
Adaptive and Concurrent Secure Computation
from New Notions of Non-Malleability

Dana Dachman-Soled Tal Malkin Mariana Raykova
Muthuramakrishnan Venkitasubramaniam

Abstract

We present a unified framework for obtaining general secure computation that achieves adaptive-
Universally Composable (UC)-security. Our framework captures essentially all previous results on adap-
tive concurrent secure computation, both in relaxed models (e.g., quasi-polynomial time simulation), as
well as trusted setup models (e.g., the CRS model, the imperfect CRS model). This provides conceptual
simplicity and insight into what is required for adaptive and concurrent security, as well as yielding im-
provements to set-up assumptions and/or computational assumptions. Moreover, using our framework
we provide first constructions of concurrent secure computation protocols that are adaptively secure in
the timing model, and in the non-uniform simulation model.

Conceptually, our framework can be viewed as an adaptive analogue to the recent work of Lin,
Pass and Venkitasubramaniam [STOC ‘09], who considered only non-adaptive adversaries. Their main
insight was that stand-alone non-malleability was sufficient for UC-security. A main conceptual con-
tribution of this work is, quite surprisingly, that it is indeed the case even when considering adaptive
security.

A key element in our construction is a commitment scheme that satisfies a new notion of non-
malleability. The notion of concurrent equivocal non-malleable commitments, intuitively, guarantees
that even when a man-in-the-middle adversary observes concurrent equivocal commitments and decom-
mitments, the binding property of the commitments continues to hold for commitments made by the ad-
versary. This notion is stronger than standard notions of concurrent non-malleable commitments which
either consider only specific commits (e.g., statistically-binding) or specific scenarios (e.g., the com-
mitment phase and the decommitment phase are executed in a non-overlapping manner). Previously,
commitments that satisfy our definition, have been constructed in setup models, but either require exis-
tence of stronger encryption schemes such as CCA-secure encryption or require independent “trapdoors”
provided by the setup for every pair of parties to ensure non-malleability. We here provide a construction
that eliminates these requirements and require only a single trapdoor.

1 Introduction

The notion of secure multi-party computation allows mutually distrustful parties to securely compute a
function on their inputs, such that only the (correct) output is obtained, and no other information is leaked,
even if the adversary controls an arbitrary subset of parties. This security is formalized via the real/ideal
simulation paradigm, requiring that whatever the adversary can do in a real execution of the protocol, can be
simulated by an adversary (“simulator”) working in the ideal model, where the parties submit their inputs to
a trusted party who then computes and hands back the output. Properly formalizing this intuitive definition
and providing protocols to realize it requires care, and has been the subject of a long line of research starting
in the 1980s.

In what is recognized as one of the major breakthroughs in cryptography, strong feasibility results were
provided, essentially showing that any function that can be efficiently computed, can be efficiently computed
securely, assuming the existence of enhanced trapdoor permutations (eTDP). However, these results were
originally investigated in the stand-alone setting, where a single instance of the protocol is ran in isolation. A
stronger notion is that of concurrent security, which provides the security guarantee even when many differ-
ent protocol executions are carried out concurrently. We will focus on the strongest (and most widely used)
notion of concurrent security, namely universally-composable (UC) security [4]; This notion provides secu-
rity even when an unbounded number of different protocol executions are ran concurrently in an arbitrary
interleaving schedule. This is obviously important for maintaining security in an uncontrolled environment
that allows concurrent executions (e.g., the Internet). Moreover, this notion also facilitates modular design
and analysis of protocols, by allowing to design and prove secure smaller protocol components, and then
compose them to obtain a secure protocol for a complex functionality.

Unfortunately, it turns out that concurrent security is much more challenging than the stand-alone one,
and we do not have general feasibility results for concurrently secure computation of every function. In fact,
there are lower bounds showing that the standard notion of concurrent security (in particular UC security)
cannot be achieved for general functions, unless some trusted setup is assumed [5, 6, 24]. Previous works
overcome this by either by using some sort of a trusted setup infrastructure, or by relaxing the definition of
security (we will see examples below).

Another aspect of defining secure computation, is the power given to the adversary. A static (or non-
adaptive) adversary is one who has to decide which parties to corrupt at the onset, before the execution of
the protocol begins. A stronger notion is one that considers an adaptive adversary, who may corrupt parties
at any time, based on its view of the protocol so far. The adaptive setting is much more complex than the
static one. The intuitive reason it is so challenging is that the simulator needs to simulate messages from
uncorrupted parties, but may later have to explain them if the party got corrupted, according to any possible
input that the party holds. On the other hand, in the real protocol execution, the messages should depend in
a committing way on the actual input of the party, so that an adversary cannot cheat. Indeed, the techniques
for achieving security against adaptive adversaries are generally quite different than the techniques needed
to achieve security against static adversaries, and many of the previous results for concurrent secure compu-
tation do not readily extend to the adaptive setting. In fact, many of the results allowing general concurrent
secure computation (e.g., using a trusted setup) are only given for the static case, and do not work for the
adaptive setting.

In this paper we focus on the strongest (and most realistic, in complex environments) notions of security,
and study their fundamental power and limitations. The main question we ask is:

Under which circumstances is adaptive concurrent security generally feasible?

In particular, we refine this question to ask:

What is the minimum setup required to achieve adaptive concurrent security?

1

We address these questions on both a conceptual and technical level. We provide a framework that
unifies and generalizes essentially all previous results in the generic adaptive concurrent setting, as well as
providing completely new results (constructions with weaker trusted setup requirements, weaker computa-
tional assumptions, or in relaxed models of security), conceptual simplicity, and insight into what is required
for adaptive and concurrent secure computation. Our main technical tool is a new primitive of equivocal
non-malleable commitment. We describe our results in more detail below.

1.1 Our Results

We provide a general framework for achieving adaptive UC-security both with, and without, trusted set-up.
With this framework, essentially all general UC-feasibility results for adaptive adversaries follow as simple
corollaries, often improving the set-up assumptions and the complexity theoretic assumptions (although we
did not make any attempt to improve round complexity); moreover, the framework yields adaptive UC secure
computation in new models (such as the timing model). As such, our framework helps in characterizing
models in which adaptive UC security is realizable, and also at what cost.

Although technically quite different, conceptually our framework may conceptually be viewed as an
adaptive analogue of the work of Lin, Pass and Venkitasubramaniam [23], who study the static case. Their
main theorem states that assuming the existence of enhanced trapdoor permutations and stand-alone non-
malleable commitments, static UC-security is achievable in any model that admits a “UC-puzzle”. In this
work, we establish an analogous main theorem for the case of adaptive UC-security.

First, we introduce the notion of an Adaptive UC-Puzzle, that extends the notion of a UC-Puzzle to the
adaptive setting. Next, we define a new primitive (which may be of independent interest) called equivocal
non-malleable commitments or EQNMCom, which are commitments with the property that a man-in-the-
middle who observes concurrent equivocal commitments and decommitments, cannot break the binding
property of the commitment. This can be viewed as the adaptive analogue of the standalone non-malleable
commitments used by [23]. We then present a construction of equivocal non-malleable commitment for
any model that admits an adaptive UC-puzzle (so in that sense, requiring this primitive does not introduce
an additional complexity-theoretic assumption). Finally, we need a computational assumption that implies
adaptively secure oblivious transfer (analogous to the eTDP used by [23], which implies statically secure
OT). Towards that end, we use simulatable public key encryption [12, 9]1 We thus get:

THEOREM 1 (Main Theorem (Informal)). Assume the existence of a t1(·)-round adaptive UC-secure puzzle
Σ using some setup T , the existence of a t2(·)-round EQNMCom primitive, and the existence of simulatable
public-key encryption scheme. Then, for every m-ary functionality f , there exists a O(t1(·) + t2(·))-round
protocol Π using the same set-up T that adaptively, UC-realizes f .

Complementing the main theorem, we also show that, in previously studied models, adaptive UC-
puzzles are easy to construct. In fact, in most models the puzzles from the static case considered in [23],
are sufficient. In addition, we provide new constructions for models where adaptive-security has not been
previously established. We highlight some results obtained by instantiating our framework below.
Adaptive UC in the “imperfect” string model. Canetti, Pass and Shelat [8] consider adaptive UC se-
curity where parties have access to an “imperfect” reference string–called a “sunspot”–that is generated by
any arbitrary efficient min-entropy source (obtained e.g., by measurement of some physical phenomenon).
The CPS-protocol, however, requires m communicating parties to share m reference strings, each of them
generated using fresh entropy. Our results address the case of security against adaptive adversaries. In this
setting, we show that a single reference string is sufficient for UC and adaptively-secure MPC (regardless of
the number of parties m).

1This is almost the weakest assumption currently known that implies adaptive OT. An even weaker assumption is “trapdoor-
simulatable PKE” [9]. We do not currently know how to show that this weaker version is sufficient.

2

Adaptive UC in the timing model. Dwork, Naor and Sahai [16] introduced the timing model, where all
players are assumed to have access to clocks with a certain drift. Kalai, Lindell and Prabhakaran [20]
subsequently presented a concurrent secure computation protocol in the timing model; whereas the timing
model of [16] does not impose a maximal upper-bound on the clock drift, the protocol of [20] requires
the clock-drift to be “small”; furthermore, it requires extensive use of delays (roughly n∆, where ∆ is the
latency of the network). Finally, [23] showed that UC security against static adversaries is possible also
in the unrestricted timing model (where the clock drift can be “large”); additionally, they reduce the use
of delays to only O(∆). To the best of our knowledge, our work is the first to consider security against
adaptive adversaries in the Timing model. Thus, our work yields the first feasibility results for UC and
adaptively-secure MPC in the timing model and, similarly to the results of [23] in the static case, our results
hold in the unrestricted timing model.
Adaptive UC with quasi-polynomial simulation. Pass [27] proposed a relaxation of the standard simulation-
based definition of security, allowing for a super polynomial-time or Quasi-polynomial simulation (QPS). In
the static setting, Prabhakaran and Sahai [29] and Barak and Sahai [2] obtained general multi-party protocols
that are concurrently QPS-secure without any trusted set-up, but rely on strong complexity assumptions. We
achieve security in the quasi-polynomial simulation model with adaptive corruptions under relatively weak
complexity assumptions and we achieve a stronger notion of security, which (in analogy with [27]) requires
that indistinguishability of simulated and real executions holds also for all of quasi-polynomial time; in con-
trast, [2] only achieves indistinguishability w.r.t. distinguishers with running-time smaller than that of the
simulator.
Adaptive UC with non-uniform simulation. Lin et al. [23] introduced the non-uniform UC model, where
we consider environments that are PPT machines and ideal-model adversaries that are non-uniform PPT
machines. Using their framework for static adversaries, [23] showed feasibility results for secure MPC
in the non-uniform UC model. They introduce two new complexity assumptions, each of which is indi-
vidually sufficient (along with existence of enhanced trapdoor permutations) to realize secure MPC in the
non-uniform UC model. In our work, we rely on the same complexity assumptions as those introduced by
[23] (along with the assumption of the existence of simulatable PKE), to show feasibility results for secure
MPC in the adaptive, non-uniform UC model.

In addition to these models, our framework also captures adaptive UC in the common reference string
(CRS) model [7], uniform reference string (URS) model [7], key registration model [1], tamper-proof hard-
ware model [21], and partially isolated adversaries model [14] (see Section 7).

Beyond the specific instantiations, our framework provides conceptual simplicity, technical insight, and
the potential to facilitate “translation” of results in the static setting into corresponding (and much stronger)
adaptive security results. For example, in recent work of [17] one of the results –constructing UC protocols
using multiple setups when the parties share an arbitrary belief about the setups– can be translated to the
adaptive model by replacing (static) puzzles with our notion of adaptive puzzles. Other results may require
more work to prove, but again are facilitated by our framework.

1.2 Technical Approach and Insights Gained

There are two basic properties that must be satisfied in order to achieve UC secure computation: (1) con-
current simulation and (2) concurrent non-malleability. The former requirement amounts to providing the
simulator with a trapdoor while the latter requirement amounts to establishing independence of executions.
The simulation part is usually “easy” to achieve. Consider, for instance, the Common Reference String
(CRS) model where the players have access to a public reference string that is ideally sampled from some
distribution. Concurrent non-malleability on the other hand is significantly harder to achieve. In this partic-
ular case, Canetti, Lindell, Ostrovsky and Sahai [CLOS02] solve the problem by embedding the public-key
of a CCA-secure encryption scheme in the CRS, but in general, quite different techniques are employed
in each model. In many models, this is achieved by providing a technique which enables the simulator to

3

have different trapdoors for each player, such that the trapdoor for one player does not reveal a trapdoor for
another.

Unfortunately, the same phenomena persists in most set-up models: concurrent simulation is easy to
achieve, but concurrent non-malleability requires significantly more work, and often stronger set-up and/or
stronger computational assumptions. In the static case, Lin, et. al in [23], show that that concurrent simu-
lation is sufficient, i.e., it is sufficient to provide the simulator with a single trapdoor. Once such a trapdoor
is established, concurrent non-malleability (and thus UC-security) can be achieved by further relying on a
stand-alone non-malleability. Thus, no additional assumptions are required in the case of static-security to
establish non-malleability and this allows the framework in [23] to improve significantly on previous re-
sults. Furthermore, stand-alone non-malleable protocols exist in the plain model (i.e. assuming no setup).
An important question here is whether the same holds in the adaptive case. Unfortunately, in the case of
adaptive security, simulator need to be able to “equivocate” and this requires some setup. Most protocols
for adaptive security in literature, achieve non-malleability by simply providing an independent trapdoor for
every execution.

In this work, we show that, surprisingly, a single trapdoor is sufficient to achieve concurrent non-
malleability. Therefore, we establish that even for the case of adaptive security no additional setup (and
no additional assumptions) are required to achieve concurrent non-malleability.

1.3 Main Tool: Equivocal Non-Malleable Commitments

We define and construct a new primitive called equivocal non-malleable commitments or EQNMCom. Such
commitments have previously been defined in the works of [10, 11] but only for the limited case of bounded
concurrency and non-interactive commitments. In our setting, we consider the more general case of un-
bounded concurrency as well as interactive commitments. Intuitively, the property we require from these
commitments is that even when a man-in-the-middle receives concurrent equivocal commitments and con-
current equivocal decommitments, the man-in-the-middle cannot break the binding property of the com-
mitment. Thus, the man-in-the-middle receives equivocal commitments and decommitments, but cannot
equivocate himself. Formalizing this notions seems to be tricky and has not been considered in literature
before.

In existing literature, non-malleability of commitments has been dealt with in two scenarios:

Non-malleability w.r.t commitment:[15, 28, 22] This requires that no adversary that receives a commit-
ment to value v be able to commit to a related value (even without being able to later decommit to this
value).

Non-malleability w.r.t decommitment (or opening):[10, 28] This requires that no adversary that receives
a commitment and decommitment to a value v be able to commit and decommit to a related value.

While the former is applicable only in the case the of statistically-binding commitments the latter is
useful even for statistically-hiding commitments. In this work, we need a definition that ensures indepen-
dence of commitments schemes that additionally are equivocable and adaptively secure. Equivocability
means that there is a way to commit to the protocol without knowing the value being committed to and later
open to any value. This essentially implies that the scheme cannot be statistically-binding. Furthermore,
as will be evident in our construction, we require non-malleability w.r.t decommitment. Unfortunately, cur-
rent definitions for non-malleability w.r.t decommitment in literature is defined only in the scenario where
the commitment phase and decommitment phases are decoupled, i.e. in a first phase, a man-in-the-middle
adversary receives commitments and sends commitments, then, in a second phase, the adversary requests
decommitments of the commitments received in the first phase, followed by it decommitting its own com-
mitments. For our construction, we need to define concurrent non-malleability w.r.t decommitments and
such a two phase scenario is not applicable as the adversary can arbitrarily and adaptively decide when to

4

obtain decommitments. Furthermore, it is not clear how to extend the traditional definition to the general
case, as at any point, only a subset of the commitments received by the adversary could be decommitted
and the adversary could selectively decommit based on the values seen so far and hence it is hard to define
a “related” value.

We instead propose a new definition, along the lines of simulation-extractability that has been defined in
the context of constructing non-malleable zero-knowledge proofs. Loosely speaking, an interactive protocol
is said to be simulation extractable if for any man-in-the-middle adversary A, there exists a probabilistic
polynomial time machine (called the simulator-extractor) that can simulate both the left and the right inter-
action for A, while outputting a witness for the statement proved by the adversary in the right interaction.
Roughly speaking, we say that a tag-based commitment scheme (i.e., commitment scheme that take an
identifier—called the tag—as an additional input) is said to be concurrent non-malleable w.r.t opening if
for every man-in-the-middle adversary A that participates in several interactions with honest committers
as a receiver (called left interactions) as well as several interactions with honest receivers as a committer
(called right interactions, there exists a simulator S that can simulate the left interactions, while extracting
the commitments made by the adversary in the right interactions (whose identifiers are different from all the
left identifiers) before the adversary decommits.

It is not hard to construct such commitments using trusted set-up. The idea here is to provide the
simulator with a trapdoor with which it can equivocate as wells as extract the commitments on the right.
(by e.g., relying on encryption). However, to ensure non-malleability, most constructions constructions in
literature additionally impose CCA-security or provide independent trapdoors for every interaction. Our
main technical contribution consists of showing how to construct a concurrent non-malleable commitment
scheme in any trusted set-up by providing with simulator with just one trapdoor. In [23], they introduce the
notion of a concurrent puzzle with non-adaptive security which essentially captures concurrent simulation
requirement using a single trapdoor. Here, we extend the definition to the adaptive case and show how to
construct a concurrent non-malleable commitment scheme w.r.t opening using any concurrent puzzle.

Although our main application of equivocal non-malleable commitments is achieving UC-security, these
commitments may also be useful for other applications such as concurrent non-malleable zero knowledge se-
cure under adaptive corruptions. We believe that an interesting open question is to explore other applications
of equivocal non-malleable commitments and non-malleable commitments with respect to decommitment.

2 Definitions and Background

2.1 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender, to commit itself to a value while
keeping it secret from the receiver (this property is called hiding). Furthermore, in a later stage when the
commitment is opened, it is guaranteed that the “opening” can yield only a single value determined in
the committing phase (this property is called binding). In this work, we consider commitment schemes
that are statistically-binding, namely while the hiding property only holds against computationally bounded
(non-uniform) adversaries, the binding property is required to hold against unbounded adversaries. More
precisely, a pair of PPT machines 〈C,R〉 is said to be a commitment scheme if the following two properties
hold.

Computational hiding: For every (expected) PPT machine R∗, it holds that, the following ensembles are
computationally indistinguishable over n ∈ N .

• {staR
∗

〈C,R〉(v1, z)}n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

• {staR
∗

〈C,R〉(v2, z)}n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

5

where staR
∗

〈C,R〉(v, z) denotes the random variable describing the output of R∗ after receiving a com-
mitment to v using 〈C,R〉.

Statistical binding: Informally, the statistical-binding property asserts that, with overwhelming probability
over the coin-tosses of the receiver R, the transcript of the interaction fully determines the value
committed to by the sender. We refer the reader to [18] for more details.

We say that a commitment is valid if there exists a unique committed value that a (potentially malicious)
committer can open to successfully.

2.2 Adaptive Language-Based Equivocal Commitment Schemes

We assume all our commitment schemes have non-interactive decommitment and is in fact just the random-
ness of the committer algorithm.

Definition 1 (Language-Based Commitment Schemes:). Let L be an NP-Language and R, the associated
NP-relation. A language-based commitment scheme (LBCS) for L is commitment scheme 〈C,R〉 such that:

Computational hiding: For every (expected) PPT machine R∗, it holds that, the following ensembles are
computationally indistinguishable over n ∈ N .

• {staR
∗

〈C,R〉(x, v1, z)}n∈N,x∈{0,1}n,v1,v2∈{0,1}n,z∈{0,1}∗

• {staR
∗

〈C,R〉(x, v2, z)}n∈N,x∈{0,1}n,v1,v2∈{0,1}n,z∈{0,1}∗

where staR
∗

〈C,R〉(x, v, z) denotes the random variable describing the output of R∗(x, z) after receiving
a commitment to v using 〈C,R〉.

Computational binding: The binding property asserts that, there exists an polynomial-time witness-extractor
algorithm Ext, such that for any cheating committer C∗, that can decommit a commitment to two dif-
ferent values v1, v2 on common input x ∈ {0, 1}n, Ext(x, v1, v2) outputs w such that w ∈ R(x).

Definition 2 (Language-Based Equivocal Commitments). Let L be an NP-Language andR, the associated
NP-relation. A language-based commitment scheme 〈C,R〉 for L is said to be equivocal, if there exists a
tuple of algorithms (C̃,Adap) and such that the following hold:

Special-Hiding: For every (expected) PPT machine R∗, it holds that, the following ensembles are compu-
tationally indistinguishable over n ∈ N .

• {staR
∗

〈C,R〉(x, v1, z)}n∈N,x∈L∩{0,1}n,w∈R(x),v1∈{0,1}n,z∈{0,1}∗

• {staR
∗

〈C̃,R〉(x,w, z)}n∈N,x∈L∩{0,1}n,w∈R(x),v1∈{0,1}n,z∈{0,1}∗ where staR
∗

〈C̃,R〉(x,w, z) denotes the

random variable describing the output of R∗(x, z) after receiving a commitment to v1 using
〈C̃, R〉.

Equivocability: Let τ be the transcript of the interaction between R and C̃ on common input x ∈ L ∩
{0, 1}n and private input w ∈ R(x) and random tape r ∈ {0, 1}∗ for C̃. Then for any v ∈ {0, 1}n,
Adap(x,w, r, τ, v) produces a random tape r′ such that (r′, v) serves as a valid decommitment for C.

