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Abstract

Visual Secret Sharing (VSS), first introduced by Naor and Shamir,
is a variant form of secret sharing; especially, secret decoding is stack-
ing shares together without performing any complicated cryptographic
computation. The recovered secret is visible by human vision sys-
tem (HVS). However, Horng et al. showed cheating is possible in
VSS, which is inspired from cheating in secret sharing. Since then
many cheating activities and cheating immune schemes have been
proposed, whereas all presented cheating activities only take cheat-
ing in any pixel as a unit into consideration. In this paper, we ana-
lyze some presented cheating activities, and we propose a new kind
of cheating: Region Cheating Attack (RCA) as a result of the properties
of HVS. Differently, RCA involves with cheating in a region which is
several adjacent pixels as a unit. We therefore use RCA to enhance
effect of several attacks which has been proposed. Moreover, a new
attack, deterministic white-to-black attack (DWtBA), is proposed to
point out that a well-known cheating immune scheme, proposed by
De Prisco and De Santis, will suffer from RCA and DWtBA. Finally,
we propose a remedy to overcome the problem of the scheme.

1 Introduction

Naor and Shamir first proposed a variant of secret sharing called “visual
secret sharing” (VSS) [11], where shares given to participants by the dealer
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are xeroxed onto transparencies. The participants in X can visually re-
cover the secret image by stacking their transparencies together without
performing any complicated cryptographic computation if X is an autho-
rized subset. More generically, in the k-out-of-n visual secret sharing (for
short, (k,n)-VSS), there are totally n participants, and any k participants
in X can obtain the secret image by stacking their transparencies. A VSS
scheme is usually composed of three phases: (1) encoding (2) distributing
(3) decoding. Encoding is performed by the dealer to get all transparen-
cies, then he distributes those transparencies to participants. Finally, the
participants in X can decode the secret image by stacking their transparen-
cies.

However, the security of VSS is achieved by loosing the contrast and
the resolution of the secret image is a special property to differ VSS from
secret sharing [12]; indeed, the quality of the reconstructed secret image
is inferior to the original secret image. Many applications and techniques
have been proposed, including visual authentication and identification,
steganography, and image encryption which are attributed to the inven-
tion of VSS.

Related work. Horng et al. [9] showed that cheating is possible in (k,n)-
VSS, according to the cheaters in traditional secret sharing [14]. The cheat-
ing activity can cause unpredictable damage to victims, when victims ac-
cept a fake secret image different from the actual secret image as authentic.
De Prisco and De Santis also considered the problem of cheating, and they
proved that in (2,n)-VSS, cheating is successful by n−1 collusive cheaters,
and in (n,n)-VSS, by 1 cheater. The collusive cheaters want to fool the
victim for some reasons. The authors gave the definition for determin-
istic cheating, and presented two cheating immune threshold visual secret
sharing (CIVSS) schemes: 1) the simple scheme and 2) the better scheme.
They also declare the better scheme is cheating immune to deterministic
cheating in any black or white pixel, and based on the security model, it
is provably secure in theory. In particular, the better scheme can be used
without relying on the complementary image to improve the security as
compared to 2-out-of-(n+ l ) method [9].

Contribution and organization. There are four significant contributions
of this paper as follows.

1. NOVEL CONCEPT. We analyze some presented cheating activities
regarding Hoeng et al.’s cheating activity [9] and Hu and Tzeng’s
cheating activities (as well as CA-1 and CA-2) [10]. All of the attacks
only take cheating in any pixel as a unit into consideration. Accord-
ing to HVS, we propose a new kind of cheating: region cheating at-
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tack (RCA) in which we consider cheating in several adjacent pixels,
whereas a region is composed of several adjacent pixels. Moreover,
we also give the formal definition of security of RCA.

2. ENHANCEMENT. The well-know attacks, CA-1 and CA-2, are easy
to be detected by HVS in some cases. For improving this disad-
vantage, we enhance effect of CA-1 and CA-2 upon cheating, which
combines CA-1/CA-2 with the proposed RCA.

