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ABSTRACT
Secure data intensive computing in the cloud is challenging, in-
volving a complicated tradeoff among security, performance, extra
costs, and cloud economics. Although fully homomorphic encryp-
tion is considered as the ultimate solution, it is still too expensive to
be practical at the current stage. In contrast, methods thatpreserve
special types of data utility, even with weaker security, might be
acceptable in practice. The recently proposed RASP perturbation
method falls into this category. It can provide practical solutions
for specific problems such as secure range queries, statistical anal-
ysis, and machine learning. The RASP perturbation embeds the
multidimensional data into a secret higher dimensional space, en-
hanced with random noise addition to protect the confidentiality
of data. It also provides a query perturbation method to transform
half-space queries to a quadratic form and, meanwhile, preserving
the results of half-space queries. The utility preserving property
and wide application domains are appealing. However, sincethe
security of this method is not thoroughly analyzed, the riskof using
this method is unknown. The purpose of this paper is to investigate
the security of the RASP perturbation method based on a specific
threat model. The threat model defines three levels of adversarial
power and the concerned attacks. We show that although the RASP
perturbed data and queries are secure on the lowest level of adver-
sarial power, they do not satisfy the strong indistinguishability def-
inition on higher levels of adversarial power. As we have noticed,
the indistinguishability definition might not be too strongto be use-
ful in the context of data intensive cloud computation. In addition,
the noise component in the perturbation renders it impossible to
exactly recover the plain data; thus, all attacks are essentially es-
timation attacks. We propose a weaker security definition based
on information theoretic measures to describe the effectiveness of
estimation attacks, and then study the security under this weaker
definition. This security analysis helps clearly identify the security
weaknesses of the RASP perturbation and quantify the expected
security under different levels of adversarial power.

1. INTRODUCTION
Data-driven (big data) approaches represent an emerging trend of
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scientific research and industrial development. With the rapid de-
velopment of cloud infrastructures, conducting data intensive com-
puting in the cloud has become the top choice for economical and
scalable processing [4, 2]. Such computing tasks may include but
not limited to querying, mining, and visualizing data. Theyshare
a commonality that users need to manipulate the data on top ofthe
cloud infrastructures, not simply storing data in the cloud. How-
ever, once the data collections are exported to the cloud, the data
owner loses the control over the data. As big data collections are
becoming important properties, and cloud providers are normally
considered as an untrusted party, data owners have reasonable con-
cerns over data ownership, security, and privacy [22]. Unless we
can find a way to conduct computation on “protected” data in the
cloud, most data owners will not be likely to use public clouds to
process their sensitive data.

Secure computation in the cloud has to put equal weights on both
security and utility of the protected data. Traditional encryption
approaches cannot be simply applied because they do not protect
data utility (except for the simple case of storing data in the cloud).
When considering the utility of a solution, we cannot ignorethe
cost of the scheme as well. Fully homomorphic encryption (FHE)
[18] aims to implement the lowest level operations: addition and
multiplication on the encrypted data without decrypting the data.
Theoretically, any function can be built on addition and multiplica-
tion by using a FHE scheme. However, as most researchers noticed,
at the current stage it is too expensive to be practical, evenfor a sim-
ple application like keyword search over encrypted database [34].
On the other hand, many approaches developed in the database
community focus on performance, only providing very weak se-
curity. For example, Crypto-index [23, 25] and order-preserving
encryption (OPE) [3, 5] depend on strong assumptions that attack-
ers do not have sufficient prior knowledge about the data, which
excludes many realistic attacks from investigation.

Instead of preserving the utility of low level operations onsin-
gle dimensions, Chen et al. proposed the RASP perturbation ap-
proach [9] to preserve half-space queries [8] for multidimensional
data. A half-space query works on multidimensional data space
and retrieves data vectors satisfying the query condition.It uses
a hyperplane to partition the whole space, and returns the result
(normally statistics, like the count of vectors) about one of the half
spaces. The RASP perturbation approach also allows the original
half-space queries to be securely transformed and processed on the
perturbed dataset to get the exact query results as they do onthe
original dataset. Half-space queries have many applications in data
intensive analysis. For example,

• Interactive Data Analysis.Range queries are the most com-
mon queries in interactive data analysis, which are used to
derive statistics on a specific portion of data that satisfiesthe



query conditions. A range query is an intersection of a num-
ber of half-space queries, describing “areas” in the multidi-
mensional space. Thus, preserving half-space queries also
preserves range queries.

• Machine Learning.Linear classifier is one of the most pop-
ularly used classification models. A linear classifier is rep-
resented as a half-space query. Given a record, the classifier
checks whether the record is in the half-space query result set
or not [24]. Linear classifiers can serve as the base classifiers
in the bagging or boosting approach [15] to construct more
sophisticated classification models.

Thus, we believe that the RASP perturbation has great potentials
for many data analytics tasks in the cloud. However, the security of
the RASP perturbation method has not been carefully studiedyet.

