
IBAKE: Identity-Based Authenticated Key Exchange Protocol

Vladimir Kolesnikov
Alcatel-Lucent Bell Labs Research

600 Mountain Ave. Murray Hill, NJ 07974, USA
kolesnikov@research.bell-labs.com

Ganapathy S. Sundaram
Alcatel-Lucent

600 Mountain Ave. Murray Hill, NJ 07974, USA
ganesh.sundaram@alcatel-lucent.com

Abstract

The past decade has witnessed a surge in exploration of cryptographic concepts based
on pairings over Elliptic Curves. In particular, identity-based cryptographic protocols
have received a lot of attention, motivated mainly by the desire to eliminate the need
for large-scale public key infrastructure.

We follow this trend in this work, by introducing a new Identity-Based Authen-
ticated Key Exchange (IBAKE) protocol, and providing its formal proof of security.
IBAKE provides mutually-authenticated Key Exchange (AKE) using identities as pub-
lic credentials.

One identity-based AKE subtlety that we address in this work is the resilience to the
man-in-the-middle attacks by the Key Management Service. For efficiency, we employ
two Elliptic Curves with differing properties. Specifically, we use a combination of a
super-singular and non-super-singular curves, where the super-singular curve is used
as an identity-based encryption “wrapper” to achieve mutual authentication, and the
resulting session key is based on a Diffie-Hellman key exchange in the non-super-singular
curve.

We provide a detailed proof of security of the resulting protocol with respect to (our
own natural adaptation and simplification of) the AKE definitions of Kolesnikov and
Rackoff.

1 Introduction

Since the discovery of identity-based encryption [BF03] (conference version [BF01]), much
attention has turned to the exploration of cryptographic concepts based on pairings over
Elliptic Curves, and in particular, their applications to general identity-based cryptographic
protocols. Following this trend, we re-visit the problem of securing sessions between two par-
ties over an insecure network. Specifically, we address the problem of two-party mutually-
Authenticated Key Exchange (AKE) in the identity-based public key cryptographic setting.

1

The AKE problem has a rich history and research legacy. Based on the type of credential
used, there are two categories of protocols - symmetric and asymmetric. Our approach falls
into the latter category; in addition, instead of relying on more conventional public key tools
such as RSA (and the required costly public-key infrastructure), we construct an efficient
AKE protocol in an the identity-based cryptographic setting.

In our approach, we use two different Elliptic Curves, for authentication and session
key generation respectively. Specifically, we use a combination of a super-singular and
non-super-singular curves, wherein the super-singular curve is used as an identity-based
encryption “wrapper” to achieve mutual authentication, and the resulting session key is
based on a Diffie-Hellman key exchange in the non-super-singular curve. We provide a
detailed proof of security of the resulting protocol. The definitions of security we employ are
natural adaptations and simplifications of the definitions proposed recently by Kolesnikov
and Rackoff [KR06, KR08].

1.1 Identity-Based Cryptography

The concept of Identity-Based Cryptography, wherein the “identity” (e.g., username, do-
main name, etc.) is used as a public key, and the corresponding private key is derived from
the identity and a master secret, owes its origins to Shamir [Sha85]. The main attraction
of this approach is the avoidance of the expensive public-key infrastructure (PKI), needed
to certify the binding of a public key to an identity.

The idea of identity-based cryptography remained unrealized until 2001, when Boneh
and Franklin [BF01] proposed an implementation based on Weil pairing, soon followed by
Joux [Jou02]. These seminal works have catalyzed new areas of exploration, and new public
key encryption systems that avoid the use of large-scale Certificate Authorities (CA) (and
related PKI) have been proposed.

The riddance of the CAs does not come for free. In ID-based setting, players’ private
keys cannot be generated by the players themselves, since the generation involves a global
master secret. Instead, private keys are computed by a Key Management Service (KMS),
and transmitted to players upon identity verification. Thus, in contrast with CAs in the
traditional public-key setting, where players can generate their keys themselves, the KMS
knows all the keys in the ecosystem, and must be trusted not to abuse this knowledge. In
essense, the KMS must be treated as a key escrow entity.

1.2 IBAKE and Our Contribution

The design of our protocol can be explained using an “inside out” approach. Consider two
parties exchanging a key in an insecure environment. The natural protocol to consider in
this setting is the Diffie-Hellman protocol [DH76] over a group. In our protocol, we rely
on the Elliptic Curve Diffie-Hellman protocol as proposed by Koblitz [Kob87] and Miller
[Mil86]1. However, Diffie-Hellman suffers from a man-in-the-middle attack, as it does not
authenticate communicating entities. In order to address this, we employ identity-based

1This choice was made with a view towards reducing the complexity of the key exchange computation.

