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1. Introduction

In this chapter we propose to use probabilistic complexity theory, which is also known as the founda-
tion of modern cryptography, to study very complex systems in the form of large-scale self-organizing
networks. A very complex system is typically probabilisticand stochastic in its nature. In such a sys-
tem, it is impossible to describe every system behavior in a deterministic manner. We have to adopt
a probabilistic framework. Like what is advocated by modern cryptographers, in regard to an input
metric x measuring the operational algorithms being studied (Figure 1), such as security attacks and
countermeasures, we speak of the “feasibility or infeasibility” of breaking the system rather than the
“possibility or impossibility” of breaking the same system.
As the first step to initiate our course, the circulatory system in human body is selected to be the very
complex system defying researcher’s deterministic descriptions to understand its complex and proba-
bilistic behaviors. In bioinformatics, analyzing mobility related problems is a new challenge. Typical
research efforts in sequence alignment, gene finding, genome assembly, protein structure alignment,
protein structure prediction, and the modeling of evolution do not study molecule level mobility and
related security threats. For instance, many biological threats use the circulatory system as their en-
trance to disable the life sustaining functions. Related analysis must study a large amount of molecules
moving in the circulatory system. Due to the probabilistic nature of each molecule’s mobility pattern
and the intractable complexity caused by the sheer amount ofmolecules, it is a non-trivial challenge
to deliver a meaningful analysis to answer the following questions: How do we quantitatively measure
the impact of a simple algorithmic attacking strategy in an environment with probabilistic mobility and
huge amount of nodes? What types of metrics can we use to quantify the highly complex behavior in the
system (in the example, the circulatory system)? Does the system have any stable states or equilibriums
by any chance?
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Figure 1.A probabilistic complex system with the input metric x

In this work we answer these questions by identifying the connection between the biological threats
and probabilistic complexity theory. Our study shows that ageneric class of self-organizing network
algorithms can be modeled by a variant of computationalcomplexity theoryif commonly used compu-
tational metrics are replaced with network metrics. We showthat biologicalcyanide poisoning(Vick &
Froehlich, 1985)(Sykes, 1981) is a real-world example which belongs to the network-metric complex-
ity class. This network-metric complexity class has well-defined properties, such as some asymptotic
invariants, similar to the “amplification” property of theBPP class used in modern cryptography.

1.1 Notation
For the ease of formal presentation, we list the notions usedin this paper below:

N network scale (number of nodes in the network)
θ percentage of compromised nodes, i.e.,θ·N nodes is compromised
|x| the cardnality of a setx
τ least network time granularity (e.g., 1 nano-second)
α = poly(N) α is a polynomial ofN
Σ < O(poly(N)) Σ is asymptotically less thanpoly(N)
S the size of the entire network space
s the size of an average node “position”
l the size of the largest mobile node’s Turing tape storage

1.2 Complexity-theoretic Overview
First, we adopt a formal approach to characterize a general category of random algorithms, which
belongs to the family of Monte Carlo algorithms with 1-sidedor 2-sided errors.
We seek to prove that the success (or failure) probability ofa network operation isnegligiblein regard
to anetwork metricx, which in this chapter isthe network scaleN (the total number of network nodes)
in the finite network space.
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Figure 2.The negligible function with respect to an input system
metric x, which is the key size in modern cryptography or the
network size in our research
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Figure 3. Polynomial-time Monte Carlo algorithm family with asymptotically stabledeviationǫ(x)

Second, not all Monte Carlo algorithms are qualified in the new formal model. As depicted in Fig-
ure 3(a) and 3(b), we explore a constraint similar to the polynomial-time “amplification” approach in
modern cryptography, which is about the probability difference between polynomial-time Las Vegas
algorithms and Monte Carlo algorithms. If an algorithm belongs to the Las Vegas random algorithm
family, then the randomized algorithm always produces correct result but the algorithm execution is
probabilistically efficient, sometimes inefficient or impractical. If an algorithm belongs to the Monte
Carlo algorithm family, then the algorithm execution is always efficient but with probabilistic 1-sided or
2-sided errors/deviations from the ideal Las Vegas results. In particular, we use a special Monte Carlo
algorithm family with clearly defined metric bounds:

1. The special class of Monte Carlo algorithm used in this work belongs to the complexity class
P. It ends inpolynomial-time(or polynomial-step) and withnegligible deviationǫ(x) (Figure 2)
from the ideal result defined by a counterpart Las Vegas algorithm.

2. Moreover, as depicted in Figure 3, the deviation stays as negligible in polynomial stepspoly(x).
That is, the negligible deviationǫ(x) is an asymptotic invariant in terms of an input metricx.
We show that it meets the definition of Lyapunov’sasymptotic stabilityandexponential stability.



3. The input metricx of any polynomial discussed in this paper is defined asN, the total number
of network members in the finite network space (or equivalently, network densityif we treat the
finite network space as a single unit).

Unlike formal cryptology based on theBPP or P/Poly class with 2-sided errors, in this work we
use theRP class with 1-sided errors. We prove the depictedpolynomial-time asymptotically stable
negligibility propertyin the 1-sided error model to illustratehow a node-wise simple local behavior
affects global behaviors of the entire system withN < poly(N) peer nodes. Therefore, we seek to
explain simpler node-wise local behaviors in a complex probabilistic system, then the complex global
behaviors can be assessed safely due to the important stableproperty.