Scope of the Paper.In this paper, we aim to systematically ana-
lyze the security of RASP perturbation based on a precisely defined
threat model. The threat model describes the protected assets in the
context of secure computation in the cloud, the concerned attacks
(passive data disclosure attacks only), and the prior knowledge that
attackers may have. The perturbed data and queries are studied un-
der two types of security definitions: the strong indistinguishability
definition [27], and the statistical-estimation based weakened def-
inition, corresponding to the traditional distinguishingattacks and
the more realistic estimation attacks in the context of cloud com-
puting, respectively. Based on the threat model, we start our studies
from the stronger security definition and then extend to the weaker
definition. To evaluate the security to the estimation attacks, we
also design a new measure - the loss of confidentiality (LOC) -
based on statistical learning theory and information theory. Con-
cretely, there are several unique contributions.

1. We define a precise and comprehensive threat model for ap-
plying the RASP perturbation approach in the cloud, which
suggests studies on two types of attacks: distinguishing at-
tacks and estimation attacks, based on three levels of adver-
sarial power that attackers may obtain in the context of cloud
computing.

2. We prove that the RASP perturbation is not indistinguishably
secure under the Level 2 and 3 adversarial power.

3. We develop a weakened security definition for estimation at-
tacks, and design the LOC measure for evaluating the secu-
rity of RASP perturbation on estimation attacks.

4. We show how the LOC measure is applied to evaluate esti-
mation attacks under the Level 3 adversarial power.

5. We also study the query privacy based on the same threat
model. The result shows that perturbed queries are also not
indistinguishably secure under the Level 2 and 3 adversarial
power. We show that the information exposed by queries
does not damage the security of the perturbed data.

The rest of the paper is organized as follows. Section 2 describes
the framework and the thread model that the RASP perturbation
works with. Section 3 precisely defines the RASP perturbation.
Section 4 focuses on the security of the RASP perturbed data,and
Section 5 focuses on the perturbed queries. Section 6 presents some
relevant approaches for secure computation in the cloud.

2. FRAMEWORK AND THREAT MODEL-
ING
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Figure 1: Illustration of the framework for perturbation-b ased
secure computation in the cloud.

This section gives the framework that the RASP perturbation
works with, which is actually general to all secure computation
approaches in the cloud. Based on this framework, we precisely
define a threat model for security analysis.

2.1 Framework
Figure 1 shows the typical scenario of hosting a secure interac-

tive statistical analysis service in the cloud. The data owner exports
the perturbed data to the cloud and then queries the protected data
to learn statistics. Meanwhile, the authorized users can also submit
queries to learn statistics. The database in the cloud serves as a
statistical database [12], but it is only accessible to the authorized
users. Thus, it is different from the privacy problems in traditional
statistical databases, where the service provider is trusted and the
users can be any person including malicious ones.

There are a number of basic procedures in this framework: (1)
F (D) is the RASP perturbation that transforms the original data
D to the perturbed dataD′; (2)Q(q) transforms the original query
q to the protected formq′ that can be processed on the perturbed
data; (3)H(q′, D′) is the query processing algorithm that returns
the resultR′, typically the number of records. When other statistics
such as SUM or AVG of a specific dimension are needed, RASP
can work with partial homomorphic encryption such as Paillier en-
cryption [32] to compute these statistics on the encrypted data [17],
which are then recovered with the procedureG(R′). For simplic-
ity, we assume the queries return the simplest statistics: the number
of records. Statistical analysis heavily depends on the this informa-
tion to estimate the distributions. In addition, classification model-
ing can be achieved with only the count statistics [28], if the class
label is presented unperturbed.

2.2 Threat Modeling
The application scenario is described as in Figure 1. The data

owner stores and processes perturbed data in the cloud. The cloud
environment is untrusted and out of the data owner’s control. The
aim of our design is to prevent attackers from precisely recovering
or estimating the original data. We consider several aspects of the
threat model [31] in our research.

Assets. The protected assets are the data stored and processed
in the cloud. We assume these data are multidimensional vector
databases. The privacy of query is also concerned.

Passive data disclosure attacks.Passive data disclosure is our
major concern. Attackers can access the data at any of compro-
mised virtual machines in the cloud. They might be interested in
recovering or estimating theoriginal data recordsor distributional
information, based on the perturbed data. While distinguishing at-
tacks are meaningful to traditional encryption systems, they are less



useful in our context. We identify that the main attacks are based
on statistical estimation. Data tampering or dishonest cloud service
providers is not addressed by our study, which can be coveredby
integrity preserving techniques [38, 35, 30].

Attacker modeling. Active attackers will try to obtain as much
knowledge as possible to help recover the original data. To better
analyze the security of the RASP perturbation, we define the ad-
versarial power according to the levels of prior knowledge on the
data.

• Level 1: the attacker observes only the perturbed data and the
perturbed queries, without any other additional knowledge.

• Level 2: apart from the perturbed data, the attacker also
knows the domain of the original data, such as the mean-
ing of the attributes, the attribute domains, the attributedis-
tributions (e.g., the probability density functions (PDF)or
histograms), and the covariance between attributes. In prac-
tice, such distributional information is possibly exposedto
the public via statistical database interfaces. Similarly, the
query distribution might be leaked via side channels.

• Level 3: the attacker manages to obtain a small set of plain
records and the corresponding perturbed data records, via
some side channel. We call them known input-output pairs.
This corresponds to the known-plaintext attack in cryptog-
raphy. Similarly, they may gain known input-output query
pairs.

