On Security of RASP Data Perturbation for Secure
Half-Space Queries in the Cloud

ABSTRACT

Secure data intensive computing in the cloud is challengimg
volving a complicated tradeoff among security, perfornerextra
costs, and cloud economics. Although fully homomorphicrgmc
tion is considered as the ultimate solution, it is still tapensive to
be practical at the current stage. In contrast, methodsptieaerve
special types of data utility, even with weaker securitygimibe
acceptable in practice. The recently proposed RASP pextiorb
method falls into this category. It can provide practicdlions
for specific problems such as secure range queries, statiatial-
ysis, and machine learning. The RASP perturbation embegls th
multidimensional data into a secret higher dimensionatspan-
hanced with random noise addition to protect the confidkytia
of data. It also provides a query perturbation method tosfaam
half-space queries to a quadratic form and, meanwhileeprieg
the results of half-space queries. The utility preservingpprty
and wide application domains are appealing. However, dinee
security of this method is not thoroughly analyzed, the oslsing
this method is unknown. The purpose of this paper is to inyats
the security of the RASP perturbation method based on afgpeci
threat model. The threat model defines three levels of adxiats
power and the concerned attacks. We show that although tiSPRA
perturbed data and queries are secure on the lowest levalef-a
sarial power, they do not satisfy the strong indistinguislitst def-
inition on higher levels of adversarial power. As we haveaest,
the indistinguishability definition might not be too stratogoe use-
ful in the context of data intensive cloud computation. Idigidn,
the noise component in the perturbation renders it imptessid
exactly recover the plain data; thus, all attacks are esdignes-
timation attacks. We propose a weaker security definiticseda
on information theoretic measures to describe the effectigs of
estimation attacks, and then study the security under tbiker
definition. This security analysis helps clearly identtfig tsecurity
weaknesses of the RASP perturbation and quantify the eagbect
security under different levels of adversarial power.

1. INTRODUCTION

Data-driven (big data) approaches represent an emerging trf
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scientific research and industrial development. With thpédrae-
velopment of cloud infrastructures, conducting data istencom-
puting in the cloud has become the top choice for economiudl a
scalable processing [4, 2]. Such computing tasks may iechud
not limited to querying, mining, and visualizing data. Ttehare

a commonality that users need to manipulate the data on tthe of
cloud infrastructures, not simply storing data in the clottbw-
ever, once the data collections are exported to the cloeddala
owner loses the control over the data. As big data collestane
becoming important properties, and cloud providers arenatly
considered as an untrusted party, data owners have redsaoab
cerns over data ownership, security, and privacy [22]. EBlge
can find a way to conduct computation on “protected” data é th
cloud, most data owners will not be likely to use public clsud
process their sensitive data.

Secure computation in the cloud has to put equal weights tin bo
security and utility of the protected data. Traditional mption
approaches cannot be simply applied because they do netcprot
data utility (except for the simple case of storing data sc¢loud).
When considering the utility of a solution, we cannot igndre
cost of the scheme as well. Fully homomorphic encryptionEFH
[18] aims to implement the lowest level operations: additémd
multiplication on the encrypted data without decrypting thata.
Theoretically, any function can be built on addition and tiplica-
tion by using a FHE scheme. However, as most researchecedpti
at the current stage it is too expensive to be practical, farensim-
ple application like keyword search over encrypted datljas].
On the other hand, many approaches developed in the database
community focus on performance, only providing very weak se
curity. For example, Crypto-index [23, 25] and order-presgy
encryption (OPE) [3, 5] depend on strong assumptions thetkat
ers do not have sufficient prior knowledge about the datachvhi
excludes many realistic attacks from investigation.

Instead of preserving the utility of low level operations %in-
gle dimensions, Chen et al. proposed the RASP perturbagion a
proach [9] to preserve half-space queries [8] for multidisienal
data. A half-space query works on multidimensional dataespa
and retrieves data vectors satisfying the query conditibruses
a hyperplane to partition the whole space, and returns thdtre
(normally statistics, like the count of vectors) about ohéhe half
spaces. The RASP perturbation approach also allows thimalkig
half-space queries to be securely transformed and pratessie
perturbed dataset to get the exact query results as they tleeon
original dataset. Half-space queries have many applitsiiodata
intensive analysis. For example,

e Interactive Data AnalysisRange queries are the most com-
mon queries in interactive data analysis, which are used to
derive statistics on a specific portion of data that satisfies



guery conditions. A range query is an intersection of a num-
ber of half-space queries, describing “areas” in the miltid

mensional space. Thus, preserving half-space queries also
preserves range queries.

Machine Learning. Linear classifier is one of the most pop-
ularly used classification models. A linear classifier is-rep
resented as a half-space query. Given a record, the classifie
checks whether the record is in the half-space query restult s
or not [24]. Linear classifiers can serve as the base classifie
in the bagging or boosting approach [15] to construct more
sophisticated classification models.

Thus, we believe that the RASP perturbation has great patent
for many data analytics tasks in the cloud. However, therigaf
the RASP perturbation method has not been carefully stugied

Scope of the Paperln this paper, we aim to systematically ana-
lyze the security of RASP perturbation based on a precissfiped
threat model. The threat model describes the protectetsdnghe
context of secure computation in the cloud, the concernedkat
(passive data disclosure attacks only), and the prior kedge that
attackers may have. The perturbed data and queries aredstuah
der two types of security definitions: the strong indistiispability
definition [27], and the statistical-estimation based vesaid def-
inition, corresponding to the traditional distinguishiatjacks and
the more realistic estimation attacks in the context of ¢loam-
puting, respectively. Based on the threat model, we stastodies
from the stronger security definition and then extend to thaker
definition. To evaluate the security to the estimation &Haeve
also design a new measure - the loss of confidentiality (LOC) -
based on statistical learning theory and information the@on-
cretely, there are several unique contributions.

1. We define a precise and comprehensive threat model for ap-
plying the RASP perturbation approach in the cloud, which
suggests studies on two types of attacks: distinguishing at
tacks and estimation attacks, based on three levels of-adver
sarial power that attackers may obtain in the context ofatlou
computing.

