
Indifferentiability of the Hash Algorithm BLAKE

Donghoon Chang1, Mridul Nandi2, and Moti Yung3

1 National Institute of Standards and Technology, USA
pointchang@gmail.com

2 Indian Statistical Institute, Kolkata, India
mridul.nandi@gmail.com

3 Google Inc. and Department of Computer Science, Columbia University, New York, USA
my123@columbia.edu

Abstract. The hash algorithm BLAKE, one of the SHA-3 finalists, was designed by
Aumasson, Henzen, Meier, and Phan. Unlike other SHA-3 finalists, there is no known
indifferentiable security proof on BLAKE. In this paper, we provide the indifferentiable

security proof on BLAKE with the bound O(σ2

2n−3), where σ is the total number of blocks
of queries, and n is the hash output size.
Key Words :Indifferentiability, BLAKE, Ideal cipher, Random oracle.

1 Introduction

BLAKE [2], designed by Aumasson, Henzen, Meier, and Phan, is the one of the five SHA-3
finalists. Indifferentiability is one of well known security notions of hash functions, because it
shows how close a hash function behave as a random oracle, under the assumption that its
underlying function such as a permutation, a compression function, or a block cipher is ideal,
where ‘ideal’ informally means that the underlying function is chosen randomly and any attacker
is allowed only to know input-output pairs of the function by making queries without knowing
the internal structure of the function. So, if a hash function based on its ideal underlying function
is indifferentiable from a random oracle, there exists no structural weakness of the hash function
as long as the attacker does not use any property of the internal structure of the underlying
function. Except for BLAKE, in cases of the other four final SHA-3 candidates, Grøstl, JH,
Keccak, and Skein, their indifferentiable securities have been already proven even though some
of indifferentiable security bound are not tight, where ‘tight’ means that there is a possible room
that the indifferentiable security bound of a hash function may be further improved. In case of
BLAKE, its designers wrote in their submission that “BLAKE is indifferentiable from a random
oracle when its compression function is assumed ideal” [2]. However, in this paper, we will show
that the compression function of BLAKE cannot be assumed ideal because there exists a simple
and efficient attack of differentiating the compression function from a fixed-input-length (FIL)
random oracle, under the assumption that the block cipher on which the compression function is
based is ideal. And we will provide an indifferentiable security proof of BLAKE, not that of the
compression function of BLAKE. This paper is organized as follows; in Section 2, we describe
the description of BLAKE, and all the necessary notions in this paper. In Section 3, we provide
the indifferentiable analysis of the compression function of BLAKE. In Section 4, we give a
direct indifferentiable security proof on BLAKE with a birth day security bound, where we
show that BLAKE is indifferentiable from a variable-input-length (VIL) random oracle, under
the assumption that its underlying block cipher is ideal. Finally, in Section 5, we conclude.

2 Preliminary

Let (k, m)-block cipher be a block cipher with the k-bit key size and m-bit block size.

2.1 Description of BLAKE

BLAKE hash algorithm has four versions according to each hash output size; BLAKE-224,
BLAKE-256, BLAKE-384, and BLAKE-512, where BLAKE-n has the n-bit hash output size.
Since BLAKE-224 and BLAKE-384 are the same as BLAKE-256 and BLAKE 512 except the
initial value and the final truncation, respectively. In this paper, we only focus on indifferen-
tiable security proofs on BLAKE-256 and BLAKE-512, because the indifferentiable security
proofs on BLAKE-224 and BLAKE-384 can be obtained directly from the indifferentiable se-
curity proof on BLAKE-256 and BLAKE-512 with the same security bounds, respectively.

Compression Functions of BLAKE-256 and BLAKE-512. Let Fn be the compression
function of BLAKE-n, where the input and output sizes of Fn are ((3 + 3

4
) · n)-bit and n-bit,

respectively. The input of Fn consists of four components, a chaining value h, the message
block m, a salt s, and a counter t. In case of BLAKE-256, |h| = 256, |m| = 512, |s| = 128,
and |t| = 64, where |x| is the bit size of x. In case of BLAKE-512, |h| = 512, |m| = 1024,
|s| = 256, and |t| = 128. Let h = h0||...||h7, m = m0||...||m15, s = s0||...||s3, and t = t0||t1.
There are three parts of Fn, initialization, round functions, and finalization. Let f2n(·, ·) be the
underlying (2n, 2n)-block cipher of Fn, where the first parameter is for a 2n-bit key, and the
second parameter is for a 2n-bit plaintext, which will not described in this paper because we
don’t need the internal structure of the block cipher for indifferentiable security proof. More
precisely, Fn(h, m, s, t) = h′ is defined as follows, where h′ = h′

0||...||h
′
7 is the n-bit output of

the compression function Fn.

In
it
ia
li
z
a
ti
o
n

F
in
a
li
z
a
ti
o
n

f
2nh

m

s

t

h’

F
n

Fig. 1. Compression Function of BLAKE.

