
Multiparty Computation with Low Communication,

Computation and Interaction via Threshold FHE

Gilad Asharov∗ Abhishek Jain† Daniel Wichs‡

June 9, 2012

Abstract

Fully homomorphic encryption (FHE) provides a simple template for secure computation
between two parties (Alice and Bob) where: (I) Alice encrypts her input under her key, (II)
Bob homomorphically evaluates the desired function on Alice’s ciphertext and his own input,
and sends the encrypted output to Alice. Extending this approach to multiple parties raises
the problem of which key to encrypt under; if all parties choose a key on their own, then
homomorphic evaluation on ciphertexts under different keys will not be possible, and if a single
party chooses the key for everyone then corrupting this party will break privacy for all.

In this work, we explore the option of using threshold fully homomorphic encryption (TFHE),
allowing many parties to cooperatively generate a common public key whose secret key is
shared/distributed among them. Moreover, the parties can cooperatively decrypt a cipher-
text without learning anything but the plaintext. We show how to instantiate this approach
efficiently using the recent FHE schemes of Brakerski et al. (FOCS ’11, ITCS ’12) based on
the learning with errors (LWE) assumption. Our main tool is to exploit the property that such
LWE-based encryption schemes are homomorphic over their keys.

Using TFHE, we construct multiparty computation (MPC) protocols secure against fully
malicious settings, tolerating any number of corruptions, and providing security in the universal
composability framework. Our schemes have several benefits over prior templates for MPC.
Interaction: We get protocols with only 3 rounds of interaction in the common random string
model, or 2 rounds with a reusable public-key infrastructure, improving on prior known results.
Communication: The communication in our protocol is only proportional to the input and
output size of the function being evaluated and independent of its circuit size. Computation:
The only computation that depends on the size of the circuit being computed is a homomorphic
evaluation over public ciphertexts. This computation can be performed by a single party or
can be outsourced to an external server. Novel Approach: Prior approaches to MPC with
a dishonest majority rely in part on some combination of the techniques of Yao (FOCS ’86)
and/or Goldreich, Micali and Wigderson (STOC ’87). Our approach is fundamentally different
and relies only on the homomorphic properties of LWE-based encryption.

Keywords: fully homomorphic encryption, threshold encryption, secure multiparty computa-
tion, round complexity, communication complexity.

∗Bar-Ilan University. E-mail: asharog@cs.biu.ac.il. Supported by the European Research Council as part of
the ERC project LAST. Research conducted while at IBM Research, T.J. Watson.
†UCLA. E-mail: abhishek@cs.ucla.edu. Research conducted while at the IBM Research, T.J.Watson funded by

NSF Grant No.1017660.
‡IBM Research, T. J. Watson. E-mail: wichs@cs.nyu.edu.



Contents

1 Introduction 2
1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Variants and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 6

3 Homomorphic Encryption from LWE 7
3.1 Basic LWE-based Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Key-Homomorphic Properties of Basic Scheme . . . . . . . . . . . . . . . . . . . . . 9
3.3 Fully Homomorphic Encryption from LWE . . . . . . . . . . . . . . . . . . . . . . . 10

4 Threshold Fully Homomorphic Encryption 12
4.1 Construction of TFHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Secure MPC via TFHE 15

6 Variants and Optimizations 16

A Definitions 22
A.1 The Universal Composability Framework (UC) . . . . . . . . . . . . . . . . . . . . . 22
A.2 Security Against Semi-Malicious Adversaries . . . . . . . . . . . . . . . . . . . . . . 23

B FHE Scheme of [BV11a, BGV12] 24

C Proof of Security for TFHE-Based MPC 28
C.1 Correctness of TFHE Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
C.2 Security of MPC in the Semi-Malicious Setting . . . . . . . . . . . . . . . . . . . . . 29

D Generalized Functionalities 34

E From Semi to Fully Malicious 34
E.1 The Zero-Knowledge Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
E.2 From Semi-Malicious to Malicious . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

F Efficient Σ-Protocols and Fully-Malicious Compiler 36
F.1 Gap Σ-Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
F.2 〈P, V 〉lwe : A Gap Σ-Protocol for LWE . . . . . . . . . . . . . . . . . . . . . . . . . . 37

F.2.1 Applications of 〈P, V 〉lwe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
F.3 〈P, V 〉enc: A Σ-Protocol for LWE-based Public-Key Encryption . . . . . . . . . . . . 40
F.4 Efficient Compiler for Our Semi-Malicious MPC Protocol . . . . . . . . . . . . . . . 42
F.5 Mind the Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

G Fairness 44

1



1 Introduction

Multiparty Computation. Secure multiparty computation (MPC) allows multiple participants
to evaluate a common function over their inputs privately, without revealing the inputs to each
other. This problem was initially studied by Yao [Yao82], who gave a protocol for the case of two
honest-but-curious parties that follow the protocol specification honestly but wish to learn as much
information as possible [Yao86]. The work of Goldreich, Micali and Wigderson [GMW87] extended
this to many fully malicious parties that may arbitrarily deviate from the protocol specification.
Since then, the problem of MPC has become a fundamental question in cryptography with much
research activity. Interestingly, on a very high level, most prior results for general MPC can be
seen as relying in some way on the original techniques of [Yao86, GMW87].

Fully Homomorphic Encryption. A very different approach to secure computation relies on
fully homomorphic encryption (FHE). An FHE scheme allows us to perform arbitrary computa-
tions on encrypted data without decrypting it. Although the idea of FHE goes back to Rivest et
al. [RAD78], the first implementation is due to the recent breakthrough of Gentry [Gen09], and
has now been followed with much exciting activity [vDGHV10, SV10, GH11, CMNT11, BV11b,
BV11a, BGV12]. Using FHE, we immediately get an alternative approach to MPC in the case of
two honest-but-curious parties (Alice and Bob): Alice encrypts her input under her own key and
sends the ciphertext to Bob, who then evaluates the desired function homomorphically on Alice’s
ciphertext and his own input, sending (only) the final encrypted result back to Alice for decryption.
This approach has several benefits over prior ones. Perhaps most importantly, the communication
complexity of the protocol and Alice’s computation are small and only proportional to Alice’s in-
put/output sizes, independent of the complexity of the function being evaluated. Moreover, the
protocol consists of only two rounds of interaction, which is optimal (matching [Yao86]).1

MPC via Threshold FHE. Since FHE solves the secure computation problem for two honest-
but-curious parties, it is natural to ask whether we can extend the above template to the general
case of many fully malicious parties while maintaining its benefits. Indeed, there is a simple positive
answer to this question (as pointed out in e.g. [Gen09]) by using a threshold fully homomorphic
encryption (TFHE). This consists of a key generation protocol where the parties collaboratively
agree on a common public key of an FHE scheme and each party also receives a share of the
secret key. The parties can then encrypt their individual inputs under the common public key,
evaluate the desired function homomorphically on the ciphertexts, and collaboratively execute a
decryption protocol on the result to learn the output of the computation. Moreover, it is possible
to convert any FHE scheme into TFHE by implementing the above key-generation and decryption
protocols using general MPC compilers (e.g. [GMW87]). Although this approach already gives
the communication/computation savings of FHE, it suffers from two main problems: (1) It does
not preserve round complexity since generic implementations of the key-generation and decryption
protocols will each require many rounds of interaction. (2) It uses the “heavy machinery” of generic
MPC compilers and zero-knowledge proofs on top of FHE and is unlikely to yield practical solutions.

1Indeed, Yao’s garbled circuits can be thought of as instantiating an FHE with long ciphertexts (see e.g. [GHV10]).

2



1.1 Our Results

In this work, we present an efficient threshold FHE scheme under the learning with errors (LWE)
assumption, based on the FHE constructions of Brakerski, Gentry and Vaikuntanathan [BV11a,
BGV12]. Our starting observation is that basic LWE-based encryption ([Reg05]) is key homomor-
phic, where summing up several public/secret key pairs (pki, ski) results in a new valid public/secret
key pair (pk∗, sk∗) =

∑
i(pki, ski).

2 Therefore, if each party broadcasts its own public-key pki,
and we define the common public key as the sum pk∗ =

∑
i pki, then each party already holds a

share ski of the common secret key sk∗. Moreover, if each party decrypts a ciphertext c under pk∗

with its individual share ski, then these partial decryptions can be summed up to recover message.
This gives us simple key-generation and decryption protocols, consisting of one round each. Un-
fortunately, the above discussion is oversimplified and its implementation raises several challenges,
which we are forced to overcome.

Smudging Distributions. The first challenge is that summing-up key pairs as above does not
result in a correctly distributed fresh key pair, and summing up decryption shares may reveal more
than just the plaintext. Nevertheless, we show the security of this basic approach when augmented
with a technique we call smudging, in which parties add large noise during important operations
so as to “smudge out” small differences in distributions.

Evaluation Keys. Perhaps our main challenge is that, in LWE-based FHE schemes, the public
key must also contain additional information in the form of an evaluation key, which is needed to
perform homomorphic operations on ciphertexts. Although the above key-homomorphic properties
hold for the public encryption keys of the FHE, the evaluation keys have a more complex structure
making it harder to combine them. Nevertheless, we show that it is possible to generate the
evaluation keys in a threshold manner by having each party carefully release some extra information
about its individual secret-key and then cleverly combining this information. Although this forces
us to add an extra round to the key-generation protocol in order to generate the evaluation key,
the parties can already encrypt their inputs after the first round. Therefore, we get MPC protocol
consisting of only 3 broadcast rounds: (Round I) generate encryption key, (Round II) generate
evaluation key & encrypt inputs, (Round III) perform homomorphic evaluation locally and decrypt
the resulting ciphertext.

Security in the Fully Malicious Setting. Our basic TFHE protocol allows us to achieve
MPC in the honest-but-curious model. To transform it to the fully malicious setting, we could
use generic techniques consisting of: (1) coin-flipping for the random coins of each party, and (2)
having each party prove at each step that it is following the protocol honestly (using the random
coins determined by the coin-flip) by a zero-knowledge (ZK) proof of knowledge. Unfortunately,
even if we were to use non-interactive zero knowledge (NIZK) in the common-random string (CRS)
model for the proofs, the use of coin-flipping would add two extra rounds. Interestingly, we show
that coin-flipping is not necessary. We do so by showing that our basic MPC protocol is already
secure against a stronger class of attackers that we call semi-malicious: such attackers follow the

2This key-homomorphic property only holds if the keys are created with some common randomness (e.g. analogous
to using a common generator for ElGamal encryption). Therefore, our protocols will assume some such common setup,
which can be thought of as a common random string.

3



protocol honestly but with adaptively and adversarially chosen random coins in each round. We
can now generically convert our MPC in the semi-malicious setting to a fully secure one using (UC)
NIZKs [SCO+01] while preserving the round complexity. This gives the first 3 round protocol for
general MPC in the CRS model (while achieving UC security for free).3

Efficient NIZKs in RO Model. Instantiating the above approach with general UC NIZKs
proofs might already achieve asymptotic efficiency, but it has little hope of yielding practical pro-
tocols. Therefore, we also build efficient Σ-protocols [CDS94] for the necessary relations. We start
with Σ-protocols for basic LWE-based languages (to the best of our knowledge, these are the first
such protocols and may be of independent interest) and then show how to use these to construct
Σ-protocols for the required relations using a series of AND and OR proofs. Lastly, we can compile
the Σ-protocols into efficient UC NIZKs in the random-oracle (RO) model. Therefore, we can get
an efficient and simple 3-round protocol for general MPC in the RO model.

1.2 Variants and Applications

Public-Key Infrastructure. Our approach also yields 2-round MPC in the public-key infras-
tructure (PKI) setting, by thinking of each party’s original (Round I)-message as its public key
and the randomness used to generate it as the secret key.4 We can think of this PKI as being
set-up honestly by a trusted party, or we can imagine that a trusted party only chooses a CRS and
every party can then choose its own public key at will (possibly maliciously). This gives the first
two-round MPC construction in the PKI setting, which is optimal (see [HLP11]). We note that
the PKI can be reused for many MPC executions of arbitrary functions and arbitrary inputs.

Outsourced Computation. Next, we notice that each party’s computation in the protocol is
independent of the complexity of the evaluated circuit, except for the homomorphic evaluation over
public ciphertexts. In the semi-honest setting, a single party or external entity can perform this
evaluation and can tell the result to the rest of the parties at the expense of one extra round. In that
case, the computation complexity of all other parties is independent of the evaluated circuit. In the
fully-malicious setting, such outsourcing of computation would also require a short and efficiently
verifiable proofs of correctness. These can be instantiated in 4 rounds [Kil92] or even made non-
interactive in the random-oracle model [Mic00] or under appropriate non-black-box assumptions
[BCCT12, GLR11, DFH11].

Fairness. We also give a variant of our protocol which achieves fairness in the case of an honest
majority. In particular, an attacker cannot cause the protocol to abort, and honest parties always
learn the output.

Application to Computing on the Web. We also note that our protocol is especially appli-
cable in the setting of “secure computation on the web” [HLP11] where a single server or website
coordinates the computation and parties “log in” at different times without coordination. Using our

3One downside is that our CRS is long and proportional to the number of parties. We leave it as an open problem
to get rid of this inefficiency while maintaining round complexity.

4We rely on the fact that the (round I) message in our original protocol is already broadcast to everyone and does
not depend on the parties’ inputs. However, one downside of this approach is that the size of each public key is long
and proportional to the total number of parties.

4



2-round MPC in the PKI model, we immediately get a solution to this problem with full security
where the computation occurs in 2 stages (optimal) and each party “logs in” once per stage to post
a message to the server. Note that the server does not do any processing on messages until the end
of each stage. (Thus, the parties may, in fact ,“log in” concurrently in each stage.) Moreover, using
the above ideas for “outsourcing” computation, only the computation of the server is proportional
to the evaluated circuit. In contrast, the solution of [HLP11] only requires each party to log in
once, but achieves a necessarily weaker notion of security. Furthermore, the server needs to perform
non-trivial and sequential processing for each new party that logs in, and the computation of each
party is large and proportional to the circuit size.

1.3 Related Work

Traditionally, in theory of cryptography, the round-complexity of protocols has been studied as
an important measure of efficiency.5 In the context of general MPC, starting from the original
proposal of Yao [Yao86], there has been a rich line of work studying the round-complexity of secure
two-party and multi-party computation protocols, both in the semi-honest and malicious settings.

The Semi-honest case: The original proposal of Yao [Yao86] in fact already gives a two-round
two-party computation protocol. In the multi-party case, Beaver, Micali and Rogaway [BMR90]
gave the first constant-round protocol, which is asymptotically optimal. An alternative approach
using randomized polynomials was also given by [IK00, AIK05]. Although the concrete constants
were not explicitly stated, they seem to require at least 4 rounds.

The Malicious case. In the fully malicious case, [BMR90] gave the first constant-round protocol for
an honest majority ([DI05, DI06] later improved upon it to make only black-box use of the under-
lying primitives). In the two-party setting, Lindell [Lin01] gave the first constant-round protocol.
Katz et al. [KOS03] gave the first constant-round multi-party protocol tolerating dishonest major-
ity, by building on [BMR90, CLOS02] and using non black-box simulation techniques. Using recent
results [Goy11, LP11], one can obtain similar result w.r.t. black-box simulation. Finally, we note
that in the plain model, a lower bound of 5 rounds for the dishonest majority case was established
by Katz and Ostrovsky [KO04]. Note that in the CRS model, we can compile any semi-honest
protocol into one that is (UC) secure against malicious adversaries by using coin-tossing and (UC)
NIZKs [SCO+01], at the cost of adding two extra rounds for the coin flip. In contrast, our compiler
(from semi-malicious to malicious) does not add any extra rounds.

Another line of work considers protocols split into a “pre-processing” stage (that is independent
of the actual inputs and the circuit to be evaluated) and an “online” stage in which the inputs
and the circuit become known. Recently, Choi et al [CEMY09] obtained a UC secure protocol in
this model with a 2-round online stage. However, their pre-processing stage requires “expensive”
computation of garbled circuits. Moreover, this pre-processing can only be used for a single future
online computation and is not reusable. In contrast, our results give a 2-round UC-protocol in the
PKI model, which we can think of as a very simple pre-processing that is only performed once and
be reused for arbitrarily many computations in the future. The works of [FH96, JJ00, CDN01,
DN03, BDOZ11] obtain multi-party protocols in the pre-processing model using the template of
threshold additively homomorphic encryption, providing some of the most practically efficient MPC
implementations. However, since the underlying encryption cannot handle multiplications, the

5In fact, recent implementations show that the latency of sending and receiving messages back and forth can be
a dominating factor in running cryptographic protocols [MNPS04, BNP08].

5



round complexity in these works is large and linear in the depth of the circuit.
The work of Bendlin and Damg̊ard [BD10] builds a threshold version of [Reg05] encryption

based on LWE and ZK protocols for plaintext knowledge. Indeed the idea of using extra noise for
“smudging” comes from that work, as do the main ideas behind our decryption protocol. We seem
to avoid some of the main difficulties of [BD10] by analyzing the security of our threshold scheme
directly within the application of MPC rather than attempting to realize ideal key-generation and
decryption functionalities. However, we face a very different set of challenges in setting up the
complicated evaluation key needed for FHE schemes based on LWE.