Definition 3. A `-bit simulatable encryption scheme consists of an encryption scheme (Gen,Enc,Dec) aug-
mented with (oGen, oRndEnc, rGen, rRndEnc). Here, oGen and oRndEnc are the oblivious sampling algo-
rithms for public keys and ciphertexts, and rGen and rRndEnc are the respective inverting algorithms, rGen

6

(resp. rRndEnc) takes rG (resp. (PK, rE,m)) as the trapdoor information. We require that, for all messages
m ∈ {0, 1}`, the following distributions are computationally indistinguishable:

{rGen(rG), rRndEnc(PK, rE,m), PK, c | (PK, SK) = Gen(1k; rG), c = EncPK(m; rE)}
and {r̂G, r̂E, P̂K, ĉ | (P̂K,⊥) = oGen(1k; r̂G), ĉ = oRndEncP̂K(1k; r̂E)}

It follows from the definition that a trapdoor simulatable encryption scheme is also semantically secure.

2.3 Traditional UC

Environment. The model of execution includes a special entity called the UC-environment (or environ-
ment) Z. The environment “manages” the whole execution: it invokes all the parties at the beginning of the
execution, generates all inputs and reads all outputs, and finally produces an output for the whole concurrent
execution. Intuitively, the environment models the “larger world” in which the concurrent execution takes
place (e.g., for a distributed computing task over the Internet, the environment models all the other activities
occurring on the Internet at the same time).

Adversarial behavior. The model of execution also includes a special entity called the adversary, that
represents adversarial activities that are directly aimed at the protocol execution under consideration. We
consider an adaptive adversary, who may corrupt any party at any point during the executions, and as a
function of what he sees. When a party is corrupted, it shares all its tapes with the adversary and follows the
instructions from the adversary for all its future actions.

While honest parties only communicate with the environment through the input/output of the functions
they compute, the adversary is also able to exchange messages with the environment in an arbitrary way
through out the computation2. Furthermore, the adversary controls the scheduling of the delivery of all
messages exchanged between parties (messages sent by the environment is delivered directly). Technically,
this is modeled by letting the adversary read the outgoing message tapes of all parties and decide whether or
not and when (if at all) to deliver the message to the recipient, therefore the communication is asynchronous
and lossy. However, the adversary cannot insert messages and claim arbitrary sender identity. In other
words, the communication is authenticated.

Protocol execution. The execution of a protocol π with the environment Z, adversary A and trusted party
G proceeds as follows. The environment is the first entity activated in the execution, who then activates the
adversary, and invokes other honest parties. At the time an honest party is invoked, the environment assigns
it a unique identifier, and inquiries the adversary whether it wants to corrupt the party or not. To start an
execution of the protocol π, the environment initiates a protocol execution session, identified by a session
identifier sid, and activates all the participants in that session. An honest party activated starts executing the
protocol π thereafter and has access to the trusted party G. We remark that in the UC model, the environment
only initiates one protocol execution session.

Invoking parties. The environment invokes an honest party by passing input (invoke, Pi) to it. Pi is the
globally unique identity for the party, and is picked dynamically by the environment at the time it
is invoked. Immediately after that, the environment notifies the adversary of the invocation of Pi by
sending the message (invoke, Pi) to it, who can then choose to corrupt the party by replying (corrupt,
Pi). Note that here as the adversary is static, parties are corrupted only when they are “born” (invoked).

2Through its interaction with the environment, the adversary is also able to influence the inputs to honest parties indirectly.

7

Session initiation. To start an execution of protocol π, the environment selects a subset U of parties that
has been invoked so far. For each party Pi ∈ U , the environment activates Pi by sending a start-
session message (start-session, Pi, sid, ci,sid, xi,sid) to it, where sid is a session id that identifies this
execution. We remark that in the UC model, the environment starts only one session, and hence all
the parties activated have the same session id.

Honest party execution. An honest party Pi, upon receiving (start-session, Pi, sid, ci,sid, xi,sid), starts
executing its code ci,sid input xi,sid. During the execution,

• the environment can read Pi’s output tape and at any time may pass additional inputs to Pi;

• according to its code, Pi can send messages (delivered by the adversary) to other parties in the
session, in the format (Pi, Pj , s, content)3, where Pj is the identity of the receiver;

• according to its code, Pi can send input to the trusted party in the format (Pi, F , s, input).

Adversary execution. After activation, the adversary may perform one of the following activities at any
time during the execution.

• The adversary can read the outgoing communication tapes of all honest parties and decides to
deliver some of the messages.

• A can exchange arbitrary messages with the environment.

• The adversary can read the inputs, outputs, incoming messages of a corrupted party, and instruct
the corrupted party for any action.

• The adversary can decide to corrupt any party from the set of honest parties at the moment.

Output. The environment outputs a final result for the whole execution in the end.

In the execution of protocol π with security parameter n ∈ N , environment Z, adversaryA and trusted party
G, we define ExecGπ,A,Z(n) to be the random variable describing the output of the environment Z, resulting
from the execution of the above procedure.

LetF be an ideal functionality; we denote by πideal the protocol accessingF , called as the ideal protocol.
In πideal parties simply interacts with Fwith their private inputs, and receives their corresponding outputs
from the functionality at the end of the computation. Then the ideal model execution of the functionality
F is just the execution of the ideal protocol πideal with environment Z, adversary A′ and trusted party F .
The output of the execution is thus ExecFπideal,A′,Z

(n). On the other hand, the real model execution does not
require the aid of any trusted party. Let π be a multi-party protocol implementing F . Then, the real model
execution of π is the execution of π with security parameter n, environment Z and adversary A, whose
output is the random variable Execπ,A,Z(n). Additionally, the G-Hybrid model execution of a protocol π is
the execution of π with security parameter n, environment Z and adversary A and ideal functionality G.

Security as emulation of a real model execution in the ideal model. Loosely speaking, a protocol
securely realizes an ideal functionality if it securely emulates the ideal protocol πideal. This is formulated
by saying that for every adversary A in the real model, there exists an adversary A′ (a.k.a. simulator) in
the ideal model, such that no environment Z can tell apart if it is interacting with A and parties running the
protocol, or A′ and parties running the ideal protocol πideal.

3The session id in the messages enables the receiver to correctly de-multiplexing a message to its corresponding session, even
though the receiver may involve in multiple sessions simultaneously.

8

Definition 4. (Adaptive UC security) Let F and πideal be defined as above, π be a multi-party protocol in
the G-hybrid model. The protocol π is said to realize F with adaptive UC security in G-hybrid model, if for
every uniform PPT adaptive adversary A, there exists a uniform PPT simulator A′, such that, for every
non-uniform PPT environment Z, the following two ensembles are indistinguishable.{

ExecGπ,A,Z(n)
}

n∈N
≈
{

ExecFπideal,A′,Z
(n)
}

n∈N

Multi-session extension of ideal functionalities Note that the UC model only considers a single session
of the protocol execution. (The environment is only allowed to open one session). To consider multiple con-
current executions, we focus on the multi-session extension of ideal functionalities [4, 7]. More specifically,
let F̂ be the multi-session extension of F . F̂ runs multiple copies of F , where each copy will be identified
by a special “sub-session identifier”. Every k parties, trying access F together, share a sub-session identi-
fier, ssid. To compute, each party simply sends its private input together with ssid to F̂ . F̂ upon receiving
all the inputs, activates the appropriate copy of F identified by ssid (running within F̂), and forwards the
incoming messages to that copy. (If no such copy of Fexists then a new copy is invoked and is given that
ssid.) Outputs generated by the copies of Fare returned to corresponding parties by F̂ .

2.4 A Generalized Version of UC

In the UC model, the environment is modeled as a non-uniform PPT machine and the ideal-model ad-
versary (or simulator) as a (uniform) PPT machines. We consider a generalized version (in analogy with
[27, 29]) where we allow them to be in arbitrary complexity classes. Note, however, that the adversary is
still PPT . Additionally, we “strengthen” the definition by allowing the environment to output a bit string
(instead of a single bit) at the end of an execution. In the traditional UC definition, it is w.l.o.g. enough for
the environment to output a single bit [4]; in our generalized version this no longer holds and we are thus
forced to directly consider the more stringent version.

We represent a generalized UC model by a 2-tuple (Cenv, Csim), where Cenv and Csim are respectively
the classes of machines the environment and the simulator of the general model belong to. We consider
only classes, Cenv and Csim, that are closed under probabilistic polynomial time computation. For a model
(Cenv, Csim), let cl(Cenv, Csim) denote the complexity class that includes all computations by PPT oracle
Turing machines M with oracle access to Cenv and Csim.

Definition 5 ((Cenv, Csim)-Adaptive UC adaptive security). Let F and πideal be, as defined above, and π be
a multi-party protocol. The protocol π is said to realize F with (Cenv, Csim)-adaptive UC security, if for
every PPT machine A, there exists a machine A′ ∈ Csim, such that, for every Z ∈ Cenv, the following two
ensembles are indistinguishable w.r.t Csim.{

Execπ,A,Z(n)
}

n∈N
≈
{

ExecFπideal,A′,Z
(n)
}

n∈N

Using the above notation, traditional UC is equivalent to (n.u.PPT ,PPT)-UC-security. We let QPS-
UC denote (n.u.PPT ,PQT)-UC-security4 (where PQT denotes probabilistic quasi-polynomial time al-
gorithms), and Non-uniform UC denote (PPT ,n.u.PPT)-UC-security.

3 Equivocal Non-malleable Commitments

In this section, we define Equivocal Non-malleable Commitments. Intuitively, these are equivocal commit-
ments such that even when a man-in-the-middle adversary receives equivocal commitments and openings
from a simulator, the adversary himself remains unable to equivocate. Formal definitions are given below.

4We mentioned that this is stronger than the notion of QPS security of [27, 29, 2] which only consider indistinguishability w.r.t
PPT ; we, in analogy with the notion of strong QPS of [27] require indistinguishability to hold also w.r.t PQT .

9

Let 〈S,R〉 be a commitment scheme, and let n ∈ N be a security parameter. Consider man-in-the-
middle adversaries that are participating in left and right interactions in which m = poly(n) commitments
take place. We compare between a man-in-the-middle and a simulated execution. In the man-in-the-middle
execution, the adversary A is simultaneously participating in m left and right interactions. In the left inter-
actions the man-in-the-middle adversary A interacts with C receiving commitments to values v1, . . . , vm,
using identities id1, . . . , idm of its choice. It must be noted here that values v1, . . . , vm are provided to com-
mitter on the left prior to the interaction. In the right interaction A interacts with R attempting to commit
to a sequence of related values again using identities of its choice ĩd1, . . . , ĩdm; ṽi is set to the value decom-
mitted by A in the jth right interaction. If any of the right commitments are invalid its committed value is
set to ⊥. For any i such that ĩdi = idj for some j, set ṽi = ⊥—i.e., any commitment where the adversary
uses the same identity as one of the honest committers is considered invalid. Let MIMA

〈C,R〉(v1, . . . , vm, z)
denote a random variable that describes the values ṽ1, . . . , ṽm and the view of A, in the above experiment.

In the simulated execution, a simulator S directly interacts only with receivers on the right and proceeds
as follows:

1. Whenever the commitment phase of jth interaction with a receiver on the right is completed, S outputs
a value ṽj as the alleged committed value in a special-output tape.

2. During the interaction, S may output a partial view for a man-in-the-middle adversary whose right-
interactions are identical to S’s interaction so far. If the view contains a left interaction where the ith

commitment phase is completed and the decommitment is requested, then a value vi is provided as
the decommitment.

3. Finally, S outputs a view and values ṽ1, . . . , ṽm. Let simS
〈C,R〉(1

n, v1, . . . , vm, z) denote the random
variable describing the view output by the simulation and values ṽ1, . . . , ṽm; again, whenever view
contains a right interaction i where the identity is the same as any of the left interactions, ṽi is set to
⊥.

Definition 6. A commitment scheme 〈C,R〉 is said to be concurrent non-malleable w.r.t. opening if for
every polynomial p(·), and every probabilistic polynomial-time man-in-the-middle adversary A that partic-
ipates in at most m = p(n) concurrent executions, there exists a probabilistic polynomial time simulator S
such that the following ensembles are computationally indistinguishable over n ∈ N :{

MIMA
〈C,R〉(v1, . . . , vm, z)

}
n∈N,v1,...,vm∈{0,1}n,z∈{0,1}∗{

simS
〈C,R〉(1

n, v1, . . . , vm, z)
}
n∈N,v1,...,vm∈{0,1}n,z∈{0,1}∗

We can also consider relaxed notions of concurrent non-malleability: one-many, many-one and one-one
secure non-malleable commitments. In a one-one (i.e., a stand-alone secure) non-malleable commitment, we
consider only adversariesA that participate in one left and one right interaction; in one-many, A participates
in one left and many right, and in many-one, A participates in many left and one right.

In this work, we consider a slight relaxation of this definition and show how to construct a protocol for
the same.

Definition 7. A commitment scheme 〈C,R〉 is said to be concurrent non-malleable w.r.t. opening with
independent and identically distributed (i.i.d) commitments if for every polynomial p(·) and polynomial
time samplable distribution D, and every probabilistic polynomial-time man-in-the-middle adversary A
that participates in at most m = p(n) concurrent executions, there exists a probabilistic polynomial time
simulator S such that the following ensembles are computationally indistinguishable over n ∈ N :{

(v1 . . . , vm)← Dn : MIMA
〈C,R〉(v1, . . . , vm, z)

}
n∈N,z∈{0,1}∗

10

{
(v1 . . . , vm)← Dn : simS

〈C,R〉(1
n, v1, . . . , vm, z)

}
n∈N,z∈{0,1}∗

Jumping ahead, the main reason to consider this relaxed definition is because the simulator will employ
rewindings and in the rewinding the simulator will need to fix some value for the commitments in the left
interactions and if these are chosen uniformly from a fixed distribution, the simulator can use the same.
Finally, we consider commitment schemes that are additionally equivocable and in a setup model (i.e. the
the simulator additionally can obtain a trapdoor).

Definition 8. A commitment scheme 〈C,R〉 is said to be an equivocal non-malleable commitment scheme
if it is both a language-based equivocal commitment scheme (see Definition 2) and is concurrent non-
malleable w.r.t. opening (see Definitions 6 and 7).

3.1 Adaptive UC-Puzzles

In this section, we give a formal definition of our new abstraction, Adaptive UC-Puzzles. Intuitively, an
Adaptive UC-Puzzle is a protocol 〈S,R〉 between two players–a sender and a receiver–and a PPT com-
putable relationR, such that the following two properties hold:

Soundness: No efficient receiver R∗ can successfully complete an interaction with S and also obtain a
“trapdoor” y, such thatR(TRANS, y) = 1, where TRANS is the transcript of the interaction.

Statistical UC-simulation with adaptive corruptions: For every efficient adversary A participating in
a polynomial number of concurrent executions with receivers R (i.e., A is acting as a puzzle sender
in all these executions) and at the same time communicating with an environment Z , there exists a
simulator S that is able to statistically simulate the view ofA for Z , while at the same time outputting
trapdoors to all successfully completed puzzles. Moreover, S successfully simulates the view even
when A may adaptively corrupt the receivers.

Formally, let n ∈ N be a security parameter and 〈S,R〉 be a protocol between two parties, the sender
S and the receiver R. We consider a concurrent puzzle execution for an adversary A. In a concurrent
puzzle execution, A exchanges messages with a puzzle-environment Z ∈ Cenv and participates as a sender
concurrently in m = poly(n) puzzles with honest receivers R1, . . . ,Rm. At the onset of a concurrent ex-
ecution, Z outputs a session identifier sid that all receivers in the concurrent puzzle execution receive as
input. Thereafter, the puzzle-environment is allowed to exchange messages only with the adversary A. We
compare a real and an ideal execution.

Real execution. In the real execution, the adversary A on input 1n, interacts with a puzzle-environment
Z ∈ Cenv and participates as a sender in m interactions using 〈S,R〉 with honest receivers that receive input
sid (decided by Z). The adversary A is allowed to exchange arbitrary messages with environment Z when
participating in puzzle interactions with the receivers as a sender. In addition A may adaptively corrupt any
of the receivers R1, . . . ,Rm at any point during or after the execution. We assume without loss of generality
that, after every puzzle-interaction, A honestly sends TRANS to Z , where TRANS is the puzzle-transcript.
Finally, Z outputs a string in {0, 1}∗. We denote this by REALA,Z(n).
Ideal execution. Consider A′ ∈ Csim in the ideal-model that has a special output-tape (not accessible by
Z). In the ideal execution, A′ on input 1n interacts with puzzle-environment Z . We denote the output of Z
at the end of the execution by IDEALA′,Z(n).

Definition 9. Adaptive UC-Puzzle. A pair (〈S,R〉,R) is a (Cenv, Csim)-secure Adaptive UC-puzzle for a
polynomial time computable relationR and model (Cenv, Csim), if the following conditions hold.

11

Soundness: For every malicious PPT receiver A, there exists a negligible function (·) such that the prob-
ability that A, after an execution with S on common input 1n, outputs y such that y ∈ R(TRANS)
where TRANS is the transcript of the messages exchanged in the interaction, is at most ().

Statistical Simulatability: For every adversary A ∈ Cenv participating in a concurrent puzzle execu-
tion, there is a simulator A′ ∈ Csim such that for all puzzle-environments Z ∈ Cenv, the ensem-
bles {REALA,Z(n)}n∈N and {IDEALA′,Z(n)}n∈N are statistically close over n ∈ Nat and when-
ever A′ sends a message of the form TRANS to Z , it outputs y in its special output tape such that
y ∈ R(TRANS).

4 Achieving Adaptive UC-Security

In this section, we give a high-level overview of the construction of an EQNMCom scheme and the proof
of Theorem 1, which relies on the existence of an EQNMCom scheme. For the formal construction and
analysis of our EQNMCom scheme, see Section 5. For the restatement and formal proof of Theorem 1, see
Section 6.

By relying on previous results, the construction of an adaptive UC-secure protocol for realizing any mul-
tiparty functionality reduces to the task of constructing a commitment protocol that satisfies the following
two properties:

Concurrent equivocability: For every adversaryA receiving honest commitments, there needs to be a way
to generate commitments in an online manner for honest parties before knowing the message being
committed to and later be able to decommit to any specified message.

Concurrent extraction: For every adversary A, there needs to be a way to extract the commitments in an
online manner that are adversarially generated.

Below we introduce the notion of an adaptive UC-puzzle. Then, we show how to construct an equivocal
non-malleable commitment scheme based on any adaptive UC-puzzle. Then combining the equivocal non-
malleable commitment scheme with a simulatable encryption scheme we show how to obtain a commitment
scheme that is concurrently equivocable and concurrently extractable.

4.1 Constructing EQNMCom based on Adaptive UC-Puzzles

Our protocol is based on the protocol for non-malleable commitments in [22]. However, while the [22]
commitment scheme is statistically binding, we must construct non-malleable commitments that are not just
computationally binding, but are actually equivocal. In the protocol from [22], the receiver first sends f(x)
for a uniformly chosen x under a one-way function x and this x serves as a trapdoor for the simulator. We
here instead, rely on UC-puzzle to achieve this. So we replace Stage 1 with a UC-puzzle where the receiver
of the commitment is the sender of the puzzle. Next, since we need an equivocal commitment scheme,
we replace the statistically binding commitment sent by the commiter in Stage 2 of the [22] protocol with
a language-based equivocal commitment where the NP-language is the one generated by the transcript of
the puzzle interaction and witness being the puzzle solution. Informally, this is constructed by relying on
a variant of Feige-Shamir’s trapdoor commitment.5 Finally, we replace the WIPOK invocations in Stage 3
with invocations of an adaptively-secure (without erasures) WIPOK (see Appendix B) following the work
of [25]. More specifically, our protocol proceeds as follows:

5Let x be an NP-statement. The sender commits to bit b by running the honest-verifier simulator for Blum’s Hamiltonian Circuit
protocol [3] on input the statement x and the verifier message b, generating the transcript (a, b, z), and finally outputting a as its
commitment. In the decommitment phase, the sender reveals the bit b by providing both b, z.

12

1. In Stage 1, the Committer and Receiver exchange a UC-puzzle where the Receiver is the sender of
the puzzle and the Committer is the receiver of the puzzle. Let x be the transcript of the interaction.

2. In Stage 2, the Committer sends c = EQComx(v), where EQCom is a language-based equivocal
commitment scheme as in Definition 2 with common input x.

3. In Stage 3, the Committer proves that c is a valid commitment for v. This is proved by 4` invoca-
tions of an adaptively-secure (without erasures) WIPOK (See Appendix B) where the messages are
scheduled based on the id (as in [15, 22]). More precisely, there are ` rounds, where in round i, the
schedule designidi

is followed by design1−idi
(See Figure 4.1).

design0 design1

γ2

β2

β1

α1

γ1, α2

γ2

β2

γ1

β1

α1, α2

The basic idea in [22] that originates from [15], is to construct a protocol where the scheduling of the
messages depends on the tag of the commitment. The scheduling ensures that for every right interaction with
a tag that is different from the left interaction, there exists a point—called a safe-point—from which we can
rewind the right interaction (and extract the committed value), without violating the hiding property of the
left interaction. It now follows from the hiding property of the left interaction that the values committed
to on the right do not depend on the value committed to on the left. To construct a simulator-extractor
for our protocol, we unfortunately cannot rely on the above. This is because it will allow to rewind a
right interaction safely w.r.t. only one left interaction and we need to deal with an unbounded number of
concurrent executions on the left. Instead, we have the simulator simulate the puzzle while extracting the
trapdoor, equivocate the left commitments (using the trapdoor) and then rewind a random WIPOK in the
right-interaction to obtain the adversary’s commitment. This could be problematic since the adversary could
gain knowledge of the trapdoor in such rewinds. To avoid this, in all the rewindings we let the simulator
follow the honest committer strategy in the left interaction. This is possible since the protocol is adaptively
secure and from any point in the interaction the simulator can generate coins for an honest committer in
the left-interaction. But to do this, we need to choose a value that the honest committer is committing to
(if one has not yet been decommitted). Since we are constructing a commitment scheme for the relaxed
notion where all the left commitments are uniformly sampled from D, the simulator in the rewindings just
samples a value from D for each left interaction and uses this value. While the simulation itself does not
utilize safe-points, proving correctness of the simulation proceeds in hybrids where the left commitments
are equivocated one at time and correctness in successive hybrids is proved using safe-points.