Fn(h, m, s, t) = h′ is defined as following three steps:

Step 1. Initialization(h, s, t) = v:

v =









v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15









=









h0 h1 h2 h3

h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3

t0 ⊕ c4 t0 ⊕ c5 t1 ⊕ c6 t1 ⊕ c7









Step 2. Computation by a (2n, 2n)-Block Cipher f2n(m, v) = v′:

Step 3. Finalization(h, s, v′) = h′:
h′

0 = h0 ⊕ s0 ⊕ v′0 ⊕ v′8 (1)
h′

1 = h1 ⊕ s1 ⊕ v′1 ⊕ v′9 (2)
h′

2 = h2 ⊕ s2 ⊕ v′2 ⊕ v′10 (3)
h′

3 = h3 ⊕ s3 ⊕ v′3 ⊕ v′11 (4)
h′

4 = h4 ⊕ s0 ⊕ v′4 ⊕ v′12 (5)
h′

5 = h5 ⊕ s1 ⊕ v′5 ⊕ v′13 (6)
h′

6 = h6 ⊕ s2 ⊕ v′6 ⊕ v′14 (7)
h′

7 = h7 ⊕ s3 ⊕ v′7 ⊕ v′15 (8)

Domain Extension of BLAKE. BLAKE follows the HAIFA iteration mode [8], that is
a prefix-free Merkle-Damg̊ard construction whose padding rule is prefix-free. We say that a
padding function g is prefix-free if for any x and x′ (x 6= x′) g(x) is not a prefix of g(x′). In
this paper, we only need the information that the domain extension of BLAKE is a prefix-free
Merkle-Damg̊ard construction.

2.2 Indifferentiable Security Notion and Its related Results

We describe indifferentiability, and its application in the concrete security treatment.

Indifferentiability(Concrete Version) The security notion of indifferentiability was intro-
duced by Maurer et al. in TCC 2004 [13]. In Crypto 2005, Coron et al. were the first to
adopt it as a security notion for hash functions [11]. Here, we only consider the security no-
tion in this context of hash functions. Let F be a hash function based on an ideal prim-
itive f and R be a VIL random oracle, and S be a simulator with access to R and its
query-memory-time complexity is defined by (qS , mS , tS , lS , σS), where lS is the maximum
length of query and σS is the total block length of all the queries. Then, we say that F f

is (qS , mS, tS , lS , σS , qD, mD, tD, lD, σD, ǫ)-indifferentiable from R if for any adversary D with
the query-memory-time complexity (qD, mD, tD, lD, σD), where lD is the maximum length of
query and σD is the total block length of all the queries, there exists a simulator S with the
query-memory-time complexity (qS , mS , tS , lS , σS) as follows:

Advindiff
F f ,SR(D) = |Pr[DF,f = 1]− Pr[DR,S = 1]| ≤ ǫ.

We say F is indifferentiable from R when ǫ is small and all the complexities involved in the
security can be described as a polynomial over q.

Sponge Construction [3]. There exists a simulator such that the Sponge Construction is (O(q),

O(q), O(lq), l, O(lq), q, mD, tD, l, σ, O(σ2

2c))-indifferentiable from F , where c is the size of
capacity of the Sponge Construction.

Fig. 2. Indifferentiability Securtiy Notion.

prefix-free MD Construction [11, 9]. There exists a simulator such that prefix-free MD is (O(q),

O(q), O(lq), l, O(lq), q, mD, tD, l, σ, O(σ2

2n))-indifferentiable from F .

chopped MD Construction [10]. There exists a simulator such that chopped MD is (O(q), O(q),

O(lq), l, lq, q, mD, tD, l, σ, O(nq
2n + σ2

22n))-indifferentiable from F , where n is the hash output
size and the chopped bit size is also n.

2.3 Implication of Indifferentiable Security Notion

In this section, we revisit previous results of [13, 11]. There are many protocols or algorithms
proved in the VIL random oracle model. What if we replace the VIL random oracle with the
above indifferentiable hash domain extensions? If we do that, there is security loss for change.
Here, we want to talk more in detail about security loss. We define two worlds.

World 0: Let C be a cryptosystem based on a function oracle R. Let A′ be an adversary con-
nected to C and R.

World 1: Let C be a cryptosystem based on a function oracle F based on its underlying primitive
oracle f . Let A be an adversary connected to f , F .

Let E be an environment which is any kind of efficient system connected to C and A′ or C

and A. Fig. 3 shows the relation among those parties in above two worlds. We say that the two
worlds are indistinguishable if for any efficient adversary A there exists an efficient adversary
A′ such that for any E the following holds:

|Pr[ECF ,AC,f,E

= 1]− Pr[ECR,A′C,R,E

= 1] = negl

In other words, a system C based on F in the f -model is as secure as the system C in the
R-model is with small security loss [13, 11]. In this paper, we consider that R is a VIL random
oracle and f is a FIL random oracle or an ideal permutation and F is a hash domain extension
based on f .