In a concurrent and independent work, Myers, Segi and shelat [MSS11] instantiate a threshold
version of the FHE scheme of [vDGHV10] based on the “approximate-integer GCD” problem, and
use it to build an explicit MPC protocol whose communication complexity is independent of the
circuit size. Perhaps due to the amazing versatility and simplicity of LWE, our scheme enjoys
several benefits over that of [MSS11], which only works in the setting of an honest majority and
suffers from a large (constant) round-complexity. Most importantly, we believe that our protocol
is significantly simpler to describe and understand.

2 Preliminaries

Throughout, we let κ denote the security parameter and negl(κ) denote a negligible function.
For integers n, q, we define [n]q to be the unique integer v ∈ (−q/2, q/2] s.t. n ≡ v (mod q).

Let x = (x1, . . . , xn) ∈ Zn be a vector. We use the notation x[i]
def
= xi to denote the ith component

scalar. To simplify the descriptions of our schemes, we also abuse notation and define x[0]
def
= 1.

The `1-norm of x is defined as `1(x)
def
=
∑n

i=1 |xi|. For an integer N , we define [N ] = {1, . . . , N}.
For two distributions X,Y , over a finite domain Ω, the statistical distance between X and Y

is defined by ∆(X,Y )
def
= 1

2

∑
ω∈Ω |X(ω)− Y (ω)|. We write ω ← X to denote that ω is sampled

at random according to distribution X. We write ω
$← Ω to denote that it is sampled uniformly

at random from the set Ω. For a distribution ensemble χ = χ(κ) over the integers, and integers
bounds B = B(κ), we say that χ is B-bounded if Prx←χ(κ)[|x| > B(κ)] ≤ negl(κ).

We rely on the following lemma, which says that adding large noise “smudges out” any small
values.

Lemma 2.1 (Smudging Lemma). Let B1 = B1(κ), and B2 = B2(κ) be positive integers and let

e1 ∈ [−B1, B1] be a fixed integer. Let e2
$← [−B2, B2] be chosen uniformly at random. Then the

distribution of e2 is statistically indistinguishable from that of e2 + e1 as long as B1/B2 = negl(κ).

Proof: The statistical distance of the distributions is:

1

2

(B2+B1)∑
x=−(B2+B1)

|Pr[e2 = x]− Pr[e2 = x− e1]| = 1

2

 −B2∑
x=−(B2+B1)

1

B2
+

B2+B1∑
x=B2

1

B2

 = B1/B2

Learning With Errors. The decisional learning with errors ( LWE) problem, introduced by
Regev [Reg05], is defined as follows.

6



Definition 2.2 (LWE [Reg05]). Let κ be the security parameter, n = n(κ), q = q(κ) be integers and
let χ = χ(κ), ϕ = ϕ(κ) be distributions over Z. The LWEn,q,ϕ,χ assumption says that no poly-time
distinguisher can distinguish between the following distributions, given polynomially many samples:

Distribution I. Each sample (ai, bi)
$← Zn+1

q is chosen independently, uniformly at random.
Distribution II. Choose an initial value s← ϕn. Then choose each new sample (ai, bi) by taking

ai
$← Znq , ei ← χ and setting bi := 〈ai, s〉+ ei.

The works of [Reg05, Pei09] show that the LWE problem is as hard as approximating short vector
problems in lattices (for appropriate parameters) when χ is a Gaussian with “small” standard
deviation and ϕ = U(Zq) is the uniform distribution over Zq. The work of [ACPS09] shows that,
when q is a prime power, then LWEn,q,χ,χ is as hard as LWEn,q,U(Zq),χ. Therefore, we can assume
that the secret s of the LWE problem is “small” as well. It is also easy to see that, if q is odd, then
LWEn,q,ϕ,(2χ) is as hard as LWEn,q,ϕ,χ, where the distribution 2χ samples e← χ and outputs 2e.

One useful property of LWE shown in the following claim is that, given sufficiently many random
LWE samples, the secret s is uniquely determined.

Claim 2.3 (Uniqueness of LWE Secrets). Let n, q,m > n log(q) + ω(log(κ)) and B < q/8 be

integer parameters with q prime. Then with probability 1 − negl(κ) over the choice of A
$← Zm×nq

the following holds: for every p ∈ Zmq there exists at most a single pair (s, e) with s ∈ Znq and
e ∈ [−B,B]m such that p = As + 2e.

Proof: Assume that some p has two representations of the given form p = As + 2e = As′ + 2e′

with s 6= s′ and e, e′ ∈ [−B,B]m. Then A(s − s′)/2 = (e′ − e) and so there exists some non-zero
s∗ ∈ Znq such that As∗ ∈ [−2B, 2B]m. For any fixed s∗ 6= 0 the probability (over random A) that
As∗ ∈ [−2B, 2B]m is just (4B/q)m ≤ 2−m. The claim follows by taking a union-bound over all qn

values s∗ ∈ Znq .

3 Homomorphic Encryption from LWE

In this section, we give a brief description of the FHE schemes of [BV11a, BGV12].

3.1 Basic LWE-based Encryption

We start by describing a basic symmetric/public encryption scheme E, which is a variant of [Reg05]
encryption scheme based on the LWE problem. This scheme serves as a building block for the more
complex FHE schemes of [BV11a, BGV12] and of our threshold FHE scheme.

• params = (1κ, q,m, n, ϕ, χ) : The parameters of the scheme are an implicit input to all
other algorithms, with: 1κ is the security parameter, q = q(k) is an odd modulus, m =
m(κ), n = n(κ) are the dimensions, and ϕ = ϕ(κ), χ = χ(κ) are distributions over Zq.

• E.SymKeygen(params) – (symmetric key generation): Choose a secret key s← ϕn.

• E.PubKeygen(s) – (public key generation): Choose A ← Zm×nq , e ← χm and set p :=
A · s + 2 · e. Output the public key pk := (A,p) for the secret key s.

• E.SymEncs(µ) – (symmetric encryption): To encrypt a message µ ∈ {0, 1}, choose

a← Znq , e← χ, and set b
def
= 〈a, s〉+ 2 · e+ µ. Output the ciphertext c = (a, b).

7



• E.PubEncpk(µ) – (public key encryption): To encrypt a message µ ∈ {0, 1} under public

key pk = (A,p), choose r← {0, 1}m and set a
def
= rT ·A, b

def
= 〈r,p〉+ µ. Output c = (a, b).

Note that: b = 〈r,p〉 + µ = 〈r, A · s + 2e〉 + µ = 〈a, s〉 + 2〈r, e〉 + µ. Therefore, ciphertexts
have the same form as in the symmetric key scheme, but with an error distribution 2〈r, e〉.

• E.Decs(c) – (decryption): To decrypt c = (a, b), output [b− 〈a, s〉]q mod 2.

Under appropriate parameters and LWE assumption, the above scheme is semantically secure with
pseduorandom ciphertexts, meaning that, given pk, a ciphertext of a chosen message is indistin-
guishable from a uniformly random ciphertext over the appropriate domain Zm+1

q

Theorem 3.1 (Variant of [Reg05]). Assuming n, q, m ≥ (n + 1) log(q) + ω(log(κ)) are integers
with q odd, and that the LWEn,q,ϕ,χ assumption holds, the above public key encryption scheme
(E.PubKeygen,E.PubEnc,E.Dec) is semantically secure with pseudorandom ciphertexts.

Proof: The view of the attacker consists of

pk = (A,p = As + 2e) , c = (rTA, 〈r,p〉+ µ) : A
$← Zm×nq , s← ϕn, r

$← {0, 1}m, e← χm

where µ ∈ {0, 1}. By the LWEn,q,ϕ,χ assumption, we can replace p with a uniformly random and
independent value to get the indistinguishable distribution:

pk = (A,p) , c = (rTA, 〈r,p〉+ µ) : A
$← Zm×nq ,p

$← Zmq , r
$← {0, 1}m

Since h(A,p)(x) = (xTA, 〈x,p〉) is a universal hash function keyed by (A,p), we can now apply
the Leftover-Hash Lemma with (A,p) as a “random seed” and r as the “source” to replace the
“extracted randomness” (rTA, 〈r,p〉) by uniform. Note that the min-entropy of r is H∞(r) = m
and the size of the extracted randomness is (n+ 1) log(q) ≤ m− ω(log(κ)). Therefore, we get the
indistinguishable distribution:

pk = (A,p) , c = (v, w) : A
$← Zm×nq ,p

$← Zmq ,v
$← Znq , w

$← Zq.

Lastly, we can apply LWEn,q,ϕ,χ once more to switch the public key back to an LWE tuple, giving
us the indistinguishable distribution:

pk = (A,p = As + 2e) , c = (v, w) : A
$← Zm×nq , s← ϕn, e← χm,v

$← Znq , w
$← Zq.

Therefore, an honestly generated encryption of the bit µ ∈ {0, 1} is indistinguishable from a uni-
formly random ciphertext, even conditioned on pk.

Noise. We define the noise of a ciphertext c = (a, b) with respect to a key s and a modulus q to

be noiseq(c, s)
def
= [b − 〈a, s〉]q.6 The parity of the noise is the decrypted message. In symmetric-

key encryption, the noise is just [2 · e + µ]q where e ← χ is the randomness of the encryption
algorithm. Decryption is therefore successful as long |e| < q/4. For public-key encryption, the noise

is [2〈r, e〉+ µ]q where e← ϕm is the error in the public-key and r
$← {0, 1}m is the randomness of

the encryption. Decryption is successful as long as |〈r, e〉| < q/4.

6Recall, we define [n]q to be the unique integer v ∈ (−q/2, q/2] s.t. n ≡ v (mod q).

8



Approximate encryption. Although we defined symmetric/public key encryption for the mes-
sage space µ ∈ {0, 1}, we can (syntactically) extend the same algorithms to any µ ∈ Zq. Unfor-
tunately, if µ is larger than a single bit, it will not be possible to decrypt µ correctly from the
corresponding ciphertext. However, we can still think of this as an approximate encryption of µ,
from which it is possible to recover the value b− 〈a, s〉 which is “close” to µ over Zq.

Fixing the coefficients. We use the notation E.PubKeygen(s;A) to denote the execution of the
key generation algorithm with fixed coefficients A (but still choosing a random error term e). We
use the notation E.PubKeygen(s;A; e) to denote the execution of the key generation algorithm with
the fixed coefficients A and the fixed error vector e. In fact, this is a deterministic algorithm, and it
determines the output uniquely. Similarly, we use the notation E.SymEncs(µ; a), E.SymEncs(µ; a; e)
to denote the analogue cases for the symmetric encryption algorithm.

3.2 Key-Homomorphic Properties of Basic Scheme

It is easy to see that the scheme E is additively homomorphic so that the sum of ciphertexts encrypts
the sum of the plaintexts (at least as long as the noise is small enough and does not overflow). We
now show it also satisfies several useful key-homomorphic properties, which make it particularly
easy to convert into a threshold scheme. In particular, if we keep the coefficient vector a fixed, then
summing just the b values of ciphertexts c = (a, b) gives an encryption of the sum of the plaintexts
under the sum of the secret keys and the noise increases additively.

Claim 3.2. Let s1, s2 be two secret keys, µ1, µ2 be two messages in {0, 1}, a be some vector of
coefficients and e1, e2 two noise values. Moreover, let (a, b1) = E.SymEncs1(µ1; a; e1) and (a, b2) =
E.SymEncs2(µ2; a; e2). Then (a, b1 + b2) = E.SymEncs1+s2(µ1 + µ2; a; e1 + e2).

Proof: Writing explicitly, we have (a, b1) = E.SymEncs1(µ1; a; e1) = (a, 〈a, s1〉 + 2e1 + µ1) and
(a, b2) = E.SymEncs2(µ2; a; e2) = (a, 〈a, s2〉+ 2e2 + µ2), and so:

(a, b1 + b2) = (a, 〈a, s1 + s2〉+ 2(e1 + e2) + (µ1 + µ2))

= E.SymEncs1+s2(µ1 + µ2; a; e1 + e2).

Also, if we keep A fixed, then the sum of two key pairs gives a new valid key pair.

Claim 3.3. Let s1, s2 be two secret keys, let A be some matrix of coefficients and let e1, e2 be two er-
ror vectors. Moreover, let (A,p1) = E.PubKeygen(s1;A; e1) and (A,p2) = E.PubKeygen(s2;A; e2).
Then, (A,p1 + p2) = E.PubKeygen(s1 + s2;A; e1 + e2).

Proof: Explicitly, we have: (A,p1) = E.PubKeygen(s1;A; e1) = (A,A · s1 + 2e1) and (A,p2) =
E.PubKeygen(s2;A; e2) = (A,A · s2 + 2e2). Then,

(A,p1 + p2) = A · (s1 + s2) + 2 · (e1 + e2) = E.PubKeygen(s1 + s2;A; e1 + e2)

9



Security of Joint Keys. We show a useful security property of combining public keys. Assume
that a public key (A,p) is chosen honestly and an attacker can then adaptively choose some value
p′ = As′ + 2e′ for which it must know the corresponding s′ and a “short” e′. Then the attacker
cannot distinguish public-key encryptions under the combined key (A,p + p′) from uniformly
random ones. Note that the combined key p + p′ may not be at all distributed like a correct
public key. Indeed, we can only show that the above holds if the ciphertext under the combined
key is “smudged” with additional large noise. We define the above property formally via the
experiment JoinKeysA(params, B1, B2) between an attacker A and a challenger, defined as follows:

1. Challenger chooses s← E.SymKeygen(params), and gives (A,p)← E.PubKeygen(s) to A.

2. A adaptively chooses p′, s′, e′ satisfying p′ = As′ + 2e′ and `1(e′) ≤ B1. It also chooses
µ ∈ {0, 1} and gives (p′, s′, e′, µ) to the challenger.

3. The challenger sets pk∗ := (A,p∗ = p + p′). It chooses a random bit β
$← {0, 1}.

• If β = 0 it chooses a∗
$← Znq , b∗

$← Zq uniformly at random.

• Else it chooses (a∗, b)← E.PubEncpk∗(µ), e∗
$← [−B2, B2] and sets b∗ = b+ 2e∗.

4. A gets (a∗, b∗) and outputs a bit β̃.

The output of the experiment is 1 if β̃ = β, and 0 otherwise.

Lemma 3.4. Let params = (1κ, q,m, n, ϕ, χ) be a setting of parameters for which the give en-
cryption scheme E has pseudorandom ciphertexts. Let B1 = B1(κ), B2 = B2(κ) be integers s.t.
B1/B2 = negl(κ). Then, for any ppt A: |Pr[JoinKeysA(params, B1, B2) = 1]− 1

2 | = negl(κ).

Proof: We build a reduction to the pseudorandom ciphertexts property of the scheme E. The reduc-
tion gets a challenge pk = (A,p) and a “ciphertext” (a, b) which is either chosen as E.PubEncpk(0)
(β = 1) or is uniformly random (β = 0). It gives pk = (A,p) to A in the first round and receives

back p′, s′, e′ such that p′ = As′ + 2e′ and `1(e′) ≤ B1. It then selects e∗
$← [−B2, B2] and sets

a∗ = a, b∗ = b+ 〈a, s′〉+ 2e∗.

Lastly, it sends (a∗, b∗) to A and outputs the bit β̃ produced by A.
It is easy to see that, if β = 0, then (a∗, b∗) is just uniformly random. On the other hand, if

β = 1, we can write a = rA, b = 〈r,p〉 for some r ∈ {0, 1}m therefore get:

b∗ = 〈r,p〉+ 〈rA, s′〉+ 2e∗ = 〈r,p〉+ (〈r,p′〉 − 2〈r, e′〉) + 2e∗ = 〈r,p∗〉+ 2(e∗ − 〈r, e′〉)
s≡ 〈r,p∗〉+ 2e∗

where p∗ = p+p′. The second line above follows from Lemma 2.1 by noticing |〈r, e′〉| ≤ `1(e′) ≤ B1.
Therefore, the reduction acts indistinguishably from the real challenger with challenge bit β. Hence
it breaks pseudorandomness of ciphertetxts with the same (up to negligible) advantage as A.

3.3 Fully Homomorphic Encryption from LWE

In this section we present the construction of [BV11a, BGV12]. We start with the syntax of fully
homomorphic encryption.

10



Definition. A fully homomorphic (public–key) encryption (FHE) scheme is a quadruple of ppt
algorithms FHE = (FHE.Keygen,FHE.Enc,FHE.Dec,FHE.Eval) defined as follows.

• FHE.Keygen(1κ) → (pk, evk, sk): Outputs a public encryption key pk, a public evaluation
key evk and a secret decryption key sk.

• FHE.Encpk(µ) → c: Encrypts a bit µ ∈ {0, 1} under public key pk. Outputs ciphertext c.

• FHE.Decsk(c) → µ∗: Decrypts ciphertext c using sk. Outputs plaintext bit µ∗ ∈ {0, 1}.

• FHE.Evalevk(f, c1, . . . , c`) → cf : The homomorphic evaluation algorithm is a deterministic

poly-time algorithm that takes the evaluation key evk, a boolean circuit f : {0, 1}` → {0, 1},
and a set of ` ciphertexts c1, . . . , c`. It outputs the result ciphertext cf .

We say that an FHE scheme is secure if it satisfies the standard notion of semantic security for
public-key encryption, where we consider the evaluation key evk as a part of the public key. Next
we define what it means for a scheme to be homomorphic.