Third, we define a concept of “GVG polynomial-time algorithm” (or “GVG polynomial-step protocol”
in network term) by introducing aGVG oracle in network complexity theory. Given a “global virtual
god” (GVG) that virtually oversees the network, we show that the number of steps in a protocol is
indeed polynomially bounded in regard to the number of nodesN. This includes the following modeling
aspects:

• RP (n-runs) model: Like BPP class used in modern cryptography, ourRP (n-runs) class
characterizes probabilistic polynomial-time algorithms. In cyanide poisoning, the circulatory
oxygen-transport function is reduced intonegativeGVG −RP class, which has negligible suc-
cess probabilityǫ(N) at every step and globally.

Table 1. Probabilistic behaviors of various algorithm classes

Las Vegas Answer
Monte Carlo Answer

RP (1-run) class GVG−RP & RP (n-runs) class NegativeGVG−RP (n-runs) class
SUCCESS/YES FAILURE/NO SUCCESS/YES FAILURE/NO SUCCESS/YES FAILURE/NO

SUCCESS/YES > 1
2
+ ǫ(x) ≤ 1

2
− ǫ(x) > 1− ǫ(x) ≤ ǫ(x) ≤ ǫ(x) > 1− ǫ(x)

FAILURE/NO 0 1 0 1 0 1

• Polynomially-bounded adversary: The adversary is allowed to compromise a fractionθ of N
(sinceθ·N is a polynomial ofN) network members. In cyanide poisoning, a hemoglobin binding
with cyanide ion but not oxygen is a compromised node, otherwise it is uncompromised. The
cyanide ions donot (directly) kill biological cells or organs like the heart (the centralized server),
but rather disable the fully distributed oxygen-transportfunction.

1.3 Biological Overview
Hemoglobin (Hb) is the oxygen-transport metalloprotein inthe red cells of the blood in mammals and
other animals. For example, hemoglobin in human’s circulatory system transports oxygen from the
lungs to the rest of the body, such as to the muscles, where it releases the oxygen load. If this function
is blocked, the host will quickly die from hypoxia.
The hemoglobin’s binding of oxygen is affected by moleculessuch as cyanide ion (CN-), carbon
monoxide (CO), sulfur monoxide (SO), etc. For example, hemoglobin’s binding affinity for CO is 200
times greater than its affinity for oxygen, and for cyanide the affinity is thousands of times greater (Kind-
wall, 1977)(Vick & Froehlich, 1985)(Sykes, 1981). This means that small amounts of cyanide (or CO,
SO, etc.) dramatically inhibits oxygen-binding, reduces hemoglobin’s ability to transport oxygen, hence
causes grave toxicity and eventually death1.

1 Another basis for cyanide poisoning is by binding cyanide tothe active site of cytochrome oxidase, there by
stopping aerobic cell metabolism so that the cell can no longer aerobically produce ATP for energy. But this
biological effect is beyond the scope of this paper.



Figure 4.Abstraction of circulatory system as an enclosed finite
network spaceS holding the mobile hemoglobin nodes

As Figure 4 shows, at a highly abstract level we can treat the circulatory system as an enclosed (3-
dimensional) space. Each hemoglobin is a molecular agent node who carries a message, which is
oxygen, from one region in the space to another. Any attack that successfully blocks the message-
transport function also destroys the circulatory system’sfunction.

1.4 Researchers that inspired our approach
Since 1940s, the foundation of cryptology has seen two developing phases: (1) the information-theoretic
notion developed by Shannon in (Shannon, 1949) and (2) the complexity-theoretic notion developed in
1980s by Blum-Micali (Blum & Micali, 1982)(Blum & Micali, 1984), Yao (Yao, 1982), et al.

Information-theoretic security In (Shannon, 1949), Shannon proposed the concept ofperfect secrecy,
which is a Zero-error Probabilistic Polynomial-time (ZPP,i.e., the trivial Las Vegas case of encryption)
algorithm producing truly random ciphertext bits from the same length truly random key bits by ap-
plying a Latin Square cipher2. Shannon’s algorithm ends exactly inn steps (which< poly(n) steps).
Unfortunately, this ZPP algorithm is impractical because it cannot process any message longer thann.

Complexity-theoretic security Formal cryptology developed since the Diffie-Hellman (Diffie & Hell-
man, 1976) and RSA (Rivest et al., 1978) era is founded on a different base. In early 1980s, Yao (Yao,
1982), Blum and Micali (Blum & Micali, 1982)(Blum & Micali, 1984) were the earliest complex-
ity theorists who formally defined security using complexity classes like Bounded-error Probabilistic
Polynomial-time (BPP) class and non-uniform polynomial-size circuits (P/Poly). The concept of
being “negligible” is central in the definitions of these complexity classes.

Definition 1. (Negligible function) A continuous functionǫ(x) is negligibleif for all sufficiently large
x’s, for every positive polynomialpoly(x) > 0 such that|ǫ(x)| < 1

poly(x)
. ✷

2 Theexclusive-ORoperation used in Vernam cipher is an instance of Latin Square cipher.



In complexity-theoretic cryptography, a security scheme isprovably secureif the probability of security
failure (e.g., inverting a one-way function, distinguishing cryptographically strong pseudorandom bits
from truly random bits) is negligibleǫ(x) in terms ofx = n the cryptographic key length.
In general, provably secure algorithms are Monte-Carlo algorithms belonging to certain well-defined
complexity classes (e.g., BPP, P/Poly) with the input metric x as the key lengthn. A provably secure
algorithm must ensure that an adversary cannot break its security guarantee with non-negligible prob-
ability. For example, a sequence of provably secure pseudo-random ciphertext bits is polynomially
indistinguishable(IND) from a sequence of truly random bits (coin-flips, coin-tosses), where the term
“indistinguishability” is defined as the polynomial adversary’s incapability of distinguishing pseudoran-
dom ciphertext bits (ofpoly(x) length) from truly random bits (of the same length) with non-negligible
probability. Given adversaries with various capabilities, a provably secure crypto-scheme features vari-
ous levels of ciphertext indistinguishability shown below(IND-CPA, IND-CCA1 and IND-CCA2).