4.2 Adaptive UC-secure Commitment Scheme

We now provide the construction of a commitment scheme that is concurrently equivocable and concurrently
extractable based on any adaptive UC-puzzle and simulatable encryption scheme. As mentioned earlier, this
will imply that adaptive UC-secure computation is feasible in any model where there exists a UC-puzzle.
First, we recall the construction of the adaptive UC-secure commitment in the common reference string
model (CRS) from [7] to motivate our construction.

In the [7] construction, the CRS contains two strings. The first string consists of a random image
y = f(x) of a one-way function f and the second string consists of a public key for a cca-secure encryption

13

scheme. The former allows a simulator to equivocate the commitment when it knows x and the public key al-
lows the simulator to extract committed values from the adversary using its knowledge of the corresponding
secret-key. The additional CCA requirement ensures non-malleability.

Our construction follows a similar approach, with the exception that instead of having a common refer-
ence string generated by a trusted party, we use the equivocal non-malleable commitment to generate two
common-reference strings between every pair of parties: one for equivocation and the other for extraction.
This is achieved by running the following “non-malleable” coin-tossing protocol between an initiator and a
responder.

1. The initiator commits to a random string r0 using 〈Scom,Rcom〉 to the responder.

2. The responder chooses a random string r1 and sends to the Initiator.

3. The initiator opens its commitment and reveals r0.

4. The output of the coin toss is: r = r0 ⊕ r1.

The coin-tossing protocol is run between an initiator and responder and satisfies the following:

• For all interactions where the initiator is honest, there is a way to simulate the coin-toss. This follows
directly from the equivocability of the commitment scheme 〈Scom,Rcom〉.

• For all interactions where the initiator is controlled by the adversary, the coin-toss generated is
uniformly-random. This follows from the simulation-extractability of the commitment scheme.

Using the coin-tossing protocol we construct an adaptive UC-commitment scheme.
First, the sender and receiver interact in two coin-tossing protocols, one where the sender is the initiator,

with outcome coin1 and the other, where the receiver is the initiator, with outcome coin2. Let x be the
statement that coin1 is in the image of the PRG G. Also let, PK = oGen(coin2) be a public key for the
simulatable encryption scheme. To commit to a string β, the sender sends a commitment to β using the
non-interactive language-based commitment scheme with statement x along with strings S0 and S1 where
one of the two strings (chosen at random) is an encryption of decommitment information to β and the other
string is outputted by oRndEnc. In fact, this is identical to the construction in [7], with the exception that a
simulatable encryption scheme is used instead of a CCA-secure scheme.

Binding follows from the soundness of the adaptive UC-puzzle and hiding follows from the hiding
property of the non-interactive commitment scheme and the semantic security of the encryption scheme.

It only remains to show that the scheme is concurrently equivocable and extractable. To equivocate a
commitment from a honest committer, the simulator manipulates coin1 (as the honest party is the initia-
tor) so that coin1 = G(s) for a random string s and then equivocates by equivocating the non-interactive
commitment and encrypting the decommitment information for both bits 0 and 1 in Sb and S1−b (where b
is chosen at random). To extract a commitment made by the adversary, the simulator manipulates coin2 so
that coin2 = rGen(r) and (PK, SK) = Gen(r) for a random string r. Then it extracts the decommitment
information in the encryptions sent by the adversary using SK.

The procedure described above works only if the adversary does not encrypt the decommitment infor-
mation for both 0 and 1 even when the simulator is equivocating. We rely on the simulation-extractability of
the 〈Scom,Rcom〉-scheme to prove this. On a high-level, this follows since, if the coin-toss coin1 cannot be
manipulated by the adversary when it is the initiator, then the coin1 is not in the range of G with very high
probability and hence the adversary cannot equivocate (equivocating implies a witness can be extracted that
proves that coin1 is in the range of G).

14

5 The Equivocal Non-Malleable Commitment Scheme (EQNMCom) Π =
〈Scom,Rcom〉

We note that the construction presented here is the same as the construction of [15, 22] with the following
changes: the statistically-binding commitment is replaced with an equivocal commitment and the special-
sound WI proofs are replaced with adaptively-secure WIPOK’s. Although the constructions are similar, the
analysis here differs significantly from the analysis of the previous constructions of [15, 22] where the fact
that the first commitment is statisticall-binding plays a large part in the proof.

The protocol proceeds in the following two stages on common input the identity id ∈ {0, 1}` of the
committer, common string x, and security parameter n.

1. In Stage 1, the Committer sends c = EQComx(v), where EQCom is a language-based equivocal
commitment scheme as in Definition 2 with common input x.

2. In Stage 2, the Committer proves that c is a valid commitment for v. This is proved by 4` invocations
of an adaptively-secure (without erasures) WIPOK (See Appendix B) where the messages are sched-
uled based on the id (as in [15, 22]). More precisely, there are ` rounds, where in round i, the schdule
designidi

is followed by design1−idi
(See Figure 5).

design0 design1

γ2

β2

β1

α1

γ1, α2

γ2

β2

γ1

β1

α1, α2

Commitment Protocol Π = 〈Scom,Rcom〉

Common input: An identifier id ∈ {0, 1}` and common input x.

Auxiliary Input for Committer: A string v ∈ {0, 1}n.

Stage 1:

C uniformly chooses r ∈ {0, 1}poly(n).
C → R: c = EQComx(v; r).

Stage 2:

C → R: 4` adaptively-secure WIPOK of the statement there exist values v, r such that c =
EQComx(v; r) with verifier query of length 2n, in the following schedule: For j = 1 to `
do: Execute designidj

followed by Execute design1−idj
.

Figure 1: Equivocal Non-Malleable Commitment Scheme Π = 〈Scom,Rcom〉

15

5.1 Analysis

In this subsection, we prove that Π = 〈Scom,Rcom〉 is an equivocal non-malleable commitment scheme
when combined with an adaptive UC-puzzle in a preamble phase where the receiver acts the sender and
the committer acts as the receiver and the NP-statement x used in 〈Scom,Rcom〉 is the transcript of the
interaction from the preamble phase. More precisely, consider the following protocol: Let (〈S,R〉,R) be a
(Cenv, Csim)-secure adaptive UC-puzzle. The protocol Π proceeds in the following two phases on common
input the identity id ∈ {0, 1}` of the committer, and private-input string r for the committer and security
parameter n.

Preamble Phase: An adaptive UC-Puzzle interaction 〈S,R〉 on input 1n where Scom is the receiver and
Rcom is the sender. Let x = TRANS be the transcript of the messages exchanged.

Commitment Phase: The parties run protocol 〈Scom,Rcom〉 with common input x and identifier id. S plays
the part of sender with input r.

We now show that the protocol Π is concurrent non-malleable w.r.t opening in the (Cenv, Csim)-model.

THEOREM 2. Commitment scheme Π described above is concurrent non-malleable w.r.t. opening with
independent and identically distributed (i.i.d) commitments

Before we prove this theorem, we first show that Π is a language-based equivocal commitment scheme:

Lemma 1. Commitment scheme Π = 〈Scom,Rcom〉 shown in Figure 1 is a language-based equivocal com-
mitment scheme.

Proof. In order to prove the lemma we need to present an equivocator (S̃com,Adapcom) for 〈Scom,Rcom〉
and prove that (S̃com,Adapcom) has the required properties listed in Definition 2. Intuitively the equivocator,
S̃com, will run the equivocator for the commitment scheme EQCom as well as the simulator for the WIPOK.
Then, Adapcom will run Adapeq for the EQCom scheme and also will adaptively corrupt the prover and
run the simulator for the WIPOK, which produces a simulated view for the prover. By taking a closer look
at the simulator for the WIPOK presented in Appendix B we see that, in fact, S̃com simply replaces every
commitment under EQCom in 〈Scom,Rcom〉 (in both Stage 1 and Stage 2) with an equivocal commitment
generated by the equivocator, S̃eq for the commitment scheme EQCom. The fact that S̃com has this form
will be crucial for the proof of Lemma 3.

We omit the proof that (S̃com,Adapcom) as described above has the desired properties since it follows
straightforwardly from the security properties of EQCom and the adaptive security (without erasures) of the
WIPOK.

Now, we turn towards proving Theorem 2.
Proof of Theorem 2: First we describe the simulator and then prove correctness. Let A be a concurrent
man-in-the-middle adversary that on input 1n participates in at most m(n) left-interactions as a receiver,
receiving commitments from an honest committer whose values are chosen uniformly from distribution D
and at most m(n) right-interactions as a committer.

For simplicity, we assume that the puzzle-simulation is straight-line. Towards the end, we mention how
to modify the simulator when the simulation is not straight-line. On a high-level, S internally incorporates
A and emulates an execution with A as follows:

1. For all puzzle interactions where A∗ controls the sender, S follows the puzzle simulator’s strategy to
simulate the puzzle and obtains a witness which it stores.

2. For all the messages exchanged by A∗ in the right interactions, Sim simply forwards the messages to
an external receiver.

16

3. For every left interaction, Sim internally generates the messages using the simulator for the com-
mitment scheme (that can equivocate the commitment) with the witness w obtained from the puzzle
interactions. When a decommitment is requested by A, Sim outputs the current partial view of the
transcript of messages exchanged by A in a special-output tape and receives from outside a value v.
Internally, it runs the simulator for the stand-alone commitment scheme to decommit to v.

4. Whenever the commitment phase with a receiver is completed on the right, Sim temporary stalls
the main-execution and tries to extract the value committed to by A in this interaction. For this,
Sim selects a random WIPOK from that interaction and rewinds A to the point just before which A
receives the challenge-message in the WIPOK. Sim supplies a new challenge message and continues
simulation. In this simulation, the right interactions are simulated as before (i.e. honestly). However
the left interactions are not simulated as before (i.e. equivocating the commitment phase). Instead they
are generated using an honest committer committing to a value v, where v is either the decommitment
for that left interaction, if one has been obtained by Sim in the main-execution, or a uniformly chosen
sample from D.6 If in the rewinding, A provides a valid response for the selected WIPOK of the right
interaction, then using the special-sound property of the WIPOK, Sim extracts the witness used in
the WIPOK, which contains the committed value. If the adversary fails to provide a valid response
for the particular WIPOK in the right interaction, Sim cancels the current rewinding and starts a new
rewinding by supplying a new challenge.

The proof of correctness of the simulator is expressed in the following lemma.

Lemma 2. The following ensembles are computationally indistinguishable{
(v1 . . . , vm)← Dn : MIMA

〈C,R〉(v1, . . . , vm, z)
}
n∈N,z∈{0,1}∗{

(v1 . . . , vm)← Dn : simS
〈C,R〉(1

n, v1, . . . , vm, z)
}
n∈N,z∈{0,1}∗

Proof of Lemma 2. Towards proving this, we consider a sequence of intermediate hybrid experimentsH0, . . . ,Hm.
In experiment Hi, we consider a simulator Simi that knows the values (v1, . . . , vi) being committed to
in the first i left interactions. On input z, Simi proceeds as follows: It proceeds exactly as Sim with
the exception that only the first i left-interactions are equivocated while the rest are simulated using the
honest committer algorithm, committing to values (vi+1, . . .) both in the main-execution as well as in the
rewinding. Let hybiA(1n, v1, . . . , vm, z) denote the output of Simi in Hi. It follows from description that
hybmA (1n, v1, . . . , vm, z) = simS

〈C,R〉(1
n, v1, . . . , vm, z)The proof of the Lemma follows from the next two

claims using a standard hybrid argument.

Claim 1. The following ensembles are computationally indistinguishable{
(v1 . . . , vm)← Dn : MIMA

〈C,R〉(v1, . . . , vm, z)
}
n∈N,z∈{0,1}∗{

(v1 . . . , vm)← Dn : hyb0
A(1n, v1, . . . , vm, z)

}
n∈N,z∈{0,1}∗

Proof of Claim 1. Recall that in hybrid experiment H0, the simulator simulates all the commiters in the
left interaction using the honest committer algorithm. The only difference from the MIM experiment is
that the puzzles are simulated. Assume for contradiction, there exists an adversary A, distinguisher D,
polynomial p(·) such that, for inifinitely many n, D distinguishes the ensembles in the claim with prob-
ability at least 1

p(n) . From the definition of the puzzle we have that the distribution of the views in the

outputs of MIMA
〈C,R〉(v1, . . . , vm, z) and hyb0

A(1n, v1, . . . , vm, z) are statistically-close. Furthermore, if the

6Sim can generate such messages for any value v, since by adaptive security, Sim can obtain random coins for an honest
committer and any value v that is consistent with any partial transcript generated by the equivocator.

17

value extracted by the simulator in hyb0
A(1n, v1, . . . , vm, z) in each interaction is consistent with the de-

commitment made by the adversary in the view output by the simulator, then MIMA
〈C,R〉(v1, . . . , vm, z) and

hyb0
A(1n, v1, . . . , vm, z) are statistically-close. Hence, if D distinguishes the distributions, it must be the

case that, the values output in both the experiments differs with probability at least 1
p(n) . This happens,

whenever the value output by the simulator in hyb0
A is inconsistent with the view output by the simulator.

Hence, the Sim0 obtains two decommitments for the same commitment (one as part of the main-execution
and one obtained using the witness extracted) for a commitment made by the adversary in some right-
interaction with probability at least 1

p(n) . With any two valid decommitments, a solution to the puzzle from

the preamble phase can be obtained. Consider a slightly altered simulation Sim
0

that proceeds exactly like
Sim0 with the exception that all the puzzle interactions in the left interaction are simulated honestly. It
follows from the statisical-simulatability of the puzzle that with non-negligible probability, Sim

0
extracts a

witness for a puzzle in a right interaction where the adversary is a receiver of the puzzle. Hence, if Sim
0

runs
inPPT , then, Sim

0
with adversaryA can be used to construct an adversary that violates the soundness of the

adapative UC-puzzle.7 It only remains to argue that Sim
0

run in PPT and then we arrive at a contradiction.
Recall that for every right interaction that completes the commitment phase, Sim0, and hence Sim

0
rewinds

repeatedly until it obtains a witness for a random WIPOK. We argue that the expected number of restarts for
every right- interaction is O(1) and therefore the expected running time of Sim

0
is bounded by some poly-

nomial. Fix a particular right-interaction that completes the commitment phase and select a WIPOK. Given
the first message of the WIPOK, let p be the probability that over a random challenge-message that A pro-
vides a valid response. Since the rewindings are identically distributed to the main-execution, the expected
number of restarts required before Sim

0
encounters another execution where A provides a valid response

is 1
p . However, note that Sim

0
needs to perform the rewinding only with probability p since otherwise the

right-interaction does not complete the commitment phase. Therefore, the expected number of restarts for a
particular right interaction is p× 1

p = 1.

Claim 2. The following ensembles are computationally indistinguishable{
(v1 . . . , vm)← Dn : hyb0

A(1n, v1, . . . , vm, z)
}
n∈N,z∈{0,1}∗

{(v1 . . . , vm)← Dn : hybmA (1n, v1, . . . , vm, z)}n∈N,z∈{0,1}∗

Proof of Claim 2. Assume for contradiction, there exists an adversary A, distinguisher D, polynomial p(·)
such that, for inifinitely many n, D distinguishes the ensembles in the claim with probability at least 1

p(n) .
Then there exists a function i : N → N such that for infinitely many n, D distinguishes the following two
ensembles with probability at least 1

mp(n) .{
(v1 . . . , vm)← Dn : hyb

i(n)−1
A (v1, . . . , vm, z)

}
n∈N,z∈{0,1}∗{

(v1 . . . , vm)← Dn : hyb
i(n)
A (1n, v1, . . . , vm, z)

}
n∈N,z∈{0,1}∗

Let H ′j denote the experiment that proceeds identically to Hj , with the exception that the simulator
performs no rewinding. Let hyb′jA denote the random variable that represents the view output by the sim-
ulator in H ′j . It follows from description that hyb′jA is identically distributed to the view in hybjA since the
rewindings are conducted independent of the main-execution.

We first claim that the following ensembles are indistinguishable for any function j : N → N .{
(v1 . . . , vm)← Dn : hyb′

j(n)−1
A (v1, . . . , vm, z)

}
n∈N,z∈{0,1}∗

7Simply forward a random puzzle interaction ofA during the straight-line simulation to an external sender of a puzzle execution
and then internally obtain two decommitments of A and extract a witness whenever A equivocates

18

{
(v1 . . . , vm)← Dn : hyb′

j(n)
A (1n, v1, . . . , vm, z)

}
n∈N,z∈{0,1}∗

This is because the only difference betweenH ′j(n)−1 andH ′j(n) is that the j(n)th left interaction is equiv-
ocated and therefore indistinguishability directly follows from the strong-hiding property of the equivocal
commitment.

Recall that if the values extracted by the simulator is always equal to the value decommitted to by the
adversary, then the above claim implies that hyb

i(n)−1
A and hyb

i(n)
A are indistinguishable. Therefore, it must

be the case that, for infinitely many n, with probability at least 1
2mp(n) the value extracted by the simulator

is different from the value decommitted to by A. Furthermore, there exists a function k : N → N such
that, for infinitely many n, the value extracted by the simulator in the k(n)th right interaction is different
from the value decommited to by A in the main-execution with probability at least 1

2m2p(n)
. Let hybi,kA

denote the view output of the simulator in Hi and the value extracted in the kth right interaction. Then there
exists a function k(n) such that the probability with which the value output is not the value decommitted in
the view jumps by at least 1

2m2p(n)
when comparing hyb

i(n)−1,k(n)
A and hyb

i(n),k(n)
A with probability at least

1
2m2p(n)

for infinitely many n. Lets say that a (view, v) pair is k- cons if v is the value decommited to by

the adversary in kth right-interaction.
We consider the following intermediate hybrid experiments:

Hybrid H̄k
0 = Hi−1: This experiment proceeds identically to Hi−1 with the exception that the simulator

only extracts the decommitment from the kth right interaction. Define hyb
0
A to be the view output and

the value extracted by the simulator, i.e. hyb
0
A = hybi−1,kA .

Hybrid H̄k
1 : In the kth right-interaction, we say that a particular WIPOK is a safe WIPOK, if the “safe-

point” of this interaction w.r.t ith left interaction corresponds to this WIPOK. The definition of safe-
point is analogous and identical to the safe-points defined in [22].8The experiment H̄k

1 proceeds iden-
tically to H̄k

0 with the exception that it rewinds the adversary to a safe WIPOK in the kth right inter-
action instead of a choosing a random WIPOK and the ith left interaction. Define hyb

1
A to be the view

output and the value extracted by the simulator.

Hybrid H̄k
2 : This experiment proceeds identically to H̄k

1 with the exception that the ith left interaction is
simulated using fresh randomness in each rewinding. In particular, if the next message in the ith left
interaction is the first message of a WIPOK sub-protocol, then fresh randomness is used to generate
it.9 Recall that, in the actual simulator and previous hybrids, this is not the case and in the rewinding
phase, the randomness of the all the left interactions are fixed. Furthermore, whenever the adversary
tries to corrupt the ith left interaction in a rewinding the simulator cuts off the rewinding and restarts.
Define hyb

2
A to be the view output and the value extracted by the simulator.

Hybrid H̄k
3 : This experiment proceeds identically to hyb

2
A with the exception that in the ith left interaction,

the simulator equivocates the commitment both in the main-execution as well as in the rewindings.
Again, as in the previous hybrid, a fixed random tape is used for all the left-interactions in the rewind-
ings except the ith interaction where fresh randomness is used in the rewindings. Every rewinding
where the adversary tries to corrupt the committer in the ith left-interactions is cancelled. Define hyb

3
A

to be the view output and the value extracted by the simulator.
8Intuitively, a safe-point ρ of a right interaction, is a point in ∆ that lies in between the first two messages αr and βr of a

WIPOK proof (αr, βr, γr) in the right interaction k, such that, when rewinding from ρ to γr , if A uses the same “scheduling of
messages” as in ∆, then the left interaction can be emulated without affecting the hiding property. See [] for more details.

9Jumping ahead, this will allow the ith left-interaction to be forwarded externally to a committer, analogous to [15, 23].

19

Hybrid H̄k
4 : The experiment proceeds identically to hyb

3
A with the exception that the ith left interaction is

also simulated using a fixed random tape for the committer in all the rewindings. Define hyb
4
A to be

the view output and the value extracted by the simulator.

Hybrid H̄k
5 = Hi: The experiment proceeds identically to Hi with the exception that the simulator only

extracts from the kth right interaction . Define hyb
5
A to be the view output and the value extracted by

the simulator, i.e. hyb
5
A = hybi,kA .

Since, the difference in probability that hyb
i(n)−1,k(n)
A and hyb

i(n),k(n)
A are k- cons is at least 1

p1(n)
=

1
2m2p(n)

for infinitely many n, there must exists a c ∈ {1, 2, 3, 4, 5} such that the difference in probability

that hyb
c−1
A and hyb

c
A are k- cons is at least 1

5p1(n)
for infinitely many n. We argue below for every c that

we arrive at a contradiction if the above statement holds for c.

Comparing H̄k
0 and H̄k

1 In this case, we have that, for infinitely many n,

|Pr[hyb
0
A is k-cons]− Pr[hyb

1
A is k-cons]| ≥ 1

5p1(n)

Proof Sketch: Since the only difference between H̄k
0 and H̄k

1 is in which WIPOK is rewound to extract the
witness, it must be the case that the probability that the witness extracted from a random WIPOK and the
specific WIPOK chosen from the safe point is different must be at least 1

5p1(n)
. Using this fact, we arrive at

a contradiction to the soundness of the puzzle.
First, we note that it is possible for a simulator to check if the value extracted in a random WIPOK

and a safe WIPOK are the same. Recall that in the left interactions of the main execution in H̄k
1 and H̄k

2 ,
the simulator is equivocating the first i commitments and honestly committing in the rest of them. This in
particular means that the value decommitted to in the first i commitments are chosen after the commitment
phase. In the rewinding phase, when the simulator tries to extract the witness from a WIPOK, it simulates the
left interactions by using the honest committer strategy with a fixed random tape. Consider an experiment
Ek0 where the simulator continues the execution until A completes the commitment phase in the kth right-
interaction and then cuts off the simulation. Then it extracts the witness from a random WIPOK and the
safe WIPOK. If the values are different, the simulator extracts the solution of the puzzle and outputs it. It
follows that the simulator outputs the solution of the puzzle with non-negligible probability.

