Collision for 75-step SHA-1: Intensive Parallelization
with GPU

E. A. Grechnikov A. V. Adinetz
grechnik@Omccme.ru adinetz@gmail.com

November 29, 2011

Abstract

We present a brief report on the collision search for the reduced SHA-1. With
a few improvements to our previous work, directed at efficient parallelization on a
GPU cluster, we managed to construct a new collision for 75-step reduced SHA-1
hash function.

1 Introduction

Recently we have constructed a new 2-block collision for 72-step SHA-1 and another one
for 73-step SHA-1 in [1]. Our previous work has improved the method for the automatic
construction suggested by Christophe De Canniére and Christian Rechberger in [2], [3].

In this report we focus on the intensive parallelization with GPUs. As our previous
algorithm required large amount of computing power, extending it to GPUs seems natural.
This results in some changes in the search of characteristics, and also in implementation.
Using GPU, we were able to construct a new 2-block collision for 75-step SHA-1.

2 Improvements in the search of characteristics

We refer to [2] for the detailed description of basic method and notations and to [1] for
our previous improvements, which are still used.

The search is naturally divided into generating part and testing part: on the first 16
steps many possible messages are generated and later every message is only tested and
can be either accepted or rejected, but does not produce any new messages.

The algorithm is trivially parallelizable. Therefore, the main challenge to its perfor-
mance on GPU is coherency, i.e. similarity of control flow between threads in a warp.
We noticed during experiments that coherency can be improved, if the characteristic has
many free bit positions in the last few steps of the generating part, and has very little
freedoms in the 5 steps which immediately preceed the GPU part.

To take this effect into account, we modify the stage 2 of the method, namely random
trials of positions where to impose the - restriction. Namely, we decrease the probability
to select a position from the last steps of the generating part, so restrictions tend to
concentrate on the first steps. This seems to increase the final workfactor slightly, but
the gain from the higher coherency more than compensates this.

We also note that the automatic search of the characteristics can be improved with the
following trick. First, we find some characteristics. Second, we look in the first few steps

of the testing part, examine the conditions which increase P,, and copy these conditions
to the initial characteristics. Next, we run the automatic search again, starting from the
initial characteristics with new conditions. If the number of added conditions is not too
large, then the automated search still has considerable freedom and can produce even
better characteristics.

3 GPU Implementation

Generating part can be naturally viewed as backtracking search, and the testing part is
built into the search as a check at the final round. Generating part can be subdivided into
CPU part and GPU part. During CPU part, the tree is unfolded to a certain search depth,
so that enough search stacks is generated to make use of GPU parallelism. The unfold
depth is currently selected manually for each characteristic after initial experimentation.
Too small a depth will result in insufficient parallelism, and thus underutilization of GPUs,
while too large a depth will require too much GPU memory. During experiments we have
found out that about 100,000 search stacks per GPU is required to utilize it efficiently.

During GPU part, all stacks are searched in parallel by multiple GPUs. If search is
finished for a stack, that stack is removed; no new stacks are generated during GPU part.
The main GPU kernel implements backtracking search and testing part. In this kernel,
each thread works on a single search stack. For each invocation of the main kernel, each
thread does a fixed number of search steps, and then finishes its work. Main kernel also
collects statistical data, which include number of nodes traversed and maximum depth
reached. Between kernel invocations, checks for maximum depth are performed, and an
array of stacks is compacted if necessary.

Computations are distributed on a cluster using MPI. Each MPI process is assigned
to a single GPU. Search stacks are distributed in block-cyclic fashion among processes.
Each process generates all seach stacks, and discards those which do not belong to it.
Initially, there was a global barrier after each invocation of main GPU kernel. However,
experimental data has shown that this global barrier can increase runtime by a factor
of 2 for certain characteristics. Therefore, in subsequent implementations, there is no
global barrier. Instead, master process (which has rank 0) spawns a separate thread for
collection of statistics, and other processes report statistical data to that thread after each
invocation of the main GPU kernel. Process 0 also spawns another thread, which displays
aggregate statistics at regular intervals, every minute by default.

We used NUDA (Nemerle Unified Device Architecture) [4], a set of GPGPU extensions
for Nemerle, for implementation. It was chosen because it is open-source and provides
a higher-level view of GPU programming. It also handles low-level details, such as data
transfer and marshalling of parameters. Internally, NUDA uses OpenCL to generate code
for loops sent to GPU.