Polynomial-time adversary Security guarantee

Chosen plaintext attacker IND-CPA (aka.
(CPA) semantic security (Goldwasser & Micali, 1984))
Chosen ciphertext attacker IND-CCA1 (aka.
(CCA1) non-malleable security (Naor & Yung, 1990))
Adaptive chosen ciphertext IND-CCA2 (aka.
attacker (CCA2) non-malleable security (Dolev et al., 1991))

Similar to complexity-theoretic cryptographers, we pursue the same direction when studying network
security problems. In many complexity-theoretic problemsassociated with networks and graphs, e.g.,
the Hamilton Circuit problem, the problem’s complexity is measured by the number of the nodesN in
a network/graph. Here the term “polynomial-time algorithm/protocol” refers to an algorithm/protocol
which must end in polynomially bounded stops/steps at thosenodes.
In complexity-based modern cryptography, a security scheme isprovably secureif the probability of se-
curity failure (e.g., inverting a one-way function, distinguishing cryptographically strong pseudorandom
bits from truly random bits) is negligible in terms of the cryptographic key lengthx = n. Nevertheless,
the general notion of negligibility has never said that the system input parameterx must be the key
lengthn. Indeed,x can be any predetermined system metric and corresponding mathematic analysis
would illustrate some hidden analytical behaviors of the system. Hence in our analysis, the input pa-
rameterx for any negligibility notion is changed from the cryptographic key lengthn to certain network
metric, in particular, network densityρ (the number of network nodes per unit area) or network scaleN
(the number of network nodes if we treat the finite network area as the unit).

2. Complexity-theoretic model of cyanide poisoning

In below we propose a concept of “GVG-polynomial time” protocol/algorithm as the formal model
of network security and the explanation of the probabilistic nature of cyanide poisoning. As in typi-
cal randomized complexity-theoretic analysis, our concepts are defined on top of probabilistic Turing
Machines with polynomially-bounded tapes.
Given a probabilistic Turing Machine controlled by a virtual oracle “global virtual god” (GVG) who
oversees the entire network, the number of protocol steps ispolynomially bounded byx = N, the
number of network nodes.

2.1 Required Turing Machines
At first, we use the same probabilistic Turing Machines used in formal cryptology. A Turing machine
consists of a tape, a head, a state register, and an action table. According to the number of used tapes



Turing machine is classified into two classes, namely 1-tapeandk-tape Turing machine. We define now
formally Turing machine.

Definition 2. A Turing machine is a septupleM = (Q, Γ, Σ, qI , #, F, δ), where

• Q is a finite set of states.

• Γ is a finite set of the tape alphabet.

• Σ ⊆ Γ is a finite set of the input alphabet.

• qI∈Q is the initial state.

• #∈(Γ− Σ) is the blank symbol.

• F⊆Q is the set of final or accepting states.

• δ is the transition set. For 1-tape Turing Machine,δ is

δ : Q× Γ←Q× Γ× {Le, Ri},

while for k-tape Turing Machine,δ is

δ : Q× Γ
k←Q× (Γ× {Le, Ri, St})k

HereLe is left shift,Ri is right shift, andSt is stationary without shift. ✷

## . . .t ψϕ

M q

Figure 5. 1-tape Turing Machine M in con-
figuration (q, ϕ, t, ψ)

Using 1-tape Turing Machine as an example, as depicted in Figure 5, aconfiguration, or instantaneous
description, of M is a quadruple

(q, ϕ, t, ψ), ϕψ ∈ Γ∗, t∈Γ, q∈Q

in which the rightmost symbol ofψ is not #. The string of symbolsϕtψ is called thetape of the
configuration. Ifϕ = λ andq = qI , the configuration is aninitial configurationof M.
Upon each left (or right)move, the current symbolt under the tape head is replaced byt′, and the
tape head is moved to the immediate left (or right) of the replaced symbol. ThenM’s current stateq
is replaced byq′. If a machine enters a stateq′∈F or has no moves from a given configuration, the
configuration isdead. Otherwise, we say that

(λ, qI , t, ψ) =⇒ (ϕ′, q′, t′, ψ′)

is acomputationof M, if M has a sequence of moves leading from the initial configuration (λ, qI , t, ψ)
to the final configuration(ϕ′, q′, t′, ψ′), and call the computationhalted if the final configuration is
dead.



Definition 3. A Turing Machine isdeterministic Turing Machine (DTM)if at most one move is possible
from each configuration in the machine’s transition setδ.
A Turing Machine isnon-deterministic Turing Machine (NDTM)if more than one move is possible from
each configuration in the machine’s transition setδ.
A Turing Machine isprobabilistic Turing Machine (PTM)if it is NDTM and the different moves are
taken with certain probabilistic distributions.✷

A probabilistic Turing machine is a non-deterministic Turing machine which randomly chooses between
the available transitions at each point with certain probability. As a consequence, a probabilistic Turing
machine can (unlike a deterministic Turing Machine) have stochastic results; on a given input and
instruction state machine, it may have different run times,or it may not halt at all; further, it may accept
an input in one execution and reject the same input in anotherexecution.
A common reformulation of PTM is a DTM with an addedrandom tapefull of random bits, which are
pre-determined by an oracle’s coin-flips and placed on the tape to replace the DTM’s own coin-flips in
decision. The DTM with added random tape is equivalent to thePTM if the oracle’s coin-flips and the
DTM’s (assumed-to-be) coin-flips follow the same probabilistic distribution.