. We prove that the RASP perturbation is not indistinguisha
secure under the Level 2 and 3 adversarial power.

. We develop a weakened security definition for estimatten a
tacks, and design the LOC measure for evaluating the secu-
rity of RASP perturbation on estimation attacks.

. We show how the LOC measure is applied to evaluate esti-
mation attacks under the Level 3 adversarial power.

. We also study the query privacy based on the same threat
model. The result shows that perturbed queries are also not
indistinguishably secure under the Level 2 and 3 advelsaria
power. We show that the information exposed by queries
does not damage the security of the perturbed data.

The rest of the paper is organized as follows. Section 2 deescr
the framework and the thread model that the RASP pertunbatio
works with. Section 3 precisely defines the RASP perturbatio
Section 4 focuses on the security of the RASP perturbed dath,
Section 5 focuses on the perturbed queries. Section 6 pisesmEne
relevant approaches for secure computation in the cloud.

2. FRAMEWORK AND THREAT MODEL-

ING
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Figure 1: lllustration of the framework for perturbation-b ased
secure computation in the cloud.

This section gives the framework that the RASP perturbation
works with, which is actually general to all secure compuotat
approaches in the cloud. Based on this framework, we pigcise
define a threat model for security analysis.

2.1 Framework

Figure 1 shows the typical scenario of hosting a securedoter
tive statistical analysis service in the cloud. The data@vaxports
the perturbed data to the cloud and then queries the prdtdeta
to learn statistics. Meanwhile, the authorized users cemsalbmit
queries to learn statistics. The database in the cloud savea
statistical database [12], but it is only accessible to titbaized
users. Thus, it is different from the privacy problems irditianal
statistical databases, where the service provider iseusid the
users can be any person including malicious ones.

There are a number of basic procedures in this framework: (1)
F (D) is the RASP perturbation that transforms the original data
D to the perturbed dat®’; (2) Q(q) transforms the original query
q to the protected forng’ that can be processed on the perturbed
data; (3)H (¢', D) is the query processing algorithm that returns
the result’, typically the number of records. When other statistics
such as SUM or AVG of a specific dimension are needed, RASP
can work with partial homomorphic encryption such as Raikin-
cryption [32] to compute these statistics on the encrypted f17],
which are then recovered with the proced@gR’). For simplic-
ity, we assume the queries return the simplest statistiesnaimber
of records. Statistical analysis heavily depends on theeitiibrma-
tion to estimate the distributions. In addition, classiiima model-
ing can be achieved with only the count statistics [28], & tihass
label is presented unperturbed.

2.2 Threat Modeling

The application scenario is described as in Figure 1. The dat
owner stores and processes perturbed data in the cloud.|durek ¢
environment is untrusted and out of the data owner’s canfrbe
aim of our design is to prevent attackers from preciselyvenang
or estimating the original data. We consider several asp#dhe
threat model [31] in our research.

Assets. The protected assets are the data stored and processed
in the cloud. We assume these data are multidimensionabivect
databases. The privacy of query is also concerned.

Passive data disclosure attacksPassive data disclosure is our
major concern. Attackers can access the data at any of cempro
mised virtual machines in the cloud. They might be inteikéte
recovering or estimating thariginal data recordsor distributional
information based on the perturbed data. While distinguishing at-
tacks are meaningful to traditional encryption systeney dre less



useful in our context. We identify that the main attacks aaedul e Ext: A random positive real value, » € RT, is selected

on statistical estimation. Data tampering or dishonesick®ervice from a pseudo-random positive real number generitar
providers is not addressed by our study, which can be cougred which is used to extend the vectgrto z = (y*,1,7)7,
integrity preserving techniques [38, 35, 30]. where the notatiog” represents vector transpose.
Attacker modeling. Active attackers will try to obtain as much ) )
knowledge as possible to help recover the original data. €fteb e Pert: On the matrixA, and the vector, the final perturbed
analyze the security of the RASP perturbation, we define the a resultis
\ée;sarial power according to the levels of prior knowledgettoe p=Az, 1)
ata.
whereAz is the multiplication between the matrikand the
e Level 1. the attacker observes only the perturbed data and the vector z, which results in dd + 2)-dimensional vectop in
perturbed queries, without any other additional knowledge the perturbed space.

e Level 2 apart from the perturbed data, the attacker also
knows the domain of the original data, such as the mean-
ing of the attributes, the attribute domains, the attritalite
tributions (e.g., the probability density functions (P Dd¥)
histograms), and the covariance between attributes. bt pra
tice, such distributional information is possibly expoged
the public via statistical database interfaces. SimilaHg
query distribution might be leaked via side channels.

In the RASP perturbation a set of parameters are fixed for the
same dataset, including the functiofi§) in the PreP step, and
the parameter matrid in the Pert step, while the positive random
noise is individually generated for each vector. Note thatRASP
perturbation does not have a decryption component. Bedaese
perturbed data are only used to support statistical arsltgre is
no need to recover the perturbed data. In the case that tiealri
records need to be recovered, the vegt@man be stored together

o Level 3 the attacker manages to obtain a small set of plain With the encrypted vectar = Enc(z), whereEnc is an existing

records and the corresponding perturbed data records, via®ncryption algorithm. . . .
some side channel. We call them known input-output pairs, _Because of the random noise componentirior any original
This corresponds to the known-plaintext attack in cryptog- vectorz, there are possibl™” ™" images (the total choices of the

raphy. Similarly, they may gain known input-output quer positive random numbers) in the perturbed space. For the sam
paFi)rs)./ 4 ymayd P put query vector perturbed multiple times, each time we get a diffeiraage

with high probability. However, any one of the perturbedteesis
Adversarial power in Level 3 is quite strong in the settingefure uniquely mapped back to one of the original vectors. Thisagua
cloud computing. Since the database is not open to the pubéc tees the correctness of processing queries in the pertapzest.