2

encryption to “wrap” the DH messages, protecting their privacy, and ensuring that only
the designated player is able to decrypt them and perform the following steps of the protocol.

Our Contribution. IBAKE follows a natural approach to AKE design. Our contri-
bution is the first, to our knowledge, AKE protocol with detailed proof of security, which
explicitly and efficiently combines the identity-based credentials with the the resilience
against corrupt KMS/Key Escrow, by using two curves with different properties. Our de-
tailed formal proof of security is based on our AKE definition, derived from one recently
proposed by Kolesnikov and Rackoff [KR06, KR08].

We note that our protocol is secure even if the two participants are attached to two dif-
ferent KMSs. We optimize the performance of our protocol; a report on the implementation,
its efficiency and a comparison with existing protocols is forthcoming.

1.3 Related Work

We now briefly compare our protocol to existing AKE solutions. Firstly, we note that the
immense body of work on symmetric, password-based, and public-key-based AKE protocols
does not achieve our goals, due to their inapplicability in identity-based setting. Namely,
symmetric and password-based protocols require key setup among each pair of players,
quickly overwhelming the storage resources in many settings. Further, as argued above
in Section 1.1, traditional public-key-based solutions, such as [MQV95], require the use of
costly CAs, which also does not scale in all settings.

Prior work on identity-based AKE, e.g., [Sma02, CCS06], of course, resolves the CA
issue. However, identity-based AKE protocols often do not address the key escrow problem
discussed above in Section 1.1. That is, the trusted KMS who knows private keys of all
players, can post factum compute all the session keys in the system, and break into all com-
munication. By using a DH exchange inside the identity-based IKE, we ensure protection
against this threat.

1.4 Organization

The rest of this paper is organized as follows. In Section 2 we present the definitions of
security relevant to our construction and present the construction and security proofs in
Section 3.

We note that Section 3 starts with the protocol presentation, some additional intuition
for the design, security claim and proof intuition. Thus, the beginning of Section 3 could
be a good starting point for the reader looking to get straight to the protocol, its precise
security claim, and high-level intuition.

2 Definition of Security of KE

In this section, we present the definition of security we use in our proofs. This definition is
a natural adaptation (actually, mostly simplification) of the definitions of Kolesnikov and
Rackoff [KR06, KR08]. The latter definitions consider a substantially more general setting
of multi-factor authenticated KE, where parties possess both long and short keys (e.g. PSK

3

and passwords). The definitions of [KR06, KR08] have the graceful degradation property,
that is, a compromise of some of the keys results in the security level accorded by the
remaining key(s). Naturally (also indirectly implied in [KR06, KR08]), omitting the use of
short keys results in the definition for our setting.

The main difference in our setting is that we consider peer-to-peer, while [KR06, KR08]
considers client-server setting. This implies the corresponding amendment in the definition.
Namely, instead of creating identities of honest client and a server, here we create identities
of two honest players (we still allow a polynomial number of malicious identities).

While one can use one of several KE definitions, we found game-based definition to be
the simplest to use. Further, specifically for the reduction of the IBAKE protocol, they
are most convenient, since the security of the IBE (identity-based encryption) primitives is
defined as a game [BF03] (presented, for convenience, in Appendix A).

For completeness and the formalization of discussion, we now present the adapted defi-
nition that we will use.

We denote by PPn
k,i the i-th instance of player Pk who wants to talk to (some instance

of) player Pn.
KE definitions rely on the notion of partners to specify what constitutes an attack. Infor-

mally, two instances of players are partners, if they establish a secure channel. Syntactically,
we define partners as follows.

Definition 1 We say that an instance PPn
k,i of a player Pk who wants to talk to an instance

of Pn and an instance PPk
n,j of a player Pn who wants to talk to an instance of Pk are

partners, if they have output the same session id sid.

Session id sid is an additional (somewhat artificial) output of KE, which need not be
used in real execution, but which is needed for syntactic manipulations in the proof. We
omit the detailed discussion of the need of sid and refer the interested reader to literature,
e.g., [KR06, KR08] for additional information.