We consider of hybrid experiments and show that in each of them the simulator can output a solution
with non-negligible probability and finally arrive at a simulator that violates the soundness of the puzzle.

The first intermediate experiment Ek1 we consider is where the simulator chooses the value to be com-
mitted in the first k right interactions before the interaction begins. This modification does not affect the
view obtained in the main-execution because all values in the left interactions are chosen independently
from distribution D. It also does not affect the rewindings, because the commiters strategy is fixed, i.e. its
random tape and commitment are fixed. Therefore,Ek1 andEk0 proceed identically and the simulator outputs
the solution to the puzzle with non-negligible probability in Ek1 as well.

In Lemma 3, we show that, it is possible to construct an honest committers algorithmC∗ for 〈Scom,Rcom〉
that knows the witness of the common input statement x and receives a polynomial sequence of strings
s1, . . . , sm such that

• The transcript generated by C∗ committing to string v, when the strings received as input s1, . . . , sm
are uniformly random, is identically distributed to the transcript of an interaction with an honest
committer, committing to a value v, and,

20

• The transcript generated by C∗ committing to string v, when the strings received as input s1, . . . , sm
are random commitments to 1 using Com, is identically distributed to the transcript generated by an
equivocal commitment using the witness for statement x and decommitted to value v.

if the value to be decommitted to is known at the beginning of an execution, then the commitment
phase can be generated using an honest-committer’s strategy that additionally receives as input a particular
sequence of strings that are either uniformly random or commitments to 0 and 1 under 〈C,R〉. We now
observe that in Ek1 , although the simulator is equivocating the first i commitments in the left, the value to be
decommitted to is chosen before the execution begins. Consider the experimentEk2 that proceeds identically
to Ek1 with the exception that the simulator generates the equivocal commitments by using the committer
strategy C∗ that receives as input a sequence of commitments to 1 using Com. This experiment proceeds
identically to Ek1 and the simulator extracts the solution to the puzzle with non-negligible probability.

In the next experiment Ek3 , we consider a simulator that proceeds identically to Ek2 with the exception
that the sequence of strings received by the honest-committers in the first k left interactions are chosen
uniformly at random (as opposed to commitments to 1). It now follows from the pseudo-randomness of the
commitments under Com that the simulator extracts the solution to the puzzle in Ek3 with non-negligible
probability. Now, observe that experiment Ek3 is identical to experiment H0 and this violates the soundness
of the puzzle interaction. Thus, we arrive at a contradiction.

Comparing H̄k
1 and H̄k

2 In this case, we have that, for infinitely many n,

|Pr[hyb
1
A is k-cons]− Pr[hyb

2
A is k-cons]| ≥ 1

5p1(n)

Proof Sketch: We will again show how to construct an adversary that violates the soundness of the puzzle.
The proof of this follows identically as in the previous case. We again consider a simulator that cuts off the
adversary after the commitment phase on the kth right interaction is completed and then rewinds to extract a
witness from the safe WIPOK in two different ways, i.e. as in H̄k

1 and H̄k
2 . Again we have that the simulator

extracts the solution to the puzzle with non-negligible probability as the value extracted are different with
non-negligible probability. We can follow identically as in the previous hybrid, by considering the sequence
of hybrid experiments, Ek0 to Ek3 where the left interactions are all honestly generated. Again we have that
the simulator extracts the solution of the puzzle in Ek3 and this violates the solution of the puzzle.

Comparing H̄k
2 and H̄k

3 In this case, we have that, for infinitely many n,

|Pr[hyb
2
A is k-cons]− Pr[hyb

3
A is k-cons]| ≥ 1

5p1(n)

In this case, we will show that A can be used to violate the special-hiding property of a variant of the
commitment scheme.
Proof Sketch: The idea here (that originates from the work in [15], also used in [22], is that the simulation
can be carried out even when the ith left interaction is forwarded externally to a committer participating in
Π̃ which is a slightly altered version of the protocol Π. The only difference of Π̃ from Π is that Π̃ does not
have a fixed scheduling of WIPOKs in the Stage 2 based on the committers identity. Instead, the receiver can
request the commiter to provide proofs using WIPOK using designs of its choice. This is analogous to [22].
It was shown in [22], that while rewinding from a safe WIPOK in the kth right-interaction, the messages
for the ith left interaction can be received from an external committer, interacting using Π̃. Consider an
experiment, where the simulator proceeds identically as in H̄k

3 with the exception that the ith left interaction
is forwarded externally to a committer following Π̃ that commits to a value uniformly chosen from D. It
now follows that this experiment proceeds identically to H̄k

2 if the external committer is following the honest

21

committer strategy in Π̃, and is identical to H̄k
3 if the external committer is equivocating. Therefore, it is

possible to consider an adversary that distinguishes when it receives an honest commitment or a equivocal
commitment using Π̃ on the left, by simply extracting the value from the safe WIPOK. This violates the
special hiding-property of the Π̃ and thus we arrive at a contradiction.

Comparing H̄k
3 and H̄k

4 In this case, we have that, for infinitely many n,

|Pr[hyb
3
A is k-cons]− Pr[hyb

4
A is k-cons]| ≥ 1

5p1(n)

This will follow exactly as with hybrid experiment H̄k
1 and H̄k

2 .

Comparing H̄k
4 and H̄k

5 In this case, we have that, for infinitely many n,

|Pr[hyb
4
A is k-cons]− Pr[hyb

5
A is k-cons]| ≥ 1

5p1(n)

This will follow exactly as with hybrid experiment H̄k
0 and H̄k

1 .

It only remains to state and prove Lemma 3. First, we need some notation.
Consider the following experiments exptM,R∗

〈Scom,Rcom〉(0, x, v1, z), exptM,R∗

〈Scom,Rcom〉(1, x, v1, z) where proba-
bilistic polynomial time machines R∗,M interact using the equivocal non-malleable commitment protocol
〈Scom,Rcom〉 (defined in Section 5) with common input x ∈ L and private input w ∈ R(x):

Experiment exptM,R∗

〈Scom,Rcom〉(b, x, v1, z): R∗ plays the part of receiver in the 〈Scom,Rcom〉 protocol and ini-
tiates a request for a commitment to v1. Upon this request, a sequence of 2t(n) strings is cho-
sen (s01, . . . , s

0
t(n), s

1
1, . . . , s

1
t(n)) (for some fixed polynomial t(·)) in the following way: If b = 0,

(s01, . . . , s
0
t(n), s

1
1, . . . , s

1
t(n)) are chosen uniformly at random. If b = 1, (s01, . . . , s

0
t(n)) are chosen

to be random commitments to 0 and (s11, . . . , s
1
t(n)) are chosen to be random commitments to 1. A

machine running the code of M is initiated with input (x,w, v1, (s
0
1, . . . , s

0
t(n), s

1
1, . . . , s

1
t(n))). M in-

teracts with R∗ and at any point after M completes the commitment, R∗ can request a decommitment
from M . Define the output of the experiment staM,R∗

〈Scom,Rcom〉(b, x, v1, z) to be the output of R∗.

Lemma 3. There exists a probabilistic polynomial time machine M∗ such that for every probabilistic poly-
nomial time adversary R∗, we have that:

{staM,R∗

〈Scom,Rcom〉(0, x, v1, z)}n∈N,x∈L∩{0,1}n,w∈R(x),v1∈{0,1}n,z∈{0,1}∗

≡ {staR
∗

〈Scom,Rcom〉(x, v1, z)}n∈N,x∈L∩{0,1}n,w∈R(x),v1∈{0,1}n,z∈{0,1}∗

AND

{staM,R∗

〈Scom,Rcom〉(1, x, v1, z)}n∈N,x∈L∩{0,1}n,w∈R(x),v1∈{0,1}n,z∈{0,1}∗

≡ {staR
∗

〈S̃com,Rcom〉
(x,w, z)}n∈N,x∈L∩{0,1}n,w∈R(x),v1∈{0,1}n,z∈{0,1}∗

22

Proof. On input (x,w, v1, (s
0
1, . . . , s

0
t(n), s

1
1, . . . , s

1
t(n))) M

∗ runs the code of the honest committer Scom in
〈Scom,Rcom〉 with the following exception: Each time Scom uses the honest sender Seq in the 〈Seq,Req〉
protocol to construct a commitment c = EQCom(α) to some bit α, M∗ does the following: If α = 0, M∗

runs the code of the honest sender Seq. If α = 1, M∗ does the following:

1. M∗ uses the trapdoor w to compute an adjacency matrix I that corresponds to an isomorphism of the
graph G = Φ(x) as well as the corresponding adjacency matrix H for the Hamiltonian cycle in I
chooses an adjacency matrix H for a random Hamiltonian cycle.

2. If Hk,j = 1, then M∗ sets the bit commitment at position (k, j) in Comk,j to be Com(1).

3. If Hk,j = 0 and Ik,j = 0, then M∗ sets the bit commitment at position (k, j) in Comk,j to be an
element from the sequence s01, . . . , s

0
t(n) that has not been used yet.

4. If Hk,j = 0 and Ik,j = 1, then M∗ sets the bit commitment at position (k, j) in Comk,j to be an
element from the sequence s11, . . . , s

1
t(n) that has not been used yet.

To decommit, M∗ runs the code of the honest Scom in 〈Scom,Rcom〉.
Recall that equivocal commitments in the 〈Seq,Req〉 scheme are identically distributed to honest commit-

ments to 0 and that the equivocator (S̃com,Adapcom) described in Lemma 1 simply replaces every equivocal
commitment under EQCom (in both Stage 1 and Stage 2) with an equivocal commitment generated by the
equivocator. Therefore, it is clear from inspection that if the 2t(n) strings (s01, . . . , s

0
t(n), s

1
1, . . . , s

1
t(n)) are

chosen uniformly at random, then R∗’s output is identically distributed to the output of R∗(x, z) after re-
ceiving a commitment to v1 using 〈Scom,Rcom〉 and so the random variables staM,R∗

〈Scom,Rcom〉(0, x, v1, z) and

staR
∗

〈Scom,Rcom〉(x,w, z) are identically distributed. On the other hand, if the 2t(n) strings (s01, . . . , s
0
t(n), s

1
1, . . . , s

1
t(n))

are commitments to 0 and 1 respectively, then R∗’s output is identically distributed to the output of R∗(x, z)
after receiving a commitment to v1 using 〈S̃com, Rcom〉 and so the random variables staM,R∗

〈Scom,Rcom〉(1, x, v1, z)

and staR
∗

〈S̃com,Rcom〉
(x, v1, z) are identically distributed. Thus, the lemma is proved.

This concludes the proof of and Lemma 3 Theorem 2.

Dealing with non-straightline simulatable puzzles. In the proof above, we relied on the fact that the
adaptive UC-puzzles were straightline simulatable. Althought for most models considered in this work, this
is indeed the case, it is not straight-line for the timing and partially-isolated adversaries model. To deal
with such simulation, we just need to follow the approach of [23], where given any adversary A, using the
simulatability of the puzzles, construct an adversary A∗ that is essentially A, with the exception that all
puzzle interactions where A is the sender, A∗ outputs completed puzzle transcripts with witnesses. The
simulator S described above is run on A∗ instead of A with the exception that it does not have to simulate
puzzles and just use the witness output by A∗ to equivocate the left commitments. The rest of the proof
essentially follows from the statistical-simulation property.

6 Proof of Main Theorem

We restate our main theorem and provide the proof below.

THEOREM 3 (Main Theorem (restatement)). Assume the existence of a tP -round (Cenv, Csim)-secure UC-
puzzle in a G-hybrid model, tC-round EQNMCom protocol secure w.r.t cl(Cenv, Csim) and the existence of a
simulatable PKE scheme. Then, for every “well-formed” functionality F , there exists a O(tP + tC)-round
protocol Π in the G-hybrid model that realizes F̂ with (Cenv, Csim)-adaptive UC-security.

23

Functionality Fmcom.

Fmcom proceeds as follows, running with parties P1, . . . , Pn and an adversary S:

• Upon receiving input (commit, sid, ssid, Pi, Pj , β) from Pi, where β ∈ {0, 1}, record the tuple
(ssid, Pi, Pj , β) and send the message (receipt, sid, ssid, Pi, Pj) to Pj and S. Ignore any future
commit messages with the same ssid from Pi to Pj .

• Upon receiving a value (reveal, sid, ssid) from Pi: If a tuple (ssid, Pi, Pj , β) was previously
recorded, then send the message (reveal, sid, ssid, Pi, Pj , β) to Pj and S. Otherwise, ignore.

• Upon receiving a message (corrupt−Pi, sid) from the adversary, send (ssid, Pi, Pj , β) to the adver-
sary for each recorded tuple where Pi is the committer. Furthermore, if the adversary now provides a
value β′, and the receipt output was not yet written to Pj’s tape, then change the recorded value to β′.

Figure 2: Fmcom

On a high-level, the compilation proceeds in two steps:

• First, every functionality is compiled into a protocol in theFmcom-hybrid model. In theFmcom-hybrid,
all parties have access to the ideal commitment functionality called Fmcom functionality. This step is
formalized in the Fmcom-lemma (Lemma 4).

• In the second step, assuming the existence of a UC-puzzle and a EQNMCom protocol, we show that
the Fmcom functionality can be securely realized in the real-model. This step is formalized in the
Puzzle-lemma (Lemma 7).

We use the standard definition of the Fmcom functionality [7], the multi-session extension of Fmcom-
functionality. See Figure 3 for the definition.

Next, we provide the Fmcom-Lemma and the Puzzle Lemma. The proof of the main theorem follows
using a standard hybrid argument combining the two lemmas.

Lemma 4 (Fmcom-Lemma). Assume the existence of simulatable PKE secure w.r.t Csim. For every well-
formed functionality F , there exists a O(1)-round protocol Π in the Fmcom-hybrid model, such that, for
every adversary A ∈ Csim in the Fmcom-hybrid model, there exists an adversary simulator A′ ∈ Csim, such
that for every environment Z ∈ Cenv, the following two ensembles are indistinguishable w.r.t cl(Cenv, Csim).

•
{

ExecFmcom
Π,A,Z(n)

}
n∈N

•
{

ExecF̂πideal,A′,Z(n)
}

n∈N

The main technical contribution of our work is the following lemma:

Lemma 5 (Adaptive-Puzzle-Lemma). Let Π′ be a protocol in the Fmcom-hybrid model. Assume the exis-
tence of a (Cenv, Csim)-secure tP -round adaptive puzzle 〈S,R〉 in a G-hybrid model, tC-round stand-alone
EQNMCom 〈Scom,Rcom〉 secure w.r.t cl(Csim, Cenv) and simulatable PKE scheme secure w.r.t Csim. Then,
there exists a O(tP + tC)-round protocol Π in the G-hybrid such that, for every uniform PPT adversaryA,
there exists a simulator A′ ∈ Csim, such that, for every environment Z ∈ Cenv, the following two ensembles
are indistinguishable over N w.r.t Csim.

24

•
{

ExecGΠ,A,Z(n)
}

n∈N

•
{

ExecFmcom
Π′,A′,Z(n)

}
n∈N

Proof of the Puzzle Lemma: First, in Figure 6 we construct a protocol 〈S,R〉 that implements the Fmcom-
functionality. Next, given any protocol Π′ in Fmcom-hybrid model, the protocol Π in the real model is
constructed from Π′ by instantiating the Fmcom functionality using our protocol 〈S,R〉. More precisely,
all invocations of the Fmcom functionality with input (sender,sid, ssid, Pj , β) from an honest party Pi is
replaced with an instance of 〈S,R〉between Pi and Pj on identity id = (Pi, sid, ssid). We provide the
construction of 〈S,R〉 and then prove correctness.

6.1 The Adaptive Commitment Protocol 〈S,R〉 and the Adaptive UC Simulator

Let (〈S,R〉,R) be a (Cenv, Csim)-secure puzzle in the G-hybrid, 〈Scom,Rcom〉 be a EQNMCom protocol
secure w.r.t cl(Cenv, Csim), 〈Seq,Req〉 be a non-interactive EQCom protocol secure w.r.t. cl(Cenv, Csim). E =
(Gen,Enc,Dec, oGen, oRndEnc, rGen, rRndEnc) be a simulatable PKE scheme (as defined by [12]). Let L
be a language in NP with witness relation RL and let G be a pseudo-random generator (which exists based
on one-way function which in turn can be based on simulatable PKE). See Figure 6 for a formal description
of the protocol 〈S,R〉. An overview of the protocol is given in Section 4.2.

We show that for every adversary A ∈ PPT in the real-model, there exists a simulator A′ ∈ Csim

such that no environment Z ∈ Cenv can distinguish if it is interacting with A in the real-model or A′ in the
Fmcom-hybrid.

ConsiderA′ that internally incorporatesA and emulates an execution withA. A′ forwards all messages
from A externally to its intended recipients except messages that are part of any execution using 〈S,R〉,
which are instead, dealt with internally. Recall that, since A′ ∈ Csim we have that at the end of every puzzle
interaction where A controls the sender, A′ can obtain a witness to the puzzle transcript. For messages that
are part of an execution of 〈S,R〉, A′ does the following:

Simulating the Communication with Z: Every message thatA′ receives from the environment Z is writ-
ten to A’s input tape. Similarly, every output value that A writes to its output tape is copied to A′’s own
output tape (to be read later by Z).

The Sender is Corrupted and the Receiver is Honest: A′ does the following:

Preamble:

1. A′ simulates the Adaptive UC-Puzzle while playing the part of the receiver, producing transcript
TRANS1 while extracting the trapdoor y

2. A′ honestly plays the part of the sender in the Adaptive UC-Puzzle producing transcript TRANS2.

Commit Phase:

1. A′ chooses rGen ← {0, 1}k and computes (PK, SK) = Gen(rGen), r = rGen(rGen).

2. A′ uses the simulator for generating equivocal commitments for 〈Scom,Rcom〉 and knowledge of the
trapdoor y to send an equivocal commitment in Step 1 of Stage 1.

25

Protocol 〈S,R〉

Input: The sender S has a bit β to be committed to.

Preamble:

• An adaptive UC-Puzzle interaction 〈S,R〉 on input 1n where R is the receiver and S is the sender.
Let TRANS1 be the transcript of the messages exchanged.

• An adaptive UC-Puzzle interaction 〈S,R〉 on input 1n where S is the receiver and R is the sender.
Let TRANS2 be the transcript of the messages exchanged.

Commit phase:

Stage 1: S and R run a coin-tossing protocol to agree on strings PK and CRS:
Coin-toss to generate PK:

1. The parties run protocol 〈Scom,Rcom〉 with common input TRANS1. R plays the part of
sender with input a random string r0R.

2. S chooses a random string r0S and sends to R.
3. R opens its commitment and reveals r0R.
4. The output of the coin toss is: r = r0S ⊕ r0R. S and R run oGen(r) to obtain public key PK.

Coin-toss to generate CRS:
1. The parties run protocol 〈Scom,Rcom〉 with common input TRANS2. S plays the part of

sender with input a random string r1S.
2. R chooses a random string r1R and sends to S.
3. S opens its commitment and reveals r1S.
4. The output of the coin-toss is: x = r1S ⊕ r1R.

Stage 2:
1. The parties run 〈Seq,Req〉 with common input x to generate a commitment C =

EQComx(β; r) where S plays the part of Seq with input bit β.
2. S chooses b ∈ {0, 1} at random and sends to R the strings (S0, S1) to where:
• Sb is an encryption of the decommitment information of C (to bit β) under PK.
• S1−b is generated by running oRndEnc(PK, rEnc) where rEnc is chosen uniformly at

random.

Reveal phase:

1. S sends β, b, and the randomness used to generate S0, S1 to R.

2. R checks that S0, S1 can be reconstructed using β, b and the randomness produced by S.

Figure 3: The Adaptive Commitment Protocol 〈S,R〉

26

3. Upon receiving the string r0S, A′ equivocally decommits to r0R = r ⊕ r0S. A′ chooses r1R at random
and sends to A on behalf of R.

4. Upon receiving (C, S0, S1) from A in Step 3, A′ computes m0 = DecSK(S0) and m1 = DecSK(S1).
If m0 is the valid decommitment of C to bit b, A′ sends the message (commit, sid, ssid, S,R, β) to
the ideal functionality Fmcom on behalf of S. Otherwise, if m1 is the valid decommitment of C to
bit β, A′ sends the message (commit, sid, ssid, S,R, β) to the ideal functionality Fmcom. If both are
invalid, A′ chooses a random bit β and sends (commit, sid, ssid, S,R, β) to the ideal functionality
Fmcom. Additionally, A′ aborts the simulation of R upon A’s decommitment.

Reveal Phase:

1. Upon receiving a valid decommitment from A, A′ sends the message (reveal, sid, ssid) to Fmcom.

2. Upon receiving an invalid decommitment from A, A′ aborts the simulation of R.

The Sender is Honest and the Receiver is Corrupted: A′ does the following:

Preamble:

1. A′ honestly plays the part of the sender in the Adaptive UC-Puzzle producing transcript TRANS1.

2. A′ simulates the Adaptive UC-Puzzle while playing the part of the receiver, producing transcript
TRANS2 while extracting the trapdoor y

Commit Phase:

1. A′ chooses s← {0, 1}n and computes r = G(s).

2. A′ uses the simulator for generating equivocal commitments for 〈Scom,Rcom〉 and knowledge of the
trapdoor y to send an equivocal commitment in Step 1 of Stage 2. A′ chooses r0S at random and sends
to A on behalf of S.

3. Upon receiving the string r1R, A′ equivocally decommits to r1S = r ⊕ r1R. Note that x = r1S ⊕ r1R = r.

4. A′ generates a random bit β. Using its knowledge of the trapdoor for common input x the simulator
generates an equivocal commitment C for protocol 〈Seq,Req〉.