attacker has to depend on unusual methods such as sociaengi In the PreP step, Chen et al. used an order-preserving encryp-
ing. Based on this thread model, we will analyze the secofitjie tion (OPE) scheme to transform the data distributions tosGian
perturbed data and protected queries, respectively. distributions [9]. According to the definition of OPE, OPEoise

type of strictly monotonic function. Due to thext andPert steps,
_ the RASP approach does not preserves the dimensional valeg o
3. RASP DATA AND QUERY PERTURBA and it is thus not a variant of OPE schemes. Therefore, RAB&tis
TION subject to the dimensional-order based attacks on OPE sshi@n
Chen et al. has presented the RASP perturbation method [9] 5].
for efficient secure range query processing in the cloud. his t . )
section, we will precisely define the RASP perturbation &thm 3.2 Perturbing Half-space Queries

with a more general setting. The query perturbation algorits The typical half-space queries in the original space aeedik <
also described to show how the query utility is preserved.alsie a as conditions presented in typical SQL queries [14], whefe
describe some applications of the RASP perturbation to sk®w  represents the dimensigh a is a constant, and the comparison
significance. operations can be any gk, >, >, <}. For simplicity, we only

. discuss the case ; < a while other cases are similar. In order to
3.1 Perturblng Data query the perturbed data, the original query needs to besepted

We assume the dataset exported to the cloud for processing isin the perturbed data space, and the transformed query teeds
a set ofd-dimensional column vectors. For the convenience of return the same set of records as the original query does.

formal treatment, we assume all the values asbit real num- Let’s look at the RASP transformations step by step and apply
bers. Thei-th data vector is represented as a column vecfoe them to the query. The first step is to apply the strictly monit
(zi1,...,2:q)". We also useR? to represent thé-dimensional function to the query, which results in; < f;(a) (ory.; > f;(a)

real space and thus; € R?. The RASP perturbation method is  if f; is monotonically decreasing), based on the strict monotoni
defined in the following steps. ity. Letu be a(d + 2)-dimensional vectof...1... — f;(a),0),

where j-th dimension is 1(d + 1)-th dimension is—f;(a) and
e Gen: Assume that we have a pseudo-random invertible ma- all other dimensions are 0. Then, the original half-spaceryis
trix generatorfC 4. Let's draw a(d + 2) x (d + 2) matrix A transformed to the query
randomly, where each element habits. T
y;—fila) = (.., 1,...,—fi(a),0)(y.1,- .-, y.a, 1,7)

e PreP:drandomly chosen non-linear strictly monotonic func- — WTz<0, @)

tions f;, j = 1...d are used to transform each dimen-
sion. Lety defined by the dimensional valugs = f;(z;), where z is as defined in th&xt step andu” z is dot product of
wherez ; andy ; represent the dimensional values. This the two vectors. It is then further transformedubdA~'p < 0
step is to introduce non-linear components and change the according to théPert step. LetH (p) < 0 denote the transformed
distributions to increase the security of the perturbation query. Itis straightforward to verify thdf (p) < 0 is equivalent to



the original queryr.; < a, thus we can expect both to return the
same set of records.

However, this initial version of query transformation ist me-
silient to attacks [9]. The problem is fundamentally rootedthe
simplicity of the query function - essentiall¥ (p) is a linear func-
tion. The following method is used to expand the query fuorcti
to an equivalent quadratic form by including the random exais
mension. Note that th@l 4 2)-th dimension ot is always positive
and randomly chosen. Thus, the query functiog2H (p) < 0
is equivalent to the original quel§l (p) < 0. Similarly, z. 442 can
be represented in terms of the variapleLet ¢ = (..., 1)7 with
all dimensions zero except for only tlle+ 2 dimension set to 1.
Thus,z. .q+2H (p) < 0 can be represented as
pi (A™HT¢u” A~ p; < 0, which is simplified to the canonical
guadratic form

whereQ is thequery parameter matrix( A~ )T ¢puT A™1. Leta,
be thej-th row of A™'. Q is in fact (oy; — fj(a)aar1)” aara,
which will be used in discussing the security of perturbedrigs.

3.3 Sample Applications

Since the half-space queries are fully preserved, we caly app
this technique to securely learn the range query resultgpisdl
range query in the original space is a hyper-cube formed Hti-mu
ple half-space queries. Figure 2 (Left) shows the enclossaiaf a
typical range query in the two dimensional space. Four $adfee
queries (the four sides) together define this range querer Atfie
perturbation, the range query is transformed to irregutapss in
the perturbed data space, where traditional multidimersion-
dexing structures such as R-trees can be used to reducenthefti
query processing to sub-linear [9].

i e e e e e L R bl ]

Original space Transformed space

Figure 2: lllustration of range query processing on RASP-
perturbed data.

This perturbed data can also be used for securely learniy mo
els from labeled data vectors. Without loss of generaliy,work
on the two-class case, where the labels are either ‘+' 0ARd we
assume the labels are insensitive and thus not perturbexlugér
can thus submit random half-space queries to learn the msmbe
of ‘+" and ‘-’ instances in the half-spaces, respectively &ply-
ing techniques such as boosting [15] a sophisticated Gilzesson
model can be learned (Figure 3).

4. SECURITY ANALYSIS ON RASP PER-
TURBED DATA

We analyze the data security in terms of the three levels of ad
versarial power. We will dedicate the next section to theiggcof
perturbed queries.

4.1 Level 1 Security Analysis

j _ A -
— + b>X _/+
_ |+ +7F > X + +t —
| e R T
+ RASP + —
a<X; X; p'Q,p<0 P,
Original space Perturbation space

Figure 3: lllustration of learning classifiers.

The Level 1 assumption actually fits many application sdesar
in the cloud computing context, where no additional infotiora
about the private data is leaked. We show that the RASP pertur
tion is indistinguishably secure under this assumption.

PrRoPOSITION 1. RASP perturbed data is indistinguishably se-
cure on the Level 1 assumption.

PROOF The proof is based on the assumption that the random
invertible matrix is uniformly sampled from the whole set(df+
2)-dimension invertible matriceQ?*2. Let the perturbed vector
drawn from a random variabl®, and the vector generated in the
Ext step drawn from another random varialde Let’s just look at
the difficulty of finding zo that generates a sample vectoof P,
while finding the original vectot will certainly not be easier.