We start by presenting the KE game, which model attacks of a real-life adversary.
Game KE. First Key Management Service (KMS) is initialized, and its setup algorithm
is run. Then Adv runs players by executing steps 1-5 multiple times, in any order:

1. Adv creates an honest player Pk. Adv is allowed to pick any unused name NPk
for

Pk. Pk is registered with KMS, and a private key is set up and associated with it based
on its name.

2. Adv creates a corrupt player Bi. Adv is allowed to pick any unused name NBi for Bi.
Bi is registered with KMS, and a private key is set up and associated with it based on
its name. The generated private key is given to Adv.

3. Adv creates an instance PPn
k,i of the honest player Pk who wants to talk to (good or

bad) player Pn. Pk,i is given (secretly from Adv) as input his private key and the
name of his intended partner NPn.

4

4. Adv delivers a message m to an honest party instance. The instance immediately
responds with a reply (by giving it to Adv) and/or terminates and outputs the result
(a sid and either the session key, or the failure symbol ⊥) according to the protocol.
Adv learns only the sid part of the output.

5. Adv “opens” any successfully completed and checked honest instance – then he is given
the session key output of that instance.

Then Adv asks for a challenge on an instance of an honest player.
The challenge of instance PPn

k,i is handled as follows. PPn
k,i , who has been instantiated

to talk to another honest player Pn, must have completed and output a session key. The
challenge is, equiprobably, either the key output by PPn

k,i or a random string of the same

length. Adv must not have opened PPn
k,i or his partner, and is not allowed to do it in the

future.
Then Adv continues to run the game as before (execute steps 2-5). Finally, Adv outputs

a single bit b which denotes Adv’s guess at whether the challenge string was random. Adv
wins if he makes a correct guess, and loses otherwise. Adv cannot “withdraw” from a
challenge, and must produce his guess.

The above game is almost sufficient for security definition. The only remaining technical
aspect is the enforcement of non-triviality. We need to prevent improper partnering (e.g.
players unnecessarily outputting same sid). Recall, Adv is not allowed to challenge parties
whose partner has been opened; SID ensures that Adv is not unfairly restricted. We handle
this by introducing the following game

Game SID is derived from game KE by adjusting the win condition, as follows (and
otherwise is identical). Adv does not ask for (nor answers) the challenge. Adv wins if any
two honest partners output different session keys.

Note, SID allows for one (or both) of the partners to output a failure symbol. Adv only
wins if two successfully completed parties output different session keys.

We are now ready to present the definition.

Definition 2 We say that a key exchange protocol Π is secure, if for every polytime ad-
versaries Adv1, Advsid playing games KE and SID, their probabilities of winning (over the
randomness used by the adversaries, all players and generation algorithms) is at most only
negligibly (in security parameter n) better than:

• 1/2, for KE,

• 0, for SID.

Resilience against corrupt KMS. We do not formally introduce the property of
resilience to KMS/key escrow service corruption into our definition. A natural way to
do so would be to add the requirement that the following two distributions D1, D2 are
indistinguishable. D1 includes the master key, a completed AKE execution transcript and
the session key; D2 is defined exactly as D1, with the exception that instead of the session
key, it includes a random string of appropriate length. We note that a single transcript here

5

is sufficient. That is, a protocol cannot be constructed in a way that a distinguisher wins
if he has access to two AKE transcripts, but not when he has access to only one. This is
because any number of additional transcripts can be generated by the distinguisher himself,
when given the master key.

We will show that our protocol has this corrupt KMS resilience property in Section 3.1.

3 IBAKE Essential Exchange and its Proof of Security

We now formally state and prove the security theorem of our proposed IBAKE Protocol.
For simplicity, we consider only the core of the protocols, leaving out the non-security-

essential messages. It is clear that the following Protocol 1 represents the full IBAKE
Protocol [CS11], and the latter is secure if so is the former. We will thus consider and prove
security of the following protocol.

Protocol 1 (Essential message exchange of the IBAKE Protocol)

A B

given curve, point p given curve, point p

select a random point a
IBEncB(A,B, ap)→

select a random point b
← IBEncA(B,A, ap, bp)

verify received ap
if fail, abort

IBEncB(A,B, bp)→
verify received ap
if fail, abort

set sk = KDF (abp) set sk = KDF (abp)
set sid = (ap, bp), set sid = (ap, bp),
Output (sk, sid) Output (sk, sid)

Theorem 1 Let IBEnc be a CCA2 secure encryption scheme according to the definition
of [BF03]. Then, protocol 1 is a secure KE protocol, according to the Definition 2, in the
Random Oracle (RO) model, where KDF is a RO.