Adversarial power in Level 3 is quite strong in the setting ofsecure
cloud computing. Since the database is not open to the public, the
attacker has to depend on unusual methods such as social engineer-
ing. Based on this thread model, we will analyze the securityof the
perturbed data and protected queries, respectively.

3. RASP DATA AND QUERY PERTURBA-
TION

Chen et al. has presented the RASP perturbation method [9]
for efficient secure range query processing in the cloud. In this
section, we will precisely define the RASP perturbation algorithm
with a more general setting. The query perturbation algorithm is
also described to show how the query utility is preserved. Wealso
describe some applications of the RASP perturbation to showits
significance.

3.1 Perturbing Data
We assume the dataset exported to the cloud for processing is

a set ofd-dimensional column vectors. For the convenience of
formal treatment, we assume all the values aren-bit real num-
bers. Thei-th data vector is represented as a column vectorxi =
(xi1, . . . , xid)

T . We also useRd to represent thed-dimensional
real space and thusxi ∈ R

d. The RASP perturbation method is
defined in the following steps.

• Gen: Assume that we have a pseudo-random invertible ma-
trix generatorKA. Let’s draw a(d+ 2)× (d+ 2) matrixA
randomly, where each element hasn bits.

• PreP:d randomly chosen non-linear strictly monotonic func-
tions fj , j = 1 . . . d are used to transform each dimen-
sion. Lety defined by the dimensional valuesy.j = fj(x.j),
wherex.j and y.j represent the dimensional values. This
step is to introduce non-linear components and change the
distributions to increase the security of the perturbation.

• Ext: A random positive real valuer, r ∈ R
+, is selected

from a pseudo-random positive real number generatorKr,
which is used to extend the vectory to z = (yT , 1, r)T ,
where the notationyT represents vector transpose.

• Pert: On the matrixA, and the vectorz, the final perturbed
result is

p = Az, (1)

whereAz is the multiplication between the matrixA and the
vectorz, which results in a(d + 2)-dimensional vectorp in
the perturbed space.

In the RASP perturbation a set of parameters are fixed for the
same dataset, including the functionsfj() in the PreP step, and
the parameter matrixA in thePert step, while the positive random
noise is individually generated for each vector. Note that the RASP
perturbation does not have a decryption component. Becausethe
perturbed data are only used to support statistical analysis, there is
no need to recover the perturbed data. In the case that the original
records need to be recovered, the vectorp can be stored together
with the encrypted vectore = Enc(x), whereEnc is an existing
encryption algorithm.

Because of the random noise component inz, for any original
vectorx, there are possibly2n−1 images (the total choices of the
positive random numbers) in the perturbed space. For the same
vector perturbed multiple times, each time we get a different image
with high probability. However, any one of the perturbed vectors is
uniquely mapped back to one of the original vectors. This guaran-
tees the correctness of processing queries in the perturbedspace.

In the PreP step, Chen et al. used an order-preserving encryp-
tion (OPE) scheme to transform the data distributions to Gaussian
distributions [9]. According to the definition of OPE, OPE isone
type of strictly monotonic function. Due to theExt andPert steps,
the RASP approach does not preserves the dimensional value order,
and it is thus not a variant of OPE schemes. Therefore, RASP isnot
subject to the dimensional-order based attacks on OPE schemes [3,
5].

3.2 Perturbing Half-space Queries
The typical half-space queries in the original space are likex.j <

a as conditions presented in typical SQL queries [14], wherex.j

represents the dimensionj, a is a constant, and the comparison
operations can be any of{<,>,≥,≤}. For simplicity, we only
discuss the casex.j < a while other cases are similar. In order to
query the perturbed data, the original query needs to be represented
in the perturbed data space, and the transformed query needsto
return the same set of records as the original query does.

Let’s look at the RASP transformations step by step and apply
them to the query. The first step is to apply the strictly monotonic
function to the query, which results iny.j < fj(a) (or y.j > fj(a)
if fj is monotonically decreasing), based on the strict monotonic-
ity. Let u be a(d + 2)-dimensional vector(. . . 1 . . . − fj(a), 0),
wherej-th dimension is 1,(d + 1)-th dimension is−fj(a) and
all other dimensions are 0. Then, the original half-space query is
transformed to the query

y.j − fj(a) = (. . . , 1, . . . ,−fj(a), 0)(y.1, . . . , y.d, 1, r)
T

= uT z < 0, (2)

wherez is as defined in theExt step anduT z is dot product of
the two vectors. It is then further transformed touTA−1p < 0
according to thePert step. LetH(p) < 0 denote the transformed
query. It is straightforward to verify thatH(p) < 0 is equivalent to



the original queryx.j < a, thus we can expect both to return the
same set of records.

However, this initial version of query transformation is not re-
silient to attacks [9]. The problem is fundamentally rootedon the
simplicity of the query function - essentiallyH(p) is a linear func-
tion. The following method is used to expand the query function
to an equivalent quadratic form by including the random noise di-
mension. Note that the(d+2)-th dimension ofz is always positive
and randomly chosen. Thus, the query functionz.,d+2H(p) < 0
is equivalent to the original queryH(p) < 0. Similarly,z.,d+2 can
be represented in terms of the variablep. Let φ = (. . . , 1)T with
all dimensions zero except for only thed + 2 dimension set to 1.
Thus,z.,d+2H(p) < 0 can be represented as
pTi (A

−1)TφuTA−1pi < 0, which is simplified to the canonical
quadratic form

pTi Qpi < 0, (3)

whereQ is thequery parameter matrix: (A−1)TφuTA−1. Letαj

be thej-th row of A−1. Q is in fact (αj − fj(a)αd+1)
Tαd+2,

which will be used in discussing the security of perturbed queries.