Now, we want to connect the above security notion with the indifferentiability. In case
of indifferentiability of hash function, we need to define a simulator S simulating a underlying
primitive of hash function with access to the VIL random oracle. Once we have such a simulator
S, we can construct A′ from A as follows and can prove the following theorem as shown in [11].

Fig. 3. World 0 and World 1

Theorem 1. [13, 11] Let C be a cryptosystem with oracle access to an ideal primitive F . Let F

be an algorithm such that F based on f is indifferentiable from the VIL random oracle R. Then
the cryptosystem C is at least as secure in the f -model with algorithm F as in the R-model.

Proof of [13, 11]. Let S be a simulator making that F is indifferentiable from R. Let A be an
adversary attacking the any system based on cryptosystem C. Then, we can construct A′ from
A and S as shown in Fig. 4 such that the two worlds are indistinguishable.

Fig. 4. A′ construction based on a simulator S of indifferentiable security proof

3 Indifferentiable Analysis on the compression function of BLAKE

In this section, we give indifferentiable security analysis on the compression function of BLAKE.
The padding rule of BLAKE follows the HAIFA iteration mode [8], which is prefix-free. If
the compression function behaves as a FIL random oracle, then the whole hash function also
behaves as a VIL random oracle [11, 9]. In the submission document of BLAKE for the final

round [2], designers of BLAKE said “BLAKE is indifferentiable from a random oracle when its
compression function is assumed ideal”. But, in this section, we give a negative result on the
assumption that the compression function is ideal. More precisely, we can find a non-randomness
relation between an input and its output of the compression function based on an ideal cipher
with 264 or 2128 query complexity, where the output size is 256-bit or 512-bit, respectively. On
the other hand, there is no way to find such a non-randomness only with 264 or 2128 query
complexity in case of the FIL random oracle model whose output size is 256-bit or 512-bit,
respectively. More in detail, due to this non-randomness of the compression function, from the
perspective of simulator’s query complexity in the indifferentiable security proof, there is no
way to design a simulator of query complexity O(q4) to guarantee the indifferentiability of the
compression function, which means that there is at least 3q-bit security loss. So, it is important
to directly give an indifferentiable security proof for the full BLAKE hash algorithm with a
simulator of small query complexity, which will be shown in the next section. In this section,
we give a detailed indifferentiable analysis on the compression function of BLAKE. For the
indifferentiable security analysis, it is assumed that f2n(m, v) in the compression function of
BLAKE is an (2n, 2n)-block ideal cipher, where m and v correspond to a 2n-bit secret key and
a 2n-bit plaintext.

Theorem 2. Let F256 and F512 be the compression functions of BLAKE-256 and BLAKE-512,
where the input and output sizes of Fn are ((3 + 3

4
) · n)-bit and n-bit, respectively. Let f2n be

the underlying primitive of Fn which is an (2n, 2n)-block ideal cipher. Then, in order to show
that Fn is indifferentiable from a FIL random oracle Rn we need a simulator of at least query
complexity q4, where Rn is a FIL random oracle with ((3 + 3

4
) · n)-bit input and n-bit output,

where q is the maximum number of queries by any indifferentiability adversary A.

Proof. In order to prove the theorem, firstly we describe the following characteristics of the
compression function Fn of BLAKE-n.

Characteristic 1. Given a (m, v′), the probability that (i) f−1
2n (m, v′) = v, (ii) v12⊕ v13 = c4⊕ c5,

and (iii) v14 ⊕ v15 = c6 ⊕ c7 (according to Initialization) is between 27n/4−q
22n−q and 27n/4

22n−q , where
ci’s are constants defined in BLAKE-n and q is the maximum number of queries. This is clear
because f2n is the ideal cipher. For n=256 and n = 512, the probabilities are about 2−64 and
2−128, respectively. Once the three input-output relations (i), (ii), and (iii) of f2n are satisfied,
the relations of f2n uniquely determines an input-output pair of Fn.

Characteristic 2. Given a v, for any (h, m, s, t), the probability that Rn(h, m, s, t) = h′ and
(1)∼(8) in the Finalization hold is 2−n. This is clear because Rn is a FIL random oracle with
n-bit output.

Then, based on the above two characteristics, given any simulator S, we can construct an
indifferentiable adversary A as follows.

algorithm AO1,O2,O3 , where (O1, O2, O3) is (Fn, f2n, f−1
2n) or (Rn, S, S−1).