We try to estimate the probabilit¢r(Z = z|P = p), where
z is any vector in the definition ofZ. For a randomly selected
there is an angle betweerandp, denoted a$. Thus, there exists
a unique “rotation” (orthogonal) matriRy and a scalas, so that
p = sRyz, i.e., rotatingz for an angled towardsp and then scaling
up/downz to the same length @f. SinceRy is invertible, according
to the definition of théPert, sRy is a valid setting forA. Thus, the
probability Pr(Z = z|P = p) is Pr(A = sRy|P = p), which is
inturn Pr(A = sRy) asA is randomly selected independent/of

An n-bit representation can represent at m@stdistinct val-
ues. According to the orthogonal group theory [33], the nend§

(d + 2) x (d + 2) orthogonal matrices in the fielfh- is around
02" T2 (2" — 22"%). Based on the assumption of uniformly
choosing the invertible matrix from all invertible matrices that
include the orthogonal group, we have(Z = z|P = p) =
Pr(A = sRp) < 1/0(2%™)). Thus, for any pair of vectors i,
(20, 1), the probability of distinguishing which one is perturbed t
pis

|Pr(Z = 20|P = p) — Pr(Z = z1|P = p)| < 2/0(2™). (4)

i.e., they cannot be distinguished]

4.2 Level 2 and 3 Indistinguishability

We show that the RASP perturbed datasets do not satisfy the
indistinguishability definition, if Level 2 or Level 3 assipion on
the adversarial power is held.

4.2.1 ICA Attack with Level 2 Knowledge.

We show that if the attacker knows distributional inforroati
(Level 2 knowledge), with thé’reP step some datasets can be
possibly reconstructed with the Independent ComponentyAisa
(ICA) method [26]. ICA is a fundamental problem in signal pro
cessing that has many applications such as blind sourceasigpa
of mixed electro- encephalographic(EEG) signals, audimals
and the analysis of functional magnetic resonance imadgl)



data. Let matrixS composed by source signals, where row vectors
represent source signals, and column vectors represeralies

of different signals at certain time stamp. Suppose we carrob

the mixed signal&”, which is generated by a linear transformation
Y = AS. The ICA model is designed to reconstruct the indepen-
dent components (the row vectors) of the original sigrfafsom

the mixed signal%’, if the following conditions are satisfied:

1.
2.

The source signals are independent to each other;

All source signals must have non-Gaussian distributith w
possible exception of one signal;

. The number of observed signals, i.e. the number of row vec-
tors of Y, must be at least as large as the independent source
signals;

4.

The existing ICA algorithms [26, 24] share the same ideattieg
to find a matrixi?’ whereS = WY maximizes the non-Gaussianity
and independency of the resultant row vectors, which ard tse
approximate the signals i. However, the ICA algorithms will re-
sult in re-ordering and re-scaling of the signals, for which user
needs to use the signal characteristics such as signabdigins
to precisely identify each reconstructed signal.

ICA reconstruction can be certainly used to attack RASP per-
turbed data. It has several implications. (1) If the noigaeti-
sion of z is non-Gaussian, the noise can be possibly reconstructed,
which endangers the security of the perturbed data. (2) ddfith
the PreP step, independent dimensions of the original data can
be effectively reconstructed. With the Level 2 knowledde at-
tacker can use the distributional information to correatgntify
the reconstructed values and align them with the origintd da-
main. (3) Without carefully designe@reP, which generates non-
Gaussian independent dimensions, the independent an@Gaassian
dimensions ofz in the Ext can be reconstructed, based on which
more methods might be developed to crackPneP step.

Thus, the best practice is to make all dimensions, @xcept for
the constanfd + 1)-th dimension, transformed to Gaussian distri-
bution. This can be done in thireP step for the firstl dimensions,
and to use pseudo-random positive Gaussian noise genfenattos
(d + 2)-th dimension.

4.2.2 Plane Attack with Level 3 Knowledge.

If attackers are able to submit half-space queries androptars
of plain and corresponding perturbed vectors, we show tRéde
Attack can be used to distinguish the perturbation of any pair of
chosen plain vectors.

The transformation matrid must be of full column rank.

PrROPOSITION 2. RASP is not indistinguishable to chosen plain-
text attack, if the attacker can also submit half-space igser

PROOF Letc = F(m), wherem is the plain vector and is
the perturbed vector. The distinguisher experiment is rileest as
follows.

1. mo andm; are two vectors randomly sampled from the orig-
inal data spaci&?.

. The vectorms, whereb € {1,0} is randomly selected, is
perturbed ta, with the RASP perturbation and given to the
adversary.

. In addition, the adversary can request a polynomial numbe
of plain vectors{m;,i > 1,m; € R%} to be perturbed,
wherem; # mo andm,; # mq. With some attacking algo-
rithm, the adversary finally outputs a bit

Figure 4: Plane Attack illustrated

If |Pr(t’ =0b) — Pr(b # b)| < 1/p(n), p(n) is some polyno-
mial function in terms of the bit-length, we say the perturbed data
vectors are computationally indistinguishable under ehgsain-
text attack (IND-CPA). We show that the following “Plane @tk”
allows the adversary to accurately predigt.e., Pr(b’ = b) = 1.
Thus, RASP is not IND-CPA.

If mo # ma, there is always a plane on some dimension, say
x.; = a, Separating these two vectors. Let’s assumen the half-
spacer.; < a, andma in z.; > a. Remember that the perturbed
half-space queries always preserve the query resultse Httacker
is able to submit the perturbed queryof < a, sayp” Qp < 0,
then the attacker can always precisely deternhing cf Qc, < 0
thenb = 0, otherwise,b = 1. Such planes can be many, and
any one of them can serve as the distinguishing purposerd-iju
illustrates this attack. (1

The above result shows that RASP perturbed datasets caemnot d
feat distinguishing attacks. However, distinguishin@eks in the
context of RASP-based cloud computing appear not as immorta
as in the secure communication. As described in the thredemo
attackers could be more interested in estimating the aigitain
vectors. Such estimation attacks make us consider a wedlene
curity definition.