5. A′ sets Sβ to be an encryption under PK of a decommitment ofC to 0 and sets S1−β to be an encryption
under PK of a decommitment of C to 0

6. A′ forwards (C, S0, S1) to A.

Reveal Phase: Upon receiving a message (reveal, sid, ssid, S,R, β) from the ideal functionality Fmcom,
A′ does the following:

1. A′ reveals the decommitment information for C corresponding to bit b and the randomness used to
generate the encryption Sv where v = 1− β if b = 1 and v = β if b = 0.

2. The simulator uses rRndEnc to produce randomness rEnc such that oRndEnc(PK, rEnc) = S1−v, and
sends r to the adversary.

27

The Sender and the Receiver are Honest: A′ plays both the part of the honest receiver and the honest
sender. When sending messages on behalf of the honest sender, A′ acts as in the case where the sender is
honest and the receiver is corrupted. When sending messages on behalf of the honest receiver, A′ acts as in
the case where the receiver is honest and the sender is corrupted.

Dealing with Corruptions: When the adversary corrupts the sender S,A′ sends the message (corrupt−S, sid)
to the ideal functionality Fmcom and receives the value of the bit β. Now, A′ needs to provide A with the
randomness consistent with the (C, S0, S1) messages sent on behalf of S as well as the input bit b. A′ does
this in the same way as when simulating commitment (reveal, sid, ssid, S,R, β) messages in the case of
corrupted receiver above.

6.2 Correctness of Simulation

We now proceed to prove correctness of simulation. Recall that the simulator manipulates coin-tosses so
that it can equivocate commitments made to the adversary and extract the ones committed to by the ad-
versary. More precisely, for the left-interactions, where the adversary receives commitments, the simulator
manipulates the coin-toss to generate the CRS and for the right interactions, where the adversary sends com-
mitments, the simulator manipulates the coin-toss to generate the public-key for the simulatable encryption
scheme. In order for the simulation to work successfully, we will require that the adversary not be able to
manipulate the other coin-tosses—the coin-toss for generating the public- keys in the left interactions and
the coin-toss for generating the CRS in the right interactions. We ensure this property by relying on the
non-malleability of the equivocal commitment scheme. In other words, we show that the adversary can
never equivocate commitments made using 〈Scom,Rcom〉 in those coin-toss interactions.

Towards proving correctness, we consider a series of intermediate hybrid experiments from the real-
world to the Fcom-hybrid world with the adversary A. Additionally, we define the following property that
we maintain as invariant across all hybrids and intuitively, will hold true only if the adversary does not
equivocate any of the commitments made using 〈Scom,Rcom〉: We say that the adversary A is non-abusing
if the following two distributions are indistinguishable

Expr1n(z): Emulate a complete execution with adversaryA(1n), environmentZ with auxiliary input z and
all honest parties. In the emulated view, choose at random a 〈Icoin,Rcoin〉 interaction whereA controls
the initiator Icoin. If A corrupts the corresponding responder Rcoin before Step 3 of the 〈Icoin,Rcoin〉
protocol or fails to complete the interaction, output (ViewA,⊥), where ViewA is the view of the
adversary in the simulation. Otherwise, if the 〈Icoin,Rcoin〉 interaction completes successfully with
outcome r, then (ViewA, r).

Expr2n(z): As before, emulate an execution with adversary A(1n) environment Z with auxiliary input
z and all honest parties. Choose at random a 〈Icoin,Rcoin〉 interaction where A controls the initiator
Icoin and continue the emulation until the completion of the 〈Icoin,Rcoin〉 interaction. If A corrupts the
corresponding responder Rcoin before Step 3 of the 〈Icoin,Rcoin〉 protocol, or fails to complete the in-
teraction, output (ViewA,⊥), where ViewA is the view of the adversary in the simulation. Otherwise,
if the 〈Icoin,Rcoin〉 interaction completes successfully with outcome r, let rI be the string sent by A in
Step 3 of the 〈Icoin,Rcoin〉 protocol. Repeat the following:

• Choose string r∗ uniformly at random.
• Rewind A to the point right before Step 2 of the 〈Icoin,Rcoin〉 protocol.
• Send string r∗ ⊕ rI to A on behalf of Rcoin in Step 2 of the of the 〈Icoin,Rcoin〉 protocol.
• Continue simulation untilA decommits. If the adversary fails to decommit or tries to adaptively

corrupt the responder, cancel the simulation and start over. Otherwise, let the value decommitted
to be r̃I

28

until the 〈Icoin,Rcoin〉 interaction completes successfully with outcome r̃. If r̃ 6= r∗ then output a
special symbol ⊥FAIL. Otherwise, output the (ViewA, r̃).

Remark 1. If the distributions of Expr1n(z) and Expr2n(z) are indistinguishable then it implies that the
adversary decommits to the same string rI with high-probability, i.e. does not equivocate.

Remark 2. The experiment Expr2n(z), in expectation, takes polynomial time to simulate. This is because,
even though the simulator rewinds the adversary repeatedly, each rewinding is simulated identically as
the main simulation with independent randomness. More formally, if p is the probability with which the
adversary decommits successfully from Step 2 of the coin-toss without corrupting the responder, then p is
the probability with which the simulator starts rewinding and in expectation rewinds 1/p times before it
obtains another simulation where the adversary decommits without corrupting the responder. Therefore, in
expectation, the simulator performs simulation p× 1/p = O(1) times. Since each simulation takes at most
poly(n) time, in expectation, Expr2n(z) takes polynomial time to simulate.

Let m(·) be a function that describes a bound on the maximum number of interactions. The hybrid
experiments are as follows:

Hybrid H0 or the real-world experiment: Since this is the real-world experiment there is no indistin-
guishability requirement. However, we need to show that A is non-abusing in H0. Intuitively, this holds
since from the binding property of the commitment scheme 〈Scom,Rcom〉 we have that if the adversary
equivocates, then we can extract the solution of the adaptive UC-puzzle and this violates the soundness of
the puzzle. More formally, we prove the following claim:

Claim 3. A is non-abusing in H0

Assume for contradiction there exists a distinguisherD and polynomial p(·) such that for infinitely many
n, D distinguishes Expr1n(z) and Expr2n(z) with probability at least 1

p(n) . Since r∗ is chosen uniformly at
random in each rewound execution (and thus r∗ ⊕ rI is also uniformly distributed), if r∗ = r̃ always, then
Expr1n(z) and Expr2n(z) are identically distributed. Hence if D distinguishes the two experiments with
probability 1

p(n) , it must be the case that Expr2n(z) outputs ⊥FAIL with probability at least 1
p(n) . The proof

of Claim 3, will now follow from the following subclaim.

Claim 4. Let A be a probabilistic polynomial-time adversary such that Expr2n(z) outputs ⊥FAIL with A
with non-negligible probability. Then there exists a probabilistic polynomial-time adversary A that violates
the soundness of the adaptive UC-puzzle.

Proof. On a high-level, this essentially follows from the fact that whenever Expr2n(z) outputs ⊥FAIL, the
adversary is equivocating, which in turn means a solution to the adaptive UC-puzzle can be extracted and
this violates the soundness condition of the puzzle. More formally, considerA for which Expr2n(z) outputs
⊥FAIL with probability 1

p(n) for infinitely many n. Fix an n for which this happens.

On input 1n and auxiliary input z, A internally incorporates A(1n), Z(z) and all honest parties and
begins emulating an execution of hybrid experimentH0 with the following exceptions: A chooses a random
〈S,R〉 interaction where the adversary controls one of the parties and forwards externally the puzzle inter-
action where A controls the receiver. On completion, A chooses the 〈Icoin,Rcoin〉 interaction from the same
〈S,R〉 interaction where A controls the initiator Icoin. After completion of Stage 3 of the 〈Icoin,Rcoin〉 inter-
action, if A fails to decommit, A outputs ⊥. Otherwise, it stores the decommitment as r1. Next, it rewinds
to the end of Stage 1 and starts a new emulation (just as in Expr2n). If the adversary fails to decommit, A
outputs ⊥. Otherwise, it stores the second decommitment as r2. Finally, if r1 6= r2, it extracts the witness
for the puzzle transcript corresponding to this interaction and outputs the witness. Otherwise it outputs ⊥.
Also, if at any point A tries to adaptive corrupt the other party, A halts outputting ⊥.

29

We claim that with non-negligible probability A outputs a witness of the puzzle, thus violating the
soundness of the puzzle. Towards this, consider a modified experiment Expr2kn(z) that proceeds exactly
like Expr2n with the exception that it chooses the kth coin-toss where the adversary controls the initiator
instead of a random interaction. By an averaging argument, it holds that there exists a particular k for which
Expr2kn(z) outputs ⊥FAIL with probability at least q = 1

p1(n)p(n)
where p1(·) is a polynomial that bounds the

total number of 〈S,R〉 interactions (and hence also the number of coin-toss interactions where A controls
the sender). Using another averaging argument, it holds that with probability q/2 over partial transcripts
until the end of Stage 1 of the kth coin-toss, the probability Expr2kn(z) outputs ⊥FAIL conditioned on the
partial transcript, is at least q/2. Fix one such partial transcript τ . We show below that from τ , if two
runs are conducted using independent randomness, then the probability that the adversary decommits to two
different strings in the two runs is at least q2/8. Using this, we can argue that the probability with which A
outputs a witness is at least 1

p1(n)
q
2
q2

8 and this proves the statement of the claim.
Given τ , letD be the distribution of the decommitments made by the adversary in random continuations

from τ . If the adversary fails to decommit or corrupts the other party, the output of D is set to ⊥. Let D′ be
the distribution D conditioned on not outputting ⊥. Let q′ be the probability that two independent samples
from D are different. Let q′′ be the probability that a sample from D is not ⊥. Since Expr2kn(z) outputs
⊥FAIL with probability at least q/2 from τ , it holds that q′′ × q′ ≥ q/2. Now, let r be the sample with
maximum probability under D, say qr. We bound the probability that two samples from D are the same by
the expression q2r + (1 − qr)2, which is at most 1 − q′. This implies that qr(1 − qr) > q′

2 . Therefore, the
probability that two samples from D are different is at least

(q′′qr)× (q′′(1− qr)) ≥
q′′2q′

2
≥ q′′q

4
≥ q2

8

Hybrid H1: This hybrid proceeds identically to H0 with the exception that all puzzle-interactions where
the honest party plays the part of the receiver are simulated. For every adversary A, we construct another
adversary A ∈ Csim that internally emulates A and simulates puzzles while extracting trapdoors for all
puzzles where A plays the role of sender.

In more detail, an execution in H1 proceeds identically to the real-execution, with the exception that all
parties running 〈S,R〉, instead of participating in the preample phase of 〈S,R〉, receive a simulated puzzle-
transcript from A. Furthermore, for every puzzle interaction where the party controlled by the adversary
is the sender and the receiver is honest, A outputs a witness w corresponding to the simulated puzzle-
transcript (in a special-output tape). Additionally, upon adaptive corruption of the receiver in a puzzle
interaction, where the sender is controlled by the adversary,A produces random coins for an honest receiver
that are consistent with the simulated puzzle-transcript. To construct such an A given A, we rely on the
adaptive simulatability of the puzzle in a concurrent puzzle execution. We consider an adversary Apuz that
incorporates A internally and forwards all puzzle interactions with A as the sender to external receivers.
This Apuz also simulates all other puzzle interactions interally. All other interactions of A are forwarded by
Apuz to the puzzle environment that incorporates A and the other honest parties. Since this can be viewed
as a concurrent puzzle execution, there must exist a simulator A′puz that simulates all puzzle interactions,
outputs a witness w, and successfully simulates adaptive corruptions. Finally, to constructA we incorporate
A′puz and emulate an execution by forwarding the messages between A′puz and the actual parties instead of
sending to Zpuz.

The proof of indisintguishability follows identically as in [23] and we omit it. The non-abusing property
follows from the statistical indistinguishability of A’s view10 in H0 and H1. Hence we have the following
claims.

10If A is non-abusing, then just as in proof of Claim 3, we can conclude that A is equivocating in H1. Then with non-negligible

30

Claim 5. The output of Z in H0 and H1 is indistinguishable.

Claim 6. A is non-abusing in H1

In subsequent hybrids, the adversary we consider is A. However, to avoid confusion in notation, we
denote the adversary by A only.

Hybrid H2: This hybrid proceeds identically to H1 with the exception that in all interactions with an
honest receiver, the commitments received in Stage 1 are switched to simulated equivocal commitments.
More specifically, the protocol 〈Scom,Rcom〉 occurring in Step 1 of the two coin-tosses in Stage 1, is modified
for interactions where the adversary plays the part of receiver in 〈Scom,Rcom〉 in the following ways:

• The first commitment sent by S in the 〈Scom,Rcom〉 protocol is replaced by a simulated (equivocal)
commitment which can be opened to any value.

• The WIPOK’s are replaced with simulated adaptively-secure WIPOK’s which can be opened consis-
tently with any valid witness.

• When a decommitment is requested, a value r0R or r1S (as appropriate) is chosen uniformly at random
and a decommitment to the chosen value is produced.

Note that, in particular, this means that in Expr2n(z), commitments produced by 〈Scom,Rcom〉 (where the
adversary played the role of receiver) will be decommitted to different values in the initial and rewound
views.

Claim 7. The output of Z in H1 and H2 is indistinguishable.

Claim 8. A is non-abusing in H2

Proof: We prove both the above claims simultaneously. They follow essentially from the simulation-
extractibility property of 〈Scom,Rcom〉. Recall from proof of Claim 3 that if the outputs of the two experi-
ments are distinguishable, then it implies that Expr2n(z) outputs⊥FAIL. Consider the following adversaryA
that violates the simulation-extractability property of 〈Scom,Rcom〉.

On input 1n and auxiliary input z, A internally incorporates A(1n), Z(z) and all honest parties and
begins emulating an execution of hybrid experiment H1 with the following exception: A forwards all
〈Scom,Rcom〉 interactions that are part of 〈Icoin,Rcoin〉 interactions where the adversary controls the receiver
are forwarded externally to honest committers on the left and all 〈Scom,Rcom〉 interactions that are part of
〈Icoin,Rcoin〉 interactions where the adversary controls the sender are forwarded to external receivers on the
right. WheneverA requests a decommitment for the coin-toss interactions on the left, A externally requests
a decommitment. For the decommitment phase on the right, A simply forwards the decommitment made
by A in the internal 〈Icoin,Rcoin〉 interactions. At the end A outputs A’s view and all the value decommitted
to in the right interactions. Observe that when the left commitments are sent by honest committers the view
output is identical to view output in H1 and when the commitments are equivocated, the view is identical
to one output in H2. Furthermore, the simulation proceeds identically to the simulator for the 〈Scom,Rcom〉
protocol. Since Expr2n(z) outputs ⊥FAIL with non-negligible probability, following the proof of Claim 4,
it holds that, when the commitment in the left are equivocated, there exists a particular k for which A
equivocates in kth right-interaction with non-negligible probability. This means that, with non-negligible

probability over the random-tapes for A and partial transcripts where A completes a commitment using 〈Scom,Rcom〉, it holds that
A equivocates with non-negligible probability. This violates the statistical-indistinguishability as for the fixed random tape, A
never equivocates and an unbounded prover, given a partial transcript and random tape, can find the unique value A decommits to
and distinguish from the value decommitted to by A.

31

probability over the partial view of A after the commitment is made in the kth right interactions, A de-
commits to different values with non-negligible probability. However, from the simulation-extractability
property of 〈Scom,Rcom〉, it holds that, whenever the left-commitments are equivocated, there is a unique
value that any adversary can decommit to after the commitment stage is completed. Thus, we arrive at a
contradiction.

Hybrid H3: This hybrid proceeds identically to H2 with the exception that the protocol 〈Scom,Rcom〉
occurring in Step 1 of the first coin-toss in Stage 1 is modified for interactions where the adversary plays
the part of receiver in 〈Scom,Rcom〉 so that instead of sampling a uniformly random r0R and decommitting to
this value, we sample r0R as follows:

• Using Gen(rGen) sample a public-key, secret-key pair (pk, sk).

• Run rGen(rGen) to obtain the string s such that oGen(s) = PK.

• Decommit to r0R = r0S ⊕ s.

We show that both the indistinguishability and the non-abusing property reduce to the indistinguisha-
bility of random strings s to strings s sampled by running rGen(rGen) where rGen is sampled uniformly at
random. Note that a simulator A emulating an exectuion in Hybrid H3 onward can extract the adversary’s
committed values by decommitting to r = rS⊕s such thatA knows the corresponding SK for oGen(s) = PK

and then decrypting the decommitment information contained in S0 and/or S1.

Claim 9. The output of Z in H2 and H3 is indistinguishable.

Proof. Assume that there exists a PPT algorithm D that distinguishes the output of Z in H2 and H3 with
probability 1

p(n) for some polynomial p(·) and infinitely many n. We construct an adversary A that will be
able to distinguish strings s chosen uniformly at random from string s = rGen(rGen) where rGen is chosen
uniformly at random (and thus breaks the oblivious generation property of the simulatable PKE).

Consider a machine A that on input 1n and auxiliary input z, participates in an execution with a chal-
lenger C and internally incorporates A, Z , and all the honest parties and emulates an interaction in H2. A
receives from C a sequence of values {s1, . . . , sm(n)} chosen either uniformly at random or chosen such
that si = rGen(riGen). A continues the emulation of A as in H2 with the difference that in the i-th the
commitment protocol 〈Scom,Rcom〉, A decommits to the value r0R = r0S⊕ si. At the end of the execution, A
runs D on the output of Z and outputs whatever D outputs.

Note that when the strings {s1, . . . , sm(n)} are generated via rGen(rGen) then the emulation produces
a view for Z that is identical to its view in H3. On the other hand, when the strings {s1, . . . , sm(n)}
are chosen uniformly at random then the emulation produces a view for Z that is identical to its view in
H2. Thus, A distinguishes random strings s from strings s sampled by running rGen(rGen) where rGen is
sampled uniformly at random with the same probability that D distinguishes the ouput of Z in H2 and H3.
This implies that A distinguishes with non-negligible probability, which is a contradiction to the security of
the simulatable PKE scheme E and so the claim is proved.

Claim 10. A is non-abusing in H3

Proof. The proof for A being non-abusing essentially follows from the proof of Claim 9 above. Details
follow.

Assume towards contradiction thatA is abusing inH3. We will construct an adversaryA that breaks the
security of the simulatable PKE scheme E . Consider the following adversary A: On input 1n and auxiliary
input z, A internally incorporates A(1n), Z(z) and all honest parties. Additionally, A receives externally
a sequence of 2m values, {s1, . . . , s2m(n)}. A begins emulating an execution of hybrid experiment H3 and

32

chooses a random 〈Icoin,Rcoin〉 interaction where A controls the initiator Icoin. A continues the emulation
of A with the difference that in the i-th commitment protocol 〈Scom,Rcom〉, A decommits to the value
r0R = r0S ⊕ si. After completion of Stage 3 of the 〈Icoin,Rcoin〉 interaction, if A fails to decommit, A outputs
⊥. Otherwise, it stores the decommitment as r1. Next, it rewinds to the end of Stage 1 and starts a new
emulation (just as in Expr2n). Again, in the i-th the commitment protocol 〈Scom,Rcom〉 of the rewound
execution, A decommits to the value r0R = r0S ⊕ sm(n)+i. If the adversary fails to decommit, A outputs ⊥.
Otherwise, if A decommits to r1 where r1 6= r2, A outputs 1; if r1 = r2, A outputs 0.

Note that when the strings {s1, . . . , s2m(n)} are generated via rGen(rGen) then the emulation pro-
duces a view for A that is identical to its view in Expr2n(z) of H3. On the other hand, when the strings
{s1, . . . , s2m(n)} are chosen uniformly at random then the emulation produces a view for A that is identical
to its view in Expr2n(z) of H2.

Now, sinceA is abusing inH3, it must be the case (see proof of Claim 4) that when {s1, . . . , s2m(n)} are
chosen via rGen(rGen)A outputs 1 with non-negligible probability. However, sinceA is non-abusing inH2,
it must be the case that when {s1, . . . , s2m(n)} are chosen uniformly at random A outputs 1 with negligible
probability. Thus, A distinguishes random strings s to strings s sampled by running rGen(rGen) where rGen

is sampled uniformly at random. This is a contradiction to the security of E and so the claim is proved.

Hybrid H4: This hybrid proceeds identically to H3 with the exception that the protocol 〈Scom,Rcom〉
occurring in Step 1 of the second coin-toss in Stage 1 is modified for interactions where the adversary plays
the part of receiver in 〈Scom,Rcom〉 so that instead of sampling a uniformly random r1S and decommitting to
this value, we sample r1S as follows:

• Sample s uniformly at random and set r = G(s).

• Decommit to r1S = r1R ⊕ r.

Claim 11. The output of Z in H3 and H4 is indistinguishable. Moreover, A is non-abusing in H4

The proof of Claim 11 proceeds analogously to the proofs of Claims 9 and 10. Here we consider
an adversary A that receives externally a sequence of strings {s1, . . . , s2m(n)} which are either uniformly
random or generated via the pseudorandom generator G. We show that A perfectly emulates an execution
in H3 (or emulates Expr2n(z) in H3) when the received strings are uniformly random and that A perfectly
emulates an execution in H4 (or emulates Expr2n(z) in H4) when the received strings are pseudorandom.
Thus, if the output of Z in H3 and H4 is distinguishable or if A is abusing in H4 (and not abusing in
H3), then A distinguishes random and pseudorandom strings. This is a contradiction to the security of the
pseudorandom generator G, and so the claim is proved.

Hybrid H5: This hybrid proceeds identically to H4 with the exception that the protocol 〈Seq,Req〉 occur-
ring in Step 1 of Stage 2 is modified for interactions in which the adversary plays the part of receiver in
the following way: The commitment C is replaced by a simulated (equivocal) commitment which can be
opened to both 0 and 1.

We show that both the indistinguishability and the non-abusing property reduce to the special-hiding
property of 〈Seq,Req〉.