100 Make a random O3-query (m, v′) repeatedly until the following holds.
101 O3(m, v′) = v and v12 ⊕ v13 = c4 ⊕ c5, and v14 ⊕ v15 = c6 ⊕ c7.
200 Make O1-query (h, m, s, t) such that Initialization(h, m, s, t) = v

300 If O1(h, m, s, t) = h′ and (h, m, s, t, h′) satisfy the equations (1)∼(8),
then output 1 otherwise output 0.

In case that (O1, O2, O3) is (Fn, f2n, f−1
2n), it is expected that A outputs 1 with at most 2n/4

queries to O3 and one query to O1. On the other hand, in case that (O1, O2, O3) is (Rn, S, S−1),
based on Characteristic 2, any simulator S needs at most 2n queries to Rn to correctly respond
h′ in line 300 such that the equations (1)∼(8) hold. This means that for adversary of q = 2n/4

queries the simulator needs at least complexity q4(= 2n).

4 Direct Indifferentiable Security Proof on BLAKE-n

In this section, it is shown that we can prove the indifferentiable security of BLAKE-n with a
simulator of query complexity O(q) and time complexity O(lq), where l is the maximum length
of queries and q is the maximum number of queries of any adversary. Let H be the BLAKE-n
based on the (2n, 2n)-block ideal cipher f2n and Rn be a VIL random oracle with n-bit output.
Also, we define a simulator S as shown in Fig. 5.

Explanation on Notations in Fig. 5 ∼ 10: Let Fn be the compression function of the
BLAKE-n. Let pad be the padding function of the BLAKE-n. pad has the padding rule of
HAIFA framework [8], which is prefix-free. For a message M , pad(M) = N = N1||....||Nt,
where Ni = (mi, si, ti) and mi is the i-th message block, si is i-th salt, and ti is i-th counter.
Let h0 be the initial value of the BLAKE-n. We define a directed graph G in the simulator S.
We write h0 →N1||N2

h2 ∈ G if there exists a h1 such that h0 →N1
h1 ∈ G and h1 →N2

h2 ∈ G.
Let X be the set of all the query-response pairs (m, v, v′) of an oracle O such that Om(v) = v′.
For a new O-query (m, v) or a new O−1-query (m, v′), ∃ (m, v, v′) ∈ X means that the new
query is a repeated one.

Theorem 3. Let H be the BLAKE-n hash algorithm with n-bit hash output based on the
(2n, 2n)-block ideal cipher f2n. Then, H is (O(q), O(q), O(lq), l, O(lq), q, mD, tD, l, σ,

O(σ2

2n−3))-indifferentiable from a VIL random oracle Rn with n-bit output, where the simulator
S is defined in Fig. 5.

Proof. In Fig. 5, we exactly describe what (H, f2n, f−1
2n) and (Rn, S, S−1) are. Now, we want

to prove how closely they are to each other by using indifferentiable security notion. In this
paper, we follow the code-based game-playing Proof technique [6].

From the following differences between Games, we can know that for any adversary D with
the query-memory-time complexity (q, mD, tD, l, σ) the following inequality holds:

Advindiff
Hf2n ,SRn (D) = |Pr[DH,f2n,f−1

2n = 1]− Pr[DRn,S,S−1

= 1]| ≤
4 · σ2

22n+1
+

16 · σ2

2n+1
≈

σ2

2n−3
.

Complexity of the Simulator S. Now we want to show that the complexity of S is defined by
(O(q), O(q), O(lq), l, O(lq)) for for any adversary D with the query-memory-time complexity (q,
mD, tD, l, σ). As shown in Fig. 5, the simulator make a query to the VIL random oracle Rn only
when the S-query is requested. So, the maximum number of queries of any adversary D is q, so
that of the simulator is also O(q). In case of memory size, the simulator S should keep the graph
which has the maximum number of edges O(q). In case of time complexity of the simulator S,
S need to backwardly track all the way to the initial value h0 in worse case. Since the maximum
length of queries is l, so the time complexity is bounded by O(lq). The remaining values l and

(H,f2n, f−1
2n) (Rn, S, S−1)

Initialize : the directed graph G is initialized as {h0 →ε h0}, where h0

is the initial value of H and ε is the empty string.
100 On H-query M , 10000 On Rn-query M ,
110 N := pad(M) = N1||....||Nt . 11000 h = Rn(M).
120 for i=1 to t 12000 return h.

121 hi=F f2n
n (hi−1, Ni) 20000 On S-query (m,v),

130 return ht 21000 If (m,v) is a repetition query, return its previous output.
200 On f2n-query (m,v), 22000 If ∃ h,s,t s.t. v=Initialization(h, s, t), then
210 v′ = f2n(m,v). 22100 if ∃ N, M s.t. pad(M) = N ||(m, s, t), h0 →N h in G,
220 return v′. 22110 then h′ = Rn(M), add h→(m,s,t) h′ to G,
300 On f−1

2n -query (m, v′), 22111 v′=Out(h, s, h′), and return v′.