As mentioned above, the proof of Theorem 1 implies the security of the IBAKE Proto-
col [CS11].

Similarity to [BR94]. Firstly, observe that our protocol closely resembles the Bellare-
Rogaway (BR) KE protocol [BR94]. There are several differences. First, the BR protocol
is based on symmetric keys. This, in particular, implies that MitM Adv cannot create new
encrypted and MAC’ed messages, and only can forward messages that he already saw in
previous executions. A consequence of this is that we need to encrypt the first message

6

from the initiator (BR didn’t), for the following reason. If the message was not encrypted,
then MitM Adv could easily forge the response and successfully assume any identity.

Further, we use the DH KE inside the exchange protected by IBE. This is to prevent a
KMS from post-factum decrypting the message exchange, deriving the exchanged keys and
breaking into the session. We will make an (easy) argument that our technique is sufficient
for this goal in Section 3.1.

Proof intuition: It is relatively easy to see at a high level that IBAKE is a secure KE
protocol. Importantly, we use a strong CCA2-secure IBE encryption, thus preventing Adv
from being capable of generating encryptions, under keys of honest players, of anything
related to what was generated by honest players. In particular, after having seen and
captured the message IBEncA(B,A, ap, bp) (e.g., sent by an instance of B), Adv provably
cannot generate a message IBEncA(B,A, âp, bp) for any â. Therefore, inclusion of ap in
the second message implies that the intended player B generated the second message in
response to the first message, which B must have decrypted, and thus the included bp came
from B. Similarly, receipt of the encryption bp in the third message confirms to player A
that the earlier message was obtained and decrypted by the “right” instance of his partner
B.

Our formal proof relies on game-based definitions of security. We show that no adversary
Adv can win in the game where he is challenged to distinguish from random the session key
output by an honest party. We do this by constructing an IBE encryption adversary2 who
uses the KE adversary and wins “often” if the KE adversary wins “often”. That is, IBE
adversary translates the IBE game and challenge into the KE game and challenge, has KE
Adv solve it, and then translates the solution back to the CCA game to win it.

For simplicity, we actually prove the theorem with respect to the slightly modified IBE
game G, defined as follows. It is easy to see (and we will later argue) that the IBE game
and the game G describe the same class of secure encryption functions.
IBE Game G. (A variant of the IBE game of [BF03], cf. Appendix A.)
Denote the slightly modified CCA2-security game of IBE as G. G is the same as the CCA2
IBE game, except in the the challenge query, instead of one tuple of 〈ID,M0,M1〉, G takes
two such tuples 〈ID1,M

1
0 ,M

1
1 〉, 〈ID2,M

2
0 ,M

2
1 〉 (possibly with two different identities, and,

correspondingly returns two encryptions, corresponding to the same randomly chosen bit b.
Of course, further decrypt queries are restricted to not accept either of the two produced
encryptions (with corresponding ID’s.

It is easy to see (via a standard hybrid argument) that the game G guarantees the same
security properties as the CCA2 IBE game.

Observation 1 Jumping ahead, we note that we introduce game G to make clearer the
following aspect of the proof. We will use message 2 of the protocol, sent by the responder,
to translate the IBE game challenge to the KE game challenge, which we will then ask
Adv to solve. However, initiator is expected to respond to this message, which we can’t
simulate statistically, since we can’t call the IBE game’s decrypt query on this message.

2See definitions in [BF03], also included in Appendix A for convenience.

7

Our solution is to get the correct initiator’s response from the (modified) IBE game G, by
allowing to pass two pairs of ciphertexts in the challenge query.

Lemma 1 Let IBEnc be an encryption scheme secure according to the above game G.
Then, protocol 1 is a secure KE protocol, according to the Definition 2, in the Random
Oracle (RO) model, where KDF is a RO.

Proof of Lemma 1:
Suppose the contrary, that is that the above protocol is not secure, and there exists a

polytime Adv who gains a non-negligible advantage in game KE.
We present a distinguisher Dist and show that it gains a corresponding non-negligible

advantage in G. Dist simulates an environment (i.e. KE players and their actions), in
which he runs Adv, answers Adv’s queries and uses Adv’s decisions to make decisions in G.
We say “Dist stops”, meaning “Dist finishes processing Adv’s request and returns control
to Adv”, and “Dist sends (outputs) m”, meaning “Dist simulates the given player sending
(outputting) m, by giving m to Adv”.