3. CRYPTANALYSIS. We find the better scheme, proposed by De Prisco
and De Santis, is not as secure as the authors claimed. Therefore,
we present another cheating attack, named deterministic white-to-black
attack (DWtBA). The cryptanalysis and experimental result are at-
tached to demonstrate that the better scheme suffers from DWtBA
and RCA undoubtedly.

4. REMEDY. Cryptanalysis is used to point out potential weaknesses
in a cryptographic scheme, while, straightly, it can help us to present
an improvement. Thus, we give a remedy to overcome the problem
of the insecure better scheme.

The rest of the paper is organized as follows. Section 2 provides pre-
liminaries with respect of the model of VSS and the definition of cheat-
ing. Section 3 presents a new cheating activity with HVS, then illustrates
the results with experiments of human’s vision. Section 4 briefly reviews
De Prisco and De Santis’s better (2,n)-VSS scheme, and shows the deter-
ministic white-to-black attack and the cryptanalysis of the better scheme.
Finally, conclusions are given in Section 5.

2 Visual Secret Sharing (VSS)

In this section, we will briefly review the model of VSS and describe the
formal definition of cheating in VSS.

2.1 Model

A VSS scheme is a special variant of a k-out-of-n secret sharing scheme,
where the shares given to participants are xeroxed onto transparencies.
A share in VSS is always called a “transparency”. The participants in X
would decode the secret image by stacking their transparencies if X is a
qualified subset. Usually, the secret is an image, so we can regard it as
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the secret image (SI). To generate the transparencies, each pixel of SI is
handled separately. It appears as a collection of mblack and white subpix-
els in each of the n transparencies. The msubpixels are denoted by a block.
One pixel of the secret image corresponds to nmsubpixels, and then the nm
subpixels are denoted by a n×m boolean matrix, called a base matrix. Let
S= [Si j ] be the base matrix, while Si j = 1 if and only if the jth subpixel of
the ith share is black and Si j = 0 if and only if the jth subpixel of the ith share
is white. The grey level of the stack of k shared blocks is determined by
the Hamming weight H(V) of the “or”ed m-vector V of the corresponding
k rows in S. This grey level is interpreted by the visual system of the users
as black if H(V)≥ d and as while if H(V)≤ d−α∗m for some fixed thresh-
old d and relative difference α. Here, α is the contrast and m is the pixel
expansion. We hope m to be as small as possible and α to be as large as
possible. Formally, a solution to the (k,n)-VSS consists of two collections
C0 and C1 of n×m base matrices. To share a white pixel, the dealer ran-
domly chooses one of the matrices from C0, and to share a black pixel, the
dealer randomly chooses one of the matrices from C1. The chosen matrix
determines the m subpixels in each one of the n transparencies [11].

Definition 1. A solution to the (k,n)-VSS is composed of two collections C0 and
C1 of n×m base matrices. The solution would considered valid if the following
conditions are hold:
Contrast conditions:

1. For any matrix S0 in C0, the “or” V of any k of the n rows satisfies H(V)≤
d−α∗m.

2. For any matrix S1 in C1, the “or” V of any k of the n rows satisfies H(V)≥
d.

Security condition:

3. For any subset {i1, i2, . . . , iq} of {1,2, . . . ,n} with q < k, the two collections
D0,D1 of q×mmatrices obtained by restricting each n×mmatrix in C0,C1

to rows i1, i2, . . . , iq are indistinguishable in the sense that they contain the
same matrices with the same frequencies.

For convenience, let WV be an integer which WV ≤ d−α ∗m and BV be
an integer which BV ≥ d. WV and BV are used to judge a stacking block
is black or white in a VSS scheme. The stacking results in Naor-Shamir’s
(2,3)-VSS are showed in Fig. 1.
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Figure 1: The stacking results in Naor-Shamir’s (2,3)-VSS

Example 1. In (2,3)-VSS, C0 is all the matrices obtained by permuting the columns

of




1 0 0
1 0 0
1 0 0


, and C1 is all the matrices obtained by permuting the columns

of




1 0 0
0 1 0
0 0 1


. Conveniently, we always write C0 =




1 0 0
1 0 0
1 0 0


 and C1 =




1 0 0
0 1 0
0 0 1


. In (3,3)-VSS, the base matrices are

C0 =




1 1 0 0
0 1 1 0
1 0 1 0


 and C1 =




1 1 0 0
1 0 1 0
1 0 0 1


.