310 v = f−1
2n (m, v′). 22120 h′ $

← {0, 1}n, add h→(m,s,t) h′ to G,
320 return v. 22121 v′=Out(h, s, h′), and return v′.

23000 v′ $
← {0, 1}2n and return v′.

30000 On S−1-query (m, v′),
31000 If (m,v) is a repetition query, return its previous output.

32000 v
$
← {0, 1}2n and return v.

40000 Subroutine Out-query (h, s, h′),

41000 temp
$
← {0, 1}n.

42000 v′

0|| · · · ||v
′

7 := temp.
43000 v′

8 ∼ v′

15 are uniquely obtained from Finalization(h, s, v′) = h′.
44000 return v′, where v′ = v′

0|| · · · ||v
′

15.

Fig. 5. (H,f2n, f−1
2n) and (Rn, S, S−1): G is the directed graph maintained by the simulator S.

O(lq) for the maximum length of each query and the total length of queries made by S are clear.

G0 perfectly simulates (H, f2n, f−1
2n). This part is clear so we omit the proof.

G0 and G1 are identical. In Game G0, in line 2210 we replace “v′
$
← {0, 1}2n” with

“h′ $
← {0, 1}n, and compute v′=Out(h, s, h′)” in Game G1. In Game G0, v′ is randomly cho-

sen. On the other hand, in Game G1, the half of v′ is randomly chosen in the subroutine Out,

and then the other half of v′ is also randomly chosen by h′ $
← {0, 1}n. Therefore, There is no

difference between those two games. (For example, let A, B, and C be n-bit strings such that
A ⊕ B = C. Let’s consider the following two cases. 1) Randomly choose A and B, and then
disclose (A, B, C). 2) Randomly choose A and C, and then disclose (A, B, C). In this two cases,
the distributions of (A, B, C) are same regardless of the order of random selection.)

G1 and G2 are identical-until-bad. This is clear because all the codes implemented by
Games G1 and G2 are same unless bad events occur. Since all the bad events are collision
events, it is clear that Pr[bad] ≤ 3 · σ2

22n+1 , where σ is the total block length of queries made by
any indifferentiable adversary and the block size of the ideal cipher f2n is 2n-bit.

G2 and G3 are identical. This is clear because two games behave identically.

G3 and G4 are identical-until-bad. This is clear because all the codes implemented by
Games G3 and G4 are same unless bad events occur. Since all the bad events are chaining

variable-collision events, it is clear that Pr[bad] ≤ 2 · 4·σ2

2n+1 , where σ is the total block length of
queries made by any indifferentiable adversary and the block size of the ideal cipher f2n is 2n-bit.

G4 and G5 are identical. This is clear because two games behave identically.

G5 and G6 are identical-until-bad. This is clear because all the codes implemented by
Games G5 and G6 are same unless bad events occur. Since all the bad events are collision
events, it is clear that Pr[bad] ≤ 4·σ2

2n+1 , where σ is the total block length of queries made by any
indifferentiable adversary and the block size of the ideal cipher f2n is 2n-bit.

G6 and G7 are identical. In Game G6, in line 2211 we replace “h′ $
← {0, 1}n” with “h′ =

O1(M)” in Game G7. In Game G6, there is no collision of values of chaining variable so there is
no dependency between internal chaining values generated by O2 and O3 and the final output
values generated by O1. So, the replacement of G7 doesn’t impact the behavior of G6.

G7 and G8 are identical-until-bad. This is clear because all the codes implemented by
Games G7 and G8 are same unless bad events occur. Since all the bad events are collision
events, it is clear that Pr[bad] ≤ 4·σ2

2n+1 , where σ is the total block length of queries made by any
indifferentiable adversary and the block size of the ideal cipher f2n is 2n-bit.

G8 perfectly simulates (Rn, S, S−1). This part is clear so we omit the proof.

Game G0

Initialize : X = ∅ and h0 is the initial value.
1000 On O1-query M ,
1100 N := pad(M) = N1||....||Nt .
1200 for i=1 to t

1210 hi=F O2
n (hi−1, Ni), where Fn is the compression function based on O2.

1300 return ht

2000 On O2-query (m, v), // This oracle implements the ideal cipher query f2n(m,v).
2100 if (m,v, v′) ∈ X, then return v′. // (m, v, v′) ∈ X means (m,v) is a repeated query.
2200 if ∃ a (h, s, t) such that v=Initialization(h, s, t), then

2210 v′ $
← {0, 1}2n.

2220 if ∃ v∗ s.t. (m,v∗, v′) ∈ X, then v′ $
← {0, 1}2n \ {t : (m, ∗, t) ∈ X}.

2230 X = X ∪ {(m, v, v′)} and return v′.

2300 v′ $
← {0, 1}2n.

2400 if ∃ v∗ s.t. (m, v∗, v′) ∈ X, then v′ $
← {0, 1}2n \ {t : (m, ∗, t) ∈ X}.