Dist starts up Adv and gives him the public key of KMS, which he received from G.
Dist then runs Adv and satisfies its requests for information as follows. Note that a player
must have been created to create its instances. We also note that while we carefully handle
how honest players respond to messages and responses (allegedly) coming from the honest
players – this is how we reduce the KE game to G – Dist mostly simply executes the
protocol to handle messages (allegedly) coming from corrupt players. Overall, Adv’s view
of the interaction with Dist will be computationally close to Adv’s view of a real KE game.
It is important to ensure that this is indeed so, as otherwise a clever Adv may “refuse to
help Dist in his playing G”.

Informally, in our “translation” of Adv’s ability to successfully answer a KE Game
challenge into the setting of IBE security game G, we will have Dist play G, select a
challenge based on a message that a KE instance may send, and “hope” that Adv will choose
the same instance for his challenge. If he does, as we will see, Dist wins in G essentially
whenever Adv wins KE. If Adv chooses another instance for his challenge, we cannot take
advantage of our setup, and Dist simply makes a random guess for G. Because Adv can
not infer which instance is associated with a challenge, he will be forced to choose the G-
challenge-related instance appropriately often. That is, if we bound the total number of
honest instances that Adv is allowed to create by q, then the probability of Adv challenging
the “right” instance is at least 1/q.

Variables notation. In the following, we will use indexed variables. We will adhere to
the following notation. Messages received by players will have indices indicating the alleged
origin, and also will have a “hat” to denote that they have been possibly modified in transit.
For example, an encryption E1 sent by instance PPn

k,i will be denoted by E
1,PPn

k,i
. Upon

delivery to instance PPm
n,j the (same or possibly different) string will be denoted Ê

1,PPm
n,j

,

since it is claimed to be

1. Adv creates a bad player Bi:

8

Dist runs the extraction query of game G (of Phase 1) by giving Bi’s name to G.
Dist obtains the corresponding private key from G, stores it, and gives it to Adv.

2. Adv creates an honest player PPn
k,i :

No action necessary (player’s public key is his name). We can’t run extraction query
of G, as this player’s keys may be the selected G’s challenge.

3. Adv creates an initiator instance PBj

k,i of honest player Pk talking to corrupt player
Bj and starts the protocol:
Dist follows the protocol. That is, Dist selects a random point a, and generates and
gives to Adv the encryption E

1,P
Bj
k,i

= EncBj (Pk, Bj , ap).

4. Adv creates an initiator instance PPn
k,i of Pk talking to honest Pk and starts the pro-

tocol:
Dist generates and gives to Adv the encryption of the first message, according to the
protocol.

5. Adv creates a responder instance Pk,i of the honest player Pk.
No action needed from Dist.

6. Adv delivers a first message mPn,i = (Ê1) to an instance PPk
n,i of honest responder Pn

(allegedly) from honest player Pk:
If Dist has not seen this specific encryption Ê1 or if he has generated it himself (but
not via a challenge query with identity Pn – see below for how and when challenge

queries are executed), Dist decrypts mPn,i by executing the decryption query of G
with parameters 〈mPn,i ,Pn〉3.
In either of the above cases, Dist continues according to protocol. It parses the
decrypted value, verifies the player names and extracts âp. It also generates random
b, r from the appropriate group. If next message is not selected for the challenge, Dist
generates and gives to Adv the encryption E

2,PPk
n,i

= EncPk
(Pn,Pk, âp, bp).

However, if the next message is selected for the challenge, Dist executes the challenge
query of G by passing the two tuples. The first tuple is M1

0 = 〈Pn,Pk, âp, bp〉,M1
1 =

〈Pn,Pk, âp, rp〉 and the challenge identity Pk. The second tuple is M2
0 = 〈Pk,Pn, bp〉,M2

1 =
〈Pk,Pn, rp〉 and the challenge identity Pn. Dist receives two challenge encryptions
ce1, ce2 under the keys Pk and Pn respectively, of one of the two messages from each
tuple. Dist gives ce1 to Adv at this time.

In the final option, if Dist has obtained Ê1 from a challenge query which was
associated with Pn, decrypt is not allowed by G. In this case, Dist might not know the
exact content of the plaintext, namely the encrypted group element. However, he does
know that the group element is one of the two options he gave as input to challenge).
Further, Dist knows the identity/public-key used to produce the encryption, and the

3We can avoid this decrypt query if Dist had generated Ê1 himself with the public key Pn, since we
know the answer already; however this has no effect on the proof.

