be active
for any non-null differential path. Note that this bound is tight since we know four-round differential paths
with (d + 1)2 active Sboxes, as we will see in the next Section. As the best differential probability of the
PRESENT Sbox is 2−2, and for the AES Sbox it is 2−6, we can directly deduce that the best differential path
probability on four rounds of an internal permutation of PHOTON is upper bounded by 2−2·(d+1)2 when s = 4
and by 2−6·(d+1)2 when s = 8.

Since the diffusion in PHOTON is achieved with 2 rounds, a simple freedom degrees utilization (like in [25]
for SHA-0) is likely to allow the control of two rounds. However, as shown in the next sections, more involved
methods were recently introduced that allow to control up to three rounds. Even if we consider those methods
can someday be pushed up to four rounds, this does not seem to endanger Pt since eight rounds provide at
least (d + 1) · (d + 3) active Sboxes (eight consecutive rounds provide 2 · (d + 1)2 active Sboxes, but when
divided into two separate sub-paths they provide at least (d+ 1) · (d+ 3)).

By adapting the work from [58], we can also show that the maximum differential probability for 4 rounds
of a PHOTON internal permutation is upper bounded by

max

 max
1≤u≤2s−1

2s−1∑
j=1

{DPS(u, j)}d+1, max
1≤u≤2s−1

2s−1∑
j=1

{DPS(j, u)}d+1


d

where DPS(i, j) stands for the differential probability of the Sbox to map the difference i to j.

The duality between linear and differential attacks allows us to apply the same approaches to compute
a bound on the best linear approximation or even the best linear hulls. We summarize in Table 2 the upper
bounds on the best differential path probability, the best differential probability, the best linear approximation
probability and the best linear hull probability for four rounds of the five PHOTON permutations. Note that
such a reasoning assumes that random subkeys are added each round in order to make the Sboxes inputs
independant. Yet, in the case of PHOTON the subkeys are simulated by the round constants addition and thus
these bounds give a very good indication of the quality of the PHOTON internal permutations with regard to
linear and differential cryptanalysis.

Table 2. Upper bounds on the best differential path probability, best differential probability, best linear approximation
probability and best linear hull probability for 4 rounds and for the full version of the five PHOTON internal permutations.

P100 P144 P196 P256 P288

4 rds full 4 rds full 4 rds full 4 rds full 4 rds full

differential path probability 2−72 2−216 2−98 2−294 2−128 2−384 2−162 2−486 2−294 2−882

differential probability 2−50 2−72 2−98 2−128 2−246

linear approx. probability 2−72 2−216 2−98 2−294 2−128 2−384 2−162 2−486 2−294 2−882

linear hull probability 2−50 2−72 2−98 2−128 2−246

Another very important security argument is also applicable to PHOTON: the internal permutations are
fixed and allow no key input. Of course, this comes at a cost of lowered efficiency, but on the other hand it
avoids any attack leveraging a weakness in the key schedule. This is particularly important as it was shown
that such a control can lead for example to theoretical attacks against AES-192 and AES-256 in the related-key
model [13, 12], or distinguishers for the full WHIRLPOOL compression function [45].



4.2 Rebound and Super-Sbox attacks

The original rebound attack [50] and its improved variants (start-from-the-middle attack [49] and Super-Sbox
cryptanalysis [32, 45]) have been introduced very recently and provide the currently best known methods to
analyze AES-like permutations in a hash functions setting, where no secret is involved. It is therefore very
important to test what is the resistance of the PHOTON hash functions regarding those new tools. We provide
in this section only an overview of the application of the rebound and Super-Sbox attacks to the PHOTON

internal permutations and we invite the reader to look for the original articles for more details.

At the present time, in order to distinguish a fixed-key AES-like permutation from an ideal one, the best
results are obtained by using a non-full active differential path [65], while the freedom degrees will be utilized
in a Super-Sbox fashion [32, 45]. This allows to reach 8 rounds and we give in Figure 3 the differential path
considered. Note that this trail is actually meeting the bound on the minimal number of active Sboxes for four
rounds (round 3 to round 6), thus confirming its quality. Moreover, this trail is perfectly fit for a rebound-kind
of attack, since most of its complexity is located at the same place, right in the middle of the path, which
allows the attacker to concentrate all available freedom degrees on this precise part.
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Fig. 3. 8-round differential path for PHOTON internal permutations, where the black cells represent active cells (i.e.
containing a difference) while the white ones stand for inactive cells. We depict here the case d = 8, nin

L = nout
L =

nout
R = 5 and nin

R = 4.