4.3 Weakened Security Definition Based on
Learning Theory and Information Theory

As the indistinguishability definition is not satisfied orthevel
2 and 3 adversarial power, we explore a weakened definitisecha
on statistical estimation. This becomes necessary betiaepees-
ence of the random noise component in the RASP perturbation
makes all attacks essentially estimation attacks. Attaaksiot ex-
actly discover the exact original vectors; the best they aaris
statistical estimation - a unigue feature distinguishimgfencryp-
tion schemes. In this sense, attacks can be modeled as mfparn
problem: given the background knowledge (e.g., Level 2 grach8
the perturbed data, what is the theoretical bound of thenasitin
accuracy?

As the accuracy is related to the data domain and distributio
we will need a measure to precisely describe it without béiing
ased towards different domains and distributions. We atthegtiea
proposed by Agrawal et al. [1] for the quantification of pdyan
privacy-preserving data mining. The derived measure itaiexd
and defined as follows. This measure considers the effeai@f o
inal data distributions, assuming the Level 2 and 3 knowdeidgy
available to the attackers. L&t represent a random variable gen-
erating a dimension of the dataset, aidrepresent the estimated
values. The measure considers both the uncertainly ahd how
accuratelyX can be used to modeX. Intuitively, if most of the
X population is in a narrow range, a random sample on thai-distr
bution will give an accurate estimation on an unknown vaNe



call this uncertainty the inherent amount of confidentyaldr that
data dimension, which can be evaluated by the normalizedggnt
2MX) " Calculating this measure for a uniform distribution in the
domain [0, a] can help explain the intuitiog®X) = a. Thus, the
amount ‘1’ of this measure has a specific implication: it isieg-
lent to the amount of uncertainty associated to a uniforrtridis
tion in [0, 1]. With X, the X's uncertainty might be reduced, which
is evaluated by the conditional differential entrafpX |X ), sim-

ilarly normalized t02"X1%). Now we can define the normalized
loss of confidentiality (LOC) as

L(X|X) — (2h(X) _ 2h(X\X))/2h(X) —1— 2*I(X1X)7 (5)

wherel (X; X) = h(X) — h(X|X) is the mutual information be-
tween the two random variables. This measure has a lowedd@un
when the attack is no better than random sampling from thevkno
distribution (with the Level 2 knowledge). It has a upper hdu
1 — 27X determined by the uncertainty of the original domain.
If this error F is also independent of the the estimati®nwhich
is valid in the case of independent noise injection, then
MX|X) = h(E) for X = X + E. Thus, the LOC measure
is determined by:(E) for a given data domain. The entropy of
error represents the effectiveness of attack - the sm(ley), the
more effective the attack has. However, the learning th§2®y
says there is the theoretical lower bound of estimationré€ioo
any possible learners for the specific training data. Thet BaF)
cannot be arbitrarily small; it has a lower bound. Therefave
have the following weakened security definition.

DEFINITION 1. Ifthe estimation error is independent of the the
original data, the LOC measute— 2"(#)~"X) defines the secu-
rity of a specific dimensioX for a RASP-perturbed dataset under
the specific estimation attack. The theoretical lower bafrid E)
defines the corresponding absolute security under all agtimat-
tacks.

Sometimes, it might be inconvenient to directly analyzedahe
tropy. If we further assume the errirhas a Gaussian distribution,
then there is a relationship between the variance and thepsnt
[10],

h(E) = (1/2) n(2meVar(E)). (6)

In this case, it will be equivalent to study the lower bouncobr
variance. This is important because it is easier to analyzertin-
imum error variance based on the statistical learning thesord
the error variance is also tightly related to the concept em
squared-error (MSE) in statistical learning [24].

Testing the Effectiveness of Attack This measure has an extra
benefit in evaluating a new type of estimation attacks. Itmased
to assess how serious the attack can be based on attacktgimula
First, we randomly sample the dataset to generate a subbet. T
simulated attack will generate an estimation on the subsgeth is
used to calculate the estimation erd@r Then, the LOC measure
can be calculated. Repeating this procedure multiple tiomedgif-
ferent random sample sets, we can get a robust estimatiomeon t
effectiveness of the new attack.

4.4 Revisiting Level 3 Security

Assume the attacker knows a number of plaintext/perturleed v
tor pairs. Concretely, leV;y,. be the knownm d-dimensional
original records(uy, . .., um),m > d + 2 andu; € R?, that in-
cluded + 2 linearly independent vectors. LB 42 be the cor-
respondingl + 2-dimensional vectoréws, . . . , w., ), w; € R¥T2,
Assume the noise dimension is drawn from a Gaussian distsibu
with the mean valug., and the variance?.

We use the simpler version of RASP perturbation for easier ma
nipulation, where théreP step is not included. Note this exclu-
sion will not increase the difficulty of attack. Thus, the ided
lower bound will not be higher than the actual lower boundtifiar
full version. Let the key matrixA decomposed into blockd =
(A1, A2, As), whereA:, A; and A3 have block size$d + 2) x d,
(d+2) x 1and(d + 2) x 1, respectively.

Let X and P be the plain and perturbed datasets, respectively.

X
Then, with theExt step, the extended data s 1

v
the row vector with all ‘1’ andv is a row vector with random pos-
itive values. According to the simpler version of RASP déifom,
the relationship betweelR andP is

X
P=(A,A2,A43)| 1
\4

wherel is

= A1 X + A1 + Asv. (7)

where Asv is a random noise matrix, whose the elements follows
a Gaussian distribution. At the first look, Eq. 7 is a standdfide
transformation with a noise component.

We show that

PrRopPOSITION 3. the lower bound of error variance fgrth di-
mension, in terms of the Level 3 estimation attack, is latgan
vjoz, wherey; is thej-th element of AT A1) "' AT A5, ando? is
the variance of the random noise dimension.

PROOF Letv = u, + 0, wherev has mean value zero and the
same variance2. Thus, the noise component can be decomposed
to Asp, + Asv. As the constant componedt1 + Asp,, can be
canceled by subtracting any pair of known plain/perturbectars
from X and P, respectively. Let's denote the subtracted datasets
asX’ andP’. For easier manipulation, we transform the equation
to the canonical regression problem that has the “respbnkés
on the left side of the equation, with the constant items Heeg
removed.