Claim 12. The output of Z in H4 and H5 is indistinguishable. Moreover, A is non-abusing in H5.

Proof. The proof of Claim 12 proceeds analogously to the proofs of Claims 9 and 10. Assume for contra-
diction there exists an environment Z that distinguishes the experiments H4 and H5. More precisely, there
exists D and polynomial p(·) such that D distinguishes the output of Z in both the experiments. We show
given D,Z and A how to violate the special-hiding property of the commitment (See Definition 2).

33

Consider a machine A that on input 1n and auxiliary input z, internally incorporates A, Z , and all
the honest parties and emulates an interaction in H4. Whenever A wishes to receive a commitment from
an honest receiver to a bit β in Stage 2 of 〈S,R〉, instead of constructing C by emulating the 〈Seq,Req〉
interaction internally, A makes a request externally for a commitment C to bit β. When A expects a
decommitment in the internal emulation A again requests the external committer for a decommitment of C
to bit β. Finally, A runs D on the output of Z and outputs what D outputs.

Observe that when the external committer runs the code of the honest committer S in 〈Seq,Req〉, then the
output of A is identically distributed to the output of D in H4. Similarly, whenever the external committer
runs the code of the equivocator in 〈Seq,Req〉, then the output of A is identically distributed to the output
of D in H5. Therefore, D distinguishes honest and simulated commitments, which is a contradiction to the
special-hiding property of 〈Seq,Req〉.

The proof for A being non-abusing essentially follows from above. In this case, A will need to request
additional external commitments C so that it can simulate a single rewinding as in Expr2n(z). Specifically,
A begins emulating an execution of hybrid experiment H5 and chooses a random 〈Icoin,Rcoin〉 interaction
where A controls the initiator Icoin. A continues the emulation of A with the difference that whenever an
equivocal commitment is required in Stage 2 of a 〈S,R〉 protocol where A plays the reciever, A requests
an external commitment C and embeds it in the transcript. After completion of Stage 3 of the 〈Icoin,Rcoin〉
interaction, if A fails to decommit, A outputs ⊥. Otherwise, it stores the decommitment as r1. Next, it
rewinds to the end of Stage 1 and starts a new emulation (just as in Expr2n). Again, replacing the equivocal
commitment in Stage 2 with an externally supplied commitment. If the adversary fails to decommit, A
outputs ⊥. Otherwise, if A decommits to r1 where r1 6= r2, A outputs 1; if r1 = r2, A outputs 0.

Note that when the external commitments are generated via 〈Seq,Req〉 then the emulation produces a
view for A that is identical to its view in Expr2n(z) of H4. On the other hand, when the external commit-
ments are generated via 〈Seq,Req〉 then the emulation produces a view for A that is identical to its view in
Expr2n(z) of H5.

Now, since A is abusing in H5, it must be the case (see proof of Claim 4) that when the external
commitments are generated via 〈Seq,Req〉, A outputs 1 with non-negligible probability. However, since A
is non-abusing in H4, it must be the case that when the external commitments are generated via 〈Seq,Req〉,
A outputs 1 with negligible probability. Thus, A distinguishes commitments generated by 〈Seq,Req〉 and
commitments generated by 〈Seq,Req〉. This is a contradiction to the special-hiding property of 〈Seq,Req〉
and so the claim is proved.

Before proving our next claim, we introduce some new experiments: Consider the modified experiment
Expr1kn(z) (resp. Expr2kn(z)) that proceeds exactly like Expr1kn(z) (resp. Expr2kn) with the exception that it
chooses the kth coin-toss where the adversary controls the initiator. We note that if Expr1n(z) and Expr2n(z)
are indistinguishable then, for every 1 ≤ k ≤ m(n), Expr1kn(z) and Expr2kn(z) are also indistinguishable.

Note that although Expr2kn(z) runs in expected polynomial time, it may not run in strict polynomial
time. This is because the number of rewindings in a given execution may be unbounded. Thus, we define
an analogue to experiment Expr2kn(x), called EffExpr2kn(z, p(·)), whose run time is bounded. Formally, for
any polynomial p(·), we define the following experiment:

EffExpr2kn(z, p(·)): The experiment proceeds identically to Expr2kn(z) except that there are at most p(n)
rewinding attempts. If after p(n) rewinds, the 〈Icoin,Rcoin〉 protocol has not successfully completed,
abort the experiment and output ⊥. Otherwise, output whatever Expr2kn(z) outputs.

The next claim quantifies (as a function of p(·)) the distance between the distribution over the output of
EffExpr2k and the distribution over the output of Expr2k:

Claim 13. For every polynomial p(·) and for every n ∈ N, the statistical distance between the following two
probability ensembles is at most 1

p(n) :

34

• {Expr2
k
n(z)}z∈{0,1}∗

• {EffExpr2
k
n(z, p(·))}z∈{0,1}∗

where Expr2
k
n(z) and EffExpr2

k
n(z, p(·)) are the outputs of Expr2kn(z) and EffExpr2kn(z, p(·)), respectively.

Proof. We note that unless an abort occurs in experiment EffExpr2, the random variables Expr2n(z) and
EffExpr2n(z, p(·)) are identically distributed. Thus, the statistical distance can be upperbounded by the
probability that EffExpr2 aborts without successful completion of the 〈Icoin,Rcoin〉 protocol in the rewinding
stage.

By a standard argument we have that the expected number of rewindings before a successful completion
of 〈Icoin,Rcoin〉 in experiment Expr2 is 1. Therefore, by Markov’s inequality, the probability that more than
p(n) number of rewindings are necessary for successful completion of the 〈Icoin,Rcoin〉 protocol in Expr2
is at most 1/p(n). So the probability that EffExpr2n(z, p(·)) aborts without successful completion of the
〈Icoin,Rcoin〉 protocol in the rewinding stage is at most 1/p(n) and the claim is proved.

We are now ready to prove our correctness claim:

Claim 14. For every adversary A in H5 that successfully commits to a bit β in Stage 2, it is the case that A
encrypts decommitment information for both 0 and 1 in S0, S1 with negligible probability.

Proof. Assume for contradiction there exists an adversaryA and a value j (where 1 ≤ j ≤ m(n)), such that
in the jth 〈S,R〉 interaction where A plays the part of sender, it is the case that A encrypts decommitment
information for both 0 and 1 in S0, S1 probability 1/p(n) for some polynomial p(·).

Consider a machine A that on input 1n, auxiliary input z, and non-uniform advice p(·), participates
in a security experiment where A must distinguish a sequence of strings outputted by G from a sequence
of random strings. A receives from the external challenger a sequence of strings ρ1, . . . , ρ4p(n), internally
incorporates A, Z and all the honest parties and emulates an interaction in H5. A will choose choose the
〈Icoin,Rcoin〉 interaction corresponding to the jth 〈S,R〉 interaction where A controls the initiator Icoin of
the coin-toss. Call this 〈Icoin,Rcoin〉 interaction the kth 〈Icoin,Rcoin〉 interaction. A will then attempt to fix
the outcome of the kth coin toss to some ρi for 1 ≤ i ≤ 4p(n) so that x = ρi in the Stage 2 〈Seq,Req〉
interaction.

To this end, A runs its internal emulation until A decommits to some value r1S in Step 3 of the chosen
execution of 〈Scom,Rcom〉 (within the 〈Icoin,Rcoin〉 interaction) and 〈Icoin,Rcoin〉 completes with outcome
r. Then A rewinds A to the point right before A sends r1R on behalf of the responder and instead sends
the value (r1)′R = ρ1 ⊕ r1S. A continues to rewind A for at most 4p(n) times or until the 〈Icoin,Rcoin〉
protocol successfully completes. Note that the execution of A, thus far, is distributed identically to an
execution of EffExpr2kn(z, 4p(n)). Thus, due to the non-abusing property of H4 and the fact that the outputs
of EffExpr2kn(z, 4p(n)) and Expr2kn(z) are 1/4p(n)-close, we have that when the sequence ρ1, . . . , ρ4p(n)
consists of strings chosen uniformly at random, then with probability at least 1 − 1/4p(n) − neg(n), the
〈Icoin,Rcoin〉 protocol completes successfully in the rewound execution with outcome ρi. Thus, it must be
the case that when the sequence ρ1, . . . , ρ4p(n) consists of pseudorandom strings either:

Case 1: The outcome of the rewound coin toss is ρ′i 6= ρi with probability 1
p′(n) for some polynomial p′(·)

OR

Case 2: The outcome of the rewound coin toss is ρi with with probability 1− 1/4p(n)− neg(n).

If Case 1 occurs then it is straightforward to see that we can useA to break the security of the pseudorandom
generator G (since A ”notices” that the outcome ρ′i 6= ρi). Hence, we assume that Case 2 occurs and so we

35

have that with probability at least 1−1/4p(n)−neg(n), at the completion of Stage 1 of 〈S,R〉 the common
input x is set such that: x = (r1)′R ⊕ r1S = ρi.

Now, since A in H5 can decrypt and extract the committed values of the adversary, if the adversary
starts to construct commitments in Stage 2 with decommitment information to both 0 and 1 encrypted
in S0, S1, then A outputs 0; otherwise A outputs 1. When the string ρi is pseudorandom, we have by
hypothesis and the analysis above, that A successfully constructs such commitments with probability at
least 1

p(n) −
1

4p(n) − neg(n). However, when the string ρi is truly random, then with all but negligible
probability, there does not exist a string s such thatG(s) = ρi (assumingG(s) has input length n and output
length, say, 3n) and so all commitments using common input x = ρi must be statistically binding. Thus,
when the sequence ρ1, . . . , ρ4p(n) consists of truly random strings A (and in fact even a computationally
unbounded adversary) successfully constructs such commitments with only negligible probability. Thus,
A distinguishes between a sequence of pseudorandom and random strings with probability at least 1

2p(n) ,
which yields a contradiction.

Hybrid H6: In this hybrid, Step 2 of Stage 2 of 〈S,R〉 is modified for interactions in which the adversary
plays the part of receiver in the following way: Decommitment information for both bits 0 and 1 is encrypted
in S0, S1.

Indistinguishability and the statistical binding property will be reduced to the security properties of the
simulatable PKE scheme. Note that to reduce to the indistinguishability of encryptions Enc(PK∗,m, r) of a
specified message m and strings generated at random via oRndEnc(PK∗, rEnc), we need to ensure that the
outcome of the first coin-toss in Stage 1 of 〈S,R〉 yields the target public key PK∗. Fixing the outcome of
the coin-toss will require rewinding the adversary and in order to guarantee that the rewinding strategy is
succesfull, we will rely on the fact that the adversary is non-abusing. More specifically, we consider the
intermediate hybrids H0

6 , H
1
6 , . . . ,H

m(n)
6 where H0

6 = H5 and H i
6 is the hybrid where the m(n) − i + 1-

th through m(n)-th commitments in interactions 〈S,R〉 where the adversary plays the part of the receiver,
are constructed such that decommitment information to both 0 and 1 is encrypted in strings S0, S1 of Stage 2.

Before proving our next claim, we introduce some new experiments: Consider the modified experiment
Expr1kn(z) (resp. Expr2kn(z)) that proceeds exactly like Expr1kn(z) (resp. Expr2kn) with the exception that
it chooses the kth coin-toss, where the order of the coin-tosses is determined by the order in which A
decommits in Step 3 and where the adversary controls the initiator. Moreover, in Expr2kn the rewinding is
repeated until both of the following hold:

• The 〈Icoin,Rcoin〉 protocol successfully completes.

• The decommitment corresponding to the rewound coin-toss is again the k-th decommitment of the
experiment.

We note that if Expr1n(z) and Expr2n(z) are indistinguishable then, for every 1 ≤ k ≤ m(n), Expr1kn(z)
and Expr2kn(z) are also indistinguishable.

Note that although Expr2kn(z) runs in expected polynomial time, it may not run in strict polynomial
time. This is because the number of rewindings in a given execution may be unbounded. Thus, we define
an analogous experiment to Expr2kn(x), called EffExpr2kn(z, p(·)), which has a bounded run time. Formally,
for any polynomial p(·), we define the following experiment:

EffExpr2kn(z, p(·)): The experiment proceeds identically to Expr2kn(z) except that there are at most p(n)
rewinding attempts. If after p(n) rewinds, the 〈Icoin,Rcoin〉 protocol has not successfully completed or
the corresponding decommitment is not the kth decommitment, abort the experiment and output ⊥.
Otherwise, output whatever Expr2kn(z) outputs.

36

The next claim quantifies (as a function of p(·)) the distance between the distribution over the output of
EffExpr2k and the distribution over the output of Expr2k:

Claim 15. For every polynomial p(·) and for every n ∈ N, the statistical distance between the following two
probability ensembles is at most 1

p(n) :

• {Expr2
k
n(z)}z∈{0,1}∗

• {EffExpr2
k
n(z, p(·))}z∈{0,1}∗

where Expr2
k
n(z) and EffExpr2

k
n(z, p(·)) are the outputs of Expr2kn(z) and EffExpr2kn(z, p(·)), respectively.

Proof. We note that unless an abort occurs in experiment EffExpr2, the random variables Expr2n(z) and
EffExpr2n(z, p(·)) are identically distributed. Thus, the statistical distance can be upperbounded by the
probability that EffExpr2 aborts without successful completion of the 〈Icoin,Rcoin〉 protocol in the rewinding
stage.

By a standard argument we have that the expected number of rewindings before a successful completion
of 〈Icoin,Rcoin〉 in experiment Expr2 is 1. Therefore, by Markov’s inequality, the probability that more than
p(n) number of rewindings are necessary for successful completion of the 〈Icoin,Rcoin〉 protocol in Expr2
is at most 1/p(n). So the probability that EffExpr2n(z, p(·)) aborts without successful completion of the
〈Icoin,Rcoin〉 protocol in the rewinding stage is at most 1/p(n) and the claim is proved.

We are now ready to prove indistinguishability of the Hybrid experiments:

Claim 16. For 1 ≤ k ≤ m(n) the output of Z in Hk−1
6 and Hk

6 is indistinguishable.

Note that Claim 16 immediately implies that the output of Z inH5 andH6 is indistinguishable. We now
proceed to prove Claim 16.

Proof. Assume for contradiction there exists an adversary A, an environment Z , a value k (where 1 ≤ k ≤
m(n)), a distinguisher D and a polynomial p(·) such that for infinitely many n, D distinguishes the output
of Z in Hk−1

6 and Hk
6 with probability 1/p(n) for some polynomial p(·).

Consider a machine Ak that on input 1n, auxiliary input z, and non-uniform advice p(·), participates
in a security experiment for the simulatable PKE scheme E : Ak receives externally a sequence of values
{r∗1, . . . , r∗4p(n)} such that for each 1 ≤ i ≤ 4p(n), oGen(r∗i) = PK∗i , internally incorporates A(1n), Z(z)

and all the honest parties and emulates an interaction in H6. Intuitively,Ak will embed one of the challenge
public keys and ciphertexts from the external security experiment in Stage 2 of the m(n)− i+ 1-th execu-
tion of the coin tossing protocol 〈Icoin,Rcoin〉 (where coin-tosses are ordered according to the order of the
decommitments in Step 3). To this end, on input bit β,Ak will play the role of sender and interact withA in
〈Seq,Req〉 using common input x. Ak runs the equivocator for 〈Seq,Req〉 to construct an equivocal commit-
ment C which it can decommitment to both 0 and 1. Ak chooses b ∈ {0, 1} at random and sets Sb to be an
encryption of a decommitment to β. Next, Ak sets the message m in the external experiment to be a correct
decommitment to bit 1 − β and receives challenge ciphertexts {S1

1−b, . . . , S
4p(n)
1−b } (one for each challenge

public key). Ak must distinguish whether the ciphertexts {S1
1−b, . . . , S

4p(n)
1−b } are all encryptions of a decom-

mitment to 1 − β or whether the ciphertexts {S1
1−b, . . . , S

4p(n)
1−b } are all outputted by oRndEnc(PK∗i , r

i
Enc)

where riEnc is chosen uniformly at random.
Next,Ai runs its internal emulation untilA decommits in them(n)−i+1-th 〈Scom,Rcom〉 interaction in

the first coin toss of Stage 1 to some value r0R and the 〈Icoin,Rcoin〉 interaction completes. Then Ak rewinds
A to the point right before Ai sends r0S and instead sends the value r0S = r∗1 ⊕ r0R. Ak continues to rewind
A for at most 4p(n) times or until the 〈Icoin,Rcoin〉 protocol successfully completes and the decommitment

37

corresponding to the rewound coin-toss is the k-th decommitment of the rewound execution. Note that up to
the m(n)− i+ 1-th 〈Scom,Rcom〉 interaction, the execution of Ak is distributed identically to an execution
of EffExpr2kn(z, 4p(n)) in H5.

Thus, due to the non-abusing property of A in H5, and the fact that the output of EffExpr2kn(z, 4p(n))
and Expr2kn(z) are statistically 1/4p(n)-close, we have that with probability at least 1− 1/4p(n)− neg(n),
the outcome of the coin toss in the rewound execution is r∗i = r∗i ⊕ r0R ⊕ r0R = r0S ⊕ r0R (for some i). Thus,
since oGen(r∗i) = PK∗i , Ak can embed its challenge ciphertext Si1−b (which is encrypted under public key
PK∗i) in Stage 2 of 〈S,R〉 for the m(n)− i+ 1-th commitment.

For the m(n) − i + 2-th through m(n)-th commitments, Ai chooses b ∈ {0, 1} uniformly at random,
sets Sb to be an encryption of the decommitment information corresponding to β and sets S1−b to be an
encryption of the decommitment information corresponding to 1− β.

Finally, Ak runs D on the output of Z and outputs whatever D outputs. Note that if {S1
1−b, . . . , S

4p(n)
1−b }

are all outputted by oRndEnc(PK∗i , r
i
Enc), then the output of Z is at least 1/4p(n) + neg(n) close to the

output of Z in Hk−1
6 . On the other hand, if {S1

1−b, . . . , S
4p(n)
1−b } are encryptions of a decommitment to 1−β

under PK∗1, . . . , PK∗4p(n), then the output of Z is at least 1/4p(n) + neg(n) close to the output of Z in Hk
6 .

Thus, the difference between the probability that D outputs 1 in the first case and D outputs 1 in the second
case is at least 1/p(n)− 1/4p(n)−neg(n)− 1/4p(n)−neg(n) = 1/2p(n)−neg(n). SoAk distinguishes
between encryptions of decommitment to 1 − β and obliviously generated ciphertexts with non-negligible
probability. This yields a contradiction to the security of E and so the claim is proved.

Claim 17. For every adversary A in H5 that successfully commits to a bit β in Stage 2, it is the case that A
encrypts decommitment information for both 0 and 1 in S0, S1 with negligible probability.

Proof. Since A’s commitments can be extracted in H5 and H6, this follows immediately from the indistin-
guishability of the output of Z in H5 and H6.

7 Puzzle Instantiations

By Theorem 3, it suffices to present an adaptive UC puzzle in a given model to demonstrate feasibility of
adaptive and UC secure computation. We first give some brief intuition on the construction of adaptive
UC-puzzles in various models. Formal constructions and proofs follow.

In the Common reference string (CRS) model, the Uniform reference string (URS) model and the Key
registration model the puzzles are identical to the ones presented in [23] for the static case, where the puzzle
interactions essentially consists of a call to the corresponding ideal setup functionalities. Thus, in these mod-
els, the simulator is essentially handed the trapdoor for the puzzle via its simulation of the ideal functionality
and the puzzles are non-interactive. In the Timing model and the Partially Isolated Adversaries model, we
rely on essentially the same puzzles as [23], however, we need to modify the simulator to accommodate
adaptive corruption by the adversary (see Section 7.7 for more details).

Constructing adaptive UC-puzzles in the Sunspots model is less straightforward and so we give more
detail here. Simulated reference strings r in the Sunspots model have Kolmogorov complexity smaller
than k. Thus, as in [23], the puzzle sender and receiver exchange 4 strings (v1, c2, v2, c2). We then let Φ′

denote the statement that c1, c2 are commitments to messages p1, p2 such that (v1, p1, v2, p2) is an accepting
transcript of a Universal argument of the statement Φ = KOL(r) ≤ k. Note that since we require statistical
and adaptive simulation of puzzles, the commitment scheme used must be both statistically-hiding and
”obliviously samplable” (i.e. there is a way to generate strings that are statistically indistinguishable from
commitments, without ”knowing” the committed value). See Section 7.6 for details.

38

7.1 Adaptive UC in the Common Reference String (CRS) Model

In the common reference string model [5] the parties have access to a CRS choses from a specified trusted
distribution D, which is captured via the following ideal functionality FDCRS (Figure 7.1) that samples a
string r from the distribution D and sets it as a CRS.

Functionality FDCRS

1. Upon activation with an id sid run the sampling algorithmD with uniformly distributed random input
ρ ∈ {0, 1}n to obtain a reference string r = D(ρ). Store D, ρ, r and send (sid, r) to the adversary.

2. On input (CRS, sid) from a party P with session id sid′, return (sid, r) to that party only if sid =
sid′, and ignore the message, otherwise.

Figure 4: Common Reference String Functionality

We construct a puzzle in the FGCRS-hybrid, where G is a pseudorandom generator.

Protocol 〈S,R〉: On input sid, S and R request a common reference string from ideal functionality FGCRS
by sending sid.

Relation: R = {(x, y)|y = G(x)}

Figure 5: Common Reference String Puzzle

THEOREM 4. Assume the existence of a simulatable PKE scheme and the existence of an O(t)-round
EQNMCom scheme. Let G be a pseudorandom generator. Then, for every well-formed ideal functionality
F , there exists an O(t)-round protocol π that realizes F̂ with adaptive UC security in the FGCRS-hybrid.

7.2 Adaptive UC in the Uniform Reference String (URS) Model

When the distribution D in the CRS model is fixed as the uniform distribution, we obtain the uniform
reference string model [7]. Let the URS-functionality be FURS = FICRS , where I is the identity function.
Since the FGCRS-functionality implements FURS-functionality when G is pseudo-random generator, any
protocol that realizes f in the FGCRS-hybrid also realized the same functionality in the FURS-hybrid.