3.3 Sample Applications
Since the half-space queries are fully preserved, we can apply

this technique to securely learn the range query results. A typical
range query in the original space is a hyper-cube formed by multi-
ple half-space queries. Figure 2 (Left) shows the enclosed area of a
typical range query in the two dimensional space. Four half-space
queries (the four sides) together define this range query. After the
perturbation, the range query is transformed to irregular shapes in
the perturbed data space, where traditional multidimensional in-
dexing structures such as R-trees can be used to reduce the time of
query processing to sub-linear [9].

Original space Transformed space

Stage1:
Bounding
box

Figure 2: Illustration of range query processing on RASP-
perturbed data.

This perturbed data can also be used for securely learning mod-
els from labeled data vectors. Without loss of generality, we work
on the two-class case, where the labels are either ‘+’ or ‘-’.And we
assume the labels are insensitive and thus not perturbed. The user
can thus submit random half-space queries to learn the numbers
of ‘+’ and ‘-’ instances in the half-spaces, respectively. By apply-
ing techniques such as boosting [15] a sophisticated classification
model can be learned (Figure 3).

4. SECURITY ANALYSIS ON RASP PER-
TURBED DATA

We analyze the data security in terms of the three levels of ad-
versarial power. We will dedicate the next section to the security of
perturbed queries.

4.1 Level 1 Security Analysis
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Figure 3: Illustration of learning classifiers.

The Level 1 assumption actually fits many application scenarios
in the cloud computing context, where no additional information
about the private data is leaked. We show that the RASP perturba-
tion is indistinguishably secure under this assumption.

PROPOSITION 1. RASP perturbed data is indistinguishably se-
cure on the Level 1 assumption.

PROOF. The proof is based on the assumption that the random
invertible matrix is uniformly sampled from the whole set of(d +
2)-dimension invertible matricesΩd+2. Let the perturbed vector
drawn from a random variableP , and the vector generated in the
Ext step drawn from another random variableZ. Let’s just look at
the difficulty of findingz0 that generates a sample vectorp of P ,
while finding the original vectorx0 will certainly not be easier.

We try to estimate the probabilityPr(Z = z|P = p), where
z is any vector in the definition ofZ. For a randomly selectedz,
there is an angle betweenz andp, denoted asθ. Thus, there exists
a unique “rotation” (orthogonal) matrixRθ and a scalars, so that
p = sRθz, i.e., rotatingz for an angleθ towardsp and then scaling
up/downz to the same length ofp. SinceRθ is invertible, according
to the definition of thePert, sRθ is a valid setting forA. Thus, the
probabilityPr(Z = z|P = p) is Pr(A = sRθ|P = p), which is
in turnPr(A = sRθ) asA is randomly selected independent ofP .

An n-bit representation can represent at most2n distinct val-
ues. According to the orthogonal group theory [33], the number of
(d + 2) × (d + 2) orthogonal matrices in the fieldF2n is around
O(2dn

∏d/2
i=1(2

nd − 22ni). Based on the assumption of uniformly
choosing the invertible matrixA from all invertible matrices that
include the orthogonal group, we havePr(Z = z|P = p) =
Pr(A = sRθ) < 1/O(2dn)). Thus, for any pair of vectors inZ,
(z0, z1), the probability of distinguishing which one is perturbed to
p is

|Pr(Z = z0|P = p)− Pr(Z = z1|P = p)| < 2/O(2dn). (4)

i.e., they cannot be distinguished.

4.2 Level 2 and 3 Indistinguishability
We show that the RASP perturbed datasets do not satisfy the

indistinguishability definition, if Level 2 or Level 3 assumption on
the adversarial power is held.

4.2.1 ICA Attack with Level 2 Knowledge.
We show that if the attacker knows distributional information

(Level 2 knowledge), with thePreP step some datasets can be
possibly reconstructed with the Independent Component Analysis
(ICA) method [26]. ICA is a fundamental problem in signal pro-
cessing that has many applications such as blind source separation
of mixed electro- encephalographic(EEG) signals, audio signals
and the analysis of functional magnetic resonance imaging (fMRI)



data. Let matrixS composed by source signals, where row vectors
represent source signals, and column vectors represent thevalues
of different signals at certain time stamp. Suppose we can observe
the mixed signalsY , which is generated by a linear transformation
Y = AS. The ICA model is designed to reconstruct the indepen-
dent components (the row vectors) of the original signalsS from
the mixed signalsY , if the following conditions are satisfied:

1. The source signals are independent to each other;

2. All source signals must have non-Gaussian distribution with
possible exception of one signal;

3. The number of observed signals, i.e. the number of row vec-
tors ofY , must be at least as large as the independent source
signals;

4. The transformation matrixA must be of full column rank.

The existing ICA algorithms [26, 24] share the same idea thattries
to find a matrixW whereŜ = WY maximizes the non-Gaussianity
and independency of the resultant row vectors, which are used to
approximate the signals inS. However, the ICA algorithms will re-
sult in re-ordering and re-scaling of the signals, for whichthe user
needs to use the signal characteristics such as signal distributions
to precisely identify each reconstructed signal.

