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Abstract
Semi-bent functions with even number of variables are a class of important Boolean

functions whose Hadamard transform takes three values. In this note we are interested
in the property of semi-bentness of Boolean functions defined on the Galois field F2n (n
even) with multiple trace terms obtained via Niho functions and two Dillon-like functions
(the first one has been studied by Mesnager and the second one have been studied very
recently by Wang, Tang, Qi, Yang and Xu). We subsequently give a connection between the
property of semi-bentness and the number of rational points on some associated hyperelliptic
curves. We use the hyperelliptic curve formalism to reduce the computational complexity in
order to provide a polynomial time and space test leading to an efficient characterization of
semi-bentness of such functions (which includes an efficient characterization of the hyperbent
functions proposed by Wang et al.). The idea of this approach goes back to the recent work
of Lisoněk on the hyperbent functions studied by Charpin and Gong.

Keywords. Boolean function, Walsh-Hadamard transformation, Semi-bent functions, Dickson
polynomial, Hyperelliptic curves.

1 Introduction
A number of research works in symmetric cryptography are devoted to problems of resistance of
various ciphering algorithms to the fast correlation attacks (on stream ciphers) and to the linear
cryptanalysis (on block ciphers). These works analyse various classes of approximating functions
and constructions of functions with the best resistance to such approximations. Some general
classes of Boolean functions play a central role with this respect: the class of bent functions [34],
that is, of Boolean functions of an even number of variables that have the maximum possible
Hamming distance to the set of all affine functions (see [7] for the relations of bent functions
to coding theory), its subclasses of homogeneous bent functions [33] and hyper-bent functions
[40], and the generalizations of the notion: semi-bent functions [5], Z-bent functions [9], negabent
functions [32], etc.

The paper is devoted to semi-bent Boolean functions. The notion of semi-bent function
has been introduced by Chee, Lee and Kim [5] at Asiacrypt’ 94. These functions had been
previously investigated under the name of three-valued almost optimal Boolean functions in [2].
Moreover, they are particular cases of the so-called plateaued functions [41]. Semi-bent functions
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are widely studied in cryptography because, besides having low Hadamard transform which
provides protection against fast correlation attacks [27] and linear cryptanalysis [26], they can
possess desirable properties such as low autocorrelation, propagation criteria, resiliency and high
algebraic degree. Semi-bent functions have been paid a lot of attention in code division multiple
access (CDMA) communication systems for sequence design [15], [17], [18], [19], [21], [22], [4] etc.
In fact, highly nonlinear functions correspond to sequences that have low cross-correlation with
the m-sequences (maximum-length linear feedback shift -register sequences) represented by an
absolute trace function Trm1 (x). Semi-bent functions exist for even or odd number of variables.
When n is even, the semi-bent functions are those Boolean functions whose Hadamard transform
takes values 0 and ±2n+2

2 . They are balanced (up to the addition of a linear function) and
have maximal non-linearity among balanced plateaued functions. Results concerning quadratic
semi-bent functions with even number of inputs can be found in [4]. Links of semi-bent functions
from Dillon and Niho exponents with exponential sums (namely, Kloosterman sums) can be found
in [31]. Some constructions of monomial ( that is, absolute trace of a power function) semi-bent
functions (namely, quadratic functions) have been proposed in [36]. Recently, a large number
of infinite classes of semi-bent functions in explicit bivariate (resp. univariate) polynomial have
been obtained in [3].

In this paper, functions in univariate representation expressed by means of trace functions via
Dillon-like exponents (proposed by the author [30] and very recently by Wang et al. [39]) and
Niho exponents with even number of variables are considered. Our main intention is to provide
an efficient characterization of the semi-bentness property of the corresponding functions (whose
expressions are in polynomial forms with multiple trace terms). To this end, we precise firstly
the connection between the semi-bentness property of such functions and some exponential sums
involving Dickson polynomials. Next, in the line of the recent works of Lisonek [25], and further
of Flori and Mesnager [12], we give a link between the property of semi-bentness and the number
of rational points on certain hyperelliptic curves. The paper exploits the connections between
semi-bentness property and binary hyperelliptic curves to produce a polynomial complexity test
which is of use in constructing semi-bent functions with multiple trace terms.