Here we slightly extend the non-full linear framework from [65]: we call ninL the number of active Sboxes
after application of the first round and noutL after the second in the path from Figure 3. Identically, we denote
ninR and noutR the number of active Sboxes after application of the fifth and sixth rounds respectively. Because
of the MDS property of the mixing layer, we have the constraints that noutL + ninR ≥ d+ 1, ninL + noutL ≥ d+ 1
and ninR + noutR ≥ d + 1. By using the freedom degrees counting method from [32], we can check that

2s(n
in
L +nout

L +nin
R +nout

R −2d) solution pairs can be found for this differential path. This is always greater than
one if we fulfill the previous constraints. Moreover, with the tweaked Super-Sbox method [65], one can find
a solution with one operation on average for the 3 controlled round in the middle (depicted with dashed
lines) and with a very limited minimal cost of 2s computations and memory. Overall, obtaining a solution for

the complete path will cost the attacker 2s(2d−n
in
L −n

out
R ) operations because of the uncontrolled differential

transitions in round 2 and 6. Considering the limited-birthday paradox problem [32], with a generic algorithm
(modeling the permutation as a black box) one can find a solution pair with the same input/output properties

with max{2sd(d−nin
L )/2, 2sd(d−n

out
R )/2, 2sd(d−n

in
L −n

out
R )} computations.

We choose the best ninL , noutL , ninR , noutR values in order to minimize the distinguishing attack cost and
the results are given in Table 3. As long as they satisfy the constraints, noutL and ninR have no impact on
the complexity except for the controlled part (which we always ensure has a minimal cost of 2s). Moreover,
we observed that the best results were obtained when ninL = noutR . Overall, all versions of PHOTON provide
a very comfortable security margin against state-of-the-art rebound-style attacks since only 8 rounds can
be reached. Though the attacks complexities are low for 8 rounds, they can not be extended as is to more
rounds, even if we allow more computation power to the attacker. Note that there is no key input for the
PHOTON internal permutation and this avoids any potential improvement based on a weak key schedule or
by the increased amount of freedom degrees provided by the key. Moreover, the recently introduced internal
differential attack [61] that was applied on Grøstl can not work here since only one single internal permutation
is used (whereas the internal differential attack looks for properties between two very related permutations).



Table 3. Computation and memory complexities of the application of rebound-like attacks on the internal permuta-
tions of PHOTON. The attacks allow to distinguish 8 rounds of the permutation from an ideal permutation of the same
size and can not be extended as is to more rounds even with higher complexity.

P100 P144 P196 P256 P288

nin
L , nout

R 4 5 6 7 5

computations 28 28 28 28 216

memory 24 24 24 24 28

generic 210 212 214 216 224

4.3 Cube testers and algebraic attacks

We applied the most recent developed cube testers [3] and its zero-sum distinguishers to the PHOTON permu-
tations, the best we could find within practical time complexity is at most 3 rounds for all PHOTON variants.
Note, in case of AES, “zero-sum” property is also referred as “balanced”, found by the AES designers [26],
in which 3-round balanced property is shown. To the best of our knowledge, there is no balanced property
found for more than 3 AES rounds.

There are two types of Sboxes used in PHOTON, the PRESENT Sbox and the AES Sbox, having an algebraic
degree of a = 3 and a = 7 respectively. We showed in the previous section that the number of active Sbox is
at least (d + 1)2 for any consecutive 4-round trail of PHOTON. One can easily check that a · (d + 1)2 · 3 ≫ t
for all PHOTON variants. However, better bounds on the algebraic degree were recently published [20] and
are summarized in Table 4 for the five PHOTON internal permutations (the P288 bounds are refined using a
Super-Sbox view of the permutation [19]). Overall, one can construct zero-sum partitions of size 298 for full
P100, 2138 for full P144, 2184 for full P196, 2237 for full P256 and 2283 for 8-round reduced P288. However, all
these zero-sum partition sizes are much above the claimed attack complexities for the PHOTON variants. For a
size of the zero-sums partitions comparable to half the internal state size (which is the maximal possible flat
sponge claim), not more than 8 rounds can be reached.