ICA reconstruction can be certainly used to attack RASP per-
turbed data. It has several implications. (1) If the noise dimen-
sion ofz is non-Gaussian, the noise can be possibly reconstructed,
which endangers the security of the perturbed data. (2) Without
the PreP step, independent dimensions of the original data can
be effectively reconstructed. With the Level 2 knowledge, the at-
tacker can use the distributional information to correctlyidentify
the reconstructed values and align them with the original data do-
main. (3) Without carefully designedPreP, which generates non-
Gaussian independent dimensions, the independent and non-Gaussian
dimensions ofz in the Ext can be reconstructed, based on which
more methods might be developed to crack thePrePstep.

Thus, the best practice is to make all dimensions ofz, except for
the constant(d+ 1)-th dimension, transformed to Gaussian distri-
bution. This can be done in thePrePstep for the firstd dimensions,
and to use pseudo-random positive Gaussian noise generatorfor the
(d+ 2)-th dimension.

4.2.2 Plane Attack with Level 3 Knowledge.
If attackers are able to submit half-space queries and obtain pairs

of plain and corresponding perturbed vectors, we show that aPlane
Attack can be used to distinguish the perturbation of any pair of
chosen plain vectors.

PROPOSITION 2. RASP is not indistinguishable to chosen plain-
text attack, if the attacker can also submit half-space queries.

PROOF. Let c = F (m), wherem is the plain vector andc is
the perturbed vector. The distinguisher experiment is described as
follows.

1. m0 andm1 are two vectors randomly sampled from the orig-
inal data spaceRd.

2. The vectormb, whereb ∈ {1, 0} is randomly selected, is
perturbed tocb with the RASP perturbation and given to the
adversary.

3. In addition, the adversary can request a polynomial number
of plain vectors{mi, i > 1, mi ∈ R

d} to be perturbed,
wheremi 6= m0 andmi 6= m1. With some attacking algo-
rithm, the adversary finally outputs a bitb′.
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Figure 4: Plane Attack illustrated

If |Pr(b′ = b) − Pr(b′ 6= b)| < 1/p(n), p(n) is some polyno-
mial function in terms of the bit-lengthn, we say the perturbed data
vectors are computationally indistinguishable under chosen plain-
text attack (IND-CPA). We show that the following “Plane Attack”
allows the adversary to accurately predictb, i.e.,Pr(b′ = b) = 1.
Thus, RASP is not IND-CPA.

If m0 6= m1, there is always a plane on some dimension, say
x.j = a, separating these two vectors. Let’s assumem0 in the half-
spacex.j < a, andm1 in x.j > a. Remember that the perturbed
half-space queries always preserve the query results. If the attacker
is able to submit the perturbed query ofx.j < a, saypTQp < 0,
then the attacker can always precisely determineb - if cTb Qcb < 0
then b = 0, otherwise,b = 1. Such planes can be many, and
any one of them can serve as the distinguishing purpose. Figure 4
illustrates this attack.

The above result shows that RASP perturbed datasets cannot de-
feat distinguishing attacks. However, distinguishing attacks in the
context of RASP-based cloud computing appear not as important
as in the secure communication. As described in the threat model,
attackers could be more interested in estimating the original plain
vectors. Such estimation attacks make us consider a weakened se-
curity definition.

4.3 Weakened Security Definition Based on
Learning Theory and Information Theory

As the indistinguishability definition is not satisfied on the Level
2 and 3 adversarial power, we explore a weakened definition based
on statistical estimation. This becomes necessary becausethe pres-
ence of the random noise component in the RASP perturbation
makes all attacks essentially estimation attacks. Attackscannot ex-
actly discover the exact original vectors; the best they cando is
statistical estimation - a unique feature distinguishing from encryp-
tion schemes. In this sense, attacks can be modeled as a learning
problem: given the background knowledge (e.g., Level 2 and 3) and
the perturbed data, what is the theoretical bound of the estimation
accuracy?

As the accuracy is related to the data domain and distribution,
we will need a measure to precisely describe it without beingbi-
ased towards different domains and distributions. We adoptthe idea
proposed by Agrawal et al. [1] for the quantification of privacy in
privacy-preserving data mining. The derived measure is explained
and defined as follows. This measure considers the effect of orig-
inal data distributions, assuming the Level 2 and 3 knowledge is
available to the attackers. LetX represent a random variable gen-
erating a dimension of the dataset, andX̂ represent the estimated
values. The measure considers both the uncertainty ofX and how
accuratelyX̂ can be used to modelX. Intuitively, if most of the
X population is in a narrow range, a random sample on that distri-
bution will give an accurate estimation on an unknown value.We



call this uncertainty the inherent amount of confidentiality for that
data dimension, which can be evaluated by the normalized entropy
2h(X). Calculating this measure for a uniform distribution in the
domain [0, a] can help explain the intuition:2h(X) = a. Thus, the
amount ‘1’ of this measure has a specific implication: it is equiva-
lent to the amount of uncertainty associated to a uniform distribu-
tion in [0, 1]. WithX̂, theX ’s uncertainty might be reduced, which
is evaluated by the conditional differential entropyh(X|X̂), sim-

ilarly normalized to2h(X|X̂). Now we can define the normalized
loss of confidentiality (LOC) as