THEOREM 5. Assume the existence of a simulatable PKE scheme and the existence of an O(t)-round
EQNMCom scheme. Then, for every well-formed ideal functionality F , there exists an O(t)-round pro-
tocol π that realizes F̂ with adaptive UC security in the FGURS-hybrid.

7.3 Adaptive UC in the Key Registration Model

In the key registration model [1] includes a service that allows all parties to obtain a public key derived
from a seed, which is kept secret by the service. The service is modeled as an ideal functionality FfKR
parameterized by a function f : {0, 1}∗ → {0, 1}∗, which is presented in Figure 7.3.

Using the KR-functionality we construct a puzzle as follows:

39

Functionality FfKR

Upon activation with input sid and security parameter n initialize a set R of empty strings.

Registration: On input message (register, sid) from party P1 send to the adversaryA (register, sid, Pi)
and receive a value p′. If p′ ∈ R, then set p ← p′. Otherwise, choose r ← {0, 1}n and set p ← f(r)
and add p to R. Finally, record (Pi, p) and return (sid, p) to both Pi and A.

Registration by corrupted party: On input message (register, sid, r) from a corrupted party Pi, add
Pi, f(r) but does not add f(r) to R.

Retrieval: On input (retrieve, sid, Pi, Pj) from party Pj , send (retrieve, sid, Pi, Pj) to A and get back
a value p. If (Pi, p) is recorder, return (sid, Pi, p) to Pj . Otherwise, return (sid, Pi,⊥) to Pj

Figure 6: Key Registration functionality

Protocol 〈S,R〉: On input sid, R sends (retrieve, sid, S,R) to the ideal functionality FfKR to obtain a
public key.

Relation: R = {(x, y)|y = f(x)}

Figure 7: Key Registration Model Puzzle

THEOREM 6. Assume the existence of a simulatable PKE scheme and the existence of an O(t)-round
EQNMCom scheme. Let f be a one-way function. Then, for every well-formed ideal functionality F ,
there exists an O(t)-round protocol π that realizes F̂ with adaptive UC security in the FfKR-hybrid.

7.4 Non-Uniform Adaptive UC

In this model, we consider environments that are PPT machines and ideal-model adversaries that are
n.u.PPT machines. First, we construct an adaptive puzzle in this model and then state our main theorem.
To construct an adaptive puzzle in this model, we make the same complexity theoretic assumptions as those
made in [23]; namely, we assume the existence of an evasive set L in P.

Recall the definition of an evasive set [23]:

Definition 10. A set L is said to be evasive, if for all n, S ∩ {0, 1}n 6= ∅ and for any PPT machine M ,
there is a negligible function v(·), such that, Pr[M(1n) ∈ S ∩ {0, 1}n] ≤ v(n)

In [23], several other assumptions sufficient for constructing puzzles in this model. We note that in
the adaptive case we can also construct puzzles under each of the assumptions used by [23]. However, for
simplicity, we focus only on the assumption that there exists an an evasive set in P.

Lemma 6. Assume the existence of an evasive setL in P. Then there exists an adaptive puzzle in (PPT , n.u.PPT)
with an empty protocol.

Proof. Let λ denote the empty string. Define the puzzle Pnu = (〈S,R〉,R) as follows (see Figure 7.4):
We prove soundness and adaptive, statistical simulatability of the puzzle.

40

Protocol 〈S,R〉: S and R on input 1n run the empty protocol.

Relation: R = {(x, λ)|x ∈ L}

Figure 8: Non-uniform Puzzle

Soundness: Since L is evasive, no cheating PPT receiver can output x such that (x, λ) ∈ R, i.e. x ∈ L
with more than negligible probability.
Adaptive Simulatability: Consider an adversary A that participates in a concurrent adaptive puzzle execu-
tion with environment Z . We construct a n.u.PPT adversary A′ that receives δ ∈ L as non-uniform advice
and proceeds as follows: It incorporates A internally and emulates an execution with A. It forwards all
messages from A to Z , except the messages involved in the puzzle interactions with A. However, since the
protocol is empty, there are no messages exchanged in the puzzle interaction. Clearly, dealing with adaptive
corruptions is trivial since no messages are exchanged in the puzzle interaction. To outputs a witness, A′
simply outputs δ on its special output tape whenever A sends (TRANS = λ,C) to Z for a puzzle interac-
tion. Finally, since the interaction between A′ with Z is identical to the interaction between A with Z , the
real and ideal executions are perfectly indistinguishable to Z .

THEOREM 7. Assume the existence of simulatable PKE secure against n.u.PPT , the existence of an O(t)-
round EQNMCom scheme secure against n.u.PPT , and the existence of an evasive set L. Then, for every
well-formed ideal functionality F , there exists an O(t)-round protocol π that realizes F̂ with adaptive Non-
Uniform UC security.

7.5 Quasi-Polynomial Adaptive UC

Recall that the Quasi-Polynomial Simulation model is a relaxation of the standard simulation-based defini-
tion of security, allowing for a super polynomial-time or Quasi-polynomial simulation (QPS).

THEOREM 8. Assume the existence of simulatable PKE secure against PQT , the existence of an O(t)-
round EQNMCom scheme secure against PQT , and the existence of one-way functions that can be inverted
with probability 1 in PQT . Then, for every well-formed ideal functionality F , there exists an O(t)-round
protocol π that realizes F̂ with adaptive QPS-UC security.

We remark that one-way functions that are invertible byPQT machines as well asO(n)-round EQNMCom
schemes can be constructed based on one-way functions with sub-exponential hardness. Thus, assuming
simulatable PKE secure against PQT and one-way function with subexponential hardness, we obtain as a
corollary an O(n)-round protocol that securely realizes any functionality with adaptive QPS-UC security.

The notion of security we achieve is analgous to the one in [23] which guarantees that the output of the
simulator is indistinguishable also for PQT . This means that anything an attacker can learn “on-line” (in
poly-time) can be simulated “off-line” (in qpoly-time) in a way that is indistinguishable also “off-line”.

We present the following Adaptive UC-Puzzle in the QPS model (See Figure 7.5). Let f be a one-way
function that can be inverted with probability 1 in PQT .
Soundness: This follows directly from the one-wayness of f and the witness-hiding property of the proof
given by the sender.
Adaptive Simulatability: The simulatorA′ simply plays the part of the honest receiver. Upon adaptive cor-
ruption, A′ reveals the randomness of the honest receiver. Clearly, this simulation is identically distributed
to a real execution. To output a witness, we require A′ to compute the inverse of y = f(x) for a random x.
While emulatingA, ifA completes a puzzle-interaction by convincing the receiver in the WHPOK, thenA′

41

Protocol 〈S,R〉:

S → R: Pick x← {0, 1}n and send y = f(x) to R.

S ↔ R: a witness-hiding argument of knowledge of the statement that there exists x′ such that
y = f(x′).

Relation: R = {(x, y)|y = f(x)}

Figure 9: QPS Puzzle

Functionality Fsun.

1. Upon activation with session id sid proceed as follows. Send the message (Activated, sid) to the
adversary, and wait to receive bad a message (n, sid,D). Run the sampling algorithm d on a uniformly
distributed random input ρ from {0, 1}n to obtain a reference string r = D(ρ). Store D, ρ, r and send
(CRS, sid, r, ρ) to the adversary.

2. When receiving input (CRS, sid) from some party P with session id sid′, send (CRS, sid, r) to that
party if sid = sid′; otherwise ignore the message.

Figure 10: Fsun

inverts x to obtain a witness y such that y = f(x). If an inverse exists, it finds one since f is invertible by
PQT machines. From the soundness property of the WHPOK, it follows that, if A convinces the receiver,
then except with negligible probability, x has an inverse w.r.t. f .

7.6 Adaptive UC in the Sunspots model

Below we describe the functionality Fsun (See Figure 7.6).
We construct an adaptive UC-puzzle in the sunspots model which relies on a statistically hiding com-

mitments 〈C,R〉 with additional algorithms (C̃,Adap) that have the following properties:

Invertibility: For every (expected) PPT machine R∗, let τ be the transcript of the interaction between R∗

and C on input bit β and random tape r ∈ {0, 1}∗ for C. Then Adap(r, τ) produces a random tape r′

such that 〈C∗, R∗〉 yields transcript τ when C∗ uses random tape r′.

Strong Oblivious Simulation: For every (expected) PPT machine R∗, it holds that, the following ensem-
bles are statistically indistinguishable over n ∈ N .

• {(staR
∗,r1
〈C∗,R〉,r1(z), r1)}n∈N,r1,r2∈{0,1}n,z∈{0,1}∗,β∈{0,1}

• {(staR
∗

〈C,R〉,r2(β, z),Adap(r2, τ))}n∈N,r1,r2∈{0,1}n,z∈{0,1}∗,β∈{0,1}

where staR
∗,r1
〈C∗,R〉(β, z) denotes the random variable describing the output of R∗ after receiving a com-

mitment from C∗ using random tape r1, staR
∗

〈C,R〉,r2(β, z) denotes the random variable describing the
output of R∗ after receiving a commitment from C to bit β using random tape r2 and τ denotes the
transcript produced by 〈C,R〉.

42

We note that the standard construction of statistically-hiding commitment scheme from collision-resistant
hash function (CRHF) fulfills the above definition when the CRHF has ”random outputs” (i.e. for randomly
chosen input x, the output of the CRHF is statistically indistinguishable from random). Such a CRHF was
constructed by [19] from lattice-based assumptions. Additionally, the construction of statistically-hiding
commitment from one-way permutation (OWP) of [26] has the desired properties, since C∗ can simply
choose a random image y = π(x) of the OWP π, without knowing the corresponding x and run the in-
teractive hashing protocol oblviously. We note that the construction of [26] relies on a general hardness
assumption but requires poly(n) rounds while the construction of [19] relies on a concrete hardness as-
sumption but is constant-round. For concreteness, we state the theorem below for the case of CRHF with
random output. Our proof is written for the general case, assuming any commitment scheme that satisfies
the properties above.

THEOREM 9. Assume the existence of simulatable PKE, collision-resistant hash-functions with random
output, and an O(t)-round EQNMCom scheme. Then, for every well-formed ideal functionality F , there
exists a O(t)-round protocol π in the Fsun-hybrid that realizes F̂ with adaptive UC-security w.r.t. (µ, d, t)-
conforming adversaries where µ(n)− d(n) > nε for some ε > 0.

We first consider a FGsun-hybrid model, where FGsun is the ideal functionality identical fo Fsun, with the
exception that, instead of running the sampling algorithm D on a uniformly distributed ρ, it runs D on input
G(x) for a uniformly random x, where G is a pseudo-random generator. We conclude that the protocol
constructed in the FGsun-hybrid also securely realizes the functionality in the Fsun-hybrid.

We proceed towards constructing a puzzle in the FGsun-hybrid. Let G : {0, 1}nδ → {0, 1}∗ be a pseudo-
random generator that expands a seed of length nδ (for δ > 0) to a stream of bits such that d(n)+nδ+ |G| <
µ(n). Such a δ(n) is guaranteed to exist since µ(n)− d(n) > nε. Such a generator can be constructed from
any one-way function, which exists under the assumption of simulatable PKE.

Our construction of the puzzle is similar to the construction used in [23] (which is based on [8]), the
only difference is the type of commitment we use in the construction.

Let (V1, P1, V2, P2, V3) be the respective verifier and prover algorithms for a public-coin univeral argu-
ment for the language

LKOL = {r | r ∈ {0, 1}n and KOL(r) < n
ε+δ
2 },

where KOL(x) is the Kolmogorov complexity of a string x. Such a system can be constructed based on
collision-resistant hash functions. We describe a language of transcripts of universal arguments in which
the prover’s messages are committed instead of sent to the verifier. In order to commit, we use a special
statistically hiding commitment scheme 〈C,R〉, which satisfies the properties listed above. We describe the
puzzle construction below (See Figure 7.6).
Soundness: Suppose a PPT receiver R∗ is able to break the soundness by outputting the witness for a
puzzle with probability p. We use R∗ to construct another efficient algorithm P which breaks the sound-
ness property of the universal argument system with probability poly(p). The soundness of the universal
argument system therefore implies that p must be negligible which implies the soundness of the puzzle. We
show that P breaks the soundness of the universal argument w.p. poly(p) on the statement that the reference
string r sampled from FGsun-functionality has a “short” description. Since G is pseudo-random, if p is non-
negligible, then P breaks the soundness with non-negligible probability in the hybrid experiment when r is

sampled from the Fsun functionality. Since, D has min-entropy µ(n), w.p. at most 2−n
ε−δ
2 = 2−O(nε), r has

a short description and therefore no computationally bounded prover can succeed in the universal argument
with non-negligible probability. Thus, p is negligible.

More precisely, P upon receiving the verifier message v1, feeds v1 toR and then internally simulates the
rest of the puzzle until R outputs the witness. By hypothesis, this succeeds with probability p. Let p1 be a
decommitment to the first message sent by R. P forwards p1 externally to the verifier and receives the next

43

Protocol 〈S,R〉: S and R obtain the reference string r from the FGsun-functionality.

S → R: Pick m1 ← V1(r, n) and send to R.

R↔ S: R and S interact using 〈C∗, R〉, whereR plays the role ofC∗. We denote by c1 the resulting
transcript.

S → R: Pick m2 ← V2(r, n) and send to R.

R↔ S: R and S interact using 〈C∗, R〉, whereR plays the role ofC∗. We denote by c2 the resulting
transcript.

Relation:

R =

(TRANS, w) |
TRANS = (r, v1, c1, v2, c2), w = ((p1, r1), (p2, r2))
∃r1, r2c1 ← 〈C,R〉(p1, r1), c2 ← 〈C,R〉(p2, r2) and
V3(s, v1, p1, v2, p2) = 1


Figure 11: Sun Spots Puzzle

message v2. At this point, P rewinds R and feeds v2 instead of the second message (simulated before) from
the verifier and continues to simulate the rest of the puzzle. If R outputs a witness ((p′1, r

′
1), (p2, r2)) then

we argue that the p′1 outputted must, with all but negligible probability, be the same as p1 outputted during
the first simulation. Otherwise, R breaks the binding of the equivocal commitment and we obtain a witness
M to r ∈ LKOL. In particular, this means that R distinguishes the output of G from a truly random string.
Now, we argue that with probability at least p2, the transcript (v1, p1, v2, p2) is an accepting transcript for
the universal argument.
Adaptive Simulatability: We achieve statistical simulation by allowing the simulatorA′ to set the reference
string and obtain the witness, which is the description of D, G and x, whose combined size by construction
is nδ + O(1) + d(n) < n

ε+δ
2 . Furthermore, while emulating a receiver in a puzzle with adversary A,

instead of following the honest receiver’s code, A′ runs the protocol 〈C,R〉 with the sender S in the second
and fourth step of the puzzle interaction. The simulator runs the code of an honest prover (P1, P2) in the
universal argument with witness (D,G, x) obtaining transcript (v1, p1, v2, p2) and sends commitments to p1
and p2 using 〈C,R〉. Thus, the values committed to by A′ and the randomness used to commit amount to a
trapdoor for the puzzle. Upon adaptive corruption, A′ uses Adap to produce randomness r′ to show that the
transcript ”could have” been produced using C∗. Notice that, due to the properties of 〈C,R〉, even after the
randomness r′ has been produced, the puzzle sender’s view is statistically indistinguishable in the real and
simulated interaction.

7.7 Adaptive UC in the Timing model

We prove feasibility of our result in the timing model, which is the same as presented in [23], in the following
theorem.

THEOREM 10. Let ε > 1 and ∆ > 0 be constants. Assume the existence of simulatable PKE and a 2ε2∆-
delayed O(t)-round EQNMCom scheme. Then, for every well-formed ideal functionality F , there exists an
O(t)-round protocol π that realizes F̂ with (∆, ε, 2ε2∆)-timed adatpive UC-security.

For the proof of the above theorem we need to show that Lemma 5 holds the timing model and also adapt
the definition of a puzzle to handle entities with clock tapes. To achieve the first task we require that the

44

puzzle environment is δ-delaying and soundness and simulatability hold with respect to ε-drift preserving
adversaries. Thus we obtain the following claim for the lemma:

Lemma 7 (Adaptive-Puzzle-Lemma in the Timing Model). Let ε > 1 and ∆ > 0 be constants. Let Π′ be
a ε2∆-delayed protocol in the Fmcom-hybrid model. Assume the existence of a (Cenv, Csim)-secure tP -round
adaptive puzzle 〈S,R〉 in a G-hybrid model, ε2∆-delayed tC-round stand-alone EQNMCOM 〈Scom,Rcom〉
secure w.r.t cl(Csim, Cenv) and simulatable PKE scheme secure w.r.t Csim. Then, there exists a O(tP + tC)-
round protocol Π in the G-hybrid such that, for every uniform PPT adversary A that is ε-drift preserving,
there exists a simulator A′ ∈ Csim, such that, for every ε2∆-delaying environment Z ∈ Cenv, the following
two ensembles are indistinguishable over N w.r.t Csim.

•
{

ExecGΠ,A,Z(n)
}

n∈N

•
{

ExecFmcom
Π′,A′,Z(n)

}
n∈N

We adapt the proof of Lemma 5 to the timing model. There we considered a sequence of hybrid experi-
ments starting with the execution of the adversaryA in the real world to the execution with the simulatorA′
in the Fcom-hybrid world. We constructed non-abusing adversaries in each of the hybrids and showed that
the executions in the hybrids are indistinguishable for the environment Z . The first step was to construct
an adversary relying on the simulatability of the puzzles. In hybrid H1 we construct an adversary A′ that
incorporates A and simulates all puzzles interactions. In order to show that hybrid H0 (the real world) and
hybrid H1 are indistinguishable we constructed an adversary Apuz in a concurrent puzzle execution, which
incorporates A and emulates the interaction of A’s environment. Thus the indistinguishability of H0 and
H1 is reduced to indistinguishability of Zpuz in concurrent puzzle execution with Apuz and its simulator
A′puz . To ensure that this holds in the timing model we require that (1) Zpuz is ε2δ-delaying environment
and (2) the internal emulation of the execution by Apuz is identical to H0. The first conditions holds since
Zpuz incorporates Z and the honest parties and emulates only the interactions of these parties that are not
part of the puzzle-interactions. Thus all messages sent from Z or the honest parties to the adversary that
are forwarded from Zpuz to Apuz are ε2δ-delayed since Z is ε2δ-delaying, and messages from the honest
parties which are not part of the puzzles interactions are ε2δ-delayed.

In order to satisfy the second condition we have to account for the special messages (time, ∗, ∗) and
(reset − time, ∗, ∗) that the adversary A can send to alter the parties’ clock-tapes. We introduce two
modifications of Apuz and Zpuz to achieve this. First, we require that Apuz forward all special messages
from A to Zpuz and also adjust appropriately the local clock-tapes of the parties in the internal emulation.
Since Apuz forwards to the external receiver the messages between A and the honest parties where A acts
as a sender, we need to synchronize the clocks of those external receivers for the puzzle interactions. For
this we require that Zpuz forward the appropriate message for the clock-tapes to the external receives. The
above modifications of Apuz and Zpuz suffice for the proof of the non-abusing property as well (the only
difference in the puzzle environment is the final output). The rest of the hybrids in the proof of the lemma
are the same as before since they use the simulated puzzles and rely only on the EQNMCOM properties.

We turn towards constructing an adaptive puzzle in the timing model. Define the puzzlePtim(〈S,R〉,R)
as follows (see Figure 7.7).
Soundness: The soundness of the puzzle follows directly from the one-wayness of f and the witness-hiding
property of the protocols.
Adaptive Simulatability: To simulate a concurrent puzzle-execution with A and its environment Z , A′, as
before, internally emulates an execution withA while playing the role of the honest receiver. Upon adaptive
corruption, A′ simply reveals the inputs and randomness used while running the code of the honest receiver
during puzzle interactions (note that the inputs and randomness used in puzzle interactions are independent
of the inputs of the honest receiver to the commitment functionality). To extract the witness in a puzzle

45

Protocol 〈S,R〉:

S → R: Pick x← {0, 1}n and send y = f(x) to R.

S ↔ R: a witness-hiding special-sound argument of knowledge of the statement that there exists x′

such that y = f(x′). R issues a time− out if more than 2ε∆ local time units elapsed since the
challenge in the WHPOK was issued and the response was received from S.

Relation: R = {(x, y)|y = f(x)}

Figure 12: Timing Model Puzzle

challenged byA,A′ essentially rewindsA in the witness-hiding proof-of-knowledge sub-protocol to obtain
another accepting transcript. Using the special-sound property of the proof-of-knowledge protocol, the
adversary A′ can then extract the witness used in the proof and outputs that as the witness for the puzzle
transcript.

More formally, whenever A completes a puzzle-interaction with a receiver, A′ temporarily stalls the
emulation and rewinds A to the state where it receives a challenge in the WHPOK sub-protocol. It feeds
a new challenge and continues the emulation to obtain a response. While performing emulation from a
given challenge, A expects to exchange messages with Z and other receivers. Since, the receivers are
internally emulated, messages exchanged betweenA and the receivers can be emulated internally. Messages
exchanged withZ are delicate, since we cannot rewind the externalZ . Note, however, that in a rewinding,A
receives two kinds of messages from Z: (1) messages that were sent before the new challenge was fed to A
in a rewinding, and (2) messages that were sent after. The former messages were received by A in the main
execution can be replayed by A′ to A. For the latter kind of messages, we claim that A′ does not have to
emulate them. As A is ε-drift-preserving, the receivers clock-tape advances at least 2ε∆1

ε time units before
the puzzle-environment’s clock-tape advances 2ε∆ time units. Since, the receiver issues a time-out when its
clock-tape advances 2ε∆ steps since it sent the challenge, A needs to respond to the challenge before the
message from Z reaches A. Finally, messages to Z from A in a rewinding are ignored by A′. Finally we
need to argue that A′ runs in polynomial time. Let q(n) be the expected time that A′ spends to extract the
witness. Let p be the probability that the receiver is not corrupted during the rewinding and A responds to
a challenge in the WHPOK of the puzzle before the receiver times out. Then the expected number of times
that A′ has to rewind before A responds to the challenge before the receiver times out (conditioned that the
receiver is not corrupted) is 1

p . Therefore, the total time spent is p · 1p · q(n), which is polynomial.