2.2 Cheating for a Block

Cheating is possible in (k,n)-VSS [9]. We take a (2,3)-VSS scheme as an
example. A secret image is encoded into three distinct transparencies, de-
noted T1,T2 and T3. Then, the three transparencies are respectively deliv-
ered to Alice, Bob, and Carol. Without lose of generality, Alice and Bob are
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assumed to be collusive cheaters and Carol is the victim.1 In cheating, T1

and T2 to create forged transparency/cheating transparency CT, whereas
superimposing CT and T3 will visually recover the cheating image. Pre-
cisely, by observing the following collections of 3×3 matrices which are
used to generate transparencies [11], collusive cheaters can predict the ac-
tual structure of the victim’s transparency so as to create CT. C0 is all

the matrices obtained by permuting the columns of




1 0 0
1 0 0
1 0 0


, and C1

is all the matrices obtained by permuting the columns of




1 0 0
0 1 0
0 0 1


. By

observing the above matrices, two rows of above C0 or C1 matrix are de-
termined by collusive cheaters, therefore, the structure of each block of T3

is exact the remaining row. For presenting a white pixel of cheating image,
the block of CT is set to be the same structure of T3. For presenting a black
pixel of cheating image, the block of CT is set to be the different structure
of T3. For example, if the block of T3 is [0 1 0], CT is set to be [0 1 0] for a
white pixel or [0 0 1] for a black pixel. Formally, the cheaters can construct
a sub-base matrix (SBM) by T1 and T2, and then infer T3. Here, we give
another example as Fig 2, and show the generalization of this cheating
activity below.

1. n−1 cheaters stack their transparencies to recover the secret image.

2. According to the reconstructed secret image, the cheaters will infer
the victim’s transparency.

3. Taking a cheating image (CI) as an input, they can generate several
cheating transparencies to the victim. The CTs and the victim’s trans-
parency will recover CI, not SI.

4. Finally, the victim will be fooled if he accept the reconstructed cheat-
ing image as SI.

Practically, De Prisco and De Santis gave the following definitions of cheat-
ing in VSS [7].

Definition 2. A cheating attack (activity) is denoted as the deterministic cheat-
ing if the probability of successful cheating for the cheaters is 1 for each pixel/block.

1The cheaters are assumed to collude w.r.t cheating in VSS [4, 7, 9, 10].
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Figure 2: Cheating in (2,3)-VSS for a block

Definition 3. A VSS scheme is cheating immune to deterministic cheating if the
probability of successful cheating in any pixel is less than 1.

These definitions are reasonable [7] for a block, and then make re-
searchers more easily to consider the security for cheating immune VSS
schemes for a block (pixel).

2.2.1 CA-1 and CA-2

In 2007, Hu and Tzeng showed three cheating activities: CA-1, CA-2, and
CA-3 [10]. We first give a definition about “perfect black”, and then briefly
describes CA-1 and CA-2. CA-3 is omitted to show, because it is a ex-
tended method for extended VSS.

Definition 4. A block in a stacking result is perfect black if and only if all sub-
pixels of the block are black.

Example 2. A block of a stacking result is [1 1 1 1] is perfect black, but the block
is [1 1 1 0] is not. The block of [1 0 0 0] or [1 1 0 0] is also not perfect black.

CA-1 and CA-2 are performed by a malicious participant (MP) and
a malicious outsider (MO), respectively. MP or MO sets a cheating im-
age and generates CTs, whereas the stacking result of the victim’s trans-
parency and CTs reveals the cheating image.

In CA-1, with the MP’s transparency T1, we assume that each block
in T1 has x black and y white subpixels. The MP then chooses a cheating
image and prepares r fake transparencies, CT1, ..., CTr , where r = dm

x e−1.