2.2 Required complexity classes
Then we define the ideal Las Vegas protocol for mobile ad hoc message/oxygen transportation:

Definition 4. (The ideal Las Vegas message/oxygen transporting) The ideal Las Vegas case of mes-
sage/oxygen transporting is characterized by a pair of probability quantitiesPlv andP′lv, when there are
no other molecules blocking an oxygen molecule combining with the nearest hemoglobin. The prob-
ability Plv is the success probability an oxygen molecule can combine with the nearest hemoglobin,
while P′lv = 1− Plv is the failure probability the same oxygen molecule can combine with the nearest
hemoglobin. ✷

If such Las Vegas algorithm/protocol returns FAILURE/NO, then any Monte Carlo algorithm/protocol
also returns FAILURE/NO (since there are some other things,such as cyanide ions or carbon monoxide
molecules, interfering the combination of oxygen-hemoglobin combination). There is no error/deviation
when the protocols return NO. Thus only 1-sided Monte-Carloerror/deviation is possible when the Las
Vegas protocol returns YES. This is the reason why we use 1-sided errorRP algorithm class in our
modeling.
We then define theRP protocol/algorithm class with 1-sided errors.
Let x be the input in the polynomial size of a system parameterN, let M(x) be the random variable
denoting the output of a PTMM. Let

Pr [M(x) = y] =
|{d∈{0, 1}tM(x) : Md(x) = y}|

rtM(x)

whered is a truly random coin-flip,tM(x) is the polynomial number of coin-flips made byM on input
x, and Md(x) denotes the output ofM on input x, whend is the outcome of its coin-flips (i.e., the
random tape of an equivalent DTM).

Definition 5. (Randomized Polynomial-time, RP class): We say thatL is recognized by the proba-
bilistic polynomial-time Turing MachineM with biased single-sided errors if



• for everyx∈L it holds that3 Pr[M accepts x] ≥ 1
2 + 1

poly(n)
for every polynomialpoly(n).

• for everyx 6∈L it holds thatPr[M accepts x] = 0.

RP is the class of languages that can be recognized by such a probabilistic polynomial time Turing
Machine. ✷

Definition 6. (RP n-runs class): We say thatL is recognized by the probabilistic polynomial-time
Turing MachineM with negligible single-sided errors if

• for everyx∈L it holds thatPr[M accepts x] ≥ 1− 1
poly(n)

for every polynomialpoly(n).

• for everyx 6∈L it holds thatPr[M accepts x] = 0.

RP n-runs class is the class of languages that can be recognized by such a probabilistic polynomial
time Turing Machine. ✷

Definition 7. (NegativeRP n-runs class): We say thatL is recognized by the probabilistic polynomial-
time Turing MachineM with negligible single-sided success if

• for everyx∈L it holds thatPr[M accepts x] ≤ 1
poly(n)

for every polynomialpoly(n).

• for everyx 6∈L it holds thatPr[M accepts x] = 0.

NegativeRP n-runs class is the class of languages that can be recognized by such a probabilistic
polynomial time Turing Machine.✷

The procedure to obtainRP n-runs class fromRP 1-run class is calledRP amplification, which triv-
ially runs anRP 1-run class algorithmn times, then the failure probability of anRP n-runs algorithm
(i.e., not returning YES after running theRP 1-run algorithmn times) exponentially decreases, and
becomes negligible.

2.3 ǫ(x) as the polynomial-time asymptotically stable equilibrium
Now we prove the property ofRP (n-runs) depicted in Figure 3(b)4. This property illustrates that how
a node-wise local behavior at each individual peer node affects the network-wise global behavior of the
entire probabilistic system, which is comprised ofN < poly(N) independent peer nodes.

Theorem 1. If anRP (n-runs) protocolX’s failure probability is negligible, then the failure probability
stays as negligible when the same protocolX is independently executed polynomial times.

Proof: By assumption,X will be repeatedp(N) steps, wherep(N) is a positive polynomial. Given
that per-step security success probability isPonetime, the probability of success of the entire execution
Ppolytime is

Ppolytime = 1− (1− Ponetime)
p(N).

3 In the definition 1
2

can be replaced by any constant fraction number in the open range (0..1), not necessarily the
value 1

2
.

4 The same property ofBPP in Figure 3(a) is known to be true by applying Chernoff’s bound in its proof.



By assumption,Ponetime is negligible, thus is asymptotically less than any given 1
p(N)·q(N)

, whereq(N)

is a positive polynomial and sop(N)·q(N) is also a positive polynomial. In other words, there exists a
positive integerNc > 0, such thatPonetime <

1
p(N)·q(N)

for all x > Nc. Then we have

(1− Ponetime)
p(N)

>

(

1−
1

p(N)·q(N)

)p(N)

> e
− 1

q(N)

since(1− 1
x )

x > e−1 for all x > 1.
According to Lagrange mean value theorem, for a functionf (x) continuous on[a, b], there exists a
c∈(a, b) such that f (b) = f (a) + f ′(c) · (b − a) for 0 < a < b. Then let f (x) = e−x, there exists a
ξ∈(0, z), such thate−z = 1 + (−e−ξ)·z > 1− z. Thus we have

(1− Ponetime)
p(N)

> e
− 1

q(N) > 1−
1

q(N)
.