The paper is organized as follows. In section 2, we fix our main notation and recall the
necessary background. In Section 3, we recall some technical results that we need subsequently.
Next, in section 4, we investigate the link between the semi-bentness property of some infinite
classes of Boolean functions in univariate representation and some exponential sums involving
Dickson polynomials. Such a link leads to an exponential time test of semi-bentness. Finally, in
section 5, we connect the property of semi-bentness of such functions to hyperelliptic curves and
we reformulate the characterization obtained in section 4 in terms of cardinalities of hyperelliptic
curves leading to an efficient test (polynomial time and space test) of semi-bentness.

2 Notation and preliminaries
2.1 Boolean functions in polynomial forms
Let n be a positive integer. A Boolean function f on F2n is an F2-valued function on the Galois
field F2n of order 2n. The weight of f , denoted by wt(f), is the Hamming weight of the image
vector of f , that is, the cardinality of its support {x ∈ F2n | f(x) = 1}.

For any positive integer k, and for any r dividing k, the trace function from F2k to F2r ,
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denoted by Trkr , is the mapping defined as:

∀x ∈ F2k , T rkr (x) :=
k
r−1∑
i=0

x2ir = x+ x2r + x22r
+ · · ·+ x2k−r

In particular, the absolute trace over F2 is the function Trn1 (x) =
∑n−1
i=0 x

2i . Recall that, for every
integer r dividing k, the trace function Trkr satisfies the transitivity property, that is,

Trk1 = Trr1 ◦ Trkr

There exist several kinds of possible trace (univariate) representations of Boolean functions
which are not necessary unique and use the identification between the vector-space Fn2 and the
field F2n .
Every non-zero Boolean function f defined on F2n has a (unique) trace expansion of the form:

∀x ∈ F2n , f(x) =
∑
j∈Γn

Tr
o(j)
1 (ajxj) + ε(1 + x2n−1)

where Γn is the set of integers obtained by choosing one element in each cyclotomic coset of 2
modulo 2n − 1 (the most usual choice for j is the smallest element in its cyclotomic class, called
the coset leader of the class), o(j) is the size of the cyclotomic coset of 2 modulo 2n− 1 containing
j, aj ∈ F2o(j) and ε = wt(f) modulo 2 where wt(f) is the Hamming weight of the image vector of
f , that is, the cardinality of its support Supp(f) := {x ∈ F2n | f(x) = 1}.
This trace representation of f is unique and is called its polynomial form.

2.2 Walsh transform and semi-bent functions
Let f be a Boolean function on F2n . Its “sign" function is the integer-valued function χf := (−1)f .
The Walsh Hadamard transform of f is the discrete Fourier transform of χf , whose value at
ω ∈ F2n is defined as:

∀ω ∈ F2n , χ̂f (ω) =
∑
x∈F2n

(−1)f(x)+Trn1 (ωx)

Bent functions [34] can be defined as:

Definition 1. A Boolean function f : F2n → F2 (n even) is said to be bent if χ̂f (ω) = ±2n2 , for
all ω ∈ F2n .

Semi-bent functions [5], [6] are defined as:

Definition 2. For even n, a Boolean function f : F2n → F2 is said to be semi-bent if χ̂f (ω) ∈
{0,±2n+2

2 }, for all ω ∈ F2n . For odd n, a Boolean function f : F2n → F2 is said to be semi-bent
if χ̂f (ω) ∈ {0,±2n+1

2 }, for all ω ∈ F2n .