L(X|X̂) = (2h(X) − 2h(X|X̂))/2h(X) = 1− 2−I(X;X̂), (5)

whereI(X; X̂) = h(X)− h(X|X̂) is the mutual information be-
tween the two random variables. This measure has a lower bound 0,
when the attack is no better than random sampling from the known
distribution (with the Level 2 knowledge). It has a upper bound
1− 2−h(X), determined by the uncertainty of the original domain.

If this errorE is also independent of the the estimationX, which
is valid in the case of independent noise injection, then
h(X|X̂) = h(E) for X = X̂ + E. Thus, the LOC measure
is determined byh(E) for a given data domain. The entropy of
error represents the effectiveness of attack - the smallerh(E), the
more effective the attack has. However, the learning theory[29]
says there is the theoretical lower bound of estimation error for
any possible learners for the specific training data. That saysh(E)
cannot be arbitrarily small; it has a lower bound. Therefore, we
have the following weakened security definition.

DEFINITION 1. If the estimation error is independent of the the
original data, the LOC measure1 − 2h(E)−h(X) defines the secu-
rity of a specific dimensionX for a RASP-perturbed dataset under
the specific estimation attack. The theoretical lower boundof h(E)
defines the corresponding absolute security under all estimation at-
tacks.

Sometimes, it might be inconvenient to directly analyze theen-
tropy. If we further assume the errorE has a Gaussian distribution,
then there is a relationship between the variance and the entropy
[10],

h(E) = (1/2) ln(2πeV ar(E)). (6)

In this case, it will be equivalent to study the lower bound oferror
variance. This is important because it is easier to analyze the min-
imum error variance based on the statistical learning theory, and
the error variance is also tightly related to the concept of mean-
squared-error (MSE) in statistical learning [24].

Testing the Effectiveness of Attack.This measure has an extra
benefit in evaluating a new type of estimation attacks. It canbe used
to assess how serious the attack can be based on attack simulation.
First, we randomly sample the dataset to generate a subset. The
simulated attack will generate an estimation on the subset,which is
used to calculate the estimation errorE. Then, the LOC measure
can be calculated. Repeating this procedure multiple timeson dif-
ferent random sample sets, we can get a robust estimation on the
effectiveness of the new attack.

4.4 Revisiting Level 3 Security
Based on the discussion on the LOC security measure, we ap-

ply the weakened definition of security to analyze the effectiveness
of estimation attacks under Level 3 adversarial power. In this sec-
tion, we will first analyze the optimal estimation attack; then we
derive the lower bound of error variance (equivalent toh(E)) for
the estimation attack.

Assume the attacker knows a number of plaintext/perturbed vec-
tor pairs. Concretely, letUd×m be the knownm d-dimensional
original records(u1, . . . , um),m > d + 2 andui ∈ R

d, that in-
cluded+2 linearly independent vectors. LetWd+2×m be the cor-
respondingd+ 2-dimensional vectors(w1, . . . , wm), wi ∈ R

d+2.
Assume the noise dimension is drawn from a Gaussian distribution
with the mean valueµv and the varianceσ2

v.
We use the simpler version of RASP perturbation for easier ma-

nipulation, where thePreP step is not included. Note this exclu-
sion will not increase the difficulty of attack. Thus, the derived
lower bound will not be higher than the actual lower bound forthe
full version. Let the key matrixA decomposed into blocksA =
(A1, A2, A3), whereA1, A2 andA3 have block sizes(d+2)× d,
(d+ 2)× 1 and(d+ 2)× 1, respectively.

Let X andP be the plain and perturbed datasets, respectively.

Then, with theExt step, the extended data is





X
1

v



 where1 is

the row vector with all ‘1’ andv is a row vector with random pos-
itive values. According to the simpler version of RASP definition,
the relationship betweenX andP is

P = (A1, A2, A3)





X
1

v



 = A1X +A21+ A3v. (7)

whereA3v is a random noise matrix, whose the elements follows
a Gaussian distribution. At the first look, Eq. 7 is a standardaffine
transformation with a noise component.

We show that

PROPOSITION 3. the lower bound of error variance forj-th di-
mension, in terms of the Level 3 estimation attack, is largerthan
γ2
j σ

2
v, whereγj is thej-th element of(AT

1 A1)
−1AT

1 A3, andσ2
v is

the variance of the random noise dimension.

PROOF. Let v = µv + ṽ, whereṽ has mean value zero and the
same varianceσ2

v . Thus, the noise component can be decomposed
to A3µv + A3ṽ. As the constant componentA21+ A3µv can be
canceled by subtracting any pair of known plain/perturbed vectors
from X andP , respectively. Let’s denote the subtracted datasets
asX ′ andP ′. For easier manipulation, we transform the equation
to the canonical regression problem that has the “responses” X ′

on the left side of the equation, with the constant items havebeing
removed.