X' = (ATA)TATP — (AT A) AT Aso. (8)

Let’s consider the estimation giath dimension ofX”’ only. Let
x be thej-th row (i.e.,j-th dimension) ofX’ to be estimated, and
8 be thej-th row of (AT A1)~ A] ande be j-th element of
—(AT A1)~ AT A3. The equation is simplified to

z =P +e, 9)

which is a canonical single-response regression problédra sfan-
dard method for the above problem is regression modeling. Ac
cording to the Gauss-Markov theorem [24], the least squeyes-
sion (LSR) method is also the minimum variance unbiasedesti
tor, i.e., no other estimator gives lower variance than LSR.

Since the noise componeais not recoverable, the best the at-

Based on the discussion on the LOC security measure, we ap-tacker can do is to get the estimate fif B which can be done

ply the weakened definition of security to analyze the effecess
of estimation attacks under Level 3 adversarial power. i gbc-
tion, we will first analyze the optimal estimation attackemhwe
derive the lower bound of error variance (equivalent.{d)) for
the estimation attack.

with LSR and the known vector pairs i and W, and then use
2 = P’ to estimater. By doing so, we can derive the variance of
the estimation erroV ar(xz — &) is

Var(BP' 4+ e — ) = Var(e) + Var((8 — B)C'). (10)



The variance can be decomposed in such a way, because tke noiswe can still identify the structure & via methods like eigenvalue

generation is independent of the data distribution. Thelresbows
that the variance of the estimation error is always larganttihe
variance ofc, regardless how small th&s estimation error is.

Let’s look closer at the variance efto understand this relation-
ship. Lety; be thej-th element of the vectofAT A;) ' AT A3
(note this is a column vector). It follows thatr(e) = vjo? im-
mediately. [

Therefore, the lower bound variandéur(e) is co-determined
by the key matrixA and the variance of the original noise In
particular, in order to get satisfactory lower bound, we choose
or tune A to makey; sufficiently large.

5. SECURITY ANALYSIS ON PERTURBED
QUERIES

In this section, we briefly discuss the security of the peedr
queries and show whether the attacker can utilize it to damag
the perturbed data. As described in Section 3.2, the pedurb
query p” Qp < 0 is used to query the perturbed data. ket
represent thg-th row of the matrixA~!. We haveQ = (a; —
fi(a)aar1)  aay2. Since the parametet and the functionsf;
are fixed for the perturbed dataset, this is a deterministitsfor-
mation. There are two questions related to the securityaisal(1)
How much is the query privacy preserved? (2) Does the transfo
mation leak the information of perturbation parameters?

Under the Level 1 assumption, the attacker sees only theyquer
matrix Q. Without any other information, the attacker can gain
nothing from the query matrices. We skip the detailed disicuns
here.

Level 2 Security and Distributional Attack. Since the query
transformation is deterministic, the same query is alwagpped
to the same perturbed query. The attacker can keep trackeof th
frequencies of the perturbed queries. With the Level 2 kedge
about the query distribution and counting a sufficientlgénum-
ber of perturbed queries, the attacker can possibly buildpping
between the original queries and the perturbed queriess, the

privacy of some queries could be breached under the Level 2 ad

versarial power.

Level 3 Security and Eigen-Structure Attack. We also show
that an eigen-structure based attack can work with the L&vel
knowledge to determine which dimension the query is aboltisT

PrROPOSITION 4. with the Level 3 assumption only (excluding
Level 2), the perturbed queries are not indistinguishalelguse.

PROOF. Let the known pairs of queries be
QS = {(q1,Q1),-..,(gm,Qm)}, Whereq; are original queries

andQ); are perturbed ones. We show that we can determine which

dimension the new perturbed quepyis about based on the known
pairs of queries. Each perturbed query is

Q= (o — fi(a)aas1)  aar2 = S; + fi(a)S,

whereS; = a] a2 andS = o, aqr2. For different dimen-
sions.S; differs. Although the attackers cannot figure out the ex-
act values inS; and S, they are able to figure of the matrix struc-
ture (e.g., eigenvalue distribution and eigenvectorskelaon this
knowledge, they can determine whether a pair of qu&pieand( ;
are about the same dimension or not. Thus, the indistinghikty
definition is not satisfied.

Assume two known queries): and Q-, are on thej-th di-
mension with different constants, andaz, we get@Q:1 — Q2 =
(fi(a2) — fi(a1))S. Without knowing(f;(az) — f;(a1)) and.S

(1

decomposition. Note that with different constantthe eigenvec-
tors ofr S will not change. If two known queries, e.@: andQ@s,
are on different dimensions, e.g-th andj-th, thenQ; — Qs =
Si — Sj + (fi(a2) — fj(a1))S, which has high probability having
different eigenvectors from); — Q2. Therefore, we can use the
following testing algorithm (Algorithm 1) to distinguistepurbed
queries. [

Algorithm 1 Level 3 Query Distinguishing Attack.
1: Input: Q: the new perturbed queryQsS: the known
plain/perturbed query pairs. There is at least two distinct
queries for some dimension, s@y and(Q-;

2: eigenvectord’ + eigdecompos&)1 — Q2);
3: for each dimension (ido
4: Q) is the corresponding perturbed query;
eigenvectordy; <— eigdecompose) — Q;));
if E; matchesF then

Q is about dimension;

break;
end if

5
6
7
8:
9
10: end for

Parameter Security. Another important problem is whether the
Level 3 knowledge will enable attackers to crack the pertion
parameters, i.e., discover the matrbor some part of it. We infor-
mally show that it is impossibleQ = (a; — fj(a)oas1)T aars
involves 3(d + 2) + 1 unknowns. With a pair of queries in the
same dimension, sa@; andQz, we haveQ: — Q2 = (f;(az2) —
fi(a1))aar1) " aaye, reducing unknowns ta(d + 2) + 1. Itis
clear that knowing more queries on the same dimension ddes no
help further reduce the number of unknowns. However, kngwin
Q1,Q2, and ever(f;(a2) — fj(a1)), is not enough for identifying
the vectorsy, 1 andagyo. In fact, there are an infinite number of
solutions forag41 andagy 2, because

(Q1 — Q2)adt2
(fila2) = fi(ar))||lea2|l’

where||.|| means the vector length, as longas.1 andag» are
linearly independent.