Definition 3.5 ((Leveled) Fully Homomorphic Encryption.). An encryption scheme is fully ho-
momorphic if for any boolean circuit f : {0, 1}` → {0, 1} and respective inputs µ1, . . . , µ` ∈ {0, 1},
it holds that:

Pr [FHE.Dec(FHE.Evalevk (f, c1, . . . , c`) 6= f(µ1, . . . , µ`)] ≤ negl(κ)

where (pk, evk, sk) ← FHE.Keygen(1κ) and ci ← FHE.Encpk(µi). We say that the scheme is a
leveled fully homomorphic if the FHE.Keygen algorithm gets an additional (arbitrary) input 1D and
the above only holds for circuits f consisting of at most D multiplicative levels.

Construction. We give an overview of the FHE construction of [BV11a, BGV12]. See Appendix
B for a full description. The construction begins with the basic encryption scheme E which is already
additively homomorphic. We associate ciphertexts c = (a, b) under E with symbolic polynomials

φc(x)
def
= b− 〈a,x〉 : an n-variable degree-1 polynomial over x.

so that Decs(c) = [φc(s)]q mod 2. If c1, c2 encrypt bits µ1, µ2 under a secret key s, we can define

the polynomial φmult(x)
def
= φc1(x) · φc2(x). This already “encrypts” µ1 · µ2 in the sense that

[φmult(s)]q = µ1 · µ2 + 2e∗ where e∗ is “small”. Unfortunately, φmult is a degree-2 polynomial and
hence its description is much larger than that of the original ciphertexts c1, c2.

The main challenge is to re-linearize the polynomial φmult to convert it into a degree-1 polyno-
mial φ′mult which still encrypts µ1 · µ2. Such re-linearization is possible with two caveats: (1) The
polynomial φ′mult encrypts µ1 · µ2 under a new key t. (2) We need to know additional ciphertexts
ψi,j,τ that (approximately) encrypt information about the key s under a new key t as follows:7

{ψi,j,τ ← E.SymEnct( 2τ · s[i] · s[j]) : i ∈ [n], j ∈ [n] ∪ {0}, τ ∈ b{0, . . . , log(q)c}} .

See Appendix B for the details of this re-linearization procedure. The above ideas give us leveled
homomorphic encryption scheme for circuits with D multiplicative levels simply by choosing D+ 1

7Recall, we define s[0]
def
= 1.

11



secret keys s0, . . . , sD and publishing the ciphertexts {ψd,i,j,τ} which encrypt the required informa-
tion about the level-d secret sd under level-(d + 1) secret sd+1. The public key of the scheme is
pk ← E.PubKeygen(s0), corresponding to the level-0 secret key s0. The ciphertexts will have an
associated level number, which is initially 0. Each time we multiply two ciphertexts with a common
level d, we need to perform re-linearization which increases the level to d+ 1. Using the secret key
sD, we can then decrypt at the top level.

In the above discussion, we left out the crucial question of noise, which grows exponentially
with the number of multiplications. Indeed, the above template only allows us to evaluate some
logarithmic number of levels before the noise gets too large. The work of [BGV12] gives a beautifully
simply noise-reduction technique called “modulus reduction”. This technique uses progressively
smaller moduli qd for each level d and simply “rescales” the ciphertext to the smaller modulus
to reduce its noise level. See Appendix B for further details. As an end result, we get a leveled
FHE scheme, allowing us to evaluate circuits containing at most D multiplicative levels, where D
is an arbitrary polynomial, used as a parameter for FHE.Keygen. To get an FHE scheme where key
generation does not depend on the number of levels, we can apply the bootstrapping technique of
[Gen09], at the expense of having to make an additional “circular security assumption”.

4 Threshold Fully Homomorphic Encryption

Syntax. A threshold fully homomorphic encryption scheme (TFHE) is basically a homomorphic
encryption scheme, with the difference that the Keygen and Dec are now N -party protocols instead
of algorithms. We will consider protocols defined in terms of some common setup.

• TFHE.Keygen(setup) – (key generation protocol): Initially each party holds setup. At
the conclusion of the protocol, each party Pk, for k ∈ [N ] outputs a common public-key pk,
a common public evaluation key evk, and a private share skk of the implicitly defined secret
key sk.

• TFHE.Decsk1,...,skn(c) – (decryption protocol): Initially, each party Pk holds a common
ciphertext c and its private share of the secret key skk. At the end of the protocol each party
receives the decrypted plaintext µ.

• TFHE.Encpk(µ),TFHE.Evalpk(f, c1, . . . , c`): Encryption and evaluation are non-interactive
algorithms with the same syntax as in FHE.

We do not define the security of TFHE on its own. Indeed, requiring that the above protocols
securely realize some ideal key-generation and decryption functionalities is unnecessarily restrictive.
Instead, we will show that our TFHE scheme is secure directly in the context of our implementation
of general MPC in section 5.

4.1 Construction of TFHE

We now give our construction of TFHE, which can be thought of as a threshold version of the
[BGV12] FHE scheme. The main difficulty is to generate the evaluation key in a threshold manner,
by having each party carefully release some extra information about its key-shares. Another im-
portant component of our construction is to require parties to add some additional smudging noise
during sensitive operations, which will be crucial when analyzing security.

12



Common Setup. All parties share a common setup consisting of:

• params =
(
{paramsd = (1κ, qd,m, n, ϕ, χ)}0≤d≤D , Bϕ, Bχ, B

eval
smdg, B

enc
smdg, B

dec
smdg

)
, where

– paramsd are parameters for the encryption scheme E with differing moduli qd.

– Bϕ, Bχ ∈ Z are bounds s.t. ϕ is Bϕ-bounded and χ is Bχ-bounded.

– Beval
smdg, B

enc
smdg, B

dec
smdg ∈ Z are bounds for extra “smudging” noise.

• Randomly chosen common values (i.e. a common random string or CRS):

{Ad
$← Zm×nqd

}d∈{0,...,D} ,
{

akd,i,τ
$← Znqd :

k ∈ [N ], i ∈ [n]
d ∈ [D], τ ∈ {0, . . . , blog(qd)c}

}
.

Convention. Whenever the protocol specifies that a party is to sample x ← ϕ (resp. x ← χ), we
assume that it checks that |x| ≤ Bϕ (resp. |x| ≤ Bχ) and re-samples if this is not the case (which
happens with negligible probability). This will be crucial when analyzing semi-malicious security,
since it implies that a semi-malicious attacker needs to stay within these bounds.

TFHE.Keygen(setup). This is a two-round protocol between N parties.

• Round 1:

1. Each party Pk invokes the key generation algorithm of the basic scheme E for each level
d ∈ {0, . . . , D} to get skd ← E.SymKeygen(paramsd) and

(Ad,p
k
d)← E.PubKeygen(skd ; Ad)

so that pkd = Ad ·skd+2 ·ekd for some noise ekd. We can think of the values skd as individual
secret keys and pkd as individual encryption keys of each party Pk.

2. For every d ∈ [D], i ∈ [n], τ ∈ {0, . . . , blog qc}, the party Pk computes:(
akd,i,τ , b

k,k
d,i,τ

)
← E.SymEncskd

(
2τ · skd−1[i] ; akd,i,τ

)
so that bk,kd,i,τ = 〈akd,i,τ , skd〉 + 2ek,kd,i,τ + 2τ · skd−1[i] for some small noise ek,kd,i,τ . In addition,
for every d, i, τ as above and ` ∈ [N ] \ {k}, the party Pk computes “encryptions of 0”:(

a`d,i,τ , b
`,k
d,i,τ

)
← E.SymEncskd

(0 ; a`d,i,τ )

so that b`,kd,i,τ = 〈a`d,i,τ , skd〉+ 2e`,kd,i,τ for some noise e`,kd,i,τ . The values {b`,kd,i,τ} will be used
to create the evaluation key.

3. Each party Pk broadcasts the values
{
pkd
}
d
,
{
b`,kd,i,τ

}
`,d,i,τ

.

• End of Round 1: At the end of round 1, we can define the following values.

1. For every d ∈ {0, . . . , D}, define: p∗d :=
∑N

`=1 p`d. Let pk := (A0,p
∗
0) be the common

public encryption key of the TFHE scheme.

Notice that, if all parties follow the protocol then (Ad,p
∗
d) = E.PubKeygen(s∗d;Ad; e

∗
d).

where s∗d :=
∑N

`=1 s`d, e∗d :=
∑N

`=1 e`d. We can think of these values as the “combined
public keys” for each level d.

13



2. For every ` ∈ [N ], d ∈ [D], and all i, τ define β`d,i,τ :=
∑N

k=1 b
`,k
d,i,τ .

Notice that, if all parties follow the protocol then:

(a`d,i,τ , β
`
d,i,τ ) = E.SymEncs∗d( 2τ · s`d−1[i] ; a`d,i,τ ; e ) where e =

N∑
k=1

e`,kd,i,τ

These “approximate encryptions” are already encrypted under the correct combined
secret key s∗d of level d. However, the “plaintexts” still only correspond to the individual
secret keys s`d−1 at level d− 1, instead of the desired combined key s∗d−1. We fix this in
the next round.

• Round 2:

1. Each party Pk does the following. For all ` ∈ [N ], d ∈ [D], i, j ∈ [n], τ ∈ {0, . . . , blog qc}:
sample (v`,kd,i,j,τ , w

`,k
d,i,j,τ )← E.PubEncp∗d(0) and e

$← [−Beval
smdg, B

eval
smdg]. Set:

(α`,kd,i,j,τ , β
`,k
d,i,j,τ ) := skd−1[j] · (a`d,i,τ , β`d,i,τ ) + (v`,kd,i,j,τ , w

`,k
d,i,j,τ + 2e)

Note that, if all parties follow the protocol, then the original tuple (a`d,i,τ , β
`
d,i,τ ) approx-

imately encrypts the value 2τs`d−1[i]. The above operation has party Pk “multiply in”

its component skd−1[j] (and re-randomizing via a public encryption of 0) so that the final

tuple (α`,kd,i,j,τ , β
`,k
d,i,j,τ ) approximately encrypts 2τ · s`d−1[i] · skd−1[j].

2. Each party Pk broadcasts the ciphertexts
{

(α`,kd,i,j,τ , β
`,k
d,i,j,τ )

}
d,i,j,τ,`

.

• End of Round 2: At the end of round 2, we can define the following values.

1. We define the combined evaluation key components for all d ∈ [D] and all i ∈ [n], j ∈
[n] ∪ {0}, τ as:

ψd,i,j,τ :=

{ ∑N
`=1

∑N
k=1(α`,kd,i,j,τ , β

`,k
d,i,j,τ ) j 6= 0∑N

`=1(a`d,i,τ , β
`
d,i,τ ) j = 0

Note that, if all parties follow the protocol, then

ψd,i,j,τ = E.SymEncs∗d(2
τ · s∗d−1[i] · s∗d−1[j])

where s∗d :=
∑N

`=1 s`d is the combined secret key and all “errors” are “sufficiently small”.

• Outputs:

1. Public Evaluation key: Output evk = {ψd,i,j,τ}d,i,j,τ as the evaluation key.

2. Public Encryption key: Output pk = (A0,p
∗
0) as the public key.

3. Share of secret key: Each party Pk has a secret-key share skD.

TFHE.Encpk(µ): Once the first round of the key-generation protocol is concluded, the public
key pk = (A,p∗0) is well defined. At this point anybody can encrypt as follows. Choose (v, w) ←
E.Encpk(µ) using the basic scheme E with the parameters params0 = (1κ, q0,m, n, ϕ, χ). Choose

additional “smudging noise” e
$← [−Benc

smdg, B
enc
smdg] and output the ciphertext c = ((v, w + 2e), 0)

with associated “level” 0.

14



TFHE.Evalevk(f, c1, . . . , ct): Once the second round of the key-generation protocol is concluded,
the evaluation key evk is defined. The evaluation algorithm is exactly the same as that of the
underlying scheme FHE of [BGV12]. See Appendix B for details.

The Decryption Protocol: TFHE.Dec(c). This is a one-round protocol between N parties.
Initally all parties hold a common ciphertext c = (v, w,D) with associated “level” D.8 Moreover,
each party Pk holds its share skD for the joint secret key s∗D =

∑N
k=1 skD. At the end all parties get

the decrypted bit µ.

• Each party Pk broadcasts wk = 〈v, skD〉+ 2 · ek for some noise ek
$← [−Bdec

smdg, B
dec
smdg].

• Given w1, . . . , wN , each Pk computes the output bit: µ = [w −
∑N

i=1w
i]qD mod 2.

Correctness. In Appendix C.1 we show that the above protocol satisfies correctness (for ap-
propriate parameters) in the following sense. Assume that: (1) the key-generation protocol is
executed honestly, (2) data µ ∈ {0, 1}∗ is encrypted under the public encryption key bit-wise and
some homomorphic evaluation corresponding to a function f is performed on the ciphertexts, (3)
the decryption protocol is executed honestly on the resulting ciphertexts. Then the output of the
decryption protocol is f(µ). In fact, we show a stronger statement that the above holds even if the
protocols and encryptions aren’t executed with honestly and independently chosen randomness for
each party, but we are only guaranteed that the noise levels in each step are sufficiently bounded.

5 Secure MPC via TFHE

PROTOCOL 5.1 (πf : Secure MPC Protocol for f .).

Let f : ({0, 1}`in)N → {0, 1}`out be a function computed by a circuit of multiplicative depth D.

Input: Each party Pk has input xk ∈ {0, 1}`in . The parties share some common setup for our
D-level TFHE scheme, where D is the number of levels for f .

The Protocol:

Round I. The parties execute the first round of the TFHE.Keygen protocol. At the end of this
round, each party Pk holds the common public key pk and a secret-key share skk.

Round II. The parties execute the second round of the TFHE.Keygen protocol. Concurrently,
each party Pk also encrypts its input xk bit-by-bit under the common public key pk and
broadcasts the corresponding ciphertexts { ck,i ← TFHE.Encpk(xk[i]) }i∈{1,...,`in}.
At the end of this round, each party can locally compute the common evaluation key evk,
and homomorphically evaluate the function f to get the output ciphertexts
{ c∗j := Evalevk(fj ; {ck,i}) }j∈{1,...,`out} where fj is the boolean function for the jth bit of f .

Round III. The parties execute the decryption protocol TFHE.Dec on each of the output ci-
phertexts {c∗j} concurrently. At the end of this invocation, each party learns each of the
bits of the underlying plaintext y = f(x1, . . . , xN ), which it sets as its output.

8We can assume w.l.o.g. that the ciphertext to be decrypted has level exactly D (rather than at most D) since
we can always deterministically upgrade the ciphertext level to D. See Appendix B.

15



We now present a protocol for general MPC, using the threshold fully homomorphic scheme
TFHE from the previous section. The protocol, given in Figure 5.1, realizes general multiparty
computation for any polynomial-time deterministic functions f which produces a common output
for all parties. It does so with respect to a static semi-malicious attackers corrupting any t ≤
N parties. We extend this result to deal with probabilistic functions with individual outputs
in Section 6 and to fully malicious attackers in Section E. We state our main theorem without
concrete parameters. The proof appears in Appendix C.2, where we also discuss the settings of the
parameters for our protocol and the corresponding LWE assumption required for security.

Theorem 5.2. Let f be any deterministic poly-time function with N inputs and single output.
Let params satisfy the constraints given in Appendix C.2, and assume that the corresponding LWE
assumption holds. Then the protocol πf securely UC-realizes the ideal functionality Ff in the
presence of a static semi-malicious adversary (Definition A.2) corrupting any t ≤ N parties.

Proof Intuition. We now give a high-level (somewhat inaccurate) description of how the proof
of security works. The simulator essentially runs rounds I and II honestly on behalf of the honest
parties, but encrypts 0s instead of their real inputs. Then, in round III, it tries to force the real-
world protocol output to match the idea-world output µ∗, by giving an incorrect decryption share on
behalf of some honest party Ph. That is, assume that the combined ciphertext at the end of round II
is c = (v, w,D). The simulator can get the secret keys skD of all semi-malicious parties Pk at the end
of round I (recall that semi-malicious parties follow the protocol honestly up to choosing bad random
coins which are available to the simulator). It can therefore approximately compute the decryption
shares wk ≈ 〈v, skD〉 of the semi-malicious parties before (round III) starts. It then chooses the
decryption share wh of the honest party Ph by solving the equation w−

∑
`〈v, w`〉 = 2e+µ∗ where

e
$← Bdec

smdg is added noise. The decrypted value is therefore µ∗. We claim that the simulation is
“good” since:

• The way that the simulator computes the decryption share of party Ph is actually statistically
close to the way that the decryption share is given in the real world, when the noise Bdec

smdg is
large enough. This follows by the “smudging” lemma.

• The attacker cannot distinguish encryptions of 0 from the real inputs by the “security of
joint keys” (Lemma 3.4). In particular, the combined public encryption-key pk is derived as
the sum of an honestly generated public-key ph0 (for party Ph) and several other honestly
and semi-maliciously generated keys for which the attacker must “know” a corresponding
secret key. Moreover, the secret key sh0 of party Ph is now never used during the decryption
protocol. Therefore, by the “security of joint keys”, encryptions under pk maintain semantic
security. There is an added complication here that extra information about the secret key sh0
is released during rounds I and II of the protocol to create the evaluation key. However, this
extra information essentially consists of ciphertexts under the higher level secret keys shd for
d = 1, . . . , D. Therefore, the full proof consists of several hybrid games where we replace this
extra information with random values starting with the top level and going down.

6 Variants and Optimizations

We consider several variants and optimizations of our basic MPC protocol from the previous section.

16



Randomized Functionalities and Individual Outputs. Our basic MPC protocol only con-
siders deterministic functionalities where all the parties receive the same output. However, we
can use standard efficient and round-preserving transformations to get a protocol for probabilistic
functionalities and where different parties can receive different outputs. See Appendix D for details.