2.3 Dickson polynomial
Recall that the family of binary Dickson polynomials Dr(X) ∈ F2 [X] of degree r is defined by

Dr(X) =
b r2 c∑
i=0

r

r − i

(
r − i
i

)
Xr−2i, r = 2, 3, · · ·
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Moreover, the family of Dickson polynomials Dr(X) can also be defined by the following recurrence
relation:

Di+2(X) = XDi+1(X) +Di(X)

with initial values
D0(X) = 0, D1(X) = X.

Now, recall the following properties which we use in the sequel. For any non-zero positive integers
r and p, Dickson polynomials satisfy:

1. deg(Dr(X)) = r,

2. Drp(X) = Dr(Dp(X)),

3. Dr(x+ x−1) = xr + x−r.

The reader can refer to [24] for many useful properties and applications of Dickson polynomials.
We give the list of the first six Dickson polynomials:
D0(X) = 0; D1(X) = X; D2(X) = X2; D3(X) = X+X3; D4(X) = X4; D5(X) = X+X3 +X5.

From now, n = 2m is an (even) integer. We denote by U the cyclic group of (2m + 1)-st roots
of unity that is {u ∈ F2n | u2m+1 = 1}.

3 Background on some technical results
Let R be a subset of representatives of the cyclotomic classes modulo 2n − 1 for which each class
has the full size n. The author has studied the class of functions whose polynomial form is given
by
∑
r∈R Tr

n
1 (arxr(2

m−1)) + Tr2
1(bx 2n−1

3 ) (where ar ∈ F?2m for r ∈ R and b ∈ F?4) and proved the
following result [31] using the method introduced in [29].

Theorem 3. (Corollary 3, [31]) Suppose m := n
2 odd. Let β a primitive element of F4 and

R ⊆ E where E is a set of representatives of the cyclotomic classes modulo 2n − 1 for which
each class has the full size n. For b ∈ F?4 and ar ∈ F?2m , we denote by gar,b the function defined
on F2n by

∑
r∈R Tr

n
1 (arxr(2

m−1)) + Tr2
1(bx 2n−1

3 ), and by har the function defined on F2m by
har (x) =

∑
r∈R Tr

m
1 (arDr(x)), where Dr(x) is the Dickson polynomial of degree r. Then,

1.
∑
u∈U χ

(
gar,β(u)

)
= 1 if and only if

∑
u∈U χ

(
gar,β2(u)

)
= 1 if and only if,

∑
x∈F2m

χ
(
Trm1 (x−1) + har (D3(x))

)
= 2m − 2wt(har ◦D3) + 4.

2.
∑
u∈U χ

(
gar,1(u)

)
= 1 if and only if

3
∑
x∈F2m

χ
(
Trm1 (x−1) + har (x)

)
− 2

∑
x∈F2m

χ
(
Trm1 (x−1) + har (D3(x))

)
= 4 + 2m + 4wt(har ◦D3)− 6wt(har ).

Very recently, Wang et al. have studied (with some restriction) the family of functions whose
polynomial form is given by

∑
r∈R Tr

n
1 (arxr(2

m−1)) + Tr4
1(b′x 2n−1

5 ) (where ar ∈ F?2m for r ∈ R
and b′ ∈ F?16) and proved the following result [39] using the approach introduced by the author in
[29].
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Theorem 4. ([39]) Suppose m := n
2 ≡ 2 (mod 4). Let R ⊆ E where E is a set of representatives

of the cyclotomic classes modulo 2n − 1 for which each class has the full size n. For b′ ∈ F?16
and ar ∈ F?2m , we denote by gar,b′ the function defined on F2n by

∑
r∈R Tr

n
1 (arxr(2

m−1)) +
Tr4

1(b′x 2n−1
5 ), and by har the function defined on F2m by

∑
r∈R Tr

m
1 (arDr(x)), where Dr(x) is

the Dickson polynomial of degree r. Then,

1. If b′ a primitive element of F16 such that Tr4
1(b′) = 0 then,

∑
u∈U χ

(
gar,b′(u)

)
= 1 if and

only if, ∑
x∈F?2m ,Tr

m
1 (x−1)=1

χ
(
har (D5(x))

)
= 2

2. If b′ = 1 then,
∑
u∈U χ

(
gar,1(u)

)
= 1 if and only if

2
∑

x∈F?2m ,Tr
m
1 (x−1)=1

χ
(
har (D5(x))

)
− 5

∑
x∈F?2m ,Tr

m
1 (x−1)=1

χ
(
har (x)

)
= 4.