2500 X = X ∪ {(m, v, v′)}, and return v′.
3000 On O3-query (m, v′), // this oracle implements the ideal cipher inverse query f−1

2n (m,v′).
3100 if (m,v, v′) ∈ X, then return v. // (m,v, v′) ∈ X means (m, v′) is a repeated query.

3200 v
$
← {0, 1}2n.

3300 if ∃ v∗ s.t. (m, v, v∗) ∈ X, then v′ $
← {0, 1}2n \ {t : (m, t, ∗) ∈ X}.

3400 X = X ∪ {(m, v, v′)}, and return v.

Fig. 6. G0 perfectly simulates (H,f2n, f−1
2n).

Game G1 and G2

Initialize : X = ∅ and h0 is the initial value.
1000 On O1-query M ,
1100 N := pad(M) = N1||....||Nt .
1200 for i=1 to t

1210 hi=F O2
n (hi−1, Ni), where Fn is the compression function based on O2.

1300 return ht

2000 On O2-query (m, v), // This oracle implements the ideal cipher query f2n(m,v).
2100 if (m,v, v′) ∈ X, then return v′. // (m, v, v′) ∈ X means (m,v) is a repeated query.
2200 if ∃ a (h, s, t) such that v=Initialization(h, s, t), then // v′ will be chosen through a random h′.

2210 h′ $
← {0, 1}n, and compute v′=Out(h, s, h′).

2220 if ∃ v∗ s.t. (m,v∗, v′) ∈ X, then bad← true, and v′ $
← {0, 1}2n \ {t : (m, ∗, t) ∈ X} .

2230 X = X ∪ {(m, v, v′)} and return v′.

2300 v′ $
← {0, 1}2n.

2400 if ∃ v∗ s.t. (m, v∗, v′) ∈ X, then bad← true, and v′ $
← {0, 1}2n \ {t : (m, ∗, t) ∈ X} .

2500 X = X ∪ {(m, v, v′)}, and return v′.
3000 On O3-query (m, v′), // this oracle implements the ideal cipher inverse query f−1

2n (m,v′).
3100 if (m,v, v′) ∈ X, then return v. // (m,v, v′) ∈ X means (m, v′) is a repeated query.

3200 v
$
← {0, 1}2n.

3300 if ∃ v∗ s.t. (m, v, v∗) ∈ X, then bad← true, and v′ $
← {0, 1}2n \ {t : (m, t, ∗) ∈ X} .

3400 X = X ∪ {(m, v, v′)}, and return v.
4000 Subroutine Out-query (h, s, h′),

4100 temp
$
← {0, 1}n.

4200 v′

0|| · · · ||v
′

7 := temp.
4300 v′

8 ∼ v′

15 are uniquely obtained from Finalization(h, s, v′) = h′.
4400 return v′, where v′ = v′

0|| · · · ||v
′

15.

Fig. 7. G1 executes with boxed statements whereas G2 executes without these. G1 and G2 are identical-
until-bad. G1 perfectly simulates G0.

5 Conclusion

In this paper we have shown that BLAKE is indifferentiable from a VIL random oracle with a
birthday security bound, under the assumption that its underlying block cipher is ideal. Our
bound is optimal because the output sizes of BLAKE compression and hash functions are same
so that we can easily distinguish BLAKE from a VIL random oracle with a birthday bound. It
is still open to see if there exists a better indifferentiable attack on the compression function of
BLAKE.

References

1. E. Andreeva, B. Mennink, and B. Preneel, On the Indifferentiability of the Grøstl Hash Function,
SCN’10, LNCS 6280, Springer-Verlag, pp. 88-105, 2010.

2. J. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan, SHA-3 proposal BLAKE- version 1.3,

December 16, 2010, http://131002.net/blake/blake.pdf.

Game G3 and G4

Initialize : X = ∅, Q = {h0} and h0 is the initial value.
1000 On O1-query M ,
1100 N := pad(M) = N1||....||Nt .
1200 for i=1 to t

1210 hi=F O2
n (hi−1, Ni), where Fn is the compression function based on O2.

1300 return ht

2000 On O2-query (m, v), // This oracle implements the ideal cipher query f2n(m,v).
2100 if (m,v, v′) ∈ X, then return v′. // (m, v, v′) ∈ X means (m,v) is a repeated query.
2200 if ∃ a (h, s, t) such that v=Initialization(h, s, t), then //v′ will be chosen through a random h′.

2210 h′ $
← {0, 1}n, and compute v′=Out(h, s, h′).

2220 if h′ ∈ Q ∪ {h}, then bad← true, and h′ $
← {0, 1}n \Q ∪ {h} and compute v′=Out(h, s, h′) .

2230 Q = Q ∪ {h, h′}.
2240 X = X ∪ {(m, v, v′)} and return v′.

2300 v′ $
← {0, 1}2n.