7.8 Adaptive UC in the Tamper-Proof Hardware Model

The tamper-proof hardware model introduces a physical assumption that enables protocols to be executed
in an isolated environment. This assumption is instantiated through the existence of tamper-proof hardware
tokens, which allows a party Pi to create a hardware token that implements a functionality F and give this
token to any party Pj . Now the party Pj can interact with the token and access the embedded functionality
in a black-box manner. The tamper-proof property means that an adversary that has a token can do nothing
more than observe the input and output from the interaction with it, i.e. he cannot alter in anyway the
functionality that the token implements. The notion of a tamper-proof hardware token in formalized though
the ideal functionality Fwrap in Figure 7.8 introduced by Katz [21].

The following theorem states our result in the tamper-proof model.

THEOREM 11. Assume the existence of simulateable PKE and a O(t)-round EQNMCom scheme. Then, for

46

Functionality Fwrap.

Let p be a polynomial and n be a security parameter for Fwrap.

Create: On input (create, sid, Pi, Pj ,M) from Pi, where Pj is another user of the system and M is an
interactive Turing machine, do:

1. Send (create, sid, Pi, Pj ,M) to Pj .

2. If there is no tuple of the form (Pi, Pj , ∗, ∗, ∗) stored, then store (Pi, Pj ,M, 0,).

Execute: On input (run, sid, P,msg) from P ′, find the unique stored tuple (P, P ′,M, i, state) (if no such
tuple exists, then do nothing). Then do:

Case 1 (i = 0): Choose random w ← {0, 1}p(k). Run M(msg;w) for at most p(k) steps, and let out
be the response (set out =⊥ if M does not respond in the allotted time). Send (sid, P, out) to
P ′. Store (P, P ′,M, 1, (msg,w)) and erase (P, P ′,M, i, state).

Case 1 (i = 1): Parse state as (msg1, w). Run M(msg1||msg;w) for at most p(k) steps, and let out
be the response (set out =⊥ if M does not respond in the allotted time). Send (sid, P, out) to
P ′. Store (P, P ′,M, 0,) and erase (P, P ′,M, i, state).

Figure 13: Fwrap

every well-formed ideal functionality F , there exists an O(t)-round protocol π that realizes F̂ with adaptive
UC-security in the Fwrap-hybrid model.

In order to prove the theorem it suffices to construct an adaptive UC puzzle in the Fwrap-hybrid model.
Unlike the other puzzles this will be a ”stateful” puzzle in the sense that a party is required to spawn
a subroutine of S at the beginning of the execution and use this subroutine to generate any consecutive
puzzle. This routine can keep state across multiple executions and thus the generated puzzle instances are
not independent. Figure 7.8 presents the resulting puzzle in the tamper-proof model.

We argue the soundness and simulatability properties of the puzzle in Figure 7.8 as follows:

Soundness: It follows from the one-wayness the function f and the witness-hiding property of the proto-
col.

Simulation: To simulated concurrent puzzle execution with the adversary A and the environment Z , A′
emulates internally an execution withAwhere it acts asFwrap. A′ obtains the message (create, sid, Pi, Pj ,M

∗)
sent by A. Later in a challenge protocol by A to Pj , A′ extract the witness to a puzzle y by rewinding M∗

in the witness-hiding argument-of-knowledge sub-protocol. Since M∗ does not receive messages from any
other parties other than Pj during the execution (and the rewinding), the extraction can finish in isolation
without intervening the adversary A and the environment Z . If party Pj is corrupted during rewinding, A′
does not have to execute the simulation.

7.9 Adaptive, Partially Isolated Adversaries Model

In this section, we consider a model that incorporates the physical assumption that protocols can be run in a
(partially) isolated environment. In particular, we assume that a player Pj can ensure that another player Pi

47

Protocol 〈S,R〉:

S proceeds in two phases:

• When it is first spawned and invoked on inputs the identity of the sender Pi and the session
id sid, it uniformly picks a string x ∈ {0, 1}n, computes its image y through the one-way
function f , and stores (y, Pi, sid) as an internal state.
• Later when S is invoked on inputs the identity of the puzzle receiver Pj to challenge Pj , S

checks whether this is the first time interacting with party Pj , if so, it ”creates” and ”gives”
Pj a token, which encapsulates the functionality M that gives a witness-hiding argument-
of-knowledge of the statement that y is in the image set of f , by sending the message
(create, sid, Pi, Pj ,M) to Fwrap. To actually challenge Pj , S simply sends y as the puzzle
to the receiver.

Upon receiving y from the sender, R accesses M via Fwrap as follows: it sends (run, sid, S, ε) to
Fwrap (ε is an empty string), and then receives from M a WHAOK of the statement that y is in
the image set of f (forwarded by Fwrap).

Relation: R = {(x, y)|y = f(x)}

Figure 14: Tamper-Proof Model Puzzle

is partially isolated for a short portion of the computation. During this time, Pi can only exchange a limited
number of bits with the environment but Pj’s communication is unrestricted. More specifically, we assume
the existence of some threshold `, such that Pj can prevent Pi from exchanging more than ` bits with the
environment.

The partially isolated adversaries model was introduced by [13, 14], and formalized as the isolate ideal
functionality Fisolate. We recall the formal description of Fisolate as in [14] in Figure 7.9.

We obtain an analogue of the result of [14], using our puzzle framework:

THEOREM 12. Assume the existence of simulatable PKE scheme, and the existence of an O(t)-round
EQNMCom scheme. Then, for every well-formed ideal functionality F , there exists an O(t)-round pro-
tocol π that realizes F̂ in the Adaptive, Partially Isolated Adversaries model.

To prove the theorem, it suffices to construct a puzzle in the Fisolate-hybrid model. In all the previous
models, the puzzle protocols 〈S,R〉 are executed in a ”stateless” way, that is, whenever a party intends
to challenge (acting as the sender of the puzzle) another, it spawns independently a new subroutine of S
to generate the puzzle. In this model, we consider a ”stateful” puzzle, which requires a party to spawn
a subroutine of S at the beginning of its execution, and use this subroutine to generate all the puzzles it
needs throughout its lifetime. (Note that the receiver part of the puzzle protocol is still ”stateless”.) It is
stateful in the sense that the subroutine can keep states across multiple invocations, and hence the puzzle
instances generated are not independent to each other, but correlated. More precisely, we define the puzzle
Pisolate = (〈S,R〉,R) for the Fisolate-hybrid model as follows. The interactive Turing machine S, proceeds
in two phases:

• When it is first spawned and invoked on inputs the identity of the sender Pi and the session id sid–
called the initialization phase–it uniformly picks a string x ∈ {0, 1}n, computes its image y through
the one-way function f , and stores (y, Pi, sid) as an internal state.

• Let Π be an `-Isolated Proof of Knowledge Protocol as defined by [13], where parties Pi, Pj interact

48

The Fisolate ideal functionality is parameterized by an isolation paramter `, a security paramter κ and a
polynomial p.

Isolation of Pi: Wait until receiving messages (isolate, sid, Pi, Pj) from Pj and (isolate, sid, Pi, Pj ,M)
from Pi. If there is already a stored tuple of the form (Pi, Pj , ·, ·, ·, ·) then ignore the command.
Otherwise:

1. Parse the string M as the description of an ITM with four communication tapes; two tapes (”in”
and ”out”) for regular protocol communication with Pj and two tapes for secret communication
with Pi. Let the value state encode the initial state of M (including the value of a work tape
and an initialized random tape). Define new values inCom = 0, outCom = 0 and store the tuple
(Pi, Pj ,M, state, inCom, outCom).

2. Send (isolate, sid, Pi) to Pj .

Interaction with Pj: On input (run, sid, Pi, Pj ,msg) from Pj , retrieve the tuple
(Pi, Pj ,M, state, inCom, outCom). If there is no such tuple then ignore the command.

1. Place the string msg on the ”in” tape designated for Pi and run M for p(κ) steps.

2. If there is any value msg′ on the output tape for Pj then send the message (reply, sid, Pi,msg′)
to Pj .

3. If there is any value msg′ on the output tape for Pi and outCom + |msg′| < ` then send the
message (secretCom, sid, Pj , Pi,msg′) to Pi and update outCom = outCom + |msg′|.

4. Update the value of state in the stored tuple to encode the updated state of M and the values of
its tapes.

Communication: On input (secretCom, sid, Pi, Pj ,msg) from Pi, if there is no tuple of the form
(Pi, Pj ,M, state, inCom, outCom) then ignore. Also if the tuple has inCom + |msg| > ` then ig-
nore the command. Otherwise:

1. Update inCom = inCom + |msg|, place msg on the ”in” tape for Pi and run M for p(κ) steps.

2. Proceed with steps 2, 3, 4 of the above command.

Release of Pi: On input (release, sid, Pi, Pj) from Pj , retrieve the tuple
(Pi, Pj ,M, state, inCom, outCom) and send (release, sid, Pi, Pj , state) to Pi.

Figure 15: The Fisolate Ideal Functionality

49

and Pi proves that it knows a witness w to an NP-statement z. We note that by definition, such a
protocol is standalone zero-knowledge and hence, is also witness-hiding.

Pj , playing the part of receiver, initializes a puzzle interaction with S by sending the message (isolate, sid, Pi, Pj)
to the Ideal Functionality. S replies with the message (isolate, sid, Pi, Pj ,M), where M is a descrip-
tion of an ITM playing the part of the Prover in protocol Π, interacting via protocol communication
with verifier Pj and via secret communication with Pi. The NP-statement being proved is simply that
y is in the range of f , and by the end of the protocol, Pj should be convinced that Pi knows x such
that f(x) = y.

S and Pj interact withM via the Ideal Functionality messages run and secretCom. When the protocol
completes, Pj sends a message (release, sid, Pi, Pj) to the Ideal Functionality.

To actually challenge Pj , S simply sends y as the puzzle to the receiver. The puzzle relation R is
simply {(x, y) | y = f(x)}.

The soundness of the puzzle follows directly from the one-wayness of the function f and the witness-
hiding property of the protocol. Furthermore, to adaptively simulate a concurrent puzzle interaction with
adversary A and environment Z , A′ internally emulates an execution with A and acts as the Fisolate func-
tionality for A. Whenever A sends a message (isolate, sid, Pi, Pj ,M) to Fisolate, A′ obtains the message.
Later to extract the witness of a puzzle y challenged by A (controlling Pi) to Pj , A′ simply runs the knowl-
edge extractor of the `-Isolated Proof of Knowledge to extract the witness. Using the [13] construction
of `-Isolated Proofs of Knowledge, we have that the simulation of A′ is perfect; addtionally, we note that
since the [13] verifier is public-coin, dealing with adaptive corruptions is trivial. Thus, we achieve perfect,
adaptive simulation.

References

[1] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable protocols
with relaxed set-up assumptions. In Proceedings of the 45th Annual IEEE Symposium on Foundations
of Computer Science, pages 186–195, 2004.

[2] Boaz Barak and Amit Sahai. How to play almost any mental game over the net - concurrent composi-
tion via super-polynomial simulation. In FOCS, pages 543–552, 2005.

[3] Manuel Blum. How to prove a theorem so no one else can claim it. In Proceedings of the International
Congress of Mathematicians, pages 1444–1451, 1986.

[4] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS,
pages 136–145, 2001.

[5] Ran Canetti and Marc Fischlin. Universally composable commitments. In CRYPTO, pages 19–40,
2001.

[6] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally composable
two-party computation without set-up assumptions. In EUROCRYPT, pages 68–86, 2003.

[7] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party
and multi-party secure computation. In STOC, pages 494–503, 2002.

[8] Ran Canetti, Rafael Pass, and Abhi Shelat. Cryptography from sunspots: How to use an imperfect
reference string. In FOCS, pages 249–259, 2007.

50

[9] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Improved non-committing
encryption with applications to adaptively secure protocols. In ASIACRYPT, pages 287–302, 2009.

[10] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Non-interactive and non-malleable com-
mitment. In STOC, pages 141–150, 1998.

[11] Giovanni Di Crescenzo, Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Efficient and non-
interactive non-malleable commitment. In EUROCRYPT, pages 40–59, 2001.

[12] Ivan Damgård and Jesper Buus Nielsen. Improved non-committing encryption schemes based on a
general complexity assumption. In CRYPTO, pages 432–450, 2000.

[13] Ivan Damgård, Jesper Buus Nielsen, and Daniel Wichs. Isolated proofs of knowledge and isolated zero
knowledge. In EUROCRYPT, pages 509–526, 2008.

[14] Ivan Damgård, Jesper Buus Nielsen, and Daniel Wichs. Universally composable multiparty computa-
tion with partially isolated parties. In TCC, pages 315–331, 2009.

[15] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM J. Comput.,
30(2):391–437, 2000.

[16] Cynthia Dwork and Amit Sahai. Concurrent zero-knowledge: Reducing the need for timing con-
straints. In CRYPTO, pages 442–457, 1998.

[17] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Bringing people of different beliefs to-
gether to do uc. In TCC, pages 311–328, 2011.

[18] Oded Goldreich. Foundations of Cryptography, vol. 1: Basic Tools. Cambridge University Press,
Cambridge, UK, 2001.

[19] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Collision-free hashing from lattice problems. In
Studies in Complexity and Cryptography, pages 30–39. 2011.

[20] Yael Tauman Kalai, Yehuda Lindell, and Manoj Prabhakaran. Concurrent composition of secure pro-
tocols in the timing model. J. Cryptology, 20(4):431–492, 2007.

[21] Jonathan Katz. Universally composable multi-party computation using tamper-proof hardware. In
EUROCRYPT, pages 115–128, 2007.

[22] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concurrent non-malleable
commitments from any one-way function. In TCC, pages 571–588, 2008.

[23] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified framework for con-
current security: universal composability from stand-alone non-malleability. In STOC, pages 179–188,
2009.

[24] Yehuda Lindell. Bounded-concurrent secure two-party computation without setup assumptions. In
STOC, pages 683–692, 2003.

[25] Yehuda Lindell and Hila Zarosim. Adaptive zero-knowledge proofs and adaptively secure oblivious
transfer. In TCC, pages 183–201, 2009.

[26] Moni Naor, Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung. Perfect zero-knowledge
arguments for np using any one-way permutation. J. Cryptology, 11(2):87–108, 1998.

51

[27] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol composition. In
EUROCRYPT, pages 160–176, 2003.

[28] Rafael Pass and Alon Rosen. Concurrent non-malleable commitments. In Proceedings of the 46th
Annual IEEE Symposium on Foundations of Computer Science, FOCS ’05, pages 563–572, 2005.

[29] Manoj Prabhakaran and Amit Sahai. New notions of security: achieving universal composability
without trusted setup. In STOC, pages 242–251, 2004.

A Constructing Non-Interactive, Language-Based, Equivocal Commitments

LetCom be a non-interactive commitment scheme with a pseudorandom range. Such a commitment scheme
can be constructed from OWF.

Let L be an NP-Language and R, the associated NP-relation. Since the language L ∈ NP, we can
reduce L to the NP-complete problem Hamiltonian Cycle. Thus, given the public input x (which may or
may not be in L), we can use a (deterministic) Karp reduction to a graph G which contains a Hamiltonian
cycle. Moreover, finding a Hamiltonian cycle H in the graph G, implies finding a trapdoor w such that
R(x,w) = 1. Let Φ denote the deterministic mapping from strings x to a graphs G induced by the Karp
reduction.

The protocol is specified in Figures 16, 17 and has appeared before in [7]. For completeness, we present
it again here and show that it satisfies the properties of an equivocal commitment scheme as specified in
Definition 2

We omit the security analysis of the non-interactive, language-based equivocal commitment scheme
〈Seq,Req〉 presented in Figures 16 and 17, since it is standard.

B Constructing Adaptively-secure WIPOK

The adaptively-secure (without erasures) WIPOK construction given here is similar to the one given in [25].
As in [25], it is based on Blum’s Σ-protocol for graph Hamiltonicity [3]. Let Com be any commitment
scheme. The Σ-protocol proceeds as follows (see figure 18):

We construct adaptively-secure WIPOK by replacing each commitment Com in the Σ-protocol with a
non-interactive equivocal commitment Com∗(π(G′)i,j), as constructed above.

Lemma 8. When commitments Com are replaced with equivocal commitments Com∗ generated by running
the protocol 〈Seq,Req〉 presented in Figures 16 and 17 then we have that the protocol in Figure 18 is a
WIPOK (with soundness 1/2) and is secure under adaptive corruptions.

sketch. The analysis of the soundness of the protocol follows from the analysis of the underlying Σ-protocol,
which we omit since it is by now a standard argument.

Next we need to prove the witness-indistinguishability and proof of knowledge properties as well as the
fact that the protocol is secure under adaptive corruptions. In fact, we show that the above construction is not
only a WIPOK, but is a Zero Knowledge Proof of Knowledge. We now present a simulator which satisfies
the zero-knowledge property and can also handle adaptive corruptions (for simplicity, we consider here only
post-execution corruptions). This implies that the scheme above is zero-knowledge as well as secure under
adaptive corruptions.

On input graph G′, the Simulator does the following:

Simulation of Prover’s first message: Use the simulator for 〈Seq,Req〉 to compute a commitment for each
position in an n× n matrix (each position in the matrix can now be opened to either 0 or 1).

52

〈Seq,Req〉 on common input x and private input β: Commitment phase

To commit to β = 1:

1. Seq chooses an n× n adjacency matrix H of a random n-node Hamiltonian cycle.

2. Seq sends a matrix Com of n× n strings where the following holds:

• Comi,j contains a random commitment to 1 under Com iff Hi,j = 1.
• Comi,j contains a random string iff Hi,j = 0.

To commit to β = 0:

1. Seq chooses an n× n adjacency matrix I which corresponds to a random isomorphism of G =
Φ(x).

2. Seq sends a matrix Com of n× n strings where the following holds:

• Comi,j contains a random commitment to 1 under Com iff Ii,j = 1.
• Comi,j contains a random commitment to 0 under Com iff Ii,j = 0.

Let C = EQComx(β; r) denote the transcript of the commit phase when Seq uses randomness r.

〈Seq,Req〉 on common input x: Decommitment phase

To decommit to a 0:

1. Seq opens the commitments in Com where Comi,j is a commitment to 1 and shows that these
correspond to a random Hamiltonian cycle.

2. Seq produces the randomness it used to sample the remaining random strings in the matrix Com.

To decommit to a 1:

1. Seq opens the commitments in Com to obtain adjacency matrix I and shows an isomorphism
from G = Φ(x) to this graph.

Figure 16: Non-interactive, language-based equivocal commitment scheme 〈Seq,Req〉

Simulation of Prover’s second message

• If b = 0, choose a random permutation π and equivocally open the commitments of the n × n
matrix to be consistent with π(G′).

• If b = 1, choose a random cycle C and equivocally open the commitments that correspond to
the Hamiltonian cycle to be consistent with the cycle.

Upon post-execution corruption of Prover: Upon corruption, the simulator learns the witness, the cycle
H of graph G′.

• If b = 0, all the commitments have already been opened, the permutation π has been revealed
and there is no additional information revealed to the adversary upon corruption.

• If b = 1, find some permutation π′ of the vertices of G′ such that π′(H) = C. Note that since

53

〈S̃eq, Req〉 on common input x ∈ L and private input w where w ∈ R(x): Equivocal Commitment

1. S̃eq chooses an n× n adjacency matrix I which corresponds to a random isomorphism of G = Φ(x).

2. S̃eq sends a matrix Com of n× n strings where the following holds:

• Comi,j contains a random commitment to 1 under Com iff Ii,j = 1.

• Comi,j contains a random commitment to 0 under Com iff Ii,j = 0.

Let C = EQCom∗x(r) denote the transcript of the commit phase when S̃eq uses randomness r.

Adapeq(x,w, r, τ, v), where τ is the transcript generated by 〈S̃eq, Req〉 on common input x ∈ L:
Equivocal Decommitment

Adapeq decommits to v = 0 as follows:

1. Adapeq opens all the commitments in Com to reveal adjacency matrix I and shows an isomor-
phism from G = Φ(x) to this graph.

Adapeq decommits to v = 1 as follows:

1. Adapeq uses w to open the commitments in Com that correspond to the Hamiltonian cycle in
G = Φ(x) and shows that these correspond to a random Hamiltonian cycle.

2. Adapeq produces random coins for sampling the remaining strings in Com at random.

Figure 17: Non-interactive, language-based equivocal commitment scheme–Equivocator (S̃eq,Adapeq)

H and C are simply n-node cycles, finding such a π′ takes linear time. Equivocally open the
commitments of the remaining entries of the n× n matrix to be consistent with π′(G′).

We omit the analysis of the above simulator. It is straightforward to check that the simulator simultane-
ously satisfies the zero-knowledge property and also simulates adaptive corruptions successfully.

We additionally omit the proof that the protocol is a proof of knowledge, which is also straightforward.

54

Σ Protocol

Prover’s input: Graph G′ (we also use the notation G′ to represent the adjacency matrix of G′) with
Hamiltonian cycle H .

Prover’s first message:

• Choose a permutation π of the vertices of G′.

• Commit to the adjacency matrix of π(G′) by sending [Com(π(G′)i,j)]1≤i≤n,1≤j≤n to the Veri-
fier.

Verifier’s message: Verifier chooses b ∈ {0, 1} at random and sends to Prover.

Prover’s second message:

• If b = 0, reveal π and open the commitments of the entire adjacency matrix.

• If b = 1, reveal only the cycle π(H) in π(G′) by opening the commitments that correspond to
the Hamiltonian cycle.

Verifier checks the following:

• If b = 0, do the following: Given π, check that the opened adjacency matrix is equal to π(G′).
Check that each of the commitments was opened correctly.

• If b = 1, check that the opened commitments correspond to a Hamiltonian cycle. Check that
each of the commitments was opened correctly.

Figure 18: Σ Protocol

55