Security for Fully Malicious Attackers. Our basic MPC protocol is only secure in the semi-
malicious setting. In Appendix E, we give a general round-preserving compiler from semi-malicious
to fully malicious security using UC NIZKs [SCO+01] in the CRS model. In particular, in each
round, the attacker must prove (in zero-knowledge) that it is following the protocol consistently
with some setting of the random coins.

In Appendix F, we then turn to the question of efficiency. We first present simple, efficient, and
statistical Σ-protocols for basic LWE-languages, along the lines of Schnorr’s protocol [Sch91] (and
bearing much similarity to Σ-protocols of [MV03] for various lattice problems ). These Σ-protocols
crucially rely on the idea of “smudging” and have an interesting caveat that there is a gap between
the noise-levels for which zero-knowledge is shown to hold and the ones for which soundness holds.
We then use the Σ-protocols for these basic LWE-languages along with a series of AND and OR
proofs to convert them into Σ-protocols for the more complicated language showing that a party
is following our MPC protocol specification honestly with some (not necessarily honestly chosen)
random coins. Using the Fiat-Shamir heuristic [FS86] we then get efficient UC NIZKs, and therefore
also general 3-round MPC protocols, in the random oracle model.

Two Rounds with PKI . An alternative way to present our protocol is as a 2-round proto-
col with a public-key infrastructure (PKI). In particular, we can think of the (round I) message

( {pkd} , {b
`,k
d,i,τ} ) sent by party Pk as its public key and the value {skD} as its secret key (in the fully

malicious setting, the public key would also contain the corresponding NIZKs). The entire MPC
execution then only consists of the remaining two rounds. Note that this PKI is very simple and
does not need a trusted party to set up everything; we just need a trusted party to choose a CRS
and then each party can choose its own public key individually (possibly maliciously). Moreover,
the PKI can be reused for many MPC executions of arbitrary functions f with arbitrary inputs.
The main drawback is that the size of each party’s public key is proportional to the total number
of parties, and it would be interesting to remove this. The security analysis is exactly the same
as that of our original three round protocol in the CRS model, just by noting that the first round
there consists of broadcast message, which does not depend on the inputs of the parties (and hence
we can think of it as a public key).

Bootstrapping. In our basic MPC protocol, the communication complexity is proportional to the
maximal number of multiplicative-levels in the circuit of the evaluated function. This is because we
start with a leveled TFHE scheme. To make the communication complexity completely independent
of circuit size, we can rely on the bootstrapping technique of [Gen09]. In particular, since the
TFHE scheme can evaluate any polynomial D = D(κ) number of levels, it can also evaluate its
own decryption circuit and some extra operations when we set D large enough.9 To apply the

9This is not generically true for leveled FHE since the depth of decryption may depend on (and exceed) D so
that the scheme would be unable to evaluate its own decryption circuit. However, in our case, only the dimension n
depends polynomially on D, while the multiplicative depth of the decryption circuit only depends poly-logarithmically
on n. Hence it is possible to choose a sufficiently large D so that the scheme can evaluate its own decryption.

17



bootstrapping technique, each party Pk only needs to encrypt its secret-key share skk = skD (bit-
by-bit) under the combined public-key pk in (round II) of the protocol, and we add these values
to the evaluation key. With this modification, we can instantiate our TFHE scheme with some
fixed polynomial D and maintain the ability to homomorphically evaluate arbitrarily large circuits
with the same correctness guarantees as previously. Therefore, the communication/computation
complexity of the key-generation and decryption protocols is completely independent of the circuit
size of the function f . For security, however, we must now rely on a non-standard circular-security
assumption for the basic LWE-based encryption scheme E.

Outsourcing Computation. The only intensive computation in our protocol, that depends on
the circuit size of the evaluated function, is the homomorphic evaluation. In our basic description
of the protocol, we assumed that each party performs this computation individually at the end
of round II. However, it is also possible to designate one special party P ∗ (or even an external
entity e.g. a powerful server, or the “cloud”) that does this computation alone on everyone’s behalf
and broadcasts the resulting output ciphertexts to everyone else.10 Moreover, P ∗ does not need to
broadcast its input ciphertexts to everyone else, as it alone needs to know them when performing
the evaluation. That is, the communication complexity is only proportional to the output size and
the inputs of all parties other than P ∗. This may be useful if the MPC computation involves one
powerful party with a huge input and many weaker parties with small inputs.

The above simple idea already achieves security in the semi-honest model, where we can trust P ∗

to perform the computation honestly and return the correct result. However, in the fully malicious
setting, we would also require P ∗ to prove that the resulting ciphertext is the correct one, using a
computationally-sound proof system with a fixed polynomial (in the security parameter) verification
complexity. Such non-interactive proofs are known to exist in the random-oracle model [Mic00] or
under appropriate non-black-box assumptions [BCCT12, GLR11, DFH11].

Fairness. Our basic MPC protocol achieves security with abort for any number of corrupted
parties. We can also achieve fairness for t < N/2 corruptions. The main idea is that, in Round
I, each party also (threshold) secret-shares its individual secret skkd so that any bN/2c+ 1 parties
can recover it, but any fewer will not get any extra information. If a party Pk aborts in Rounds
II or III, the rest of the parties will reconstruct skkd (at the cost of one extra round) and use it
to continue the protocol execution on Pk’s behalf. Although an honest execution of our fair MPC
protocol still uses 3 rounds of interaction, the protocol may now take up to 5 rounds in the worst
case when some parties abort, where the extra rounds are needed to reconstruct the keys of the
aborted parties. See Appendix G for details.

References

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast crypto-
graphic primitives and circular-secure encryption based on hard learning problems.
In CRYPTO, pages 595–618, 2009.

10Broadcasting the output ciphertexts requires an extra round, raising the round complexity to 4 rounds in the
CRS model, 3 rounds in PKI model.

18



[AIK05] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private ran-
domizing polynomials and their applications. In IEEE Conference on Computational
Complexity, pages 260–274, 2005.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back again.
In ITCS, 2012.

[BD10] Rikke Bendlin and Ivan Damg̊ard. Threshold decryption and zero-knowledge proofs
for lattice-based cryptosystems. In TCC, pages 201–218, 2010.

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In EUROCRYPT, pages 169–
188, 2011.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic en-
cryption without bootstrapping. In ITCS, 2012.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In STOC, pages 503–513, 1990.

[BNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for secure
multi-party computation. In ACM Conference on Computer and Communications
Security, pages 257–266, 2008.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) lwe. In FOCS, 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
ring-lwe and security for key dependent messages. In CRYPTO, pages 505–524, 2011.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145, 2001.

[CDN01] Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty computation
from threshold homomorphic encryption. In EUROCRYPT, pages 280–299, 2001.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In CRYPTO, pages 174–187, 1994.

[CEMY09] Seung Geol Choi, Ariel Elbaz, Tal Malkin, and Moti Yung. Secure multi-party com-
putation minimizing online rounds. In ASIACRYPT, pages 268–286, 2009.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty
(extended abstract). In STOC, pages 364–369, 1986.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally compos-
able two-party and multi-party secure computation. In STOC, pages 494–503, 2002.

[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully
homomorphic encryption over the integers with shorter public keys. In CRYPTO,
pages 487–504, 2011.

19



[DFH11] Ivan Damg̊ard, Sebastian Faust, and Carmit Hazay. Secure two-party computation
with low communication. Cryptology ePrint Archive, Report 2011/508, 2011. http:

//eprint.iacr.org/.

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a black-
box pseudorandom generator. In CRYPTO, pages 378–394, 2005.

[DI06] Ivan Damg̊ard and Yuval Ishai. Scalable secure multiparty computation. In CRYPTO,
pages 501–520, 2006.

[DN03] Ivan Damg̊ard and Jesper Buus Nielsen. Universally composable efficient multiparty
computation from threshold homomorphic encryption. In CRYPTO, pages 247–264,
2003.

[FH96] Matthew K. Franklin and Stuart Haber. Joint encryption and message-efficient secure
computation. J. Cryptology, 9(4):217–232, 1996.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO, pages 186–194, 1986.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

[GH11] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. In EUROCRYPT, pages 129–148, 2011.

[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-hop homomorphic encryption
and rerandomizable yao circuits. In CRYPTO, pages 155–172, 2010.

[GKPV10] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan.
Robustness of the learning with errors assumption. In ICS, pages 230–240, 2010.

[GLR11] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation with-
out rejection problem from designated verifier cs-proofs. Cryptology ePrint Archive,
Report 2011/456, 2011. http://eprint.iacr.org/.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In STOC, pages 218–229,
1987.

[Gol04] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, New York, NY, USA, 1st edition, 2004.

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions. In
STOC, pages 695–704, 2011.

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the web:
Computing without simultaneous interaction. In CRYPTO, pages 132–150, 2011.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In FOCS, pages 294–304,
2000.

20

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


[JJ00] Markus Jakobsson and Ari Juels. Mix and match: Secure function evaluation via
ciphertexts. In ASIACRYPT, pages 162–177, 2000.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In STOC, pages 723–732, 1992.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation.
In CRYPTO, pages 335–354, 2004.

[KOS03] Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Round efficiency of multi-party
computation with a dishonest majority. In EUROCRYPT, pages 578–595, 2003.

[Lin01] Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party computa-
tion. In CRYPTO, pages 171–189, 2001.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party
computation. J. Cryptology, 22(2):161–188, 2009.

[LP11] Huijia Lin and Rafael Pass. Constant-round non-malleable commitments from any
one-way function. In STOC, pages 705–714, 2011.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298,
2000.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - secure two-
party computation system. In USENIX Security Symposium, pages 287–302, 2004.

[MSS11] Steven Myers, Mona Sergi, and Abhi Shelat. Threshold fully homomorphic encryption
and secure computation. In eprint 2011/454, 2011.

[MV03] Daniele Micciancio and Salil P. Vadhan. Statistical zero-knowledge proofs with efficient
provers: Lattice problems and more. In CRYPTO, pages 282–298, 2003.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In STOC, pages 333–342, 2009.

[RAD78] R.L. Rivest, L. Adleman, and M.L. Dertouzos. On data banks and privacy homo-
morphisms. In Foundations on Secure Computation, Academia Press, pages 169–179,
1978.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, pages 84–93, 2005.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. J. Cryptology,
4(3):161–174, 1991.

[SCO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and
Amit Sahai. Robust non-interactive zero knowledge. In CRYPTO, pages 566–598,
2001.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

21



[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with rel-
atively small key and ciphertext sizes. In Public Key Cryptography, pages 420–443,
2010.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully ho-
momorphic encryption over the integers. In EUROCRYPT, pages 24–43, 2010.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
FOCS, pages 160–164, 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162–167, 1986.

A Definitions

A.1 The Universal Composability Framework (UC)

We work in the standard universal composability framework of Canetti [Can01] with static corrup-
tion. The UC framework defines a ppt environment Z that is invoked on security parameter 1κ

and an auxiliary input z, and oversees the execution of a protocol in one of two worlds. The “ideal
world” executions involves dummy parties P̃1, . . . , P̃N , an ideal adversary S who may corrupt some
of the dummy parties, and a functionality F . The “real world” execution involves the ppt parties
P1, . . . , PN , and a real-world adversary A who may corrupt some of the parties. The environment Z
chooses the inputs of the parties, may interact with the ideal / real adversary during the execution,
and at the end of the execution need to decide whether a real or ideal execution has been taken
place. The output of the execution is simply the output of the environment. We refer to [Can01]
for further details.

Let IDEALF ,S,Z(1κ, z) denote the random variable describing the output of the environment Z
after interacting in the ideal process with adversary S, the functionality F , on security parameter
1κ and input z. Let IDEALF ,S,Z denote the ensemble {IDEALF ,S,Z(1κ, z)}κ∈N,z∈{0,1}∗ . Similarly,
let REALπ,A,Z(1κ, z) denote the random variable describing the output of the environment Z after
interacting with the adversary A and parties running protocol π on security parameter κ, and input
z. Let REALπ,A,Z denote the ensemble {REALπ,A,Z(1κ, z)}κ∈N,z∈{0,1}∗ .

Definition A.1. For N ∈ N, let F be an N -ary functionality, and let π be a N -party protocol. We
say that π securely realizes F if for any ppt adversary A there exists a ppt ideal adversary S such
that for any ppt environment Z we have:

IDEALF ,S,Z
c≡ REALπ,A,Z

We sometime want to restrict the definition so that it quantifies over adversaries from a certain
class: semi-honest adversaries, or malicious adversary that corrupted only a certain number of
parties. That is done in a straightforward way.

General functionality. We consider the general UC–functionality F , which securely evaluates
any function f : ({0, 1}`in)N → ({0, 1}`out)N . The functionality Ff is parameterized with a function
f and is defined as follows:

22



• Each party Pi sends (xi, sid) to the functionality.

• Once all parties send their inputs, evaluate (y1, . . . , yN )← f(x1, . . . , xN ).

• Send to each party Pi the output (yi, sid).

Fairness. Our default notion is “security-with-abort” meaning that the ideal adversary (simula-
tor) can abort the computation and cause the functionality to not give output. In addition, we say
that a protocol π securely and fairly realizes a functionality F if S does not get the ability to abort.
Meaning, the functionality always sends to the honest party the outputs.

A.2 Security Against Semi-Malicious Adversaries

As a stepping stone towards realizing the standard definition of secure multi-party computation
against active adversaries, we define a notion of a semi-malicious adversary that is stronger than the
standard notion of semi-honest adversary. We formalize security against semi-malicious adversaries,
and later in Section E, we present a generic transformation from an MPC protocol that is secure
against semi-malicious adversaries, to a protocol that is secure against fully malicious adversaries.

Semi–malicious adversary. A semi-malicious adversary is modeled as an interactive Turing
machine (ITM) which, in addition to the standard tapes, has a special witness tape. In each round
of the protocol, whenever the adversary produces a new protocol message m on behalf of some
party Pk, it must also write to its special witness tape some pair (x, r) of input x and randomness
r that explains its behavior. More specifically, all of the protocol messages sent by the adversary on
behalf of Pk up to that point, including the new message m, must exactly match the honest protocol
specification for Pk when executed with input x and randomness r. Note that the witnesses given
in different rounds need not be consistent. Also, we assume that the attacker is rushing and hence
may choose the message m and the witness (x, r) in each round adaptively, after seing the protocol
messages of the honest parties in that round (and all prior rounds). Lastly, the adversary may also
choose to abort the execution on behalf of Pk in any step of the interaction.

Definition A.2. We say that a protocol π securely realizes F for semi-malicious adversaries if it
satisfies Definition A.1 when we only quantify over all semi-malicious adversaries A.

We remark that this definition captures the semi-honest adversary who always follows the
protocol with honestly chosen random coins (and can be easily modified to write those on its
witness tape). On the other hand, a semi-malicious adversary is more restrictive than a fully
malicious adversary, since its behavior follows the protocol with some input and randomness which
it must know. Note that the semi-malicious adversary may choose the different input or random
tape in an adaptive fashion using any ppt strategy according to the partial view it has seen.

Discussion. The main benefit in considering semi-malicious adversaries is shown in Appendix
E. In particular, we get a simple general compiler from semi-malicious security to fully malicious
security, just by having each party in each round give a ZK proof that it is following the protocol
honestly with some input x and randomness r. Unlike the general compiler from semi-honest
security to fully malicious security, we do not need to coin-flip for the random coins of the parties.

23



B FHE Scheme of [BV11a, BGV12]

Modulus Reduction. Before describing the scheme, let us start with a basic lemma from
[BGV12] called the “modulus switching lemma”.

Lemma B.1 (Modulus Switching [BGV12]). Let q ≥ p be two odd moduli and let c be an integer
vector. Define c′ to be the integer vector closes to (p/q)c such that c′ = c (mod 2). Then, for any
s with |[〈c, s〉]q| < q/2− (q/p) · `1(s), we have:

[〈c′, s〉]p = [〈c, s〉]q (mod 2) and |[〈c′, s〉]p| < (p/q) · |[〈c, s〉]q|+ `1(s)

The lemma shows that, if we use the basic LWE-based encryption scheme E with some modulus
q and a secret key s which is “sufficiently small”, we can take a ciphertext c = (v, w) and “scale it
down” by a factor of p/q, to get a new valid ciphertext under the same key s (encrypting the same
message) but using a smaller modulus p. Moreover, the absolute value of the noise decreases by
essentially a factor of p/q. This lemma is used to keep the noise level “small”, by simply scaling
down the ciphertext to a smaller modulus before each multiplication operation.

The Construction We now define the homomorphic encryption scheme of [BGV12, BGV12] in
terms of the basic LWE-based encryption scheme E from Section 3. We start by only describing the
“leveled homomorphic encryption” which can evaluate any circuit with up to D multiplicative levels,
where D is arbitrary but known to the key-generation algorithm. To get a “fully” homomorphic
encryption where a single key-generation algorithm is sufficient to evaluate any polynomial number
of levels, we can then use the “bootstrapping technique” of [Gen09] (requiring an additional circular
security assumption).

The scheme defined as follows:

Parameters: params = {paramsd : 0 ≤ d ≤ D}, where paramsd is the tuple (1κ, qd,m, n, ϕ, χ) as
in the basic scheme E. Note that only the modulus qd differs for each “level” d.

FHE.Keygen(params) : The key generation algorithm creates (pk, sk, evk) as follows.