3. Assume ar ∈ F2
m
2 . If b′ ∈ {β, β2, β3β4} where β is a primitive 5-th root of unity in F16

then,
∑
u∈U χ

(
gar,b′(u)

)
= 1 if and only if,

∑
x∈F?2m ,Tr

m
1 (x−1)=1

χ
(
har (D5(x))

)
+ 5

∑
x∈F?2m ,Tr

m
1 (x−1)=1

χ
(
har (x)

)
= −8.

4. Assume ar ∈ F2
m
2 . If b′ is a primitive element of F16 such that Tr4

1(b′) = 1 then,∑
u∈U χ

(
gar,b′(u)

)
= 1 if and only if,

3
∑

x∈F?2m ,Tr
m
1 (x−1)=1

χ
(
har (D5(x))

)
− 5

∑
x∈F?2m ,Tr

m
1 (x−1)=1

χ
(
har (x)

)
= −4.

5. Assume ar ∈ F2
m
2 . If b′ ∈ {β + β2, β + β3, β2 + β4, β3 + β4, β + β4, β2 + β3} where β is a

primitive 5-th root of unity in F16 then,
∑
u∈U χ

(
gar,b′(u)

)
= 1 if and only if,

∑
x∈F?2m ,Tr

m
1 (x−1)=1

χ
(
har (D5(x))

)
= 2.

4 Characterizations of semi-bent functions with multiple
trace terms by means of exponential sums involving Dick-
son polynomials

Nonlinear Boolean functions whose restriction to any vector space uF2m (where u ∈ U) are linear
are sums of Niho power functions, that is (see [10]) of functions of the form:

Tr
o((2m−1)s+1)
1

(
asx

(2m−1)s+1
)

with 1 ≤ s ≤ 2m

We can determine the value of o((2m − 1)s+ 1)) precisely (recall that o(j) denotes the size of the
cyclotomic coset of 2 modulo 2n − 1 containing j):
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Lemma 1. We have o((2m − 1)s+ 1)) = m if s = 2m−1 + 1 (i.e. if (2m − 1)s+ 1 and 2m + 1
are conjugate) and o((2m − 1)s+ 1)) = n otherwise.

Now, consider four infinite classes of functions with multiple trace terms defined on F2n . We
denote by E the set of representatives of the cyclotomic classes modulo 2n − 1 for which each
class has full size n. Let far,b,c f ′ar,b, f̃ar,b′,c and f̃ ′ar,b′ be the functions defined on F2n whose
polynomial form is given by (1), (2), (3) and (4), respectively.

far,b,c(x) :=
∑
r∈R

Trn1 (arxr(2
m−1)) + Tr2

1(bx
2n−1

3 ) + Trm1 (cx2m+1) (1)

f ′ar,b(x) :=
∑
r∈R

Trn1 (arxr(2
m−1)) + Tr2

1(bx
2n−1

3 ) + Trm1 (x2m+1) + Trn1

(
x(2m−1)s+1

)
(2)

f̃ar,b′,c(x) :=
∑
r∈R

Trn1 (arxr(2
m−1)) + Tr4

1(b′x
2n−1

5 ) + Trm1 (cx2m+1) (3)

f̃ ′ar,b′(x) :=
∑
r∈R

Trn1 (arxr(2
m−1)) + Tr4

1(b′x
2n−1

5 ) + Trm1 (x2m+1) + Trn1

(
x(2m−1)s′+1

)
(4)

where R ⊆ E, ar ∈ F?2m , b ∈ F?4 , b′ ∈ F?16 , c ∈ F?2m , s ∈ {1/4, 3} and s′ ∈ {1/6, 3}(the fractions
1/4 and 1/6 are understood modulo 2m + 1).