9

player identities of the plaintext (this is because they were the same in plaintexts
M i

0,M
i
1 submitted inside the challenge tuple). Thus, Dist can verify whether the

message should result in the protocol outputting failure or an encryption message.
Dist generates failure simulation in the natural way. In case a response (and not a
failure output) is expected, Dist is not able to simulate it statistically close, since he
does not know which of the group elements is inside Ê1. However, he can simulate the
response computationally, as follows. He simply responds with a random encryption
E

2,PPk
n,i

= EncPk
(Pn,Pk, r1p, r2p). We note that the plaintext of this encryption is

computationally indistinguishable from encryption of any other plaintext of the same
size. Further, when submitted to any instance of any player, including instances of
player Pk, to be indistinguishable from real execution, this message should always
trigger failure output, which is easy to simulate. (This is because this message should
only be accepted by an instance of Pk, which happened to randomly choose the same
ap, an event of negligible probability.)

7. Adv delivers a first message mPn,i = (Ê1) to an instance PBj

n,i of honest responder Pn
(allegedly) from player Bj:
If this message was generated by challenge query with identity Pn, we cannot call
decrypt. However, if so, the identities under encryption will not verify (challenge
is never called with identity Bj , either as initiator or a responder), so Dist outputs
failure in this case.

Otherwise, Dist decrypts the message by issuing a decrypt query and proceeds ac-
cording to the protocol. That is, if the message decrypts with appropriate identities,
he responds with the encryption of identities and ap, bp. If the message fails to decrypt,
he responds with the appropriate error message, according to the protocol.

8. Adv delivers (the only) message mPk,i
= (Ê2) to an instance PPn

k,i of honest initiator
Pk (allegedly) from player Pn:
If it was the challenge encryption ce1, generated with identity Pk that was delivered,
Dist cannot issue decrypt query. In this case, he confirms that ce1 was delivered to
the “right” instance. I.e., Dist confirms that the player names match and that this
instance had generated and sent the corresponding ap, that is that ap = âp. If this
is not the case, Dist proceeds to output failure according to the protocol. Otherwise,
Dist gives ce2 to Adv and outputs sid =transcript of the messages this instance saw.

Challenge encryption ce2 should always be rejected at this point, so if ce2 was deliv-
ered, Dist simulates failure.

Otherwise, Dist is allowed to decrypt, and he does so by executing the decryption
query of G with parameters 〈mPk,i

,Pk〉. Then, Dist continues according to proto-

col. It parses the decrypted value, verifies the player names and extracts âp, b̂p. He
confirms that ap = âp. He then responds with the encryption EncPn(Pk,Pn, b̂p and
outputs sid =transcript of the messages this instance saw.

9. Adv delivers (the only) message mPk,i
= (Ê2) to an instance PBj

k,i of honest initiator

10

Pk (allegedly) from corrupt player Bj:
If this message was generated by challenge query with identity Pk, we cannot call
decrypt. However, if so, the identities under encryption will not successfully ver-
ify (challenge is never called by Dist with identity Bj under encryption), so Dist
outputs failure in this case.

Otherwise, Dist decrypts the message by issuing a decrypt query. In either case,
he proceeds according to the protocol. If the message decrypts, Dist responds to
Adv and outputs sid according to the protocol. Otherwise, he simply simulates error
according to the protocol.

10. Adv delivers the second message mPn,i = (Ê3) to an instance PPk
n,i of honest responder

Pn (allegedly) from honest player Pk:
If it was the challenge encryption ce2 that was delivered, Dist confirms that it was
delivered to the “right” instance. I.e., Dist confirms that the player names match
and that this instance had generated and sent the corresponding ce1. If this is not
the case, Dist proceeds to output failure according to the protocol. Otherwise, Dist
outputs sid =transcript of the messages this instance saw.

If it was the challenge encryption ce1 that was delivered, Dist simulates failure.

Otherwise, Dist decrypts the message by issuing a decrypt query and proceeds ac-
cording to the protocol.

11. Adv delivers the second message mPk,i
= (Ê3) to an instance PBj

k,i of honest responder
Pk (allegedly) from player Bj:
If this message was generated by challenge query with identity Pk, we cannot call
decrypt. However, if so, the identities under encryption will not successfully ver-
ify (challenge is never called by Dist with identity Bj under encryption), so Dist
outputs failure in this case.