Therefore, for any polynomialq(N) and sufficiently largeN,

Ppolytime = 1− (1− Ponetime)
p(N)

<
1

q(N)
. ✷

According to our model using the input metricx = N, any Monte Carlo network protocol belongs to
one of the four categories (Figure 6) in regards to the stability property:

Stable
Lyapunov

Stable

Stable
Exponentially

Asymptotically

Major Upgrade/Downgrade

Minor Upgrade/Downgrade

Unstable

Figure 6.The classification of network protocols with respect to the input met-
ric x = N. Inside each category it is only possible to do minor upgradeor
downgrade. Major upgrade or downgrade happens when the network proto-
col is optimized or damaged from one category to another.



1. The Monte Carlo protocol isunstable: The probability difference between the Monte Carlo
protocol and the ideal Las Vegas baseline isnot bounded in the open interval (0,1). For example,
a Monte Carlo protocol in negativeRP class has a FAILURE/NO probility1− ǫ(x), which is
bounded in (0,1], but not in (0,1).

2. The Monte Carlo protocol isLyapunov stable: The probability difference between the Monte
Carlo protocol and the ideal Las Vegas case is bounded in (0,1), but the bound isnot an invariant
if the protocol is repeated independently polynomial times.

3. The Monte Carlo protocol isasymptotically stable: The probability difference between the
Monte Carlo protocol and the ideal Las Vegas case is bounded in (0,1), and the bound is an
invariant if the protocol is repeated independently polynomial times. In our study, this invariant
is the negligible quantityǫ(N).

4. The Monte Carlo protocol isexponentially stable: The probability difference between the Monte
Carlo protocol and the ideal Las Vegas case is bounded in (0,1), but the bound is an exponential
invariant if the protocol is repeated independently polynomial times.

It is possible to upgrade an unstable protocol to be Lyapunovstable, then asymptotically stable, finally
exponentially stable. This is calledmajor upgradeor major optimization. Afterwards, it is only possible
to dominor upgrade/optimizationinside the exponentially stable category. That is, it is only possible to
adjust the exponent of the exponentially negligible quantity inside this category.
Likewise, it is possible to downgrade an exponentially stable protocol on the reverse direction to be
unstable eventually. Afterwards, it is only possible to dominor degrade/damageinside the unstable
category.

2.4 Modeling mobile networks: a PTM approach with a GVG oracle
We propose to use a special form of PTM to model the probabilistic stochastic behaviors of a mobile
network. The fundamental idea is to use aglobal virtual god(GVG) oracle to handle the PTM’s control
states, while each mobile node is only treated as a tape carrier.
As depicted in Figure 7, the entire network space is of finite size S. The finite network spaceS is
divided into large number of tiles (or cubes for 3-D space) oftiny sizes, and each tile/cube is smaller
than the physical size of any single mobile node. In other words, each tile/cube is virtually a node
“position” to place on. The number of node “positions”η = S

s is quite large. It is nevertheless a finite

number. In a nutshell,η = S
s is a large constant, but is always asymptotically less thanpoly(N), that

is, η < O(poly(N)).

Tape Each mobile node functions as a carrier of amoving tapeof polynomial size of the network scale
N. That is, each mobile node carries a tape ofO(poly(N)) bits. A moving tape is intuitively the
computer memory snapshot of the corresponding mobile node.Let l < O(poly(N)) be the size of the
largest moving tape. An empty node “position” is occupied bya blank tape ofl blank symbols. This
blank tape is replaced with a node’s moving tape once the corresponding position is taken by the node,
or the tape goes back to the blank tape upon the node’s leavingof the position. If the largest tape length
of each mobile node can carry isl < O(poly(N)), then theGVG PTM’s consummate tapelength is
η·L, which is< O(poly(η))·O(poly(N)), thus< O(poly(N)).

Control state operations Each mobile node’s decision of network operation (e.g., packet transmis-
sion), though autonomous in nature, can be translated into an equivalent formas if all the decisions are
made by theGVG using coin-flips. Along the timeline, there exists a minimal time granularity τ such
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Figure 7.A GVG Probabilistic Turing Machine (GVG PTM) to model mobile nodes in a finite
cubic space (only 2-D depicted) with a large number of node “positions”. The figure shows
that N = 3 of η (N ≪ η < O(poly(N))) such “positions” have been taken byN = 3 mobile
nodes. Each empty “position” is filled with a tape ofpoly(N) blank symbols, and the blank
tape is replaced with a mobile node’s tape once the corresponding position is taken, or the
tape goes back to the blank tape upon the node’s leaving of theposition. If the largest tape
length of each mobile node can carry isl < O(poly(N)), then theGVG PTM’s consummate
tape length isη·l. The GVG PTM’s tape head always parks at the place corresponding to
the current symbol of the first mobile node (i.e., the node with least node index). The mobile
node’s mobility patterns are “as if” decided by theGVG using coin-flips. In theory, theGVG
does all symbol processing and coin-flipping operations andits operation speed is fast enough
to process all symbols on its tape within the least network time granularity τ