Example 3. In a (3,3)-VSS scheme with 3×4 base matrices, MP creates only one
CT, because of r = d4

2e−1 = 1. The base matrices is the same as Section 2.1. For
each white pixel of the cheating image, the MP copies the corresponding subpixels
of the block in T1 to the CT. Assume the block is [1 0 1 0] in T1. The corresponding
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Figure 3: An example of complementary images

block in the CT is set to be [1 0 1 0]. For each black pixel of the cheating image,
the MP randomly assigns 2 black and 2 white subpixels to the CT, whereas the
block in the stacking of CT and T1 is perfect black. We assume the block is [1 0 1
0] in T1 when the MP wants to form a black pixel of the cheating image, therefore,
the corresponding block in the CT is set to be [0 1 0 1].

In CA-2, with the same scenario, the MO only knows the share con-
struction algorithm, and it does not hold any transparency. In a (3,3)-VSS
scheme, the MO can generate two fake transparencies, CT1 and CT2, and
then makes the stacking result of CT1, CT2, and Tv be black.

Example 4. For each white pixel of the cheating image, the corresponding sub-
pixels of the block in CT1 and CT2 is set to be the same. Assume the block in CT1

is [1 0 1 0], then the block in the CT2 will be [1 0 1 0]. For each black pixel of the
cheating image, the corresponding subpixels of the block in CT1 and CT2 is set to
be complement. Assume the block in CT1 is [1 0 1 0], then the block in CT2 is [0 1
0 1].

2.3 Cheating Immune Visual Secret Sharing

Cheating would be prevented if participants find out or detect some trans-
parencies or the reconstructed secret images are not genuine. Based on this
intuition, there are two approaches for designing CIVSS schemes, first in-
troduced by Horng et al. [9]. One is based on share authentication where
another additional transparency (verification transparency) is used to au-
thenticate transparencies from other participants. The other is based on
blind authentication, where cheaters infer the structure of transparencies
of other participants is hard. The goal of share authentication is to provide
the participants the ability to verify the integrity of the shares before re-
constructing secret images and the goal of blind authentication is to make
it harder for the cheaters to predict the structure of the shares of the other
participants.

Usually, in a share authentication based CIVSS scheme, each partici-
pant receives two transparencies: one transparency and one verification
transparency. The first one is used to reconstruct the secret image and the
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verification transparency is used to check the integrity of the transparen-
cies held by other participants. Hu and Tzeng’s scheme is share authenti-
cation, but this scheme is insecure [5].

In a blind authentication based CIVSS scheme, the transparencies must
be inherently immune to cheating. In (k,n)-VSS, k < n, because the struc-
tures of black block and white block are different, a participant must hold
two transparencies. One is the original transparency (referred to as T1),
and the other is the complementary transparency (referred to as T̄1). Thus,
T1+T2 displays the secret image, while T̄1+ T̄2 will display the complemen-
tary secret image. As known, two results of T1+T2 and T̄1+ T̄2 are given in
Fig. 3.

2.3.1 Review of De Prisco and De Santis’s Better Scheme

De Prisco and De Santis proposed two CIVSS schemes: the simple scheme
and the better scheme. The simple scheme has been showed some inherent
weaknesses by the authors, as well as the white pixels are not protected
without the complementary image. So they proposed a better scheme
which is provably secure. They claimed this scheme for each black or
white block/pixel is cheating immune to deterministic cheating.

In the better scheme, one pixel will be expanded to 2n+n+1 subpixels.
The base matrices are C0 and C1. Each of them is consisted of three parts:
Cbin, Call0, Cns. Cbin is all the possible 2n binary column vectors of length
n. Call0 is a column of all 0. Cns is the Naor-Shamir’s base matrix [11]. We
express C0 = [Cbin|Call0|C0

ns] and C1 = [Cbin|Call0|C1
ns].

For example, C0 and C1 of the better (2,3) scheme are showed as fol-
lows:

C0 =




0 1 0 1 0 1 0 1 0 1 0 0
0 0 1 1 0 0 1 1 0 1 0 0
0 0 0 0 1 1 1 1 0 1 0 0


 (1)

C1 =




0 1 0 1 0 1 0 1 0 1 0 0
0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 1


 (2)

C0 and C1 of the better (2,4) scheme are showed as follows:

C0 =




0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0


 (3)
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Figure 4: The stacking result for 1× 1 black pixel, 2× 2 black pixels, . . .,
7×7 black pixels

Figure 5: A region composed of one black block and eight white blacks
and m= 3

C1 =




0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1


 (4)

It is clarified that BV = 2n−1 +2n−2 +2 and WV = 2n−1 +2n−2 +1. The pixel
expansion, m, is 2n + n+ 1 and the contrast, α, is 1/m. Moreover, the au-
thors have proven the better scheme is cheating immune to deterministic
cheating. For any black or white pixel, the cheaters cannot infer the actual
value of victim’s blocks. The proof is definitely correct.