2400 X = X ∪ {(m, v, v′)}, and return v′.
3000 On O3-query (m, v′), /* this oracle implements the ideal cipher inverse query f−1

2n (m,v′).*/
3100 if (m,v, v′) ∈ X, then return v. // (m,v, v′) ∈ X means (m, v′) is a repeated query.

3200 v
$
← {0, 1}2n.

3300 if ∃ a (h, s, t) such that v=Initialization(h, s, t) and h ∈ Q,

then bad← true, and h
$
← {0, 1}n \Q and v:=Initialization(h, s, t) and Q = Q ∪ {h} .

3400 X = X ∪ {(m, v, v′)}, and return v.
4000 Subroutine Out-query (h, s, h′),

4100 temp
$
← {0, 1}n.

4200 v′

0|| · · · ||v
′

7 := temp.
4300 v′

8 ∼ v′

15 are uniquely obtained from Finalization(h, s, v′) = h′.
4400 return v′, where v′ = v′

0|| · · · ||v
′

15.

Fig. 8. G4 executes with boxed statements whereas G3 executes without these. G3 and G4 are identical-
until-bad. G3 perfectly simulates G2.

3. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, On the Indifferentiability of the Sponge

Construction, Advances in Cryptology – EUROCRYPT’08, LNCS 4965, Springer-Verlag, pp. 181-
197, 2008.

4. M. Bellare, T. Kohno, S. Lucks, N. Ferguson, B. Schneier, D. Whiting, J. Callas, J. Walker, Provable

Security Support for the Skein Hash Family, http://www.skein-hash.info/sites/default/files/skein-
proofs.pdf.

5. M. Bellare and T. Ristenpart, Multi-Property-Preserving Hash Domain Extension and the EMD

Transform, Advances in Cryptology – ASIACRYPT’06, LNCS 4284, Springer-Verlag, pp. 299-314,
2006.

6. M. Bellare and P. Rogaway, The Security of Triple Encryption and a Framework for Code-Based

Game-Playing Proofs, Advances in Cryptology – EUROCRYPT’06, LNCS 4004, Springer-Verlag,
pp. 409-426, 2006.

7. R. Bhattacharyya, A. Mandal, and M. Nandi, Security Analysis of the Mode of JH Hash Function,
FSE’10, LNCS 6147, Springer-Verlag, pp. 168-191, 2010.

8. E. Biham and O. Dunkelman, A Framework for Iterative Hash Functions - HAIFA, Cryptology
ePrint Archive: Report 2007/278.

9. D. Chang, S. Lee, M. Nandi, and M. Yung, Indifferentiable Security Analysis of Popular Hash Func-

tions with Prefix-Free Padding, Advances in Cryptology – ASIACRYPT’06, LNCS 4284, Springer-
Verlag, pp. 283-298, 2006.

10. D. Chang and M. Nandi, Improved indifferentiability security analysis of chopMD Hash Function,
FSE’08, LNCS 5086, Springer-Verlag, pp. 429-443, 2008.

11. J. S. Coron, Y. Dodis, C. Malinaud, and P. Puniya, Merkle-Damgard Revisited: How to Construct a

Hash Function, Advances in Cryptology – CRYPTO’05, LNCS 3621, Springer-Verlag, pp. 430-448,
2005.

12. S. Hirose, J. H. Park, and A. Yun, A Simple Variant of the Merkle-Damg̊ard Scheme with a

Permutation, Advances in Cryptology – ASIACRYPT’07, LNCS 4833, Springer-Verlag, pp. 113-
129, 2007.

13. U. Maurer, R. Renner, and C. Holenstein, Indifferentiability, Impossibility Results on Reductions,

and Applications to the Random Oracle Methodology, TCC’04, , LNCS 2951, Springer-Verlag, pp.
21-39, 2004.

14. T. Ristenpart, H. Shacham, and T. Shrimpton, Careful with Composition: Limitations of the In-

differentiability Framework, Advances in Cryptology – EUROCRYPT’11, LNCS 6632, Springer-
Verlag, pp. 487-506, 2001.

15. T. Ristenpart, H. Shacham, and T. Shrimpton, Careful with Composition: Limitations of Indiffer-

entiability and Universal Composability, http://eprint.iacr.org/2011/339.pdf.

Game G5 and G6

Initialize : X = ∅, Q = {h0} and h0 is the initial value.
1000 On O1-query M ,
1100 N := pad(M) = N1||....||Nt .
1200 for i=1 to t

1210 hi=F O2
n (hi−1, Ni), where Fn is the compression function based on O2.

1300 return ht

2000 On O2-query (m, v), // This oracle implements the ideal cipher query f2n(m,v).
2100 if (m,v, v′) ∈ X, then return v′. // (m, v, v′) ∈ X means (m,v) is a repeated query.
2200 if ∃ a (h, s, t) such that v=Initialization(h, s, t), then //v′ will be chosen through a random h′.
2210 if ∃ M, N such that pad(M) = N ||(m, s, t) and h0 →N h in G, then

/* Due to prefix-freeness of pad it is possible to check if (m, v) is the final block query. */

2211 h′ $
← {0, 1}n, and compute v′=Out(h, s, h′).