Table 4. Bounds on the algebraic degree from [20] applied to the PHOTON internal permutations, depending on the
number of rounds considered.

number of rounds 1 2 3 4 5 6 7 8 9

P100 3 9 27 75 91 97 99 99 99

P144 3 9 27 81 123 137 141 143 143

P196 3 9 27 81 157 183 191 194 195

P256 3 9 27 81 197 236 249 253 255

P288 7 42 252 282 287 287 287 287 287

Concerning algebraic attacks, the PRESENT Sbox is described by e = 21 quadratic equations in the v = 8
input/output-bit variables over GF (2), while the AES Sbox is described by e = 40 quadratic equations in the
v = 16 input/output-bit variables over GF (2). The entire system for the internal permutations of PHOTON
therefore consists of (d2 · Nr · e) quadratic equations in (d2 · Nr · v) variables. For example, in the case of
P144 used for PHOTON-128/16/16, we end up with 9072 equations in 3456 variables. In comparison, the entire
system for a fixed-key AES permutation consists of 6400 equations in 2560 variables. While the applicability
of algebraic attacks on AES remains unclear, those numbers tend to indicate that PHOTON offers a comparable
level of protection.

4.4 Other cryptanalysis

The slide attack is originally a block cipher cryptanalysis technique [14], but was recently applied to sponge-
like hash functions [34]. The idea is to exploit the degree of self-similarity of a permutation. In the case of
PHOTON, all rounds of the internal permutation are made different thanks to the round-dependent constants
addition. Thus the slide attack is impossible to perform at the permutation level. Moreover, the slide attack



at the operating mode level from [34] is impossible to apply here since the padding rule from PHOTON forces
the last message block to be different from zero (which prevent any sliding event).

Rotational cryptanalysis [41] was proven to be quite successful against Addition-Rotation-XOR (ARX)
primitives and nice advances were made on some SHA-3 candidates [42]. The idea is to study the evolution of
a rotated variant of some input words through the round process. However, PHOTON is an Sbox-oriented hash
function and any rotation property in a cell will be directly removed by the application of the Sbox layer.
One could look for rotation of cell positions in the internal state, but this is unlikely to lead to an attack since
the constants used in a PHOTON round are all distinct and any position rotation property between columns or
lines is removed after the application of two rounds.

Integral attacks are quite efficient against AES-based permutations and one can directly adapt the known-
key variant from [43] to the PHOTON internal permutation cases. However, those attacks can only reach seven
rounds with complexity 2s(2d−1), which is worse than what can be obtained with rebound-style attacks from
Section 4.2.

5 Performances and Comparison

Before we detail the hardware architectures and the optimizations done, we first describe the tools used.
Finally we compare our results to previous work.

5.1 Design flow

We used Mentor Graphics ModelSimXE 6.4b and Synopsys DesignCompiler A-2007.12-SP1 for functional
simulation and synthesis of the designs to the Virtual Silicon (VST) standard cell library UMCL18G212T3
[68], which is based on the UMC L180 0.18µm 1P6M logic process with a typical voltage of 1.8 V. We
used Synopsys Power Compiler version A-2007.12-SP1 to estimate the power consumption of our ASIC
implementations. For synthesis and for power estimation we advised the compiler to keep the hierarchy and
use a clock frequency of 100 KHz. Note that the wire-load model used, though it is the smallest available for
this library, still simulates the typical wire-load of a circuit with a size of around 10 000 GE.

5.2 Architectures

To substantiate our claims on the hardware efficiency of our PHOTON family, we have implemented the flavors
specified in Section 3 in VHDL and simulated their post-synthesis performance. We designed two architectures:
one is fully serialized, i.e. performing operations on one cell per clock cycle, and aims for the smallest area
possible; the second one is a d times parallelization of the first architecture, thus performing operations on
one row in one clock cycle, resulting in a significant speed-up. As can be seen in Figure 4, our serialized
design consists of six modules: MCS, State, IO, AC, SC, and Controller.

IO allows to 1) initialize our implementation with an all ‘0’ vector, 2) input the IV, 3) absorb message
chunks, and 4) forward the output of the State module to the AC module without further modification.
Instead of using two Multiplexer and an XOR gate, we used two NAND and one XOR gate thereby reducing
the gate count required from s · 7.33 to s · 4.67 GE.

State comprises a d · d array of flip-flop cells storing s bits each. Every row constitutes a shift-register
using the output of the last stage, i.e. column 0, as the input to the first stage (column d − 1) of the same
row and the next row. Using this feedback functionality ShiftRows can be performed in d − 1 clock cycles
with no additional hardware costs. Further, since MixColumnsSerial is performed on column 0, also a vertical
shifting direction is required for this column. Consequently, columns 0 and d− 1 consist of flip-flop cells with
two inputs (6 GE), while columns 1 to d − 2 consist of flip-flop cells with only one input (4.67 GE). The
overall gate count for this module is s · d · ((d− 2) · 4.67 + 2 · 6) GE and for all flavors it occupies the majority
of the area required (between 65 and 77.5%).