3 Region Cheating Attack

Previous cheating for a block in VSS has been discussed by the papers
of Horng et al., Hu and Tzeng, and De Prisco and De Santis [7, 9, 10].
They presented different cheating activities, where those kinds of cheating
activities are for a block. However, in practical, many published papers
used a set of blocks instead of one block for increasing visibility of secret.
Fig 4 illustrates how to increase visibility of one secret pixel by a set of
1×1 blocks, 2×2 blocks, ..., 7×7 blocks. In this paper, we name a set of
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Figure 6: A region, m= 12

blocks a region. Fig. 4 evidences the following definition.

Definition 5. For a VSS scheme, HVS does not observe the secret image on each
block. It observes on regions.

In addition, Fig. 4 shows the stacking result for 1×1 black pixel, 2×2
black pixels, . . ., 7×7 black pixels in (2,3)-VSS.

3.1 RCA: Region Cheating Attack

We denote that a black block consists of µB 1s and m−µB 0s in a stacking
result, while a white block consists of µW 1s and m−µW 0s. In Fig 5, ρ : (m)
is used to recognize the block is black or white, where ρ∈ {µW,µB} and m is
the pixel expansion. In Fig 5, the region is composed one black block and
eight white blocks, but we cannot observe any black block in the stacking
result. This experiment confirms that HVS observes the secret image on
regions.

Let dµ = µB− µW. We define a “black plus block” is a block which is
composed of µB + t×dµ 1s in the stacking result for an integer t. The new
cheating activity with human vision system (RCA: White-to-Black) per-
forms as follows.2

RCA: White-to-Black

1. The cheaters replace a white block (of µW 1s) with a black plus block
(of µB + t×dµ 1s).

2. The t adjacent white blocks near the black plus block do not change.

2Here, we do not consider how the cheaters to replace, because different VSS schemes
may suffer from different cheating activities for a block described in Section 2.2. Our
RCA can be used with any cheating activity for a block.
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3. Finally, in HVS, a cheating region, composed of t white blocks and
one black plus block, looks like a black region, composed of t + 1
black blocks.

For HVS, the presented RCA is actually existing as well as Fig. 6 shows a
stacking result with m= 12 which consists of different kinds of regions: S
is for all 8:(12), but I is for 9:(12) and 7:(12). If a victim cannot observe I is
not in the true secret in HVS, he will accept the secret image, S I.

However, on the contrary, we also have RCA: Black-to-White. Let
dµ = µB− µW. We define a “white plus block” is a block which is com-
posed of µW− t×dµ 1s in the stacking result for an integer t. This cheating
activity performs as follows.

RCA: Black-to-White

1. The cheaters replace a black block (of µB 1s) with a white plus block
(of µW− t×dµ 1s).

2. The t adjacent black blocks near the white plus block do not change.

3. Finally, in HVS, a cheating region, composed of t black blocks and
one white plus block, looks like a white region, composed of t + 1
white blocks.

Definition 6. A scheme is not cheating immune to RCA if and only if the prob-
ability of RCA is 1 where cheaters find a correct integer t.

Example 5. If the cheaters consider t = 1 with Pr[t = 1] = 5/6 and t = 2 with
Pr[t = 2] = 1/6, the scheme is cheating immune to RCA; Otherwise, the cheaters
consider t = 1 with Pr[t = 1] = 1, the scheme is not.