• The evaluation key: For every level d ∈ {0, . . . , D}, choose a key sd ← E.SymKeygen(paramsd).
Then, for all d ∈ {1, . . . , D}, i ∈ [n], j ∈ [n] ∪ {0} and τ ∈ {0, . . . , blog qdc} compute:

ψd,i,j,τ
def
= (ad,i,j,τ , bd,i,j,τ )← E.SymEncsd(2

τ · sd−1[i] · sd−1[j])

so that
bd,i,j,τ = 〈ad,i,j,τ , sd〉+ 2 · ed,i,j,τ + 2τ · sd−1[i] · sd−1[j]

for some coefficients ad,i,j,τ and noise ed,i,j,τ . The above is an approximate encryption of

sd−1[i] · sd−1[j] under sd, where sd−1[0]
def
= 1. We define evk = {(ad,i,j,τ , bd,i,τ )}d,i,j,τ .

• The public key: Invoke (A,p) ← E.PubKeygen(s0) and set pk = (A,p). Note that p =
As0 + 2e for some noise vector e.

• The secret key: The secret key is simply sk
def
= sD.

24



FHE.Encpk(µ) : The encryption algorithm computes (v, w) ← E.PubEncpk(µ) and outputs
(v, w, 0) to indicate that the “level” of the ciphertext is 0. Note that:

v = rT ·A, w = 〈r,p〉+ µ ( = 〈v, s0〉+ 2〈r, e〉+ µ when p = As0 + 2e )

for some random vector r ∈ {0, 1}m.

FHE.Decsk(c): On input c = (v, w,D) the decryption algorithm returns:

E.Decsk((v, w)) = [w − 〈v, sD〉]qD (mod 2).

FHE.Evalevk(f, c1, . . . , ct): Let f be a function computed by a boolean circuit C which consists
of ‘+’ gates and ‘×’ gates with fan-in 2. Furthermore, assume the circuit is layered meaning that
it is composed of levels consisting either entirely of ‘+’ gates or entirely of ‘×’ gates, and that the
number of multiplicative ‘×’ layers is bounded by D. We associate the input ciphertexts with the
input wires and homomorphically evaluate the circuit gate by gate. Given two ciphertexts c1, c2,
where c1 = ((v1, w1), d) and c2 = ((v2, w2), d), having matching “levels” d, we can perform the
following operations:

• Addition gates. The resulting ciphertext is:

cadd = ((vadd, wadd), d)
def
= ((v1 + v2, w1 + w2) , d)

• Multiplication gates. As a first step, we do a “modulus switch” on the values (v1, w1), (v2, w2)
to convert them from ciphertexts over the modulus qd to ones over the (smaller) modulus
qd+1. To do so define the “scaling factor” βd := (qd/qd+1) ∈ R. Then, for b ∈ {1, 2},
let (v′b, w

′
b) be the integer vector which is closest to (1/βd) · (vb, wb) in `1-norm and which

satisfies (v′b, w
′
b) = (vb, wb) (mod 2) component-wise.

Next, consider the n-variate symbolic polynomial over the unknown vector x given by:

φmult(x)
def
= (w′1 − 〈v′1,x〉) · (w′2 − 〈v′2,x〉)
=

∑
0≤i≤j≤n

hi,j · x[i] · x[j]

for some coefficients hi,j over Zqd+1
.11 We can expand it more as:

φmult(x) =
∑

0 ≤ i ≤ j ≤ n
τ ∈ {0, . . . , blog qd+1c}

hi,j,τ · 2τ · x[i] · x[j]

where (hi,j,1, . . . , hi,j,blog qd+1c) is the binary representation of hi,j . Then, we set:

c′
def
=

∑
0 ≤ i ≤ j ≤ n

τ ∈ {0, . . . , blog qd+1c}

hi,j,τ · ψd+1,i,j,τ

11Recall that we define x[0] = 1.

25



and set cmult
def
= (c′, d+ 1). 12 Notice that if φc′ is the symbolic polynomial associated with c′

then

φc′(sd+1) =
∑

0 ≤ i ≤ j ≤ n
τ ∈ {0, . . . , blog qd+1c}

hi,j,τ · φψd,i,j,τ (sd+1)

≈
∑

0 ≤ i ≤ j ≤ n
τ ∈ {0, . . . , blog qd+1c}

hi,j,τ2τsd[i]sd[j] = φmult(sd) = φc1(sd) · φc2(sd)

where the “≈” hides the sum of the noises in the ciphertexts ψd,i,j,τ . Therefore the ciphertext
c′ encrypts the product of the plaintexts associated with c1, c2, but under the new key sd+1

and the new (smaller) modulus qd+1.

Upgrades. If we want to perform operations on two ciphertexts c1 = ((v1, w1), d1) and c2 =
((v2, w2), d2), having differing levels d2 > d1, we first “upgrade” the level of c1 to d2 and then
perform operations as above. To do the upgrade, we can just evaluate sufficiently mane extra
“dummy” multiplication gates where we multiply the plaintext by 1. We use the fixed ciphertexts
(v = (0, . . . , 0), w = 1, d) as “dummy” encryptions of 1.

Correctness. We now show that the scheme satisfies correctness for the following parameters.

Proposition B.2. Assume that params = {paramsd = (1κ, qd,m, n, ϕ, χ) : d ∈ {0, . . . , D}} are
chosen so that the moduli q0, . . . , qD satisfy qd−1/qd ≥ ρ for all d ∈ [D], the noise ϕ is Bϕ-bounded,
and χ is Bχ-bounded. Further assume that:

qD ≥ 2ρ · (nBϕ + 2) , ρ ≥ 2ω(log(κ)) ·max{B2
ϕ, Bχ}.

Then FHE satisfies the correctness property of leveled fully homomorphic encryption.

Actually, we will need to prove something more general. Fix params = {paramsd : d ∈
{0, . . . , D}}, any evaluation key evk = {(ad,i,j,τ , bd,i,j,τ )}d,i,j,τ , any ciphertexts {ci = (vi, wi, 0)},
and message-bits {µi} for which that there exist some values {sd}, {ed,i,j,τ}, {ei} satisfying:

bd,i,j,τ = 〈ad,i,j,τ , sd〉+ 2 · ed,i,j,τ + 2τ · sd−1[i] · sd−1[j]

wi = 〈vi, s0〉+ 2ei + µi

with bounds `1(sd) ≤ Bsec, |ei| ≤ Benc, |ed,i,j,τ | ≤ Beval for Bsec, Benc, Beval ∈ Z.

Proposition B.3. Let (params, evk, sk, {ci}, {µi}) satisfy the above requirements and let ρ be some
value such that qd−1/qd ≥ ρ for all d ∈ [D], and

qD ≥ 2ρ · (Bsec + 2) , ρ ≥ 2ω(log(κ)) ·max{B2
sec, Benc, Beval}.

Let f be some boolean function whose circuit has at most D multiplicative levels, and let c∗ =
FHE.Evalevk(f, c1, . . . , ct). Then FHE.Decsk(c

∗) = f(µ1, . . . , µt). Furthermore, noise(c∗, sD) ≤ ρ.

12Above, we implicitly define ψd+1,0,0,τ := (0n, 2τ ) and ψd+1,i=0,j,τ := ψd,j,0,τ . Notice that this retains consistency
of ψd+1,i,j,τ “aproximately encrypting” 2τsd[i][j] under the key sd+1.

26



Proof: We look at the noise of the intermediate ciphertexts created during evaluation of the
circuit and inductively show that its magnitude never exceeds ρ and its parity corresponds to the
correct bit for the corresponding wire in the circuit.

Initial Noise. For the initial ciphertexts ci we have noiseq0(ci, s0) ≤ Binit where Binit := (2Benc +
1) ≤ ρ and the parity of the noise is µi by assumption.

Multiplicative Noise. Let c1 = ((v1, w1), d) and c2 = ((v2, w2), d) be two ciphertexts such that
noiseqd(cb, sd) ≤ ρ and where the parity of the noise is µ1, µ2 respectively. Let cmult be the resulting
ciphertext after evaluating a multiplication gate on c1, c2.

• Firstly, let us consider the ciphertexts c′1, c
′
2 produced by performing “modulus reduction”.

Namely, by applying Lemma B.1, we see that

noiseqd+1
(c′1, sd) ≤ noiseqd(c1, sd)/ρ+ `1(sd) + 1 ≤ Bsec + 2

and similarly for c′2. Further, the parity of the noise remains the same.

• Now consider the symbolic polynomial φ(x) over Zqd+1
[x]. If we define y = φ(sd) then

|[y]qd+1
| ≤ (Bsec + 2)2 and [y]qd+1

= µ1 · µ2 mod 2.

• Lastly, let

cmult
def
= (vmult, wmult) =

∑
0 ≤ i ≤ j ≤ n

τ ∈ {0, . . . , blog qd+1c}

hi,j,τ · (ad,i,j,τ , bd,i,j,τ )

where the coefficients hi,j,τ are given by the expansion of φ. Then:

y′
def
= wmult − 〈vmult, sd+1〉 =

∑
i,j,τ

hi,j,τ · (bd,i,j,τ − 〈ad,i,j,τ , sd+1〉)

=
∑
i,j,τ

hi,j,τ · ( 2τ · sd−1[i] · sd−1[j] + 2 · ed,i,j,τ ) = y + 2
∑
i,j,τ

hi,j,τ · ed,i,j,τ

Therefore noiseqd+1
(cmult, sd+1) ≤ Bmult where

Bmult := (Bsec + 2)2 + 2(n+ 1)2(blog qd+1c+ 1) ·Beval ≤ ρ

and its parity again remains µ1 · µ2.

Additive Noise. We can assume that there are at most γ = poly(κ) successive levels of addition.
Then the noise of any ciphertext cadd which corresponds to the output of an addition gate is
bounded by Badd := γ ·max{Bmult, Binit}. Since Binit, Bmult = ρ/2ω(log κ) we see that Badd ≤ ρ as
we wanted to show.

Proof of Proposition B.2. Notice that, if the distributions ϕ, χ are Bϕ, Bχ bounded respectively and
the values (pk, evk, sk) ← FHE.Keygen(params), {ci ← FHE.Encpk(µi)} are chosen honestly then
the above requirements on (params, evk, sk, c1, . . . , ct, µ1, . . . , µt) are satisfied with Bsec = n · Bϕ,
Beval = Bχ and Benc = m ·Bχ.

27



C Proof of Security for TFHE-Based MPC

C.1 Correctness of TFHE Protocol

Let us assume that:

1. The scheme TFHE is honestly initialized with some setup.

2. The N -party protocol TFHE.Keygen is executed according to the protocol specification but
with some arbitrary (worst-case) random coins, resulting in the common public outputs
pk, evk and a secret-key share skk for party Pk. Let sk∗ :=

∑N
k=1 skk.

3. The ciphertexts {ci} are chosen as encryptions of the bits {µi} via ci ← TFHE.encpk(µi), but
again using some arbitrary (worst-case) random coins for encryption.

4. Let f be some boolean function whose circuit has at most D levels and let
c∗ = TFHE.Evalevk(f, c1, . . . , ct).

5. The N -party protocol TFHE.Dec is executed on the ciphertext c∗ as common input and the
individual keys skk for party Pk, where each party follows the protocol specification with
some arbitrary (worst-case) random coins. Let µ∗ be the common output.

Recall that, in all above steps, we assume that any sample from x← χ (resp. x← ϕ) is bounded by
|x| ≤ Bχ (resp. |x| ≤ Bϕ). We make one additional generalization and assume that whenever the

protocol specifies a value r
$← {0, 1}m is to be chosen in the above steps (i.e. during second round

of key generation and for encryption), we are only guaranteed r ∈ [−Br, Br]m for some positive
integer bound Br.

Theorem C.1. Let params be chosen so that, for some ρ, we have qd−1/qd ≥ ρ for all d ∈ [D] and:

ρ ≥ 2ω(log(κ)) ·max
{
Benc
smdg , N

2Beval
smdg , N

2n2B2
ϕ , N

3BχBϕ , N
3mBrBχ

}
qD ≥ max

{
2ρ · (NnBϕ + 2) , 2(ρ+ 2NBdec

smdg + 1)
}

Then
µ∗ = E.Decsk∗(c

∗) = f(µ1, . . . , µt) and noiseqD(c∗, sk∗) ≤ ρ.

Proof: We rely on Proposition B.3 which shows the correctness of the underlying FHE scheme.
In particular, when the key-generation protocol is executed as specified (with worst-case random
coins), we get the combined secret keys s∗d =

∑N
`=1 s`d for each level d satisfying

`1(s∗d) ≤ Bsec
def
= NnBϕ.

As for the errors in the evaluation key, we have:

• The combined values (a`d,i,τ , β
`
d,i,τ ) defined at the end of Round 1 “approximately encrypt”

2τs`d−1[i] under s∗d with error |e| ≤ N ·Bχ.

• The values (α`,kd,i,j,τ , β
`,k
d,i,j,τ ) sent out in Round 2 are “approximate encryptions” of 2τs`d−1[i]skd−1[j]

under s∗d with error |e| ≤ NBχBϕ +NmBrBχ +Beval
smdg.

28



• The combined values ψd,i,j,τ defined at the end of Round 2 are “approximate encryptions” of
2τs∗d−1[i]s∗d−1[j] under s∗d with error

|e| ≤ Beval
def
= N2(NBχBϕ +NmBrBχ +Beval

smdg).

Finally, the ciphertexts ci are encryptions of µi under s∗0 with error

|e| ≤ Benc
def
= mNBrBχ +Benc

smdg.

By applying Proposition B.3 with Bsec, Beval, Benc as defined above, we get c∗ = (v, w) such
that E.Decsk∗(c

∗) = µ∗ and noiseqD(c∗, sk∗) ≤ ρ. If each party correctly follows the decryption

protocol with some randomness and gives the decryption share wk
def
= 〈v, skD〉+ 2 · ek for some noise

ek
$← [−Bdec

smdg, B
dec
smdg] then

w −
N∑
i=1

wk = µ∗ + 2e∗ − 2
N∑
k=1

ek

Therefore, the decryption protocol recovers µ∗ as long as ρ+NBdec
smdg + 1 < q/2 which follows from

the assumption of the theorem.

C.2 Security of MPC in the Semi-Malicious Setting

We now prove the security of our MPC protocol in the semi-malicious setting (Theorem 5.2). Before
we do so, let us describe the restrictions on the parameters params for which correctness/security
hold and which also correspond to the parameters of the LWE assumption needed for security.

Parameters (General). For full generality we can show the correctness/security of our scheme

for any choice of params =
(
{paramsd = (1κ, qd,m, n, ϕ, χ)}0≤d≤D , Bϕ, Bχ, B

eval
smdg, B

enc
smdg, B

dec
smdg

)
satisfying the following conditions:

1. Firstly, the parameters need to satisfy the conditions of Theorem C.1 for correctness so that
the moduli qd are sufficiently large in relation to the noise bounds. In particular we need
some value ρ such that { qd−1/qd ≥ ρ }d∈[D] and

ρ ≥ 2ω(log(κ)) ·max
{
Benc
smdg , N

2Beval
smdg , N

2n2B2
ϕ , N

3BχBϕ , N
3mBχ

}
qD ≥ max

{
2ρ · (NnBϕ + 2) , 2(ρ+ 2NBdec

smdg + 1)
}

2. Secondly, we need the “smudging” noise to be sufficiently large. Specifically:

Bdec
smdg ≥ 2ω(log(κ)) · ρ , Benc

smdg, B
eval
smdg ≥ 2ω(log(κ)) ·Bχ.

3. Thirdly, we need the parameters paramsd = (n,m, qd, ϕ, χ) to be chosen so that the un-
derlying encryption scheme E is semantically secure with pseudorandom ciphertexts when
instantiated with paramsd for all d ∈ {0, . . . , D}. Furthermore, we need the public-key to
uniquely determine a secret key as in Claim 2.3. In particular:

• We set m ≥ (n+ 1) log(q0) + ω(log(κ)).

• All moduli qd are odd primes.

Given params as above, security will follow if the LWEn,qd,ϕ,χ assumption holds for all d ∈ {0, . . . , D}.

29



Parameters (Concrete). For concreteness, we can choose parameters as follows:

• Set Bϕ, Bχ := 2κ, Beval
smdg, B

enc
smdg := 22κ, Bdec

smdg = 24κ.

• Choose primes qd ∈ [25κ(D−d+1), 25κ(D−d+1)+1]. This ensures: qD ≥ 25κ, qd−1/qd ≥ 23κ.

• Choose a sufficiently large n = n(κ) and any distributions χ, ϕ which are 2κ-bounded so that
the LWEn,qd,ϕ,χ is hard for all d ∈ {0, . . . , D}.

Note that the hardness of the LWE problem depends on the ratio of the modulus q to the noise Bχ,
and on the dimension n. In our case, the ratio of modulus to noise is exponentially large, but we are
free to choose n so that 2n is a bigger exponential. For example, by choosing n = κ2, the security
of our scheme can be based on the worst-case (quantum) hardness of getting sub-exponential
2O(κ) = 2O(

√
n) approximation to GapSVP on n dimensional lattices in sub-exponential 2O(

√
n)

time [Reg05, Pei09].

Theorem C.2 (Theorem 5.2, restated). Let f be any deterministic poly-time function with N
inputs and single output. Let params satisfy the above general constraints and assume that the
corresponding LWEn,qd,ϕ,χ assumptions holds. Then the protocol πf securely UC-realizes the ideal
functionality Ff in the presence of a static semi-malicious adversary (Definition A.2) corrupting
any t ≤ N parties.