On the other hand, knowing queries of different dimensiaesd
not help reduce the unknowns. Thus, the quadratic quergfoan
mation helps protect the perturbation parameters.

(12)

Qd+1 =

6. RELATED WORK

The current research on secure computation in the cloudlis st
embryonic, requiring a balanced study on both utility anduse
rity. Fully homomorphic encryption [18, 19] in theory allevany
operation on encrypted data that can be traced back to éepiva
operations on the corresponding plaintexts. The currentisns
focus on the basic operations: addition and multiplicatiold-
ing an application on which is too expensive to be practivahe
for a simple application like encrypted keyword search. dinieve
better performance, some researchers have applied [yalniaho-
morphic encryption schemes such as Paillier encryptiohtf8@ata
analysis [17] and matrix computation [37], which requireseal-
ing partial data in the computation. However, the impacthaf t
revealed data on the security was not fully analyzed.

Several methods emphasis more on data utility and perfazenan
than on security, such as Crypto-index [23, 25] and ordesgmving
encryption (OPE) [3, 5]. The order preserving encryptiof? E)



[3] preserves the dimensional value order after encryptibinus,
it can be used in most database operations, such as indexihg a
range query. Boldyreva et al. [5, 6] has formally analyzediscu-
rity of OPE. As widely understood, all OPE schemes are valoier
to distributional attacks, if the attackers are aware ofdisgribu-
tion of the original data. Crypto-Index is based on colunisen
bucketization. It assigns a random ID to each bucket; theegain
the bucket are replaced with the bucket ID to generate thidianyx
data for indexing. However, the bucketization scheme ledksof
information. Thus, a bucket-diffusion scheme [25] was psgul
to introduce noise records into the results to improve tloeirsy,
which, however, has to sacrifice the precision of query tes@e-
cure keyword search on encrypted documents [36, 21, 20,]7, 11
is another cluster of utility preserving encryption method hey
allow the server to scan each encrypted document in the alstab
and find the documents containing the keyword. There have bee
rigid security analysis on this line of research [20, 11].

In the statistical database [12] setting, the trusted s€prethe
data owner) hosts sensitive databases and serves querEs§d-
bly malicious users, who may want to figure out private infation
by submitting carefully designed queries. There are tworggt
interactive and non-interactive. Traditional statidtidatabase re-
search focuses on the interactive setting and inferenaekat{12].
Recent studies emphasis on the non-interactive settingréleas-
ing micro data based on privacy definitions suclt-aonymity,i-
diversity, t-closeness, and other improved definitions [16]. Among
these definitions, differential privacy [13] has been aigant one
for both interactive and non-interactive settings. Apations of
statistical database are very similar to those we discufseithe
RASP perturbation. However, their settings are totallfedént. In
the cloud setting, the server in the cloud is untrusted aadiiers
are authorized trusted users. The concerns are on the datityse
and query privacy.

7. CONCLUSION AND FUTURE WORK

The RASP perturbation technique was proposed to conduet hal
space queries securely and efficiently on the data hostelein t
cloud. The efficient range query processing algorithm hag peo-
posed and evaluated in Chen et al. [9], but its security isfutyt
understood yet. In this paper we carefully analyze the s#yoof
RASP perturbed data and queries under the three-level satiadr
assumptions. The initial analysis shows that the RASP gzation
does not satisfy the strong indistinguishability defimition Level
2 and 3 assumptions. We notice that the strong indistingbisty
definition might not be necessary for the cloud computingjregt
and the perturbation techniques in general, where estmaiased
attacks are the typical threats. Thus, we introduce a weakdaf-
inition on security. This definition is based on statistilrning
theory and information theory, taking the Level 2 and 3 ofeadar-
ial knowledge into account. We then analyze a typical estona
attack based on the Level 3 assumption, the regressiotk atitaaer
the new security definition. We will continue our study on $eeu-
rity of RASP perturbed data and queries, and explore morkcapp
tions of the RASP perturbation for secure data intensiveptding
in the cloud.

8. REFERENCES

[1] AGRAWAL, D., AND AGGARWAL, C. C. On the design and
quantification of privacy preserving data mining algorigim
In Proceedings of ACM Conference on Principles of
Database Systems (POD@)adison, Wisconsin, 2002),
ACM.

[2] AGRAWAL, R., AILAMAKI , A., BERNSTEIN, P. A.,
BREWER, E. A., CAREY, M. J., CHAUDHURI, S., DOAN,
A., FLORESCU, D., FRANKLIN, M. J., GARCIA-MOLINA,
H., GEHRKE, J., GRUENWALD, L., HAAS, L. M.,

HALEVY, A. Y., HELLERSTEIN, J. M., IOANNIDIS, Y. E.,
KORTH, H. F., KOSSMANN, D., MADDEN, S.,

MAGOULAS, R., Qol, B. C., O'ReILLY, T.,
RAMAKRISHNAN , R., SARAWAGI, S., STONEBRAKER, M.,
SZALAY, A. S.,AND WEIKUM, G. The claremont report on
database researcBlGMOD Record 373 (2008), 9-19.

[3] AGRAWAL, R., KIERNAN, J., RIKANT, R.,AND XU, Y.
Order preserving encryption for numeric data. In
Proceedings of ACM SIGMOD Conferen@904).

[4] ARMBRUST, M., Fox, A., GRIFFITH, R., SEPH A. D.,

KATZ, R., KONWINSKI, A., LEE, G., RTTERSON, D.,

RABKIN, A., STOICA, |., AND ZAHARIA, M. Above the

clouds: A berkeley view of cloud computingechnical

Report, University of Berkerlg2009).

BOLDYREVA, A., CHENETTE, N., LEE, Y., AND O’NEILL,

A. Order preserving symmetric encryption.Pmoceedings

of EUROCRYPT conferen¢2009).