3.2 Enhancing CA-1 and CA-2

Cheaters can make the victim to accept the fake secret by setting perfect
black blocks in CA-1 and CA-2 [10]. Except (n,n)-VSS schemes, other
schemes do not ensure that the stacking results contain perfect black blocks.
However, for other schemes, CA-1 and CA-2 will be detected, whereas the
perfect black blocks is sensitive by HVS, which means the perfect black
blocks are observed easily. We give an experiment in Fig. 7 where two
stacking results with the same contrast, α = 1/16. The first one is (2,16)-
VSS, and the second one is (5,5)-VSS. We find the second one is clearer than
the other, while it contains the perfect black blocks. We thus conclude that
original CA-1 and CA-2 are detected when k 6= n in (k,n)-VSS.
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Figure 7: The stacking result of (5,5)-VSS is more visible than of (2,16)-VSS
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Accordingly, we can use the above concept of RCA with CA-1 and CA-
2. Let CA-1 or CA-2 be the cheating method for Step 1 of RCA: White-to-
Black. Other steps are the same as before. Finally, even the stacking result
contains the perfect black blocks, HVS does not detect them, because these
blocks are interfered with the adjacent blocks (not perfect black blocks) in
a sense.

4 Cryptanalysis of a Cheating Immune Visual Se-
cret Sharing Scheme

In Section 2.3.1, we have described the better (2,n)-threshold scheme (for
short, the better scheme). Now we propose deterministic white-to-black
attack (DBtWA) in Section 4.1, and further, we also give the cryptanaly-
sis to indicate how to cheat HVS for this scheme by DBtWA and RCA in
Section 4.2.

4.1 Deterministic White-to-Black Attack (DWtBA)

This attack, named “Deterministic White-to-Black Attack” (for short, DWtBA),
only occurs in a white pixel for the better scheme. Collusive cheaters gen-
erate a fake block ( f b) according to the attack for creating a fake black
pixel. The victim will get a black one by stacking f b and Tv where Tv is the
victim’s corresponding block. We illustrate this attack as follows for more
details.

(1) First, cheaters reconstruct the sub-base matrix (SBM) collusively.

(2) They compute the numbers of different kinds of columns within the
SBM, respectively.

(3) Initially, let f b = [a1,a2, ...,az] = [0,0, ...,0], where z= 2n +1+n.

(4) If n is odd such as n = 3, modify ai = 1 when ai corresponds to the
columns of all 0 in SBM (Fig. 8); otherwise, smodify ai = 1 when ai

corresponds to the columns of all 0 or all 1 in SBM (Fig. 9).

(5) If ∑z
j=1a j = 2n−1 + 1, the attack is done. Otherwise, in the case of

∑z
j=1a j < 2n−1 +1, the cheaters randomly choose x kinds of columns

whose numbers are 2 where ∑z
j=1a j +2x= 2n−1+1, and then set ai = 1

when ai corresponds to the columns of these x kinds of columns (the
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Figure 8: The process of this attack for the (2,3) better scheme.

total number of x kinds of columns is 2x). Finally, ensure ∑z
j=1a j =

2n−1 +1 after inserting 1s into 2x subpxiels.

Let the stacking block of f b+Tv be [b1,b2, ...,bz] (z= 2n+1+n). The cheater
can make sure ∑z

j=1b j = BV +y where y > 0 is an integer and let X = BV +y
as the number of subpixels of 1 in the stacking block, so the victim will
accept the fake black block.

Definition 7. A scheme is not cheating immune to the deterministic white-to-
black attack if and only if the probability of the attack is 1 where the cheaters can
generate a fake black block.

We straightly conclude that DWtBA is the deterministic cheating as a
result of Definition 2 and 7.

4.2 Cryptanalysis

The processes of DWtBA with respect to n = 3,4 are showed in Fig. 8 and
9, separately. We know the attack for n = 3 and 4 is very simple.

We have to further discuss cases of n≥ 5. We take n = 5 as example,
where BV = 25−1 + 24−1 + 2 = 26 and WV = 25−1 + 24−1 + 1 = 25. First, the
cheaters reconstruct the SBM and compute the numbers of different kinds
of columns within SBM, and they can obtain the following result as Fig 10.

• The number of the columns of all 1s is 3. This column we called the
all 1 column.

• The number of the columns of all 0s is 7. This column we called the
all 0 column.
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Figure 9: The process of this attack for the (2,4) better scheme.