MCS calculates the last row of At in one clock cycle. The result is stored in the State module, that is in
the last row of column 0, which has been shifted upwards at the same time. Consequently, after d clock cycles
the MixColumnsSerial operation is applied to an entire column. Then the whole state array is rotated by one
position to the left and the next column is processed. In total d · (d+ 1) clock cycles are required to perform
MCS. As an example of the hardware efficiency of MCS we depict A100 in the upper and its sub-components
in the lower right part of Figure 4. Using our library, for a multiplication by 2, 4 and 8, we need 2.67 GE,



4.67 GE, and 7 GE when using the irreducible polynomial x4 + x + 1, respectively. Therefore the choice of
the coefficients has only a minor impact on the overall gate count, as the majority is required to sum up the
intermediate results. For example, in the case of A100, 56 out of 75.33 GE are required for the XOR sum.
The gate counts for the other matrices are: 80 GE, 99 GE, 145 GE, and 144 GE for A144, A196, A256, and
A288, respectively.

AC performs the AddConstant operation by XORing the sum of the round constant RC with the current
internal constant IC. Furthermore, since AC is only applied to the first column, the input to the XNOR gate
is gated with a NAND gate. Instead of using an AND gate in combination with an XOR gate, our approach
allows to reduce the area required from s · 6.67 to s · 6 GE.

SC performs the SubCells operation and consists of a single instantiation of the corresponding Sbox. For
s = 4 we used an optimized Boolean representation of the PRESENT Sbox, which only requires 22.33 GE and
for s = 8 we used Canright’s representation of the AES Sbox [24] which requires 233 GE. It takes d · d clock
cycles to perform AddConstant and SubCells on the whole state.

Controller uses a Finite State Machine (FSM) to generate all control signals required. Furthermore, also
the round constants and the internal constants are generated within this module, as their values are used
for the transition conditions of the FSM. The FSM consists of one idle state, one state for the combined
execution of AC and SC, d − 1 states for ShR and two states for MCS (one for processing one column and
another one to rotate the whole state to the left). Naturally, its gate count varies depending on d: 197 GE,
210 GE, 235 GE, and 254 GE for d = 5, 6, 7, 8, respectively.

x2

x2 x8 x8 x2
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4 4 4 4 4

A100

Fig. 4. Serial hardware architecture of PHOTON (left). As an example for its component At we also depict A100 with
its sub-components (right).

5.3 Hardware results and comparison

We assume the message to be padded correctly and the IVs to be loaded at the beginning of the operation.
Then it requires d · d+ (d− 1) + d · (d+ 1) clock cycles to perform one round of the permutation P , resulting
in a total latency of 12 · (2 · d · (d + 1) − 1) clock cycles. Table 5 compares our results to previous works,
sorted after preimage and collision resistance levels. Area requirements are provided in GE, while the latency
is given in clock cycles for only the internal permutation P (or the internal block-cipher E), and the whole
hash function H. Further metrics are Throughput in kbps and a Figure of Merit (FOM) proposed by [4].
In order to have a comparison for a best case scenario and a real-world application, we provide the latter
two metrics for ‘long’ messages (omitting any padding influences) and for 96-bit messages, where we do take
padding into account. In particular this means that a 96-bit message is padded with “1” and as many “0”s as
required. Furthermore Merkle-Damg̊ard constructions need additional 64 bits to encode the message length.



The parameters n, c, r and r′ stand for the hash output size, the capacity, the input bitrate and the output
bitrate respectively. Finally, the column “Pre” gives the claimed preimage resistance security and “Col” the
claimed collision resistance security.

Table 5. Overview of parameters, security level, and performance of several lightweight hash functions. Throughput
and FOM figures have been derived at a clock frequency of 100 KHz. We marked by a * the preimage resistances of
PHOTON-128/16/16, PHOTON-160/36/36, PHOTON-224/32/32 and PHOTON-256/32/32 in order to indicate that these PHOTON
variants can achieve equal preimage resistance compared to its competitors by simply adding one more squeezing round.
This will increase the hash output size n by r′ bits and slightly reduce the throughput for small messages, while the
area and the long message performances will remain the same.

Name Ref.