Note that o(r(2m−1)) = n, o( 2n−1
3 ) = 2, o( 2n−1

5 ) = 4, o(2m+1) = m and o((2m−1)s+1) = n

for s ∈ {1/4, 1/6, 3}. Moreover, note that for a fixed r, the function x 7→ Trn1 (arxr(2
m−1)) is a

Dillon-like function (it is a Dillon function for r co-prime with 2m+1) and form odd ( resp. m even),
the function x 7→ Trm1 (cx2m+1)+Trn1

(
x(2m−1)s+1) (resp. x 7→ Trm1 (cx2m+1)+Trn1

(
x(2m−1)s′+1

)
)

is a Niho bent function [10].
Theorem 1 in [3] ensures that the set of functions defined above by (1), (2) , (3) and (4) contains

semi-bent functions. Our goal is to provide an efficient characterization of the semi-bentness
property of the functions far,b,c f ′ar,b, f̃ar,b′,c and f̃

′
ar,b′

. The first step is to precise a necessary
and sufficient condition on the coefficients for a function of the previous form to be semi-bent.
In the following, we exhibit thanks to Proposition 3 a criterion of semi-bentness in terms of
exponential sums involving Dickson polynomials for functions in the form (1) and (2).

Theorem 5. Let n = 2m with m odd. Let b ∈ F?4 , β be a primitive element of F4 and c ∈ F?2m .
Let far,b,c (resp. f ′ar,b) be the function defined on F2n whose expression is of the form (1) (resp.
form (2)). Let har be the related function defined on F2m by har(x) =

∑
r∈R Tr

m
1 (arDr(x)),

where Dr(x) is the Dickson polynomial of degree r. Then

1. far,β,c (resp. f ′ar,β) is semi-bent if and only if, far,β2,c (resp. f ′ar,β2) is semi-bent, if and
only if, ∑

x∈F2m

χ
(
Trm1 (x−1) + har (D3(x))

)
= 2m − 2wt(har ◦D3) + 4.

2. far,1,c (resp. f ′ar,1) is semi-bent if and only if,

3
∑
x∈F2m

χ
(
Trm1 (x−1) + har (x)

)
− 2

∑
x∈F2m

χ
(
Trm1 (x−1) + har (D3(x))

)
= 4 + 2m + 4wt(har ◦D3)− 6wt(har ).
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Remark 1. Note that one can prove that for every positive integer d such that d is co-prime with
2m+1

3 , the function defined on F2n by x 7→
∑
r∈R Tr

n
1 (arxdr(2

m−1))+Tr2
1(βx 2n−1

3 )+Trm1 (cx2m+1)
is also semi-bent if and only if the condition 1 of Theorem 5 holds.

In the following, we exhibit thanks to Theorem 4 a criterion of semi-bentness in terms of
exponential sums involving Dickson polynomials for functions in the form (3) and (4).

Theorem 6. Suppose m := n
2 ≡ 2 (mod 4). Let R ⊆ E where E is a set of representatives of the

cyclotomic classes modulo 2n−1 for which each class has the full size n. For b′ ∈ F?16 and ar ∈ F?2m ,
we denote by gar,b′ the function defined on F2n by

∑
r∈R Tr

n
1 (arxr(2

m−1)) +Tr4
1(b′x 2n−1

5 ), and by
har the function defined on F2m by

∑
r∈R Tr

m
1 (arDr(x)), where Dr(x) is the Dickson polynomial

of degree r. Then,

1. If Let b′ a primitive element of F16 such that Tr4
1(b′) = 0 then, f̃ar,b′,c (resp. f̃ ′ar,b′) is

semi-bent if and only if, ∑
x∈F?2m ,Tr

m
1 (x−1)=1

χ
(
har (D5(x))

)
= 2

2. If b′ = 1 then, f̃ar,b′,c (resp. f̃ ′ar,b′) is semi-bent if and only if

2
∑

x∈F?2m ,Tr
m
1 (x−1)=1

χ
(
har (D5(x))

)
− 5

∑
x∈F?2m ,Tr

m
1 (x−1)=1

χ
(
har (x)

)
= 4.