Proof: Let A be a static semi-malicious adversary, and let I be the set of corrupted parties. Since
simulating the case I = [N ] is trivial, we assume that t = |I| ≤ N − 1. Let h 6∈ I be some arbitrary
index of an honest party Ph. We first assume a restricted semi-malicious adversary that is not
allowed to abort. As a result, the simulator is not allowed to abort as well. After proving security
with respect to this kind of adversary, we add a simple extension to the general case with aborts.

The Simulator. We start with an informal description of the simulator. For the execution of
the TFHE.Keygen protocol, it simulates all the honest parties according to the honest protocol,
except for Ph, for which it just sends uniformly random values. It then encrypts 0s instead of the
real input bits of all honest parties. Finally, for the execution of the TFHE.Dec protocol on some
ciphertext c∗, the simulator again simulates all of the honest parties honestly except for Ph, for
which it sends some value so as to “fix” the decrypted plaintext to the correct output. We describe
this formally.

• For every honest party k 6∈ I, k 6= h, simulate Pk by following the TFHE.Keygen and TFHE.Dec
protocols honestly in all rounds.

• For every honest party k 6∈ I (including Ph), choose the ciphertexts ck,i as ck,i ← TFHE.Encpk(0)
to be encryptions of 0 instead of encrypting the actual input bits xk[i].

• For the special party Ph, proceed as follows:

– During the execution of Keygen, the simulator S chooses the values {bh,`d,i,j,τ}d,i,j,τ,` and

{γ`,hd,i,j,τ}d,i,j,τ,` on behalf of the party Ph uniformly at random instead of as specified, for

every level d ∈ [D]. It still chooses the public-key shares {phd}d∈{0,...,D} honestly.

30



– At the conclusion of the second round, the simulator reads the special “witness tape” of
the semi-malicious adversary to learn the values sid and the inputs xi for i ∈ I. It sends
the values {xi}i∈I to the ideal functionality on behalf of the parties in I, and receives
back the output y.

– For simulating Ph during the decryption round (round 3), the simulator computes the
evaluated ciphertexts c∗j = (vj , wj , D) for each output bit j as per the protocol. More-

over, it knows the extracted values {siD}i∈I (see previous bullet) for dishonest parties
and the values {skD}k 6∈I,k 6=h chosen on behalf of honest parties. It then computes the
decryption shares on behalf of Ph for each output bit j as:

whj := wj − 〈vj ,
∑

`∈[N ]\{h}

s`D〉 − y[j] + 2 · ej

where ej
$← [−Bdec

smdg, B
dec
smdg] is chosen at random and y[j] is the jth bit of the output y.

It send the values wh,j on behalf of Ph.

Hybrid Games. We now define a series of hybrid games that will be used to prove the indistin-
guishability of the real and ideal worlds:

IDEALF ,S,Z
c≡ REALπ,A,Z (1)

The output of each game is always just the output of the environment.

The game REALπ,A,Z : This is exactly an execution of the protocol π in the real world with envi-
ronment Z and semi-mlaicious adversary A.

The game HYB1
π,A,Z : In this game, we modify the real world experiment as follows. Assume (as

a mental experiment) that Ph is given all the secret keys s1
D, . . . , s

N
D and (as written on the

“witness tape” of the adversary in round 2 or chosen by honest parties), and the ideal output
y as in the simulation. Then, during the decryption protocol, it computes the decryption
shares as the simulator via:

whj := wj − 〈vj ,
∑

`∈[N ]\{h}

s`D〉 − y[j] + 2 · ej

for the output bit j (instead of using its own secret share shD). Moreover, we define the output
of the honest parties in this game to be the ideal output y rather than the result of the real
computation.

The game HYB
2.(d1,d2)
π,A,Z : This game is just like an execution of HYB1 with the following differences.

In round 1, for everly level d > d1 it chooses the values {b`,hd,i,τ}i,τ,` uniformly at random
instead of compting them as specified. In round 2, for every level d > d2, Ph chooses the
values {β`,hd,i,j,τ}i,j,τ,` uniformly at random instead of as specified.

The game HYB3
π,A,Z : This is the same as HYB2.(0,0) with the modification that now every honest

party Pk also just sends encryptions of 0 in round 2 instead of encrypting the bits correspond-
ing to its real inputs xk.

31



The game IDEALF ,S,Z : This is the ideal-world execution with simulator S and environment Z.

Claim C.3. It holds that: REALπ,A,Z
s≡ HYB1

π,A,Z .

Proof: Firstly, we can assume the “witnesses” that A writes on its auxiliary witness tape on behalf
of a corrupted parties {Pk : k ∈ I} in various rounds contains the same consistent values skd in
each round. This follows by the uniqueness of secret-keys (Claim 2.3) which implies that the values
pkd sent on behalf of Pk in the first round already information theoretically commit the attacker A
to unique corresponding witness skd. Therefore we will speak of well-defined, consistent values skd
used by the adversary A on behalf of Pk, independently of which round we’re talking about.

The view of the adversary is exactly the same in both worlds, except for the message that Ph
sends in the last round and the output y. In HYB1, Ph sends the “decryption shares”

whj := wj − 〈vj ,
∑
`6=h

s`D〉 − yj + 2 · ej

for each output bit j, where ej
$← [−Bdec

smdg, B
dec
smdg] and yj is the jth bit of the ideal output y. By

correctness (Theorem C.1), we know that (vj , wj) actually encrypts yj with noise at most ρ so that

wj = 〈vj ,
∑
`

s`D 〉+ 2 · e′j + yj

for some noise e′j ∈ [−ρ, ρ]. Therefore, combining the above two equations, we can write

whj = wj − 〈vj ,
∑
` 6=h

s`D〉 − yj + 2 · ej = 〈vj , shD〉+ 2(e′j + ej)

This matches the real world protocol, up to the “error” being e′j + ej rather than just ej . However,

since ρ/Bdec
smdg = negl(κ), we can apply the “smudging lemma” (Lemma 2.1) to see that this is

statistically indistinguishable.

Claim C.4. It holds that HYB1
π,A,Z ≡ HYB

2.(D,D)
π,A,Z and, for all d ∈ [D],

HYB
2.(d,d)
π,A,Z

c≡ HYB
2.(d−1,d)
π,A,Z

c≡ HYB
2.(d−1,d−1)
π,A,Z .

Proof: The equivalence of HYB1 ≡ HYB2.(D,D) just follows directly from the definition.

Next, let us show HYB2.(d,d) c≡ HYB2.(d−1,d). The only difference between the two games is in
the values {b`,hd,i,τ}i,τ,` sent on behalf of Ph in round 1. Notice that, in both of the games, the secret

shd is only used to compute the values {b`,hd,i,τ}i,τ,` and phd and nothing else. Therefore, we can prove
indistinguishability of the two games via two applications of the LWEn,qd,ϕ,χ assumption: first we

apply it to switch all of {b`,hd,i,τ} and phd from being chosen honestly to being uniformly random, and

next we apply it again to switch phd back to being chosen honestly.

Finally, let us show HYB2.(d−1,d) c≡ HYB2.(d−1,d−1). The only difference between the two games is
in the messages {α`,hd,i,j,τ , β

`,h
d,i,j,τ}i,j,τ,` sent on behalf of the honest party Ph in round 2. In HYB2.(d,d),

these values are computed in a complicated way, but are “blinded” by E.PubEncp∗d(0)+(0, 2e) where

32



e
$← [−Beval

smdg, B
eval
smdg], while in HYB2.(d−1,d−1), they are chosen uniformly at random. Note that, in

both of the hybrid games, the secret key shd is only used to compute phd and nothing else. Therefore,
we only need to show that the values E.PubEncp∗d(0) + (0, 2e) are indistinguishable from uniform.
Unfortunately, the public key p∗d is not chosen honestly and is partially under adversarial control.
Nevertheless, we can show indistinguishability of each such value (one-at-a-time) via the security
of joint key (Lemma 3.4).

The reduction A′ plays JoinKeysA′(params). It gets a challenge public key pk = (A,p) which
it plugs into the setup matrix Ad := A and the value phd := p sent on behalf of Ph in round 1
of the protocol. It also chooses pkd = Ad · sd + 2ekd at random for honest parties k 6= h, k 6∈ I
and gets the values pkd = Ad · skd + 2ekd and skd, e

k
d on behalf of corrupted parties k ∈ I from

the “witness tape” of the semi-malicious attacker at the end of round 1, with the guarantee that
ekd ∈ [−Bχ, Bχ]m. It then sets p′ =

∑
k 6=h pkd, s

′ =
∑

k 6=h skd, e
′ =

∑
k 6=h ekd and gives (p′, s′, e′) to

its challenger and chooses the challenge message µ = 0. Finally it gets a challenge ciphertext from
the challenge which it uses as the “blind” when computing (α`,hd,i,j,τ , β

`,h
d,i,j,τ ). If the challenger runs

with bit β = 0 (e.g. random ciphertexts) than this perfectly simulates HYB2.(d−1,d) and else (e.g.
honest ciphertext with smudging noise Beval

smdg) it perfectly simulates HYB2.(d−1,d−1). Therefore, we
get indistinguishability as long at the requirements of Lemma 3.4 are satisfied, which occurs when
we set Beval

smdg = 2ω(log(κ)) ·Bχ.

Claim C.5. It holds that: HYB
2.(0,0)
π,A,Z

c≡ HYB3
π,A,Z .

Proof: Note that, in both games, the only infomration given about the secret sh0 of party Ph is
just the public-key component ph0 . Again, we only need to prove that ciphertexts encrypted under
the joint public key pk = (A0,p

∗
0) are “semantically secure” so that the attacker cannot distinguish

encryptions of the correct input bits from encryptions of 0. To show this, we use the security of
joint key in the exact same way as in the proof of Claim C.4 (second part). We use it twice: first to
switch from encryptions of the correct input bits to random ciphertexts and then again to switch
from random ciphertexts to encryptions of 0. To apply security of joint keys, we use the fact that
Benc
smdg = 2ω(log(κ)) ·Bχ.

Finally, we notice that HYB3 is the ideal world simulation. Therefore, equation 1 follows by com-
bining Claims C.3, C.4 and C.5. We conclude that:

IDEALF ,S,Z
c≡ REALπ,A,Z

Handling abort. We now consider the case where an adversary A may abort the execution. In
this case, the simulator S works exactly the same with the only difference that it sends abort to
the trusted party in case A aborts the (simulated) execution. In case A does not abort, S sends
continue to the trusted party at the end of the execution. We now turn to show that the ensembles
are indistinguishable. We have already seen it for the case that the adversary does not abort. In
case the adversary aborts, both in the ideal and real executions, the honest parties output ⊥, and
so we need to consider only the view of the adversary. However, we have already seen that the
whole view is indistinguishable, and so any partial view is indistinguishable as well. This completes
the proof of Theorem 5.2.

33



D Generalized Functionalities

Our basic MPC construction from Section 5 only considers deterministic functionalities where all
the parties receive the same output. We would like to generalize it to handle with randomized
functionalities and individual outputs. First, the standard transformation from a randomized
functionality to a deterministic one (See [Gol04], Section 7.3) works for this case as well. In
this transformation, instead of computing some randomized function g(x1, . . . , xN ; r), the parties

compute the deterministic function f((r1, x1), . . . , (rN , xN ))
def
= g(x1, . . . , xN ;⊕Ni=1ri). We note that

this computation does not add any additional round.
Next, we move to individual outputs. Again, we use a standard transformation (See [LP09], for

example). Given a function g(x1, . . . , xN ) 7→ (y1, . . . , yN ), the parties can evaluate the following
function which has a single output:

f ((k1, x1) , . . . , (kN , xN )) = (g1(x1, . . . , xN )⊕ k1 || . . . || gN (x1, . . . , xN )⊕ kN )

where a||b denotes a concatenation of a with b, and gi indicates the ith output of g. Then, the
parties can evaluate f which is a single output functionalities, instead of g. The only difference is
that f has one additional exclusive-or gate for every circuit-output wire. Again, this transformation
does not add any additional round of interaction.

Alternatively, for the case of individual outputs, we can just modify our protocol so that, during
the decryption round (Round III), the parties will send their “decryption shares” of each output
bit over a private channel to the appropriate party for whom the output bit is intended, instead of
just using broadcast.

We conclude:

Theorem D.1. Let f : ({0, 1}`in)N → ({0, 1}`out)N be any (possibly randomized) poly-time func-
tion. Under the same conditions as Theorem 5.2, there exists a protocol πf that securely UC-realizes
the ideal functionality Ff in the presence of a static semi-malicious adversary (Definition A.2), cor-
rupting any t ≤ N parties.

E From Semi to Fully Malicious

E.1 The Zero-Knowledge Functionality

We start with a formal description of the zero-knowledge functionality. In this case, we have one
prover, P1, and several verifiers, P2, . . . , PN .

FUNCTIONALITY E.1 (The Zero-Knowledge Functionality FR
zk ).

• The functionality is parameterized with an NP relation R of an NP language L.

• Upon receiving a common input (x, sid) from P1, . . . , PN , and an input (w, sid) from P1,
check that R(x,w) = 1. If so send (1, sid) to all parties.

E.2 From Semi-Malicious to Malicious

In this section we present a general transformation from the semi-malicious model to the malicious
model. Namely, given a protocol π in the semi-malicious model in the authenticated broadcast

34



channel model, we present a protocol π′ in the Fzk-hybrid model, that is secure in the presence
of a malicious adversary (in the broadcast channel model as well). In the CRS mode, we can use
UC-NIZKs [SCO+01] to obtain a 3-round UC-secure protocol.

We denote by NextMessagek` (xk; rk;m1, . . . ,m`−1) the next message function of party Pk in
round `. This is a deterministic function that takes the input xk of party Pk, its random tape rk,
and the messages it has received so far (m1, . . . ,m`−1). The function outputs the message of Pk in
round ` according to the protocol π. Giving a protocol π in the broadcast communication model,
we parse the code of the protocol π as the sequence of {NextMessagek` (xk; rk;m1, . . . ,m`−1)}k,`.

In order to verify that indeed each party follows the description of the protocol, at each round
the party has to prove in zero knowledge that the message that it has produced is consistent.
Formally, let Lk,` = {(m1, . . . ,m` − 1,mk

` )} be the language that consists of all the messages that
were broadcasts in levels 1, . . . , `− 1, and the message mk

` that was broadcasted by Pk in round `.
Let Rk,` be the relation that gets as input x = (m1, . . . ,m`−1,m

k
` ) and a witness w = (xk, rk), and

returns 1 if and only if NextMessagek` (xk, rk,m1, . . . ,m`−1) = mk
` . In addition, let r(π) denote the

number of rounds in π.
In case a party abort, we replace its message with the special symbol ⊥. The next message

function NextMessage should specify how to react in such a case.

PROTOCOL E.2 (The protocol π′ in the fzk-hybrid model).

• Input: An input xk, and a random tape rk.

• Common input: The semi-malicious protocol π which is parsed as
{NextMessagek` (xk; rk;m1, . . . ,m`−1)}k,`.

• The protocol:

1. For each round ` = 1, . . . , r(π):

(a) Giving all the messages m1
`−1, . . . ,m

N
`−1 that were broadcasted in round ` − 1,

concatenate them into m`, and store it.

(b) Compute mk
` = NextMessagek` (xk, rk,m1, . . . ,m`−1). Broadcast mk

` .

(c) For any k′ = 1, . . . , N :

The parties invoke the FRk′,`
zk on a common input (m1, . . . ,m`−1,m

k′

` ). In addi-
tion, for k = k′, Pk acts as the prover and inserts its private input w = (xk, rk).

2. Output NextMessagekr(π)(xk; rk;m1, . . . ,mr(π)−1).

Theorem E.3. Let F be any N -ary functionality, let π be a N -party protocol, and let t ≤ N . If
π (fairly) t-securely realizes F in the semi-malicious model in the authenticated broadcast channel
model, then π′ (fairly) t-secure in the Fzk-hybrid model, in the presence of a malicious adversary.

Proof: Let Amal be a malicious adversary for π′ controlling subset I ⊆ [n] of cardinality at most
t. We build a semi-malicious adversary Asm for π as follows. The adversary Asm is interacting with
honest parties in execution of the protocol π, and uses the adversary Amal to determine the behavior
of the corrupted parties. Whenever the adversary Asm receives a broadcast message from honest
parties, it proceed the message to Amal. At the end of each round, it simulates the invocations of
the Fzk functionality. When an honest party should be the prover, it just checks that the adversary
sends the correct statement and returns 1 as the response of Fzk. In case where a corrupted party
is the prover, it check the statement and the witness (the input and the randomness). Formally,

35



for Pi, i ∈ I in round `, it checks that indeed NextMessagei`(xi; ri;m1, . . . ,m`−1) = mi
`. In case the

above holds, it return 1 to Amal, and updates the special random tape of Asm to include (xi, ri). In
case Amal the above check fails, it aborts the party Pi. At the end of the computation, Asm outputs
whatever Amal outputs and halts.