that any Turing Machine operation latency less thanτ will make no difference in network protocol ex-
ecution. We model that theGVG can make decisions for all mobile nodes and emulate all the decisions
globally within the granularityτ (e.g., 1 nano-second).
The mobile nodes are indexed from 1 toN. At the beginning/end of eachτ time granularity, the PTM’s
tape head always parks at the place corresponding to the current symbol of the first mobile node (with
node index 1). During aτ interval, the PTM processes every mobile node’s tape one by one (treating
the corresponding node as a puppet Turing Machine of theGVG).
Environmental randomness As to environmental conditions, for each network operation(e.g., mes-
sage delivery), theGVG emulates the physical condition (e.g., blood condition andobstacles that affect
blood flowing) in a perfect manner, and precisely moves each message from one node to another. That
is, the message content is deleted from the sending node’s moving tape, and the received message con-
tent is added to the proper place of the receiving node’s moving tape. In the eyes of theGVG, any
message transportation is simply a movement of a set of tape symbol from one place of its consummate
tape to another place.
PTM as DTM with random tape If we use DTM rather than PTM to model the network protocol
execution, theGVG can pre-cast many coin-flips to emulate the probabilistic events in the network,
and place the result of the coin-flips to an added consummate random tape. These probabilistic events
include mobile node’s probabilistic moving pattern, probabilistic message delivery requests at the mes-
sage sources and destinations, and so on. The total number ofcoin-flips (or the length of the consum-



mate random tape) is bounded by network space and network scale < O(poly(η))·O(poly(N)), thus
< O(poly(N)).

Definition of GVG PTM We formally defineGVG Probabilistic Turing Machine andGVG polynomial-
time protocols in below.

Definition 8. A GVG Polynomial-time Probabilistic Turing Machine (GVG-PPTM)is an octuple

M = (N,GVG(Q, r), Γ, Σ, qI , #, F, δ),

• N is a pre-defined system parameter.N quantifies the size of theGVG-PPTM’s input and output.
For any configuration(q, ϕ, t, ψ), ϕψ ∈ Γ∗, t∈Γ, q∈Q on any single tape of the machine,
|ϕ|, |ψ| < O(poly(N)).

• GVG(Q, r) is a global virtual god oracle with finite set of statesQ and a probabilistic coin-flip
sequencer (i.e., the random tape input of an equivalent DTM).|Q| and |r| are< O(poly(N)).

• Γ is a finite set of the tape alphabet.

• Σ ⊆ Γ is a finite set of the input alphabet.

• qI∈Q is the initial state.

• #∈(Γ− Σ) is the blank symbol.

• F⊆Q is the set of final or accepting states.

• δ is the transition set. For 1-tapeGVG-PPTM,δ is

δ : Q× Γ←Q× Γ× {Le, Ri},

while for k-tapeGVG-PPTM,δ is

δ : Q× Γ
k←Q× (Γ× {Le, Ri, St})k

HereLe is left shift,Ri is right shift, andSt is stationary without shift.

We say thatL is recognized by theGVG-PPTMM with negligible errors if

• for everyx∈L it holds thatPr[M accepts x] ≥ 1− 1
poly(N)

for every polynomialpoly(N);

• for everyx 6∈L it holds thatPr[M accepts x] = 0.

GVG −RP (n-runs) is the class of languages that can be recognized by such aGVG-PPTM.
We say thatL is recognized by theGVG-PPTMM with negligible success if

• for everyx∈L it holds thatPr[M accepts x] ≤ 1
poly(N)

for every polynomialpoly(N);

• for everyx 6∈L it holds thatPr[M accepts x] = 0.

NegativeGVG −RP (n-runs) is the class of languages that can be recognized by such aGVG-PPTM.
✷

For everyx∈L, Pr [M accepts x] means “probability of protocol success”, while its complementPr [M rejects x]

means “probability of protocol failure”. InGVG − RP5, the former one must be1− ǫ(N) and the
latter one must beǫ(N) in terms of network scaleN.

5 In this paper, the notion “GVG-RP” denotes “GVG-RP (n-runs)” class for the ease of presentation.



Example 1. (Modeling mobile message transportation using Figure 7) In a mobile ad hoc network,
peer nodes can be viewed as controlled proxy agents of theGVG. Based on the random coin-flips
(or the random tape of an equivalent DTM) that simulate the probabilistic environment,GVG initi-
ates a message/oxygen on a source node. When intended destination node successfully accepts the
message/oxygen,GVG enters a final acceptance state to finish the mobile message delivery. For a
poisoned oxygen transportation process which is in the negative GVG −RP class, the probability of
hemoglobin’s oxygen-transportation being FAILURE/NOPr[destination cannot receive oxygen] must be
1− ǫ(N), while the probability of transportation SUCCESS/YESPr[destination receives oxygen] must
beǫ(N). ✷

2.5 Mobility model
In an enclosed network spaceS, we divide the network spaceS into a large amount of small virtual
tiles (cubes) of area (volume)s, so that the tile area (cube volume) is even smaller than the physical
size of the smallest network node. This way, each tile (cube)is either empty, or is occupied by a single
node. Also because the network space is much larger than the sum of all mobile nodes’ physical size,
the probability that a tile (cube) is occupied by a mobile node is very small.
Now a binomial distributionB(η, p) defines the probabilistic distribution of how these tiles (cubes) are
occupied by each mobile ad hoc node. Hereη = S

s , the total number of “positions”, is very large but
< O(poly(N)); andp, the probability that a cube is occupied by the single node, is very small. When
η is large andp is small, it is well-known that a binomial distributionB(η, p) approaches Poisson
distribution with parameterρ1 = η·p. Hence this binomial spatial distribution is translated into a
spatial Poisson point process(Cressie, 1993) to model the random presence of the network nodes. In
other words,ρ1 can be treated as a mobile node’s arrival rate of each presence “position”. Moreover,
suppose thatN events occur in spaceS (here an event is a mobile node’s physical presence),ρN = N

S
(whereρN = N · ρ1 by treatingρ1 as the average node PDF amongst theN nodes) is equivalent to a
random sampling ofS with rateρN .