Table 1: The presented attack for n = 3,4, ...,8 (y = X−BV)

n:odd BV X y n:even BV X y

3 8 9 1 4 14 15 1
5 26 28 2 6 50 52 2
7 98 101 3 8 194 197 3

• The number of each other kind of columns is 2 (not all 0 and all 1).

n = 5 is odd, thus they set ai = 1 when ai corresponds to the columns of
all 0s. Now, we know ∑z

j=1a j < 2n−1 +1. The cheaters continue to choose
x= 5 kinds of columns (not all 0 and all 1 columns, 2x= 25−1+1−∑z

j=1a j ),
and set ai = 1 when ai corresponds to the columns of the 2x columns. This
is, they ensure ∑z

j=1a j = 25−1 +1 = 17.
From the fake block f b, we notice that 2x columns correspond to x sub-

pixels of the victim’s block are 1 and x subpixels of the victim’s block are
0. And we also observe that 7 all 0 columns correspond to that 1 subpixel
of the victim’s block is 1 and the other 6 subpixels are 0. We thus can in-
fer that 25−1 +1− (x+1) = 25−1 +1− (5+1) = 11 subpixels of the victim’s
block are 1 correspond to 11 subpixels of f b are 0. Finally, the number
of subpixels of 1 in the stacking block is X = 17+ 11= 28= BV + 2 > BV ,
hence DWtBA is successful without violating Definition 1. Fig. 10 shows
the result of this attack for the (2,5) better scheme with respect of the corre-
spondence of subpixels, where 1(7) denotes that the number of subpixels
of 1 is 7, and x1, ...,x5 denotes five different kinds of columns except the all
0 and all 1 columns.
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Figure 10: The result of this attack for the (2,5) better scheme.

In terms of Table 1, if X = BV +y > 2n +n+1, the attack will fail. How-
ever, y > 2n + n+ 1−2n−1−2 = 2n−1 + n−1 (n≥ 3) is impossible. DWtBA
is deterministic cheating, because the probability of the attack is 1. The
cheaters absolutely know an integer, t, to generate a region which is com-
posed of a fake black block and t normal white blocks. As a result, we can
have the following theorem.

Theorem 1. The better scheme is not cheating immune to the deterministic white-
to-black attack and RCA.

The generic result from the collusive cheaters’ SBM is given as follows.

• The number of the all 1 columns is 3 for any n.

• The number of the all 0 columns is n+2 for any n.

• The number of each other kind of columns, except all 0 and all 1
columns, is 2 for any n.

Nevertheless, this attack is only suitable to the (2,n) better scheme, be-
cause the expansion of the better scheme is much bigger than other schemes
such as Naor-Shamir’s VSS scheme [11].

For demonstrating the proposed cheating attack we conducted a ex-
periment in the (2,3) better scheme. In this example, for creating each two
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Figure 11: The results of T3 +T2 and T3 +CT.

adjacent fake black blocks, only one of the corresponding two blocks is
changed by the attack and the other block is remained unchanged. The
above method can ensure the reconstructed cheating image is normal, and
Fig. 11 shows the experiment results that we can modify “S T” into “SIT”,
where T3 is the victim’s transparency and CT is the fake transparency for
cheating.

For example of (2,3) better scheme [7], the proof of the scheme only en-
sures that cheaters cannot change 8 from WV = 7. Indeed, cheaters cannot
change 9 from 7. A block of 9 and an adjacent block of 7 looks like two
block of 8 (Fig. 6 and 11).

4.3 Remedy

In the paper of De Prisco and De Santis [7], the base matrices of the better
scheme, C0 and C1, are proven to be an optimal structure, thus we cannot
decrease the number of columns of C0 and C1. Based on the better scheme,
we attempt to find an improvement via increasing the number of columns
of C0 and C1.

According to the attack, the cheaters usually choose the subpixels of
the fake block and set them as 1s which correspond to all 0 columns in
SBM. The main idea of the improvement is to add all 0 columns to the
original base matrices (described as Section 2.3.1). Unfortunately, we find
the improvement is still impossible to withstand DWtBA, but it can resist
RCA partially.