3. Assume ar ∈ F2
m
2 . If b′ ∈ {β, β2, β3β4} where β is a primitive 5-th root of unity in F16

then, f̃ar,b′,c (resp. f̃ ′ar,b′) is semi-bent if and only if,

∑
x∈F?2m ,Tr

m
1 (x−1)=1

χ
(
har (D5(x))

)
+ 5

∑
x∈F?2m ,Tr

m
1 (x−1)=1

χ
(
har (x)

)
= −8.

4. Assume ar ∈ F2
m
2 . If b′ is a primitive element of F16 such that Tr4

1(b′) = 1 then, f̃ar,b′,c
(resp. f̃ ′ar,b′) is semi-bent if and only if,

3
∑

x∈F?2m ,Tr
m
1 (x−1)=1

χ
(
har (D5(x))

)
− 5

∑
x∈F?2m ,Tr

m
1 (x−1)=1

χ
(
har (x)

)
= −4.

5. Assume ar ∈ F2
m
2 . If b′ ∈ {β + β2, β + β3, β2 + β4, β3 + β4, β + β4, β2 + β3} where β is a

primitive 5-th root of unity in F16 then, f̃ar,b′,c (resp. f̃ ′ar,b′) is semi-bent if and only if,

∑
x∈F?2m ,Tr

m
1 (x−1)=1

χ
(
har (D5(x))

)
= 2.

Remark 2. Let β be a primitive element of F16 such that Tr4
1(β) = 0 and c ∈ F?2m . Note that

for every positive integer d such that d is co-prime with 2m+1
5 , the function defined on F2n by

x 7→
∑
r∈R Tr

n
1 (arxdr(2

m−1)) + Tr4
1(βx 2n−1

5 ) + Trm1 (cx2m+1) is also semi-bent if and only if the
condition 1 of Theorem 6 holds, according to Proposition 3.17 [39].
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5 Efficient Characterizations of semi-bent functions with
multiple trace terms by means of cardinalities of hyper-
elliptic curves

Theorem 5 and Theorem 6 provide a test of semi-bentness for the functions far,b,c (resp. f ′ar,b) of
the form (1) (resp. form (2) and for functions f̃ar,b′,c (resp. f̃ ′ar,b′) of the form (3) (resp. form
(4) with exponential complexity. Indeed, suppose R is fixed and m is variable then, for any
given sequences of coefficients ar ∈ F?2m (where r ∈ R), checking whether the conditions 1. and
2. of Theorem 5 and Theorem 6 are satisfied require time that is exponential in m ( hence it
also exponential in n). The aim of this section is to exhibit an efficient characterization of the
semi-bentness of such functions. In the following, we shall use the hyperelliptic curve formalism
to reduce computational complexity. We will show that semi-bent functions far,b,c, f ′ar,b, f̃ar,b′,c
and f̃ ′ar,b′ can be described in terms of cardinalities of some hyperelliptic curves. To this end, we
need some background on hyperelliptic curves as well as results about point counting on such
curves over finite fields of characteristic 2.

5.1 Point counting on algebraic curves
In this subsection we give basic definitions for elliptic and hyperelliptic curves as well as results
about point counting on such curves over finite fields of characteristic 2. Given a curve E defined
on F2m , #E means the number of points on it with coordinates in the given finite field F2m .
The main fact about such curves we will use in the next section is that there exist algorithms to
compute their cardinalities in polynomial time and space in m.