Parameters Security Performance

n c r r′ Pre Col

Area Latency Throughput FOM

[GE] [clk] [kbps] [nb/clk/GE2]

P/E H long 96-bit long 96-bit

64-bit preimage resistance

SQUASH [73] 64 x x x 64 0 2646 31800 31800 0.2 0.15 0.29 0.14

DM-PRESENT-80 [17] 64 64 80 x 64 32 1600 547 547 14.63 5.85 57.13 19.04

DM-PRESENT-80 [17] 64 64 80 x 64 32 2213 33 33 242.42 96.67 495.01 165.00

DM-PRESENT-128 [17] 64 64 128 x 64 32 1886 559 559 22.90 8.59 64.37 32.19

DM-PRESENT-128 [17] 64 64 128 x 64 32 2530 33 33 387.88 145.45 605.98 302.99

KECCAK-f[200] [40] 64 128 72 72 64 32 2520 900 900 8.00 5.33 12.6 8.4

PHOTON-80/20/16 80 80 20 16 64 40 865 708 3540 2.82 1.51 37.73 20.12

PHOTON-80/20/16 80 80 20 16 64 40 1168 132 660 15.15 8.08 111.13 59.27

64-bit collision resistance

U-QUARK [4] 136 128 8 8 128 64 1379 544 9248 1.47 0.61 7.73 3.20

U-QUARK [4] 136 128 8 8 128 64 2392 68 1156 11.76 4.87 20.56 8.51

H-PRESENT-128 [17] 128 128 64 x 128 64 2330 559 559 11.45 5.72 21.09 10.54

H-PRESENT-128 [17] 128 128 64 x 128 64 4256 32 32 200.00 100.00 110.41 55.21

ARMADILLO2-B [6] 128 128 64 x 128 64 4353 256 256 25.00 12.50 13.19 6.60

ARMADILLO2-B [6] 128 128 64 x 128 64 6025 64 64 100.00 50.00 27.55 13.77

KECCAK-f[400] [40] 128 256 144 144 128 64 5090 1000 1000 14.40 9.60 5.56 3.71

PHOTON-128/16/16 128 128 16 16 112* 64 1122 996 7968 1.61 0.69 12.78 5.48

PHOTON-128/16/16 128 128 16 16 112* 64 1708 156 1248 10.26 4.4 35.15 15.06

80-bit collision resistance

D-QUARK [4] 176 160 16 16 160 80 1702 704 7744 2.27 0.80 7.85 2.77

D-QUARK [4] 176 160 16 16 160 80 2819 88 968 18.18 6.42 22.88 8.08

ARMADILLO2-C [6] 160 160 80 x 160 80 5406 320 320 25.00 10.00 8.55 3.42

ARMADILLO2-C [6] 160 160 80 x 160 80 7492 80 80 100.00 40.00 17.82 7.13

SHA-1 [56] 160 160 512 x 160 80 5527 344 344 148.84 27.91 48.72 9.14

PHOTON-160/36/36 160 160 36 36 124* 80 1396 1332 6660 2.70 1.03 13.87 5.28

PHOTON-160/36/36 160 160 36 36 124* 80 2117 180 900 20 7.62 44.64 17.01

112-bit collision resistance

S-QUARK [4] 256 224 32 32 224 112 2296 1024 8192 3.13 0.85 5.93 1.62

S-QUARK [4] 256 224 32 32 224 112 4640 64 512 50.00 13.64 23.22 6.33

PHOTON-224/32/32 224 224 32 32 192* 112 1736 1716 12012 1.86 0.56 6.19 1.86

PHOTON-224/32/32 224 224 32 32 192* 112 2786 204 1428 15.69 4.71 20.21 6.06

128-bit collision resistance

ARMADILLO2-E [6] 256 256 128 x 256 128 8653 512 512 25.00 9.38 3.34 1.25

ARMADILLO2-E [6] 256 256 128 x 256 128 11914 128 128 100.00 37.50 7.05 2.64

SHA-2 [30] 256 256 512 x 256 128 10868 1128 1128 45.39 8.51 3.84 0.72

PHOTON-256/32/32 256 256 32 32 224* 128 2177 996 7968 3.21 0.88 6.78 1.85

PHOTON-256/32/32 256 256 32 32 224* 128 4362 156 1248 20.51 5.59 10.78 2.94



As can be seen, our proposals compete well in terms of area requirements, since they are 18% to 75%
smaller compared to previous proposals with a similar preimage/collision resistance level. For a smaller area,
the throughput of PHOTON variants is comparable to the QUARK proposals10. Alternatively, for a similar area,
PHOTON variants are much faster than the QUARK proposals. This can be observed in the Figure of Merit
column of the results Table. One could argue that the throughput of two proposals can not be compared
because the security margin is not taken in account. However, we would like to emphasize that the security
margin is very hard to measure as it greatly depends on the simplicity of the scheme, the amount of work
spent by the cryptanalysts, etc. Unlike most of the lightweight hash functions proposed, in the case of PHOTON,
we chose very simple to analyse internal permutations, thus directly leveraging the extensive analysis work
already known for AES-like permutations. While 8 rounds over 12 of the internal permutations of PHOTON can
be distinguished from a random permutation, we provide strong arguments that this is very unlikely to be
much improved.