X ′ = (AT
1 A1)

−1AT
1 P

′ − (AT
1 A1)

−1AT
1 A3ṽ. (8)

Let’s consider the estimation onj-th dimension ofX ′ only. Let
x be thej-th row (i.e.,j-th dimension) ofX ′ to be estimated, and
β be thej-th row of (AT

1 A1)
−1AT

1 andǫ bej-th element of
−(AT

1 A1)
−1AT

1 A3ṽ. The equation is simplified to

x = βP ′ + ǫ, (9)

which is a canonical single-response regression problem. The stan-
dard method for the above problem is regression modeling. Ac-
cording to the Gauss-Markov theorem [24], the least square regres-
sion (LSR) method is also the minimum variance unbiased estima-
tor, i.e., no other estimator gives lower variance than LSR.

Since the noise componentǫ is not recoverable, the best the at-
tacker can do is to get the estimate ofβ: β̂, which can be done
with LSR and the known vector pairs inU andW , and then use
x̂ = β̂P ′ to estimatex. By doing so, we can derive the variance of
the estimation errorV ar(x− x̂) is

V ar(βP ′ + ǫ − x̂) = V ar(ǫ) + V ar((β − β̂)C′). (10)



The variance can be decomposed in such a way, because the noise
generation is independent of the data distribution. The result shows
that the variance of the estimation error is always larger than the
variance ofǫ, regardless how small theβ’s estimation error is.

Let’s look closer at the variance ofǫ to understand this relation-
ship. Letγj be thej-th element of the vector(AT

1 A1)
−1AT

1 A3

(note this is a column vector). It follows thatvar(ǫ) = γ2
jσ

2
v im-

mediately.

Therefore, the lower bound varianceV ar(ǫ) is co-determined
by the key matrixA and the variance of the original noisev. In
particular, in order to get satisfactory lower bound, we canchoose
or tuneA to makeγj sufficiently large.

5. SECURITY ANALYSIS ON PERTURBED
QUERIES

In this section, we briefly discuss the security of the perturbed
queries and show whether the attacker can utilize it to damage
the perturbed data. As described in Section 3.2, the perturbed
query pTQp < 0 is used to query the perturbed data. Letαj

represent thej-th row of the matrixA−1. We haveQ = (αj −
fj(a)αd+1)

Tαd+2. Since the parameterA and the functionsfj
are fixed for the perturbed dataset, this is a deterministic transfor-
mation. There are two questions related to the security analysis. (1)
How much is the query privacy preserved? (2) Does the transfor-
mation leak the information of perturbation parameters?

Under the Level 1 assumption, the attacker sees only the query
matrix Q. Without any other information, the attacker can gain
nothing from the query matrices. We skip the detailed discussion
here.

Level 2 Security and Distributional Attack. Since the query
transformation is deterministic, the same query is always mapped
to the same perturbed query. The attacker can keep track of the
frequencies of the perturbed queries. With the Level 2 knowledge
about the query distribution and counting a sufficiently large num-
ber of perturbed queries, the attacker can possibly build a mapping
between the original queries and the perturbed queries. Thus, the
privacy of some queries could be breached under the Level 2 ad-
versarial power.

Level 3 Security and Eigen-Structure Attack. We also show
that an eigen-structure based attack can work with the Level3
knowledge to determine which dimension the query is about. Thus,

PROPOSITION 4. with the Level 3 assumption only (excluding
Level 2), the perturbed queries are not indistinguishably secure.

PROOF. Let the known pairs of queries be
QS = {(q1, Q1), . . . , (qm, Qm)}, whereqi are original queries
andQi are perturbed ones. We show that we can determine which
dimension the new perturbed queryQ is about based on the known
pairs of queries. Each perturbed query is

Q = (αj − fj(a)αd+1)
Tαd+2 = Sj + fj(a)S, (11)

whereSj = αT
j αd+2 andS = αT

d+1αd+2. For different dimen-
sionsSj differs. Although the attackers cannot figure out the ex-
act values inSj andS, they are able to figure of the matrix struc-
ture (e.g., eigenvalue distribution and eigenvectors). Based on this
knowledge, they can determine whether a pair of queriesQi andQj

are about the same dimension or not. Thus, the indistinguishability
definition is not satisfied.

Assume two known queries,Q1 and Q2, are on thej-th di-
mension with different constantsa1 anda2, we getQ1 − Q2 =
(fj(a2) − fj(a1))S. Without knowing(fj(a2) − fj(a1)) andS

we can still identify the structure ofS via methods like eigenvalue
decomposition. Note that with different constantr, the eigenvec-
tors ofrS will not change. If two known queries, e.g.,Q1 andQ3,
are on different dimensions, e.g.,i-th andj-th, thenQ1 − Q3 =
Si − Sj + (fi(a2)− fj(a1))S, which has high probability having
different eigenvectors fromQ1 − Q2. Therefore, we can use the
following testing algorithm (Algorithm 1) to distinguish perturbed
queries.