BOLDYREVA, A., CHENETTE, N., AND Oi£;NEILL, A.

Order-preserving encryption revisited: Improved segurit

analysis and alternative solutions.@RYPT((2011).

BONEH, D., CRESCENzQ G. D., OSTROVSKY, R.,AND

PERSIANO, G. Public-key encryption with keyword search.

In Proceedings of Advances in Cryptology, (EUROCRYPT)

(2004), Springer.

BovYD, S.,AND VANDENBERGHE, L. Convex Optimization

Cambridge University Press, 2004.

CHEN, K., KAVULURU, R.,AND GUO, S. Rasp: Efficient

multidimensional range query on attack-resilient enagpt

databases. IACM Conference on Data and Application

Security and Privacy2011).

COVER, T., AND THOMAS, J.Elements of Information

Theory Wiley, 1991.

CURTMOLA, R., GARAY, J., KAMARA, S.,AND

OSTROVSKY, R. Searchable symmetric encryption:

improved definitions and efficient constructions. In

Proceedings of the 13th ACM conference on Computer and

communications securiffNew York, NY, USA, 2006),

ACM, pp. 79-88.

DoMINGO-FERRER J.Inferance Control in Statistical

DatabasesSpringer, 2002.

DwoRK, C.,AND LEl, J. Differential privacy and robust

statistics. INSTOC '09: Proceedings of the 41st annual ACM

symposium on Theory of computifidew York, NY, USA,

2009), ACM, pp. 371-380.

ELMASRI, R.,AND NAVATHE, S.Fundamentals of

Database Systemaddison Wesley, 2010.

FREUND, Y., AND SCHAPIRE, R. E. A short introduction to

boosting. Inin Proceedings of the Sixteenth International

Joint Conference on Artificial Intelligen¢@999), Morgan

Kaufmann, pp. 1401-1406.

FUNG, B. C. M., WANG, K., CHEN, R.,AND YU, P. S.

Privacy-preserving data publishing: A survey of recent

developmentsACM Computing Survey 43une 2010),

14:1-14:53.

GE, T., AND ZDONIK, S. Answering aggregation queries in

a secure system model. Broceedings of the 33rd

international conference on Very large data bag2807),

VLDB '07, VLDB Endowment, pp. 519-530.

(5]

(6]

(7]

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]



[18] GENTRY, C. Fully homomorphic encryption using ideal
lattices. INSTOC '09: Proceedings of the 41st annual ACM
symposium on Theory of computifidew York, NY, USA,
2009), ACM, pp. 169-178.

GENTRY, C.,AND HALEVI, S. Implementing gentry’s

fully-homomorphic encryption scheme. EUROCRYPT

(2011), pp. 129-148.

GoH, E.-J. Secure indexes. Cryptology ePrint Archive,

Report 2003/216, 2003.

GOLLE, P., STADDON, J.,AND WATERS, B. Secure

conjunctive keyword search over encrypted dataAGNS

04: 2nd International Conference on Applied Cryptography

and Network Securitf2004), Springer-Verlag, pp. 31-45.

GREENE, T. Survey: Most businesses haven't mastered

cloud securityNetworkWorld,

http://www.infoworld.com/d/cloud-computing/survegsn
businesses-havent-mastered-cloud-security-280

(2009).

HAcCIGUMUS, H., IYER, B., LI, C.,AND MEHROTRA, S.

Executing sql over encrypted data in the

database-service-provider model Aroceedings of ACM

SIGMOD Conferencé2002).

HASTIE, T., TIBSHIRANI, R.,AND FRIEDMAN, J.The

Elements of Statistical Learnin§pringer-Verlag, 2001.

HORE, B., MEHROTRA, S.,AND TSUDIK, G. A

privacy-preserving index for range queriesProceedings of

Very Large Databases Conference (VLOB)O04).

HYVARINEN, A., KARHUNEN, J.,AND OJA, E.

Independent Component Analydigiley, 2001.

KATz, J.,AND LINDELL, Y. Introduction to Modern

Cryptography Chapman and Hall/CRC, 2007.

[28] KEARNS, M. Efficient noise-tolerant learning from
statistical querieslournal of ACM 456 (1998), 983-1006.

[29] KEARNS, M. J.,AND VAZIRANI, U. V. An Introduction to

Computational Learning TheorMIT press, 1994.

L1, F., HADJIELEFTHERIOU, M., KOLLIOS, G.,AND

REYzIN, L. Dynamic authenticated index structures for

outsourced databases.Pnoceedings of ACM SIGMOD

Conferencg2006).

MYAGMAR, S., LEE, A. J.,AND YURCIK, W. Threat

modeling as a basis for security requirementdnin

Symposium on Requirements Engineering for Information

Security (SREI®005).

PAILLIER, P. Public-key cryptosystems based on composite

degree residuosity classes. BEWROCRYPT1999),

Springer-Verlag, pp. 223-238.

RIEHM, C. R.Introduction to Orthogonal, Symplectic and

Unitary Representations of Finite GroupSmerican

Mathematical Society, 2011.

SCHNEIER, B. Homomorphic encryption breakthrough.

http://www.schneier.com/blog/archives/2009

/07/homomorphic_enc.html, 2009.

[35] SIoN, R. Query execution assurance for outsourced
databases. IRroceedings of Very Large Databases
Conference (VLDB(2005).

[36] SONG, D. X., WAGNER, D., AND PERRIG, A. Practical
techniques for searches on encrypted dat¥EEE
Symposium on Security and Priva@yashington, DC, USA,
2000), IEEE Computer Society, p. 44.

[37] WANG, C., REN, K., WANG, J.,AND URS, K. M. R.
Harnessing the cloud for securely solving large-scalessyst

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[30]

[31]

[32]

[33]

[34]

of linear equations. IProceedings of ICDC8MNashington,

DC, USA, 2011), IEEE Computer Society, pp. 549-558.
[38] XIE, M., WANG, H., YIN, J.,AND MENG, X. Integrity

auditing of outsourced data. WiLDB (2007), pp. 782—793.