Given the adversary Asm, we have a simulator Ssm, for which for every environment Z, the
ideal and real are indistinguishable. We build a simulator Smal using Ssm. The simulator works
exactly the same. This include querying the functionality as Ssm, aborting in case Ssm aborts (if
they both allowed to abort), and interacting with the environment in the same way. Since Smal

and Ssm works exactly the same, and since Amal and Asm has the same behavior, we have that for
every environment Z:

HYB
Fzk

F ,Smal,Z
c≡ REALπ,A,Z

F Efficient Σ-Protocols and Fully-Malicious Compiler

In this section, we give an efficient compiler for transforming our MPC protocol for semi-malicious
adversaries into one that is secure against fully malicious adversaries. In order to achieve this
objective, we will construct efficient NIZKs in the random oracle model and then use them to
compile the semi-malicious protocol. We start by constructing gap Σ-protocols for some LWE-
based languages. We will then show how to use these Σ-protocols for the “required” relations
by using a series of AND and OR proofs. Finally, we can compile the Σ-protocols into efficient
UC NIZKs in the random oracle model, and then use these NIZKs to compile the semi-malicious
protocol and obtain an efficient 3-round MPC protocol against fully malicious adversaries.

The rest of this section is organized as follows. We start by recalling the syntax and security
properties of gap Σ-protocols in Section F.1. Next, in Sections F.2 and F.3, we construct gap
Σ-protocols for some LWE-based languages. Finally, in Section F.4, we show how to use the
Σ-protocols (from Sections F.2 and F.3) for the required relations in the semi-malicious protocol.

F.1 Gap Σ-Protocols

We consider a weaker version of Σ-protocols [CDS94] that we call gap Σ-protocols. LetRzk,Rsound ⊆
{0, 1}∗×{0, 1}∗ be two NP relations such that Rzk ⊆ Rsound, and Lzk = {x : ∃ w s.t. (x,w) ∈ Rzk},
Lsound = {x : ∃ w s.t. (x,w) ∈ Rsound} be the corresponding languages. A gap Σ-protocol 〈P, V 〉
for (Rzk,Rsound) is a three-move interactive protocol between a prover P and a verifier V of the
following form. P and V get as common input a statement x ∈ Lzk, additionally P gets as private
input w ∈ Rzk(x). 〈P, V 〉 proceeds as follows:

• P samples a value a and sends it to V .

• V samples a random “challenge” c
$← Φ from the “challenge space” Φ and sends it to P .

• P gives an answer z. V either accepts or rejects the conversation (a, c, z) for statement x.

A gap Σ-protocol must satisfy the following properties:

Correctness: For any (x,w) ∈ Rzk, V (x) always accepts the interaction with P (x,w).

36



Special Soundness: There exists a ppt extractor E such that for any two valid transcripts
(a, c, z), (a, c′, z′) for a statement x, if c 6= c′ and w ← E(x, a, c, z, c′, z′) then w ∈ Rsound(x).

Honest-Verifier Zero-Knowledge: There exists a ppt simulator S, such that for any statement

x ∈ Lzk and challenge c ∈ Φ we have (a′, c, z′)
s≡ (a, c, z), where (a′, z′)← S(x, c) and (a, c, z)

denotes a protocol transcript between P (x,w) and V (x) with challenge c (for w ∈ Rzk(x)).

F.2 〈P, V 〉lwe : A Gap Σ-Protocol for LWE

In this section, we give a gap Σ-protocol 〈P, V 〉lwe that allows a prover P to prove to a verifier V
that a given tuple A,b is an LWE tuple; i.e., there exists a secret vector s and a “short” error
vector e such that b = A · s + 2e.

More formally, let κ be the security parameter, and q = q(κ) be an odd integer modulus. In the
discussion below, unless stated otherwise, all the operations are performed mod q. Let m = m(κ),
n = n(κ), and B = B(κ) be positive integers. We define the NP relations:

RBlwe = {(A,b), (s, 2e) : b = A · s + 2e, A ∈ Zm×nq , b ∈ Zmq , s ∈ Znq , 2e ∈ [−B,B]m}.

Let LBlwe be the NP language corresponding to the relation RBlwe. For integers B∗ ≥ B we have
RBlwe ⊆ RB

∗
lwe and LBlwe ⊆ LB

∗
lwe .

Protocol 〈P, V 〉lwe. We now give a gap Σ-protocol 〈P, V 〉lwe for the relation pair (RBlwe,RB
∗

lwe),
which is secure as long as B/B∗ ≤ negl(κ). The machines P and V get as common input the
statement (A,b) ∈ LBlwe. Additionally, P gets as private input a witness tuple (s, 2e) ∈ RBlwe(A,b).
Protocol 〈P, V 〉lwe proceeds as follows:

1. P samples a random vector s′
$← Znq and an “even” error vector 2e′

$← [−(B
∗

2 −B), (B
∗

2 −B)]m.
It then sends b′ = A · s′ + 2e′ to V .

2. V sends a random challenge c ∈ {0, 1} to P .

3. P sends z = s′ + cs to V .

4. V outputs 1 iff (b′ + cb−A · z) is an “even” noise vector 2e∗ ∈ [−B∗

2 ,
B∗

2 ]m.

Theorem F.1. Protocol 〈P, V 〉lwe is a gap Σ-protocol for the relation pair (RBlwe,RB
∗

lwe) as long as
B/B∗ ≤ negl(κ).

Proof: We will prove that 〈P, V 〉lwe satisfies each of the three properties – completeness, special
soundness, and honest verifier zero-knowledge.

Completeness. If P is honest, we have

b′ + cb−A · z = A · s′ + 2e′ + c(A · s + 2e)−A · (s′ + cs) = 2e′ + 2ce ∈
[
−B

∗

2
,
B∗

2

]m
.

Further, 2e′ + 2ce is clearly “even”.

37



Special Soundness. Let (b′, 1, z1), (b′, 0, z2) be two transcripts for protocol 〈P, V 〉lwe. The
extractor E(A,b,b′, 1, z1, 0, z2) simply outputs (s∗, 2e∗) defined as:

s∗ := z1 − z2 , 2e∗ := b−A(z1 − z2).

If both transcripts are valid, then there exist “even” noise vectors 2e∗1, 2e∗2 ∈ [−B∗

2 ,
B∗

2 ]m such that:

b′ + b−A · z1 = 2e∗1, b′ −A · z2 = 2e∗2.

Subtracting the above equations, we get b = A(z1 − z2) + 2(e∗1 − e∗2). Further, note that 2e∗ =
2e∗1 − 2e∗2 ∈ [−B∗, B∗]. It follows immediately that (s∗, 2e∗) ∈ RB∗lwe(A,b).

Honest Verifier Zero Knowledge. We first give the simulator strategy S(A,b, c):

• Sample z
$← Znq , 2e∗

$← [−(B
∗

2 −B), (B
∗

2 −B)]m.

• Compute b′ = A · z + 2e∗ − cb.

• Output (b′, c, z).

First note that b′ + cb−A · z = 2e∗ ∈ [−B∗

2 ,
B∗

2 ]m, and clearly 2e∗ is “even”. Thus, the above
transcript is accepting. Further note that when (A,b) ∈ LBlwe, there exists s ∈ Znq , e ∈ [−B,B]m

such that b = A ·s+2e. Thus, in the simulated transcript (b′, c, z), we have b′ = A ·z+2e∗−cb =
A · s′ + 2e′, where s′ = z− cs ∈ Znq , and 2e′ = 2e∗ − 2ce. When c = 0, it is straightforward to see
the distribution of the transcript output by S (over the coins of S) is identical to the distribution
of the transcript from honest execution between P and V . When c = 1, the only difference
between the honestly generated transcript and a simulated one is that instead of using “even” noise

2e′
$← [−(B

∗

2 − B), (B
∗

2 − B)]m, the “effective” noise used in the computation of b′ by S is of
the form 2e′ − 2e, where 2e ∈ [−B,B]m is fixed. Then, since B

B∗/2−B ≤ negl(κ), it follows from

the “smudging lemma” (Lemma 2.1) that the simulated transcript is statistically indistinguishable
from a real transcript.

F.2.1 Applications of 〈P, V 〉lwe

We now discuss some applications of our gap Σ-protocol 〈P, V 〉lwe; specifically, we consider some
more complicated NP relations and show that 〈P, V 〉lwe can be used for these relations as well.
Looking ahead, these relations will be relevant in Section F.4, where we build an efficient compiler
for our semi-malicious MPC protocol to achieve security against fully malicious adversaries.

Σ-protocols for “approximate” symmetric key encryptions. We show that 〈P, V 〉lwe can
be used to prove that a given tuple (a, b) is an approximate encryption of a message µ under the
secret key s corresponding to a public key (A,p). To this end, we first consider a relation pair
(RBapprox,RB

∗
approx), where RBapprox is defined as:

RBapprox = {(a, b, µ,A,p), (2e, s, 2e) : b = a · s + 2e+ µ, p = A · s + 2e

a ∈ Znq , b ∈ Zq, µ ∈ Zq,A ∈ Zm×nq , p ∈ Zmq , s ∈ Znq , 2e ∈ [−B,B], 2e ∈ [−B,B]m},

38



and RB∗approx is defined analogously, except that 2e ∈ [−B∗, B∗], and 2e ∈ [−B∗, B∗]m.

Reducing (RBapprox,RB
∗

approx) to (RBlwe,RB
∗

lwe). There is a simple transformation between

RBapprox = {x = (a, b, µ,A,p), w = (2e, s, 2e)} ⇐⇒ RBlwe = {x′ = (A′,b′), w′ = (s′, 2e′)}

by simply equating

A′ =

[
A
a

]
,b′ =

[
p

b− µ

]
, s′ = s, 2e′ =

[
2e
2e

]
.

This transformation ensures (x,w) ∈ RBapprox iff (x′, w′) ∈ RBlwe. The same idea can be used to

transform an instance of relation RB∗approx into an instance of relation RB∗lwe. One can therefore use

the protocol 〈P, V 〉lwe directly to a gap protocol for (RBapprox,RB
∗

approx).

Extension to multiple Noise Levels. We can also define a variant of the above relation where the
noise level in the public key and the ciphertext differ.

RB1,B2
approx = {(a, b, µ,A,p), (2e, s, 2e) : b = a · s + 2e+ µ, p = A · s + 2e

a ∈ Znq , b ∈ Zq, µ ∈ Zq,A ∈ Zm×nq , p ∈ Zmq , s ∈ Znq , 2e ∈ [−B2, B2], 2e ∈ [−B1, B1]m},

The gap Σ-protocol for this relation is a simple extension of the one above and that for RBlwe.

Σ-protocol for Secret Key Bits. We show that protocol 〈P, V 〉lwe can also be used to prove
that a particular component of the secret key vector s corresponding to a public key (A,p) is 0 or

1. To this end, we first consider a relation pair (RB,i,cbit ,RB
∗,i,c

bit ), where RB,i,cbit is defined as follows:

RB,i,cbit =

{
(A,p), (s, 2e) :

p = A · s + 2e, s[i] = c
A ∈ Zm×nq , p ∈ Zmq , s ∈ Znq , 2e ∈ [−B,B]m

}
,

and RB
∗,i,c

bit is defined analogously, except that 2e ∈ [−B∗, B∗], and 2e ∈ [−B∗, B∗]m.

Reducing (RB,i,cbit ,RB
∗,i,c

bit ) to (RBlwe,RB
∗

lwe). Let the vector ai ∈ Zmq denote the ith column of matrix

A. Let A−i be the matrix A with the ith column removed. Then

p = A · s + 2e ∧ s[i] = c iff A−is[−i] + 2e = p− c · ai.

where s[−i] denotes the vector s with the ith component removed. Therefore, there is a simple
transformation between

RB,i,cbit = {x = (A,p), w = (s, 2e)} ⇐⇒ RBlwe = {x′ = (A′,b′), w′ = (s′, 2e′)}

given by equating
A′ = A−i, b′ = p− cai, s′ = s[−i], 2e = 2e′.

This transformation ensures (x,w) ∈ RB,i,cbit iff (x′, w′) ∈ RBlwe. Hence the protocol 〈P, V 〉lwe can be

used as a gap Σ-protocol for (RB,i,cbit ,RB
∗,i,c

bit ).

39



F.3 〈P, V 〉enc: A Σ-Protocol for LWE-based Public-Key Encryption

We now give a gap Σ-protocol 〈P, V 〉enc that allows a prover P to prove to a verifier V that a given
tuple (A,p,v, w) is a “smudged” encryption of 0 with public key pk = (A,p); i.e., there exists a
noise vector r and “even” noise 2e such that v = rT ·A, and w = r · p + 2e.

More formally, let κ be the security parameter, and q = q(κ) be an odd integer modulus. Let
m = m(κ), n = n(κ), and Br = Br(κ), Be = Be(κ) be positive integers. Now, we consider two NP
relations RBr,Beenc as follows:

RBr,Beenc =
{

(A,p,v, w), (r, 2e) : v = rT ·A, w = r · p + 2e, A ∈ Zm×nq ,

p ∈ Zmq , r ∈ [−Br, Br]m, 2e ∈ [−Be, Be]
}
,

Let LBr,Beenc be the corresponding NP language. Given integers B∗r ≥ Br and B∗e ≥ Be we have

RBr,Beenc ⊆ RB
∗
r ,B
∗
e

enc and LBr,Beenc ⊆ LB
∗
r ,B
∗
e

enc .

Protocol 〈P, V 〉enc. The Σ-protocol 〈P, V 〉enc for the relation pair (RBr,Beenc ,RB
∗
r ,B
∗
e

enc ) is described
as follows. P and V get as common input a tuple (A,p,v, w) ∈ LBr,Beenc ; additionally, P gets as
private input a witness tuple (r, 2e) ∈ RBr,Beenc (A,p,v, w). Protocol 〈P, V 〉enc proceeds as follows:

1. P samples the “short” vectors

r′
$←
[
−(
B∗r
2
−Br), (

B∗r
2
−Br)

]m
, 2e′

$←
[
−(
B∗e
2
−Be), (

B∗e
2
−Be)

]
.

It then computes v′ = (r′)T ·A, w′ = r′ · p + 2e′, and sends (v′, w′) to V .

2. V sends a random challenge c
$← {0, 1} to P .

3. P sends z = r′ + cr to V .

4. Verifier V outputs 1 iff :

• z ∈ [−B∗r
2 ,

B∗r
2 ]m,

• zT ·A = v′ + cv,

• (w′ + cw − z · p) is an “even” noise value 2e∗ ∈ [−B∗e
2 ,

B∗e
2 ].

Theorem F.2. Protocol 〈P, V 〉enc is a gap Σ-protocol for the relation pair (RBr,Beenc ,RB
∗
r ,B
∗
e

enc ) as long
as Br/B

∗
r ≤ negl(κ) and Be/B

∗
e ≤ negl(κ).

Proof: We will prove that 〈P, V 〉enc satisfies each of the three properties – completeness, special
soundness, and honest verifier zero-knowledge.

Completeness. If P is honest, we have that

z = r′ + cr ∈
[
−B

∗
r

2
,
B∗r
2

]m
, zT ·A = (r′ + cr)T ·A = v′ + cv.

Further,

w′ + cw − z · p = r′ · p + 2e′ + c(r · p + 2e)− (r′ + cr) · p = 2e′ + 2ce ∈ [−B
∗
e

2
,
B∗e
2

]

is small and even.

40



Special Soundness. Let (v, w, 1, z1), (v, w, 0, z2) be two transcripts for protocol 〈P, V 〉enc. The
extractor E(A,b,v, w, 1, z1, 0, z2) outputs (s∗, 2e∗) given by

r∗ = z1 − z2 , 2e∗ = w − (zT1 − zT2 )A.

Now, note that if both the transcripts are valid, the following holds:

z1, z2 ∈ [−B
∗
r

2
,
B∗r
2

]m, zT1 ·A = v′ + v, zT2 ·A = v′, (2)

∃e∗1, e∗2 ∈ [−B
∗
e

2
,
B∗e
2

] s.t. w′ + w − zT1 ·A = 2e∗1, w′ − zT2 ·A = 2e∗2. (3)

From the set of equations (2), we have that v = (zT1 −zT2 )A; also r∗ = z1−z2 ∈ [−B∗r , B∗r ]. Further,
from (3), we have that w = (zT1 − zT2 )A + 2e∗1 − 2e∗2; also 2e∗ = 2e∗1 − 2e∗2 ∈ [−B∗e , B∗e ]. Combining

the above arguments, it follows immediately that (r∗, 2e∗) ∈ RB
∗
r ,B
∗
e

enc (A,p,v, w).

Honest Verifier Zero Knowledge. We first give the simulator strategy S(A,p,v, w):

• Sample z
$← [−(B

∗
r

2 −Br), (
B∗r
2 −Br)]

m, 2e∗
$← [−(B

∗
e

2 −Be), (
B∗e
2 −Be)].

• Compute v′ = zT ·A− cv, w′ = z · p + 2e∗ − cw.

• Output (v′, w′, c, z).

Now, first note that the transcript (v′, w′, c, z) computed as above is accepting because the

following conditions hold: z ∈ [−B∗r
2 ,

B∗r
2 ]m, zT ·A = v′+ cv, w′+ cw− z ·p = 2e∗ ∈ [−B∗e

2 ,
B∗e
2 ] and

clearly, 2e∗ is even.
Further note that when (A,p,v, w) ∈ LBr,Beenc , there exists r ∈ [−Br, Br]m, e ∈ [−Be, Be] such

that v = rT · A, and w = r · p + 2e. Thus, in the simulated transcript (v′, w′, c, z), we have
v′ = zT ·A − cv = (r′)T ·A, and w′ = z · p + 2e∗ − cw = (r′)T ·A + 2e′, where r′ = z − cr, and
2e′ = 2e∗ − 2ce.