2212 if h′ ∈ Q∪{h}, then bad← true, and h′ $
← {0, 1}n \Q ∪ {h} and compute v′=Out(h, s, h′) .

2213 Q = Q ∪ {h, h′} and h→(m,s,t) h′ to G.
2214 X = X ∪ {(m, v, v′)} and return v′.

2210 h′ $
← {0, 1}n, and compute v′=Out(h, s, h′).

2220 if h′ ∈ Q ∪ {h}, then h′ $
← {0, 1}n \Q ∪ {h} and compute v′=Out(h, s, h′).

2230 Q = Q ∪ {h, h′}.
2240 X = X ∪ {(m, v, v′)} and return v′.

2300 v′ $
← {0, 1}2n.

2400 X = X ∪ {(m, v, v′)}, and return v′.
3000 On O3-query (m, v′), /* this oracle implements the ideal cipher inverse query f−1

2n (m,v′).*/
3100 if (m,v, v′) ∈ X, then return v. // (m,v, v′) ∈ X means (m, v′) is a repeated query.

3200 v
$
← {0, 1}2n.

3300 if ∃ a (h, s, t) such that v=Initialization(h, s, t) and h ∈ Q,

then h
$
← {0, 1}n \Q and v:=Initialization(h, s, t) and Q = Q ∪ {h}.

3400 X = X ∪ {(m, v, v′)}, and return v.
4000 Subroutine Out-query (h, s, h′),

4100 temp
$
← {0, 1}n.

4200 v′

0|| · · · ||v
′

7 := temp.
4300 v′

8 ∼ v′

15 are uniquely obtained from Finalization(h, s, v′) = h′.
4400 return v′, where v′ = v′

0|| · · · ||v
′

15.

Fig. 9. G5 executes with boxed statements whereas G6 executes without these. G5 and G6 are identical-
until-bad. G5 perfectly simulates G4.

Game G7 and G8

Initialize : X = ∅, the directed graph G is initialized as {h0 →ε h0}, where h0 is the initial value and ε is
the empty string, and Q = {h0}.
1000 On O1-query M ,
1100 h = Rn(M), where Rn is a VIL random oracle with n-bit output.
1200 return h

2000 On O2-query (m, v), // This oracle implements the ideal cipher query f2n(m,v).
2100 if (m,v, v′) ∈ X, then return v′. // (m, v, v′) ∈ X means (m,v) is a repeated query.
2200 if ∃ a (h, s, t) such that v=Initialization(h, s, t), then
2210 if ∃ M, N such that pad(M) = N ||(m, s, t) and h0 →N h in G, then

/* Due to prefix-freeness of pad it is possible to check if (m, v) is the final block query. */
2211 h′ = O1(M) and v′=Out(h, s, h′).
2212 Q = Q ∪ {h, h′} and h→(m,s,t) h′ to G.
2213 X = X ∪ {(m, v, v′)} and return v′.

2220 h′ $
← {0, 1}n, and compute v′=Out(h, s, h′).

2230 if h′ ∈ Q ∪ {h}, then bad← true, and h′ $
← {0, 1}n \Q ∪ {h} and compute v′=Out(h, s, h′) .

2240 Q = Q ∪ {h, h′} and h→(m,s,t) h′ to G.
2250 X = X ∪ {(m, v, v′)} and return v′.

2300 v′ $
← {0, 1}2n.

2400 X = X ∪ {(m, v, v′)}, and return v′.
3000 On O3-query (m, v′), /* this oracle implements the ideal cipher inverse query f−1

2n (m,v′).*/
3100 if (m,v, v′) ∈ X, then return v. // (m,v, v′) ∈ X means (m, v′) is a repeated query.

3200 v
$
← {0, 1}2n.

3300 if ∃ a (h, s, t) such that v=Initialization(h, s, t) and h ∈ Q,

then bad← true, and h
$
← {0, 1}n \Q and v:=Initialization(h, s, t) and Q = Q ∪ {h} .

3400 X = X ∪ {(m, v, v′)}, and return v.
4000 Subroutine Out-query (h, s, h′),

4100 temp
$
← {0, 1}n.

4200 v′

0|| · · · ||v
′

7 := temp.
4300 v′

8 ∼ v′

15 are uniquely obtained from Finalization(h, s, v′) = h′.
4400 return v′, where v′ = v′

0|| · · · ||v
′

15.

Fig. 10. G7 executes with boxed statements whereas G8 executes without these. G7 and G8 are
identical-until-bad. G7 perfectly simulates G6 and G8 perfectly simulates (Rn, S, S−1).