Otherwise, Dist decrypts the message by issuing a decrypt query and proceeds ac-
cording to the protocol.

12. Adv sends an open request on a (completed and not failed or challenged) honest player
instance PPn

k,i of Pk:
If this instance completed and has been delivered either ce1 or ce2 by Adv, then give
up and randomly choose the answer to G’s challenge. This is because Adv can’t
challenge this instance anymore, nor can he challenge its partner, where the other
challenge encryption was delivered.

Otherwise, Dist computes sk according to the protocol and gives it to Adv. Note
that Dist always has enough information to compute sk.

13. Adv sends a challenge request on a (completed and not failed or opened) honest player
instance PPn

k,i of Pk, whose partner was not opened:
If this instance has been delivered either ce1 or ce2 by Adv, then we will translate
Adv’s response into G.

11

At this time Dist outputs to Adv secret key sk consistent with G choice4 b = 0, i.e.
sk = KDF (abp). Note, if this is guessed correctly, this would correspond to the KE
game providing the true session key at the challenge. If guessed incorrectly, and the
output should have been sk = KDF (arp), this would correspond to the KE game
providing a random string5.

14. Adv answers challenge by providing a bit b:
If Adv thinks (i.e. responds) that true session key was provided, Dist answers G’s
challenge with b = 0; otherwise, with b = 1. As argued above in 13, if Adv is correct,
then Dist is also correct.

First, it is easy to verify (and we provided arguments with the descriptions of Dist’s
actions) that all calls to G’s oracles will be legal requests in G.

Further, as discussed above, the view of Adv is indistinguishable from that of a real KE
game, so his advantage there can be transferred into winning G. In particular, Adv cannot
detect that he is being “interrogated” by Dist, and eliminate his KE-winning advantage,
e.g., by shutting down or giving wrong answers.

By assumption of the theorem, Adv wins with probability non-negligibly more than 1/2.
We shown that Dist wins whenever Adv wins on the right challenge (except for a negligible
fraction of the time), and breaks even in other cases. Therefore, the constructed Dist wins
the game G with probability non-negligibly more than 1/2.

�
It remains to show that if there exists an adversary who gains a non-negligible advantage

in the game G, there exist an adversary doing same in the IBE game. The proof is done by
a standard hybrid argument and is omitted. �

Lemma 1 combined with the above observation constitutes the proof of Theorem 1. �.

3.1 Forward Secrecy with respect to Corrupt KMS

One consideration in all identity-based systems is the possession of all of the players’ secret
keys by KMS, and its capability to decrypt any message. We address this threat by executing
a Diffie-Hellman exchange inside the encrypted messages. Namely, players generate ap and
bp, and set keying material to abp, which, based on the DH assumption, is difficult to
compute without knowing either a or b.

It is now clear that, while KMS or its agent can play an active man-in-the-middle, it
cannot compute the exchanged keys post-factum, after the KE has completed. We note that
employing DH exchange inside a KE is a standard KE technique to achieve perfect forward
secrecy [DOW92] – security of the completed sessions even in the case of future compromise
of the long-term credentials. Our contribution here is explicit inclusion of this technique,
and the performance optimization of its parameters.

4Our choice of what sk to present to Adv is immaterial, as it is effectively random due to the random
choice of G’s challenge.

5This is where modeling KDF as a RO comes into play – we need this assumption as abp or arp are not
distributed as uniform strings.

12

References

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil
pairing. In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pages 213–229, Santa Barbara, CA,
USA, August 19–23, 2001. Springer, Berlin, Germany.

[BF03] Dan Boneh and Matthew K. Franklin. Identity based encryption from the Weil
pairing. SIAM Journal on Computing, 32(3):586–615, 2003.

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution.
In Douglas R. Stinson, editor, Advances in Cryptology – CRYPTO’93, volume
773 of Lecture Notes in Computer Science, pages 232–249, Santa Barbara, CA,
USA, August 22–26, 1994. Springer, Berlin, Germany.

[CCS06] L. Chen, Z. Cheng, and N.P. Smart. Identity-based key agreement protocols from
pairings. Cryptology ePrint Archive, Report 2006/199, 2006. http://eprint.

iacr.org/.

[CS11] V. Cakulev and G. Sundaram. IBAKE: Identity-Based Authenticated Key Agree-
ment. IETF Network Working Group Internet-Draft, 2011. http://tools.ietf.
org/html/draft-cakulev-ibake-03.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography, 1976.