When c = 0, it is straightforward to see the distribution of the transcript output by S (over the
coins of S) is identical to the distribution of the transcript from honest execution between P and
V . When c = 1, the only differences between the honestly generated transcript and a simulated
one are the following:

1. Instead of using noise vector r′
$← [−(B

∗
r

2 −Br), (
B∗r
2 −Br)]

m, the “effective” noise vector used
in the computation of v′ and w′ is of the form r′ − r, where r ∈ [−Br, Br] is fixed.

2. Further, instead of using “even” noise 2e′
$← [−(B

∗
e

2 − Be), (
B∗e
2 − Be)], the “effective” noise

value used in the computation of w′ is of the form 2e′ − 2e where 2e ∈ [−B,B] is fixed.

Then, since Br
B∗r/2−Br

≤ negl(κ), and Be
B∗e/2−Be

≤ negl(κ), it follows from Lemma 2.1 that the simu-

lated transcript is statistically indistinguishable from a real transcript.

41



F.4 Efficient Compiler for Our Semi-Malicious MPC Protocol

We now give an efficient compiler for transforming our MPC protocol π (described in Section 5)
that is secure against semi-malicious adversaries into one that is secure against fully malicious
adversaries. Specifically, we will show how the Σ-protocols from the previous sections can be used
for the “required” relations (that capture the honest party strategy in the semi-malicious protocol
π) by using a series of AND and OR proofs. We note that this suffices for our purposes since we can
first transform these Σ-protocols into NIZKs in the RO model and then uses the resultant NIZKs
to compile the semi-malicious protocol π.

Modifications. We make several modifications to our protocol π from Section 5. The first modi-
fication is that we now require that the distribution ϕ used to select secret key positions skd[i]← ϕ is
just the uniform distribution over {0, 1}. We rely on the result of [GKPV10], which shows that the
LWE assumption remains secure even when the secret s is chosen from such distribution (for appro-
priate choices of other parameters). Secondly, in addition to the bounds Bχ, B

eval
smdg, B

enc
smdg, B

dec
smdg

we will also have corresponding “starred” values (e.g. B∗χ) which are super-polynomially larger (e.g.
Bχ/B

∗
χ = negl(κ)). We will also have two additional bounds Br = 1 and B∗r . Lastly, we will require

that the moduli qd are prime, which allows us to rely on Claim 2.3 showing that the public-keys
pkd will commit the party Pk to a unique secret key skd.

Proving “Honest” Behavior. We now examine each of the three rounds in protocol π, one
by one, and describe how a party can prove that it is following the protocol “honestly” with some
input xk and some randomness rk. Since we use gap Σ-protocols, there will be a gap between the
noise-levels (e.g. Bχ) that honest parties need to use for their (zero-knowledge) security, and the
“starred” noise levels (e.g. B∗χ) that dishonest parties are guaranteed to be using. We describe the
proof needed in each round of the protocol.

Round 1. Recall that in this round, each party Pk sends the following values (for every `, d, i, τ):

1. individual public keys pkd,

2. symmetric-key encryptions
(
a`d,i,τ , b

`,k
d,i,τ

)
of 0 under the secret key skd, and

3. approximate encryptions
(
akd,i,τ , b

k,k
d,i,τ

)
of 2τ · skd−1[i] under the secret key skd.

Then, in order to prove “honest behavior” in round 1, each party Pk must prove all of the following:

Well-formedness of public keys: The public key pkd is “well-formed” i.e. there exists a secret
key skd and noise 2ekd ∈ [−B,B]m such that pkd = Ad · skd + 2ekd. This is equivalent to showing
(Ad,p

k
d) ∈ LBlwe. We use a gap-proof with B = 2Bχ for ZK and B = 2B∗χ for Soundness.

Encryptions of 0: The values
(
a`d,i,τ , b

`,k
d,i,τ

)
are symmetric-key encryption of 0 under the (unique)

secret key skd corresponding to the public key pkd. This is just showing that

(a`d,i,τ , b
`,k
d,i,τ , 0,Ad,p

k
d) ∈ LBapprox.

We use a gap-proof with B = 2Bχ for ZK and B = 2B∗χ for Soundness.

42



Well-formedness of evaluation key: The values
(
akd,i,τ , b

k,k
d,i,τ

)
are “approximate” encryptions

of 2τ · skd−1[i] under the (unique) secret key skd corresponding to public key pkd, where skd−1[i]

is the ith-component in the (unique) secret key skd−1 corresponding to pkd−1.

That is, bk,kd,i,τ = 〈akd,i,τ , skd〉+ 2τ · skd−1[i] + 2ek,kd,i,τ for some noise ek,kd,i,τ , and pkd and pkd−1 are of
the form as described above. Proving this is equivalent to showing:∨

b∈{0,1}

{
(Ad−1,p

k
d−1) ∈ LB,i,bbit ∧

(
akd,i,τ , b

k,k
d,i,τ , 2τ · b , Ad , pkd

)
∈ LBapprox

}
We use a gap-proof with B = 2Bχ for ZK and B = 2B∗χ for Soundness.

Round 2. Recall that in this round, each party Pk sends the following values:

1. Ciphertext tuples (α`,kd,i,j,τ , β
`,k
d,i,j,τ ) that are used to determine the “joint” evaluation key.

2. Encryptions ck,i = (vk,i, wk,i) of each input bit xk[i] under the “joint” public key p∗0.

Then, in order to prove “honest behavior” in round 2, each party Pk must prove the following:

Well-formedness of ciphertext tuples: The tuple
(
α`,kd,i,j,τ , β

`,k
d,i,j,τ

)
is computed as:(

α`,kd,i,j,τ , β
`,k
d,i,j,τ

)
= skd−1[j] ·

(
a`d,i,τ , β

`
d,i,τ

)
+
(
v`,kd,i,j,τ , w

`,k
d,i,j,τ + 2e

)
,

where (a`d,i,τ , β
`
d,i,τ ) are public values determined after round 1, skd[j] is the jth component of

the secret key corresponding to the public key pkd, and (v`,kd,i,j,τ , w
`,k
d,i,j,τ + 2e) is a “smudged”

public-key encryption of 0 under the (joint) public key p∗d. This is equivalent to proving:

∨
b∈{0,1}

{ (
Ad−1,p

k
d−1

)
∈ LB,j,bbit ∧(

Ad , p∗d ,
[
(α`,kd,i,j,τ , β

`,k
d,i,j,τ )− b · (v`d,i,τ , w`d,i,τ )

] )
∈ LBr,Beenc

}

We use a gap proof with B = 2Bχ, Br = 1, Be = 2Beval
smdg for ZK and B = 2B∗χ, Br = B∗r ,

Be = 2Beval∗
smdg for soundness.

Valid encryption of input bits: Lastly for each input ciphertexts ck,i = (vk,i, wk,i) we prove
that it is a valid encryption of a bit µ ∈ {0, 1}. This is equivalent to showing that:

(A0,p
∗
0,vk,i, wk,i) ∈ LBr,Beenc ∨ (A0,p

∗
0,vk,i, wk,i − 1) ∈ LBr,Beenc

We use a gap proof with Br = 1, Be = 2Benc
smdg for ZK and Br = B∗r , Be = 2Benc∗

smdg for
soundness.

Round 3. In this round, for each output ciphertext c∗j = (vj , wj), each party Pk sends a “decryp-

tion share” wkj = vj · skD + 2ek where ek is some noise, and skD is the secret key corresponding to

the public key pkD. This is equivalent to proving:

(vj , w
k
j , 0,AD,p

k
D) ∈ LB1,B2

approx

We use a gap proof with B1 = 2Bχ, B2 = 2Bdec
smdg for ZK and B1 = 2B∗χ,B2 = 2Bdec∗

smdg for soundness.

43



F.5 Mind the Gap

In the above section we showed how to “prove honest behavior” using simple relations (along with
AND and OR proofs) while also providing simple (gap) Σ-protocols for these relations. We need
to argue that the gap does not harm security. Unfortunately, this does not follow in a “black-
box” way from the analysis of our general compiler from semi-malicious to fully malicious security
(Section E). To argue this property, we need to go back to our basic semi-malicious protocol
(Theorem 5.2) and analyze security in the case that honest parties use noise-bounds Bχ, Br =
1, Beval

smdg, B
enc
smdg, B

dec
smdg while malicious parties can use super-polynomially larger “starred” bounds

B∗χ, B
∗
r , B

eval∗
smdg , B

enc∗
smdg, B

dec∗
smdg. We notice that the proof goes through the same way as before as

long as the requirements needed for correctness (see Theorem C.1) now also hold for the “starred”
noise values and the smudging noise added by honest parties is larger than the starred noise used
by malicious parties.

Parameters. For full generality we can show the correctness/security of our scheme for any choice
of params satisfying the following conditions (recall Bϕ = 1 since the secret key is just bits):

1. Firstly, the parameters need to satisfy the conditions of Theorem C.1 for correctness so that
the moduli qd are sufficiently large in relation to the “starred” noise bounds. In particular
we need some value ρ such that { qd−1/qd ≥ ρ }d∈[D] and

ρ ≥ 2ω(log(κ)) ·max
{
Benc∗
smdg , N

2Beval∗
smdg , N

2n2 , N3B∗χ , N
3mBχ

}
qD ≥ max

{
2ρ · (Nn+ 2) , 2(ρ+ 2NBdec∗

smdg + 1)
}

2. Secondly, we need the “smudging” noise added by honest parties to be sufficiently large.
Specifically:

Bdec
smdg ≥ 2ω(log(κ)) · ρ , Benc

smdg, B
eval
smdg ≥ 2ω(log(κ)) ·B∗χ.

3. Thirdly, we need the parameters paramsd = (n,m, qd, ϕ, χ) to be chosen so that the un-
derlying encryption scheme E is semantically secure with pseudorandom ciphertexts when
instantiated with paramsd for all d ∈ {0, . . . , D}. Furthermore, we need the public-key to
uniquely determine a secret key as in Claim 2.3. In particular:

• We set m ≥ (n+ 1) log(q0) + ω(log(κ)).

• All moduli qd are odd primes.

Given params as above, security will follow if the LWEn,qd,ϕ,χ assumption holds, where ϕ is uniformly
random over {0, 1}, for all d ∈ {0, . . . , D}. By [GKPV10] this follows from standard LWE where ϕ
is uniformly random over Zqd with slightly dimension n.

G Fairness

In Section 4 we provided a multiparty computation protocol that is secure-with-abort, meaning
that the adversary may learn the output alone without the honest parties. In this section, we show
how to modify the construction in order to obtain full security (with fairness). In order to achieve

44



this, we cannot tolerate any number of corrupted parties, and we assume an honest majority (full
security without an honest majority is impossible to achieve [Cle86]). We also assume authenticated
broadcast channel, where the adversary cannot modify (or omit) messages sent by honest parties.

In order to achieve full security, the parties should proceed with the execution of the protocol
even when some of the parties abort. In particular, the parties should be able to decrypt the
common ciphertext even when some of the parties do not participate. Therefore, we also need to
modify the construction to be a threshold scheme. The original scheme can be seen as an N -out-of-
N scheme, meaning that all the parties should participate in the decryption. On the other hand,
the modified scheme can be seen as a t-out-of-N scheme, meaning that any subset of t parties is able
to decrypt a common ciphertext, but any subset of less than t parties cannot gain any information
about the underlying message of a common ciphertext.

Building block – secret sharing scheme. An important building block for our solution is
a secret sharing scheme [Sha79]. Loosely speaking, a t-out-of-N secret sharing scheme enables a
dealer to distribute some secret s, such that each party Pi, i ∈ [N ] receives one share si. Every
subset of t parties should be able to reconstruct s from their shares, while the secrecy requirement
is that any subset of less than t parties cannot learn any information about s from the shares they
hold.

The protocol. The protocol should enable the parties to finish successfully the execution even
when some minority of the parties abort, while we are still interested in having minimal number
of rounds. In general, in order to continue the execution after some party has aborted, the parties
should be able to simulate this party’s action. This is usually done by secret sharing: at the first
round each party distributes shares of its random tape and its input. Once a party has aborted,
the parties are able to reconstruct its input and randomness, and to (deterministically) compute its
actions until the end of the execution. Observe that making this information public does not give
the adversary any new information, since this public information is in fact part of the adversary’s
secret information.

We follow almost the same technique as above, and we now show how to instantiate this general
idea to our protocol, and show the necessary modifications for the Keygen and Dec protocols, as
well as to the general MPC protocol.

We begin with the Keygen protocol. In this protocol each party does not have any private input.
Moreover, an important property of the protocol (and protocols that are secure with respect to
semi-malicious adversary), is that the protocol is secure even if the adversary choose worst case
random coins, and the randomness is not chosen in advanced. Therefore, we can avoid the sharing
of the random tapes in the beginning of the protocol. Instead, a party needs to share its internal-
state, which is, in fact, the individual private keys – sk0, . . . , s

k
D. In case a party aborts, the parties

reconstruct its internal state, and run the next message function with some common arbitrary
coins. Therefore, any abortion is equivalent to an execution of the protocol with some different
random tape. We describe formally the differences.

The Keygen protocol.

• Round 1: In addition to all messages that are broadcasted, each party Pk distributes {skd}d
using the regular secret sharing scheme, with threshold N/2 + 1. Let ss`,kd be the P`’s share
of skd, for every d ∈ {0, . . . , D}, k, ` ∈ [N ].

45



• End of Round 1: In case some party aborts before sending its message in round 1 – the
party is just ignored, and the parties continue running the protocol like this party has not
participated at all.

• Round 2: Exactly at the original protocol.

• End of round 2: In case some party P` aborts before sending its message in round 2, the
parties proceed to round 3. Otherwise, they can terminate the execution.

• Round 3 – in case of abort only: For each party P` that did not broadcast its message
in round 2, each party Pk broadcasts its shares {ssk,`d }d. Giving all the shares that were
broadcasted, each party can reconstruct the secrets s`0, . . . , s

`
D, and compute the messages P`

should have sent in round 2. This is done by just invoking the next message function on the
internal state s`0, . . . , s

`
D, and the messages that were broadcasted in round 1.

• Output: each party defines as decryption share: (skD, ss
1,k
D , . . . , ssN,kD ), instead of just skD.

Note that in case the adversary does not abort, the protocol takes 2 rounds. However, in the
worst case, the execution takes one additional round.

The decryption protocol Dec. We show the necessary changes:

• Input: Each party Pk holds a share of the secret key skD and the sub-shares (ss1,k
D , . . . , ssN,kD ).

(recall that the actual input in the original protocol is skD only).

• Round 1: Same as the original protocol.

• Round 2 – in case of abort only: For each party P` that did not broadcast its message
in round 1, each party Pk broadcasts ss`,kD . Giving all the broadcasted shares, reconstruct
s`D. Then, compute the message that P` should have sent using the private input s`D and
arbitrary randomness 0.

Note that in the optimistic case, where the adversary does not abort prematurely, the protocol
takes one round of interaction only. In case where the adversary does abort, the interaction takes
one additional round, where the parties simply reconstruct the adversary’s data.

The general multiparty computation protocol. In addition, in round 2 each party is in-
structed to broadcast encryption of its input using the joint public-key. Once a party does not
broadcast messages in round 2, the parties just take a default input 0 and arbitrary random coins,
compute an encryption of 0 using this common coins, and take the result as the encryption of the
input.

Giving a function f : ({0, 1}∗)N → {0, 1}∗, let πf be the protocol after applying the necessary
changes in Keygen, Dec and the general protocol. Since some parties can abort in Keygen, and some
can abort in Dec, we have that in worst case the overall protocol takes 5 rounds of interaction,
while in the optimistic case, it takes 3 rounds only. We have the following Theorem:

Theorem G.1. Let f : ({0, 1}∗)N → {0, 1}∗ be any deterministic poly-time function and params
satisfy the above restrictions. Then protocol πf securely and fairly realizes Ff in the presence of a
semi-malicious adversary (Definition A.2), corrupting any t ≤ N/2 parties.

46



Proof Sketch: Clearly, in case where the adversary does not abort the theorem hold, relying
on the proof of Theorem 5.2. Next, consider the case where some of the corrupted parties abort.
In such a case, the honest parties reconstruct the missing information, and the resulting of the
execution is equivalent to an execution with some different randomness and inputs of some different
semi-malicious adversary that does not abort. Since execution of adversaries that do not abort is
indistinguishable, we get that the ensembles for our case are indistinguishable as well.

47


	Introduction
	Our Results
	Variants and Applications
	Related Work

	Preliminaries
	Homomorphic Encryption from LWE
	Basic LWE-based Encryption
	Key-Homomorphic Properties of Basic Scheme
	Fully Homomorphic Encryption from LWE

	Threshold Fully Homomorphic Encryption
	Construction of TFHE

	Secure MPC via TFHE
	Variants and Optimizations
	Definitions
	The Universal Composability Framework (UC)
	Security Against Semi-Malicious Adversaries

	FHE Scheme of BV11,BGV11
	Proof of Security for TFHE-Based MPC
	Correctness of TFHE Protocol
	Security of MPC in the Semi-Malicious Setting

	Generalized Functionalities
	From Semi to Fully Malicious
	The Zero-Knowledge Functionality
	From Semi-Malicious to Malicious

	Efficient -Protocols and Fully-Malicious Compiler
	Gap -Protocols
	"426830A P,V"526930B lwe : A Gap -Protocol for LWE
	Applications of "426830A P,V"526930B lwe

	"426830A P,V"526930B enc: A -Protocol for LWE-based Public-Key Encryption
	Efficient Compiler for Our Semi-Malicious MPC Protocol
	Mind the Gap

	Fairness