We did not include power figures in Table 5 for several reasons. First, the power consumption strongly
depends on the technology used and cannot be compared between different technologies in a fair manner.
Furthermore, simulated power figures strongly depend on the simulation method used, and the effort spent.
Instead, we just briefly list the simulated power figures for our proposals here: 1.59, 2.29, 2.74, 4.01, and
4.55µW for serialized implementation of PHOTON-80/20/16, PHOTON-128/16/16, PHOTON-160/36/36, PHOTON-
224/32/32, and PHOTON-256/32/32, respectively. The d-parallel implementations require 2.7, 3.45, 4.35, 6.5,
and 8.38µW, respectively. This let us conclude that all PHOTON flavors seem to be suitable for ultra-constrained
devices, such as passive RFID tags, which was one of our initial design goals.

5.4 Software implementation

We give in Table 6 our software implementation performances for the PHOTON variants. The processor used
for the benchmarks is an Intel(R) Core(TM) i7 CPU Q 720 clocked at 1.60GHz. For comparison purposes,
we also benchmarked the speed of an AES permutation (without the key schedule) and a modified version of
it with a serially computable MDS matrix instead (the 4×4 matrix A given in Section 2.2). As expected, the
table-based implementations reach the same speed for both versions. We also benchmarked other lightweight
hash function designs. QUARK reference code [4], very likely to be optimizable, runs at 8k, 30k and 22k cycles
per byte for U-QUARK, D-QUARK and S-QUARK, respectively. The optimized PRESENT code [16] runs at 90 cycles
per byte, hence the estimate speed for DM-PRESENT-80, DM-PRESENT-128 and H-PRESENT-128 are 72, 45 and
90 cycles per byte, respectively.

Table 6. Software performances in cycles per byte of the PHOTON variants for long messages.

PHOTON-80/20/16 PHOTON-128/16/16 PHOTON-160/36/36 PHOTON-224/32/32 PHOTON-256/32/32

95 c/B 156 c/B 116 c/B 227 c/B 157 c/B

6 Conclusion

We proposed PHOTON, the most lightweight hash-function family known so far, very close to the theoretical
optimum. Our proposal is based on the well known AES design strategy, but we introduced a new mixing
layer building method that is perfectly fit for small area scenarios. This allows us to directly leverage the
extensive work done on AES and AES-like hash functions so as to provide good confidence in the security of our
scheme. Finally, PHOTON is not only the smallest hash function, but it also achieves excellent area/throughput
trade-offs and we obtained very acceptable performances with simple software implementations.

10 We synthesized the publicly available VHDL source code of U-QUARK using the same tool chain and ASIC library
as for our proposals. The post-synthesis figures for U-QUARK are slightly higher than the previously published ones,
i.e. 1400 GE instead of 1379 GE, which indicates that PHOTONs smaller footprint is not caused by a different tool
chain. However, for comparison we took the previously available figures, which is in favour of QUARK.
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A Process for Choosing Optimal Extended Sponge Framework Parameters

We describe here the process to follow in order to pick the appropriate extended sponge framework parameters
while maximizing the throughput of the PHOTON variant created. The process takes as input:

• COL: the minimum collision resistance required in log2
• PRE: the minimum preimage resistance required in log2
• SPRE: the minimum second-preimage resistance required in log2
• a, k, N : no better attack than exhaustive search when used as a MAC of at least N -bit with a k-bit key

and limited to a queries in log2



and outputs the parameters t, n, c, r and r′.

We denote cmin = max{2 · COL, 2 · SPRE, PRE, k + a + 1} the minimal capacity and nmin = max{2 ·
COL, SPRE, PRE, N} the minimal output size. First, among the five available PHOTON permutations Pt, choose
the smallest one such that t > max{cmin, N} (otherwise the security requirements can not be fulfilled). Note
that allowing a bigger t will lead to faster versions, but bigger area. We set c = cmin and r = t− c in order
to maximize the speed by reducing the capacity to the minimum allowable. Finally, if cmin ≥ 2 · PRE we set
n = r′ = nmin, otherwise we can choose any value n and r′ verifying t ≥ n ≥ nmin and n − r′ ≥ PRE which
is a trade-off between small message speed and hash output size.