Eulerian and Lagrangian motion modelsIn kinematics, a given flow’s motion depends not only upon
position but upon time as well. Consider any scalar quantityσ which is a continuous function of the
four independent variables representing position and time(x, y, z) andt, with t being time, for which
the space and time derivatives exists. The total rate of change ofσ with time is in general defined by an
operator D

Dt :

D

Dt
σ =

∂σ

∂t
+

∂σ

∂x
·

dx

dt
+

∂σ

∂y
·

dy

dt
+

∂σ

∂z
·

dz

dt
=

∂σ

∂t
+ ~V · ▽σ,

where the differential displacementsdx, dy, dz are specified for the elapsed timedt. Here−▽ is the
gradientof a scalar:

▽ = ~x ·
∂

∂x
+~y ·

∂

∂y
+~z ·

∂

∂z

and~V is theflow vector:

~V = ~x ·
dx

dt
+~y ·

dy

dt
+~z ·

dz

dt
,

where~x,~y,~z are unit vectors in thex, y, z directions, respectively. Clearly, the term∂σ
∂t represents

the local time rate of change of the quantityσ at a fixed position point. The term~V · ▽σ is a scalar
representing the advectional or field changes in the flow associated with the motion of the flow.



For a network of many mobile nodes flowing through a finite area, we can specify either the field of
~V or the paths (trajectories) of the mobile nodes. The former is normally referred to as theEulerian
description of motionwhile the latter is endowed with the title ofLagrangian description of motion.
In below, we will adopt an Eulerian description in our stochastic mobility analysis. The scalar quantity
σ is thearrival rate of an average node on a position, that is, the probability of an average node’s
presence at a position.

The stochastic mobility PDF Let ρ1 denote the mobility probability distribution function of asingle
node in the bounded network spaceS. For a network deployed in a bounded system space, let the
random variableΩ = (X, Y, Z) denote the Cartesian location of a mobile node in the 3-dimensional
network space at an arbitrary time instantt.
The spatial distribution of a node is expressed in terms of the probability density function

ρ1 = fXYZ(x, y, z) =

lim
δ→0

Pr [(x− δ
2 < X≤x + δ

2 ) ∧ (y−
δ
2 < Y≤y + δ

2 ) ∧ (z−
δ
2 < Z≤z + δ

2 )]

δ3

The probability that a given node is located in a subspaceS ′ of the system spaceS can be computed by
integratingρ1 over this subspace

Pr [node inS ′] = Pr [(X, Y, Z)∈S ′] =
∫∫∫

S ′
fXYZ(x, y, z) dS

where fXYZ(x, y, z) can be computed by a stochastic analysis of an arbitrary mobility model.
Let x denote the random variable of number of independent mobile nodes in any network space con-
cerned.

• (Uniform ρ1) the probability that there are exactlyk nodes in a specific spaceS ′ following a
uniform distribution model is

Pr [x = k] =
(N·ρ1 · S

′)k

k!
·e−N·ρ1 ·S ′ . (1)

• (Non-uniformρ1) More generally, in arbitrary distribution models including non-uniform mod-
els, the arrival rate islocation dependent. The probability that there are exactlyk nodes in a
specific spaceS ′ is

Pr [x = k] =
∫∫∫

S ′

(

(N·ρ1)
k

k!
·e−N·ρ1

)

dS . (2)

The choice ofρ1 depends on the underlying mobility model. Some stochastic mobility models which
directly choose a destination direction rather than a destination point and allow a bound back or wrap-
around behavior at the border of the system area, including the random walk model on a 2-D torus
surface, are able to achieve a uniform spatial distribution(Bettstetter et al., 2004)(Bettstetter & Wagner,
2002)(Bettstetter, 2001). However,ρ1 is typically non-uniform. Fortunately, ourGVG − RP and
negativeGVG − RP models donot assume any specific mobility model and mobile node presence
PDF. As depicted in Figure 8, the stochastic PDF can be an arbitrary but continuous function over the
network area/space.
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Figure 8.Stochastic node presence PDF in an arbitrary mobility modelby Eulerian
description (in a 50 unit x 50 unit network space)

2.6 Cyanide poisoning: formal specification
In this section, we use the negligibility-based model to explain a theoretic reason why cyanide poisoning
is fatal. We show that thesuccess probability of carrying message at a single nodeis negligible under
cyanide poisoning.
As specified previously, there areN nodes in the bounded network area, amongst them there areθ·N
compromised (i.e.,binding withθ·N cyanide ions) and(1− θ)·N uncompromised nodes. The random
variabley denotes the number of uncompromised nodes in an arbitrary spaceS ′. The probability that
there arek uncompromised nodes in the spaceS ′ is

Pr [y = k] =
∫∫∫

S ′

((1− θ) · N · ρ1)
k

k!
·e−(1−θ)·N·ρ1 dS

Let z denote the random variable of number of compromised nodes inthe same spaceS ′. The proba-
bility that there arek compromised nodes in the spaceS ′ is

Pr [z = k] =
∫∫∫

S ′

(θ·N · ρ1)
k

k!
·e−θ·N·ρ1 dS

We assume that oxygen molecules are always available in the circulatory system. When there is no
poisoning agents like cyanide ion or carbon monoxide in the enclosed finite space, given a hemoglobin
in binding mode, its oxygen binding success ratio is

Pregular = Pr [y≥1] = 1− Pr[y = 0]

= 1−
∫∫∫

S ′
e−(1−θ)·N·ρ1 dS

= 1−
∫∫∫

S ′
ǫ(N) dS

= 1− ǫ(N)



This Pregular is the characteristic probabilityPlv defined in Definition 4.