Algorithm 1 Level 3 Query Distinguishing Attack.
1: Input: Q: the new perturbed query;QS: the known

plain/perturbed query pairs. There is at least two distinct
queries for some dimension, sayQ1 andQ2;

2: eigenvectorsE ← eigdecompose(Q1 −Q2);
3: for each dimension (i)do
4: Q(i) is the corresponding perturbed query;
5: eigenvectorsEi ← eigdecompose(Q −Q(i));
6: if Ei matchesE then
7: Q is about dimensioni;
8: break;
9: end if

10: end for

Parameter Security.Another important problem is whether the
Level 3 knowledge will enable attackers to crack the perturbation
parameters, i.e., discover the matrixA or some part of it. We infor-
mally show that it is impossible.Q = (αj − fj(a)αd+1)

Tαd+2

involves3(d + 2) + 1 unknowns. With a pair of queries in the
same dimension, sayQ1 andQ2, we haveQ1 − Q2 = (fj(a2) −
fj(a1))αd+1)

Tαd+2, reducing unknowns to2(d + 2) + 1. It is
clear that knowing more queries on the same dimension does not
help further reduce the number of unknowns. However, knowing
Q1, Q2, and even(fj(a2)− fj(a1)), is not enough for identifying
the vectorsαd+1 andαd+2. In fact, there are an infinite number of
solutions forαd+1 andαd+2, because

αd+1 =
(Q1 −Q2)αd+2

(fj(a2)− fj(a1))||αd+2||
, (12)

where||.|| means the vector length, as long asαd+1 andαd+2 are
linearly independent.

On the other hand, knowing queries of different dimensions does
not help reduce the unknowns. Thus, the quadratic query transfor-
mation helps protect the perturbation parameters.

6. RELATED WORK
The current research on secure computation in the cloud is still

embryonic, requiring a balanced study on both utility and secu-
rity. Fully homomorphic encryption [18, 19] in theory allows any
operation on encrypted data that can be traced back to equivalent
operations on the corresponding plaintexts. The current solutions
focus on the basic operations: addition and multiplication, build-
ing an application on which is too expensive to be practical even
for a simple application like encrypted keyword search. To achieve
better performance, some researchers have applied partially homo-
morphic encryption schemes such as Paillier encryption [32] to data
analysis [17] and matrix computation [37], which requires reveal-
ing partial data in the computation. However, the impact of the
revealed data on the security was not fully analyzed.

Several methods emphasis more on data utility and performance
than on security, such as Crypto-index [23, 25] and order-preserving
encryption (OPE) [3, 5]. The order preserving encryption (OPE)



[3] preserves the dimensional value order after encryption. Thus,
it can be used in most database operations, such as indexing and
range query. Boldyreva et al. [5, 6] has formally analyzed the secu-
rity of OPE. As widely understood, all OPE schemes are vulnerable
to distributional attacks, if the attackers are aware of thedistribu-
tion of the original data. Crypto-Index is based on column-wise
bucketization. It assigns a random ID to each bucket; the values in
the bucket are replaced with the bucket ID to generate the auxiliary
data for indexing. However, the bucketization scheme leaksa lot of
information. Thus, a bucket-diffusion scheme [25] was proposed
to introduce noise records into the results to improve the security,
which, however, has to sacrifice the precision of query results. Se-
cure keyword search on encrypted documents [36, 21, 20, 7, 11]
is another cluster of utility preserving encryption methods. They
allow the server to scan each encrypted document in the database
and find the documents containing the keyword. There have been
rigid security analysis on this line of research [20, 11].

In the statistical database [12] setting, the trusted server (or the
data owner) hosts sensitive databases and serves queries for possi-
bly malicious users, who may want to figure out private information
by submitting carefully designed queries. There are two settings:
interactive and non-interactive. Traditional statistical database re-
search focuses on the interactive setting and inference attacks [12].
Recent studies emphasis on the non-interactive setting, i.e., releas-
ing micro data based on privacy definitions such ask-anonymity,l-
diversity,t-closeness, and other improved definitions [16]. Among
these definitions, differential privacy [13] has been a significant one
for both interactive and non-interactive settings. Applications of
statistical database are very similar to those we discussedfor the
RASP perturbation. However, their settings are totally different. In
the cloud setting, the server in the cloud is untrusted and the users
are authorized trusted users. The concerns are on the data security
and query privacy.

7. CONCLUSION AND FUTURE WORK
The RASP perturbation technique was proposed to conduct half-

space queries securely and efficiently on the data hosted in the
cloud. The efficient range query processing algorithm has been pro-
posed and evaluated in Chen et al. [9], but its security is notfully
understood yet. In this paper we carefully analyze the security of
RASP perturbed data and queries under the three-level adversarial
assumptions. The initial analysis shows that the RASP perturbation
does not satisfy the strong indistinguishability definition on Level
2 and 3 assumptions. We notice that the strong indistinguishability
definition might not be necessary for the cloud computing setting
and the perturbation techniques in general, where estimation-based
attacks are the typical threats. Thus, we introduce a weakened def-
inition on security. This definition is based on statisticallearning
theory and information theory, taking the Level 2 and 3 of adversar-
ial knowledge into account. We then analyze a typical estimation
attack based on the Level 3 assumption, the regression attack, under
the new security definition. We will continue our study on thesecu-
rity of RASP perturbed data and queries, and explore more applica-
tions of the RASP perturbation for secure data intensive computing
in the cloud.
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