As an example, using this process with inputs COL = 0, PRE = 64, SPRE = 0, a = 15, k = 64, N = 64,
we obtain the smallest PHOTON variant proposed, PHOTON-80/20/16 with t = 100, n = 80, c = 80, r = 20
and r′ = 16. Note that for each permutation Pt, we advice not to build PHOTON variants with much higher
maximal complexity security claims than the ones proposed in this article (namely 264, 2112, 2124, 2192 and
2224 respectively).

B PHOTON Sboxes

For cells of s = 4 bits, the SubCells layer uses the PRESENT Sbox (in hexadecimal display):

SBOXPRE = [0xc, 0x5, 0x6, 0xb, 0x9, 0x0, 0xa, 0xd, 0x3, 0xe, 0xf, 0x8, 0x4, 0x7, 0x1, 0x2].

For cells of s = 8 bits, the SubCells layer uses the AES Sbox (in hexadecimal display):

SBOXAES =

[0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,

0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,

0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,

0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,

0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,

0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,

0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,

0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,

0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,

0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,

0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,

0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,

0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,

0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,

0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16].

C PHOTON Mixing Matrices

We use x4+x+1 as the irreducible polynomial for multiplication in GF(24), and this applies to all permutations
with 4-bit cells, e.g., A100, A144, A196, A256. x8 + x4 + x3 + x+ 1, as in AES, is for multiplication in GF(28) as
used in A288.

(A100)5 =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 2 9 9 2



5

=


1 2 9 9 2

2 5 3 8 13

13 11 10 12 1

1 15 2 3 14

14 14 8 5 12





(A144)6 =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 2 8 5 8 2



6

=



1 2 8 5 8 2

2 5 1 2 6 12

12 9 15 8 8 13

13 5 11 3 10 1

1 15 13 14 11 8

8 2 3 3 2 8



(A196)7 =



0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 4 6 1 1 6 4



7

=



1 4 6 1 1 6 4

4 2 15 2 5 10 5

5 3 15 10 7 8 13

13 4 11 2 7 15 9

9 15 7 2 11 4 13

13 8 7 10 15 3 5

5 10 5 2 15 2 4



(A256)8 =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2 4 2 11 2 8 5 6



8

=



2 4 2 11 2 8 5 6

12 9 8 13 7 7 5 2

4 4 13 13 9 4 13 9

1 6 5 1 12 13 15 14

15 12 9 13 14 5 14 13

9 14 5 15 4 12 9 6

12 2 2 10 3 1 1 14

15 1 13 10 5 10 2 3



(A288)6 =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2 3 1 2 1 4



6

=



2 3 1 2 1 4

8 14 7 9 6 17

34 59 31 37 24 66

132 228 121 155 103 11

22 153 239 111 144 75

150 203 210 121 36 167


D PHOTON Constants

The round constants have been generated by a 4-bit linear feedback shift register with maximum cycle length,
while the internal constants ICd(i) have been generated by shift registers with a cycle length of d. Please note
that this design decision was made with hardware implementations in mind. Since one needs these counters
for the control logic, the generation of the round constant and the internal constants is basically for free. For
all variants we used shift registers with l = 3 bits, except for d = 8, where we used l = 4. Let us denote the
internal state of the shift register with Xr = (xl−1, . . . , x1, x0), where xi = {0, 1}, and X0 = (0, . . . , 0, 0).
Then in each update iteration the new content of the shift register is given by Xr+1 = (xl−2, . . . , x0, FB(Xr)),
where FB(Xr) is the feedback function. For the round constants we chose FB(Xr) = x3 XNOR x2, while
our choices for the feedback functions for the internal constants are shown in Table 7. Tables 8-11 display
constants for all square sizes, round numbers and row positions.



Table 7. Feedback functions for internal constants generation.

d 5 6 7 8

FB(Xr) x2 NOR x1 NOT x2 x2 XNOR x1 NOT x3

ICd(·) [0, 1, 3, 6, 4] [0, 1, 3, 7, 6, 4] [0, 1, 2, 5, 3, 6, 4] [0, 1, 3, 7, 15, 14, 12, 8]

Table 8. Constants for d = 5.