Given a hemoglobin in binding mode, one cyanide ion within the binding areaS′ will deprive the
chance of nearby oxygen molecules’ chance to bind with the hemoglobin. The hemoglobin node’s
oxygen binding success ratioat the presence of cyanide ionsis reduced to be

Psuccess = Pr [y≥1] · Pr [z = 0]

=
∫∫∫

S ′

(

(1− e−(1−θ)·N·ρ1)·e−θ·N·ρ1

)

dS

=
∫∫∫

S ′
((1− ǫ(N))·ǫ(N)) dS

<

∫∫∫

S ′
ǫ(N) dS

= ǫ(N).

whereS ′ denotes the nominal size of the biochemical binding range and ǫ(N) denotes a negligible
quantity with respect toN. This Psuccess is the hemoglobin node’s oxygen binding success probability
as in the Monte Carlo case with 1-sided error. The probability differencePregular − Psuccess is of our
concern. InRP (n-runs) case, this difference should be negligibleǫ(N). In negativeRP (n-runs) case,
this difference is however1− ǫ(N).

The mobility PDFρ is arbitrary in our study as long as it is continuous in the space S, thus could be
location dependent and becomes a function of the location spaceS . Therefore, triple integrals must be
used here. Fortunately, becauseex is a fixed point in differential and integral calculus, that is, dex

dx = ex

and
∫

ex dx = ex + C = O(ex), such integrals or differentials do not change the magnitudeof order. In
a nutshell, exponential ordersO(eN) and polynomial ordersO(poly(N)) are unchanged in magnitude
through these integrals or differentials. And this concludes that the last step= ǫ(N) holds.

Hence we have proved that cyanide poisoning reduces step-wise success probability of oxygen-transport
from 1 − ǫ(N) to ǫ(N) for every single hemoglobin node. This single binding step is unchanged
(identically distributed) and repeated independentlypoly(N) times. Then by the asymptotic stability
proved in Theorem 1, the network-wise global success probability of oxygen-transport counting all
N < poly(N) nodes stays asǫ(N). In a nutshell, cyanide poisoning reduces the hemoglobin’soxygen-
transport protocol into the negativeGVG − RP class. The protocol under poisoning belongs to the
unstableprotocol category, the worst category in Figure 6.

2.7 Countermeasuring treatments
Nevertheless, it is easy to restore an algorithm/protocol from the negativeRP class to theRP class.
This can be done by introducing treatment agents that have a much greater binding affinity for cyanide
ion than hemoglobin(Vick & Froehlich, 1988)(Heijst & Meredith, 1990)(Mushett, 1952). For exam-
ple, cyanide preferentially bonds to methemoglobin ratherthan the cytochrome oxidase, and hydrox-
ycobalamin (a form of vitamin B12) can be used to bind cyanide to form the harmless vitamin B12a

cyanocobalamin. A treatment like this can be analyzed below.
Suppose we can introduceγ·N treatment agent nodes to bind with cyanide ion. The probability that
there arek such treatment agents in the spaceS ′ is

Pr [w = k] =
∫∫∫

S ′

(γ · N · ρ1)
k

k!
·e−γ·N·ρ1 dS



WheneverPr [w≥1], a cyanide ion will bind toward the treatment agent rather than a hemoglobin node.
A hemoglobin node’s oxygen binding success probability is changed to be

Psuccess = Pr [y≥1] · Pr [w≥1]

=
∫∫∫

S ′

(

(1− e−(1−θ)·N·ρ1)·(1− e−(1−γ)·N·ρ1

)

dS

=
∫∫∫

S ′
((1− ǫ(N))·(1− ǫ(N))) dS

>

∫∫∫

S ′
(1− 2ǫ(N)) dS .

This is a1− ǫ(N) quantity. In contrast, the failure probability becomesǫ(N). This way, the hemoglobin
node’s oxygen-transport scheme is converted from the negative RP class back to theRP class. The
protocol under countermeasuring healing belongs to theexponentially stableprotocol category, the best
category in Figure 6.

3. Summary

In this work we have formally described the behavior of cyanide poisoning following a complexity-
theoretic approach. Like modern cryptography, security threat in our network-centric model is defined
on the complexity-theoretic concept of “negligible”ǫ(x), which is asymptotically sub-polynomial with
respect to a pre-defined system parameterx. The parameterx is the key lengthn in modern cryptogra-
phy, but is changed to the total number of network nodesN in our model.
When the victim circulatory system is treated as an enclosednetwork space, a hemoglobin is treated
as a mobile node, and a hemoglobin binding with cyanide ion istreated as a compromised node, we
define a randomized complexity classGVG − RP to show how cyanide poisoning can reduce the
probability of oxygen/message delivery to aǫ(N) quantity. This is accomplished in two steps: (1) We
prove that the negligibility propertyǫ(N) is an asymptotic invariant in terms of the input parameter
N for any polynomial-time algorithm; (2) We also prove that the life-sustaining node-wise oxygen-
transport function succeeds (or fails in case of poisoning treatment) withǫ(N) probability, then by
the invariant property the network-wise oxygen-transportfunction also succeeds (or fails in case of
poisoning treatment) with the invariantǫ(N) probability. This leads to a new analysis of biological
threats based on network and complexity theoretic study.
Within this complexity-theoretic model, we classify the evaluation result of any self-organizing network
protocol into four categories:unstable, Lyapunov stable, asymptotically stableandexponentially stable.
Research efforts could produce optimizing designs to upgrade the target protocol to be exponentially
stable eventually, or attacking designs to downgrade the target protocol to be unstable eventually.
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