We have known that, in SBM, the number of the all 1 columns is 3,
whereas the number of the all 0 columns is n+ 2 for any n due to the in-
ference in Section 4.2. In addition, the number of 1s of a block is 2n−1 + 1
(referred to as w = 2n−1 +1), and the pixel expansion is m= 2n +1+n; for
example, in the (2,3) better scheme, the block is [1 1 1 1 1 0 0 0 0 0 0 0]. In the
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following, we give a possible improved (2,3) scheme. The improved bet-

ter scheme holds the following base matrices, C0 =




0 010101010100
0 001100110100
0 000011110100




and C1 =




0 010101010100
0 001100110010
0 000011110001


. Now we show how the cheaters perform

DWtBA.

T1 : [0 0 1 0 1 0 1 0 1 0 1 0 0] . Cheater1
T2 : [0 0 0 1 1 0 0 1 1 0 1 0 0] . Cheater2

Case 1

CT1 : [1 1 0 0 0 1 0 0 0 1 0 1 0] Pr[CT1] =
5
6

T3 : [0 0 0 0 0 1 1 1 1 0 1 0 0] . Victim
Stack : [1 1 0 0 0 1 1 1 1 1 1 1 0]

Case 2

CT2 : [1 1 0 0 0 0 0 0 0 1 0 1 1] Pr[CT2] =
1
6

T3 : [0 0 0 0 0 1 1 1 1 0 1 0 0]
Stack : [1 1 0 0 0 1 1 1 1 1 1 1 1]

The improved scheme can resist RCA, because the cheaters do not
know how many normal white blocks should be collocated with the fake
block. As the above, we know the probability of Case 1 is 5/6, and the
probability of Case 1 is 1/6. In Case 1, the cheaters should set a normal
white block with a fake block, whereas in Case 2, they should set two nor-
mal white block with a fake block.

For more general, the base matrices must be C0 =




0. . .0
... . . . ... C0

dd
0. . .0


 and

C1 =




0. . .0
... . . . ... C1

dd
0. . .0


, where C0

dd and C1
dd are the base matrices of the origi-

nal better scheme. Here, the number of added all 0 columns is more than
w− (n+2) = (2n−1 +1)− (n+2). We would like the number of added all 0
columns is w−(n+2)+1= (2n−1+1)−(n+2)+1= 2n−1−n+4 for minimal
pixel expansion.
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Theorem 2. This scheme is insecure against the deterministic white-to-black at-
tack, but it resists RCA.

Proof. For a block, according to the structure of SBM, there are totally
2n−1+2 all 0 columns in the (2,n) improved better scheme, where (2n−1+2)
is denoted by W. Particularly, one of all 0 columns corresponds to 1 of
subpixels of the victim’s block, and the other 2n−1 + 1 correspond to 0s.
Therefore, as the above two cases, the cheaters should set a normal white
block with a fake block with Pr[CT1] = W−1

W in Case 1, whereas they should
set two normal white block with a fake block with Pr[CT2] = 1

W in Case
2. However, this scheme attributes to that the number of normal white
blocks is unknown, because the cheaters do not infer that the stacking re-
sult is Case 1 or Case 2. The correct integer t may be one of two cases, and
the probability is less than 1.

To the best of our knowledge, the presented blind authentication cheat-
ing immune schemes (Horng et al.’s and De Prisco and De Santis’s) are
insecure to protect black and white pixels at the same time without us-
ing the complementary image. The better scheme is also insecure due
to DWtBA and RCA. Our improved better scheme is only one scheme
can be cheating immune to the presented attack and RCA without using
the complementary image, whereas the pixel expansion of our scheme is
m= 2n +2n−1 = 3(2n−1).

5 Conclusions

Seeing is not believing that, in visual secret sharing, we see a black region,
then we cannot ensure that it is made up of all black blocks. We are de-
voted of a new kind of cheating activities: RCA based on the properties
of HVS. With the main concept of it, the previous cheating methods will
bring better results. Additionally, we have analyzed De Prisco and De
Santis’s better scheme suffers from the deterministic white-to-black attack
(DWtBA) and RCA. Even this scheme is provably secure based on its secu-
rity model in theory, which does not imply being secure for HVS. Finally,
we attach a remedy to withstand RCA.
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