[DOW92] Whitfield Diffie, Paul C. Oorschot, and Michael J. Wiener. Authentication and
authenticated key exchanges. Designs, Codes and Cryptography, 2:107–125, 1992.

[Jou02] Antoine Joux. The Weil and Tate pairings as building blocks for public key
cryptosystems. In Algorithmic Number Theory, 5th International Symposium,
pages 20–32, 2002.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177):203–209, 1987.

[KR06] Vladimir Kolesnikov and Charles Rackoff. Key exchange using passwords and
long keys. In Theory of Cryptography, TCC 2006, volume 3876 of LNCS, pages
100–119. Springer, 2006.

[KR08] Vladimir Kolesnikov and Charles Rackoff. Password mistyping in two-factor-
authenticated key exchange. In ICALP (2), pages 702–714, 2008.

[Mil86] Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams,
editor, Advances in Cryptology – CRYPTO’85, volume 218 of Lecture Notes in
Computer Science, pages 417–426, Santa Barbara, CA, USA, August 18–22, 1986.
Springer, Berlin, Germany.

13

[MQV95] A. Menezes, M. Qu, and S. Vanstone. Some new key agreement protocols pro-
viding mutual implicit authentication. In Second Workshop on Selected Areas in
Cryptography, 1995.

[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blak-
ley and David Chaum, editors, Advances in Cryptology – CRYPTO’84, volume
196 of Lecture Notes in Computer Science, pages 47–53, Santa Barbara, CA,
USA, August 19–23, 1985. Springer, Berlin, Germany.

[Sma02] N.P. Smart. An identity based authenticated key agreement protocol based on
the weil pairing. Electronics Letters, 38(13):630–632, 2002.

A Definition of IBE security – CCA2 version [BF03]

For completeness, we include the definition of security used in [BF03].
We say that an identity-based encryption scheme E is semantically secure against an

adaptive chosen ciphertext attack (IND-ID-CCA) if no polynomially bounded adversary A
has a non-negligible advantage against the Challenger in the following IND-ID-CCA game:

• Setup: The challenger takes a security parameter k and runs the Setup algorithm. It
gives the adversary the resulting system parameters params. It keeps the master-key
to itself.

• Phase 1: The adversary issues queries q1, ..., qm where query qi is one of:

– Extraction query 〈IDi〉. The challenger responds by running algorithm Extract

to generate the private key di corresponding to the public key IDi. It sends di
to the adversary.

– Decryption query 〈IDi, Ci〉. The challenger responds by running algorithm
Extract to generate the private key di corresponding to IDi. It then runs al-
gorithm Decrypt to decrypt the ciphertext Ci using the private key di. It sends
the resulting plaintext to the adversary.

These queries may be asked adaptively, that is, each query qi may depend on the
replies to q1, ..., qi−1.

• Challenge: Once the adversary decides that Phase 1 is over it outputs two equal
length plaintexts M0,M1 ∈ M and an identity ID on which it wishes to be chal-
lenged. The only constraint is that ID did not appear in any private key extrac-
tion query in Phase 1. The challenger picks a random bit b ∈ {0, 1} and sets
C =Encrypt(params,ID,Mb). It sends C as the challenge to the adversary.

• Phase 2: The adversary issues more queries qm+1, ..., qn where query qi is one of:

– Extraction query 〈IDi〉 where IDi 6= ID. Challenger responds as in Phase 1.

14

– Decryption query 〈IDi, Ci〉 6= 〈ID,Ci〉. Challenger responds as in Phase 1.

These queries may be asked adaptively as in Phase 1.

• Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

We refer to such an adversary A as an IND-ID-CCA adversary. We define adversary
A’s advantage in attacking the scheme E as the following function of the security
parameter k (k is given as input to the challenger): AdvE,A(k) = |Pr[b = b′] − 1/2|.
The probability is over the random bits used by the challenger and the adversary.

Using the IND-ID-CCA game we can define chosen ciphertext security for IBE schemes.
As usual, we say that a function g : R→ R is negligible if for any d > 0 we have |g(k)| < 1/kd

for sufficiently large k.

Definition 3 We say that the IBE system E is semantically secure against an adaptive
chosen ciphertext attack if for any polynomial time IND-ID-CCA adversary A the function
AdvE,A(k) is negligible. As shorthand, we say that E is IND-ID-CCA secure.

15