Classical treatment of the theory of elliptic curves can be found for example in [35, 20]. A
more cryptographic oriented point of view, and especially special treatment for even characteristic,
can be found for example in [1, 8, 13] An elliptic curve can be defined as follows.

Definition 7. An elliptic curve E is a smooth projective algebraic curve of genus one with a
rational point OE.

In more down-to-earth terms, such a curve can be described by a Weierstrass equation of the
form:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 ,

giving its affine part. There is an additional point at infinity OE which can be seen as the only
non-affine solution to the homogenized equation.

There are many different algorithms to compute the cardinality of elliptic curves. The main
result we need has been given by Harley [16]. A complete description of many existing algorithms
can be found in Vercauteren’s thesis [37] or in [38, 23].

Theorem 8 ([16]). ([37] ) Let E be an elliptic curve defined over F2m . There exists an algorithm
to compute the cardinality of E in O(n2(logn)2 log logn) time and O(n2) space.

The theory of hyperelliptic curves, with a cryptographic point of view, can be found for
example in [28, 14, 8, 13]. We can define rather generally an hyperelliptic curve as follows.

Definition 9. An hyperelliptic curve H is a smooth projective algebraic curve which is a degree
2 covering of the projective line.

This definition includes the elliptic curves, but it is sometimes understood that an hyperelliptic
curve should be of genus g ≥ 2.
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A description of the different types of hyperelliptic curves in even characteristic can be found in
[11]. For the cryptographic point of view, the curves are often chosen to be imaginary hyperelliptic
curves. This is also the kind of curves we will encounter. Such an hyperelliptic curve of genus g
can be described by an affine part given by the following equation:

H : y2 + h(x)y = f(x),

where h(x) is of degree ≤ g and f(x) is monic of degree 2g + 1.
The main result about point counting of hyperelliptic curves we use is given by Vercauteren [37].

Theorem 10. (Theorem 4.4.1 page 135, [37]) Let H be an hyperelliptic curve of genus g defined
over F2m . There exists an algorithm to compute the cardinality of H in

O(g3m3(g2 + log2m log logm) log gm log log gm)

bit operations and O(g4m3) memory.

A stronger result in terms of spaces is also given for hyperelliptic curves of a special form.

Definition 11. An Artin-Schreier curve is an hyperelliptic curve whose affine part is given by
an equation of the form:

H : y2 + xny = f(x),
where 0 ≤ n ≤ g and f(x) is monic of degree 2g + 1.

Theorem 12. ( Theorem 4.3.1 page 114, [37]) Let H be an Artin-Schreier curve of genus g
defined over F2m . There exists an algorithm to compute the cardinality of H in

O(g3m3(g2 + log2m log logm) log gm log log gm)

bit operations and O(g3m3) memory.

5.2 Efficient criteria of semi-bentness
In the following, we shall use the hyperelliptic curve formalism to reduce computational complexity.
The characterizations of semi-bentness given by Theorem 5 can be reformulated in terms of
cardinality of hyperelliptic curves.

Theorem 13. The notations are as in Theorem 5. Moreover, let Har
(1), Har

(2) and Har
(3) be

the (affine) curves defined over F2m by

Har
(1) : y2 + y =

∑
r∈R

arDr(x),

Har
(2) : y2 + y =

∑
r∈R

arDr(x+ x3).

Har
(3) : y2 + xy = x+ x2

∑
r∈R

arDr(x),

a) If β is a primitive element of F4 , then far,β,c (resp. f ′ar,β) is semi-bent if and only if

2#Har
(2) −

(
#Har

(1) + #Har
(3)
)

= −3.

b) If b = 1, then far,1,c (resp. f ′ar,1) is semi-bent if and only if

4#Har
(2) − 5#Har

(1) + #Har
(3) = 3.