H
HHHHrow

round
1 2 3 4 5 6 7 8 9 10 11 12

0 1 3 7 14 13 11 6 12 9 2 5 10

1 0 2 6 15 12 10 7 13 8 3 4 11

2 2 0 4 13 14 8 5 15 10 1 6 9

3 7 5 1 8 11 13 0 10 15 4 3 12

4 5 7 3 10 9 15 2 8 13 6 1 14

Table 9. Constants for d = 6.

H
HHHHrow

round
1 2 3 4 5 6 7 8 9 10 11 12

0 1 3 7 14 13 11 6 12 9 2 5 10

1 0 2 6 15 12 10 7 13 8 3 4 11

2 2 0 4 13 14 8 5 15 10 1 6 9

3 6 4 0 9 10 12 1 11 14 5 2 13

4 7 5 1 8 11 13 0 10 15 4 3 12

5 5 7 3 10 9 15 2 8 13 6 1 14

Table 10. Constants for d = 7.

HH
HHHrow
round

1 2 3 4 5 6 7 8 9 10 11 12

0 1 3 7 14 13 11 6 12 9 2 5 10

1 0 2 6 15 12 10 7 13 8 3 4 11

2 3 1 5 12 15 9 4 14 11 0 7 8

3 4 6 2 11 8 14 3 9 12 7 0 15

4 2 0 4 13 14 8 5 15 10 1 6 9

5 7 5 1 8 11 13 0 10 15 4 3 12

6 5 7 3 10 9 15 2 8 13 6 1 14

Table 11. Constants for d = 8.

HH
HHHrow
round

1 2 3 4 5 6 7 8 9 10 11 12

0 1 3 7 14 13 11 6 12 9 2 5 10

1 0 2 6 15 12 10 7 13 8 3 4 11

2 2 0 4 13 14 8 5 15 10 1 6 9

3 6 4 0 9 10 12 1 11 14 5 2 13

4 14 12 8 1 2 4 9 3 6 13 10 5

5 15 13 9 0 3 5 8 2 7 12 11 4

6 13 15 11 2 1 7 10 0 5 14 9 6

7 9 11 15 6 5 3 14 4 1 10 13 2



E Test Vectors

Below are test vectors for all discussed flavours of PHOTON. The absorbing and squeezing position of the state
array is underlined.

IV m P (m)

PHOTON-80/20/16

0 0 0 0 0 0 0 0 0 0 3 3 D 5 F

0 0 0 0 0 6 2 9 B 9

0 0 0 0 0 5 C 4 8 1

0 0 0 0 1 6 5 C E 7

4 1 4 1 0 B 7 7 0 C

PHOTON-128/16/16

0 0 0 0 0 0 0 0 0 0 9 5 F C 3 C

0 0 0 0 0 0 E 2 2 A 2 A

0 0 0 0 0 0 6 3 2 D 6 F

0 0 0 0 0 0 E B 4 E 0 B

0 0 0 0 0 0 6 2 5 9 2 D

2 0 1 0 1 0 8 D 0 3 2 9

PHOTON-160/36/36

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 F 0 D 4 A 1

0 0 0 0 0 0 0 0 0 D D 0 A 3 1 D

0 0 0 0 0 0 0 E C F 5 B 6 9

0 0 0 0 0 0 0 B 6 6 E 0 C 8

0 0 0 0 0 0 0 F 6 4 4 C E E

0 0 0 0 0 0 0 E 9 0 2 0 F 4

0 2 8 2 4 2 4 3 A 9 D E 7 4

PHOTON-224/32/32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 3 0 4 2 4 2

0 0 0 0 0 0 0 0 9 C F 2 6 E 1 0

0 0 0 0 0 0 0 0 8 D 3 D 9 C F 9

0 0 0 0 0 0 0 0 0 0 E 2 7 B D C

0 0 0 0 0 0 0 0 C 6 2 9 B 3 D 1

0 0 0 0 0 0 0 0 A F 4 1 F 1 C B

0 0 0 0 0 0 0 0 7 4 8 3 F C C 0

0 0 3 8 2 0 2 0 8 9 1 6 B 8 2 C

PHOTON-256/32/32

00 00 00 00 00 00 00 00 00 00 4D BD 90 36 1C B5

00 00 00 00 00 00 E0 9E 5C 38 A9 C9

00 00 00 00 00 00 E9 D5 66 08 CF 52

00 00 00 00 00 00 CB 6B C8 8B 93 16

00 00 00 00 00 00 E8 C2 C0 69 25 F7

00 00 00 40 20 20 18 CC 62 9C AE 79