9



The previous theorem provides a test polynomial in m of semi-bentness. Indeed, all the curves
considered in Theorem 13 are also Artin-Schreier curves. So for a fixed subset of indices R, we get
a test polynomial in m. However the complexity of the point counting algorithms depends on the
genera of the curves, and so on the degrees of the polynomials involved to define them. Denoting
by rmax the maximal index as above, the genus of Har

(2) is (3rmax − 1)/2, so approximately
three times that of the curve Har

(1). Therefore we have to compute the cardinalities of three
curves of genera (3rmax − 1)/2, (rmax + 1)/2 and (rmax − 1)/2.

The characterizations of semi-bentness given by Theorem 6 can also be reformulated in terms
of cardinality of hyperelliptic curves.

Theorem 14. The notations are as in Theorem 6. Moreover, let Har
(1), Har

(3), H̃(2)
ar and H̃(3)

ar

be the (affine) curves defined over F2m by

Har
(1) : y2 + y =

∑
r∈R

arDr(x),

Har
(3) : y2 + xy = x+ x2

∑
r∈R

arDr(x),

H̃(2)
ar : y2 + y =

∑
r∈R

arDr(x+ x3 + x5),

H̃(3)
ar : y2 + xy = x+ x2

∑
r∈R

arDr(x+ x3 + x5).

1. If Let b′ a primitive element of F16 such that Tr4
1(b′) = 0 then, f̃ar,b′,c (resp. f̃ ′ar,b′) is

semi-bent if and only if,
#H̃(2)

ar −#H̃(3)
ar = 5.

2. If b′ = 1 then, f̃ar,b′,c (resp. f̃ ′ar,b′) is semi-bent if and only if

2(#H̃(2)
ar −#H̃(3)

ar )− 5(#Har
(1) −#Har

(3)) = 5.

3. Assume ar ∈ F2
m
2 . If b′ ∈ {β, β2, β3β4} where β is a primitive 5-th root of unity in F16

then, f̃ar,b′,c (resp. f̃ ′ar,b′) is semi-bent if and only if,

#H̃(2)
ar −#H̃(3)

ar + 5(#Har
(1) −#Har

(3)) = −10.

4. Assume ar ∈ F2
m
2 . If b′ is a primitive element of F16 such that Tr4

1(b′) = 1 then, f̃ar,b′,c
(resp. f̃ ′ar,b′) if and only if,

3
(

#H̃(2)
ar −#H̃(3)

ar

)
+ 5
(

#Har
(3) −#Har

(1)
)

= −10.

5. Assume ar ∈ F2
m
2 . If b′ ∈ {β + β2, β + β3, β2 + β4, β3 + β4, β + β4, β2 + β3} where β is a

primitive 5-th root of unity in F16 then, f̃ar,b′,c (resp. f̃ ′ar,b′) is semi-bent if and only if,

#H̃(2)
ar −#H̃(3)

ar = 5.

10



For a fixed subset of indices R and given a sequence of coefficients ar, checking the necessary
and sufficient conditions given by Theorem 14 requere a time that is polynomial in m. The
previous theorem provides then a test polynomial in m of semi-bentness. However the complexity
of the point counting algorithms depends on the genera of the curves. Denoting by rmax the
maximal index as above, the genus of H̃(2)

ar is (5rmax − 1)/2, the genus of H̃(3)
ar is (5rmax + 1)/2,

the genus of Har
(1) is (rmax − 1)/2 and the genus of Har

(3) is (rmax + 1)/2. Therefore we have
to compute the cardinalities of four curves of genera (5rmax − 1)/2, (5rmax + 1)/2, (rmax − 1)/2
and (rmax + 1)/2.

Remark 3. Note that Theorem 14 gives naturally an efficient characterization of the family of
the hyperbent functions studied very recently by Wang et al [39].

Acknowledgement. The author thanks Jean-Pierre Flori for his interesting discussion and
for the state of the art of points counting on algebraic curves.
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