In our initial implementation, back-tracking search was implemented as a single loop,
with stages requiring special handling implemented as conditionals. There were 2 such
stages: switching between search rounds, where additional values needed to be precom-
puted, and testing the generated message. Testing was implemented in a separate func-
tion, the loop along testing rounds being fully unrolled using NUDA’s inline annotation.

However, while performance of our initial implementation was good for some char-
acteristics, it was awful for other ones. Specifically, while 60% efficiency was reached
on 73-1 characteristic, only 15% was attained on 72-2. Such low performance is due to
low coherency between neighbouring threads. We applied two optimizations to increase
coherency.

The first optimization was sorting the search stacks after each main kernel invocation.
We quickly established that using stable sort was better than unstable sort (e.g. quick-
sort), as it preserves the order of values with same keys, and thus preserves coherency. We
also experimented with various sorting keys, but finally settled on using the value being
searched at the current round. On 72-2; stable sorting searched value gave about 45%
increase in performance compared to initial implementation. Stable sort was implemented
on GPU using radix sorting algorithm [5], and experiments have shown that time spent
in sorting stacks is negligible compared to time spent in backtracking search.

The second optimization was replacing the single-loop implementation of backtracking
search with triple-loop nest implementation. The innermost loop only traverses nodes and
checks for characteristics inside a single round, until either a good node is found, or all
nodes of this round have been searched. The second innermost loop implements message
testing at the final search round. This allows to check messages without incurring the
overhead of round switching. As more that 75% of time is spent in message testing for
some characteristics, this improves performance. Finally, the outermost loop performs
switching between rounds, and also checks conditions for kernel termination. It was
shown that triple-loop configuration is far better in preserving coherency than single-
loop configuration. Together, triple-loop and stable sort by round value gave about 2x
improvement over initial implementation for 75-1 characteristic.

A number of additional optimizations has been performed. This included using con-
stant memory for storing characteristics, and using shared on-chip memory for storing
search stacks. Contrary to our expectations, using shared memory gave only 2.5% im-
provement over using global memory. This indicates that the memory footprint of the
algorithm fits well into L1 cache of NVidia Fermi GPUs, which were used for computa-
tions. We also modified the algorithm used for generation of characteristics, as described
in the previous section, to provide better coherency. The final version used for 75-round
collision search incorporated all optimizations described above.

Because the second run was estimated to take much longer time, support for check-
points has been integrated into the application. And since the number of available GPUs
was expected to fluctuate, checkpointing implementation also supported starting from a
checkpoint with different number of processes than the checkpoint was originally gener-
ated with. As there is no global synchronization between processes during GPU part,
each process writes the checkpoint independently to its file at fixed time intervals, by
default once each hour.

4 Calculations

Initial experiments and tuning were performed on “GraphIT!” system installed at Re-
search Computing Center, Lomonosov Moscow State University (RCC MSU). This sys-
tem has 16 nodes, each equipped with 3 NVidia Fermi M2050 GPUs, each having 3 GB
of GPU memory. This gives a total of 48 GPUs, however, no more that 30 of them were
used for computational experiments.

Final computations were performed on GPU partition of “Lomonosov”, currently the
most powerful supercomputer in Russia, also installed at RCC MSU. Each GPU node of
“Lomonosov” has 2 NVidia Fermi X2070 GPUs, each having 6 GB of GPU memory. As
the system is still in beta stage, not all nodes are available for the end users.

For the first block, the estimated work factor was 2°® traversed nodes. Due to con-
straints on messages, the characteristic was split into 4 parts, and one of them was chosen
for the initial run. The run was performed on 264 GPUs, and took 11000 seconds to find
the first collision block. The actual number of nodes traversed was 2°4%. Here, we count

both search rounds and testing rounds as nodes, though the latter takes about 2.5 more
time to compute than the former. For the first block, about 40% were testing rounds,
with the rest being search rounds.

The second block has an estimated work factor of 2039! traversed nodes. It started
on 320 GPUs, and was restarted from checkpoints multiple times due to node failure or
availability of additional GPUs. It finished with 512 GPUs. Based on logs, we estimate
that 455 GPUs on average were used. The entire computation took 1904252 seconds, or
22 days and 45 minutes, and traversed a total of 2619 nodes of the search tree. About
58.8% of them were testing rounds, and the rest were search rounds. Computational
efficiency during the second run was estimated at 52% (of peak GPU performance). Had
the full partition with 1554 GPUs been operational, the entire computation would still
require 6.5 days to complete.

In both cases, we had some “luck”, as it took less time to find the collision block than
it had been originally estimated. Specifically, computation finished about 16 times faster
in the first case, and about 2 times faster in the second case. If not for this “luck”, the
entire computation would have taken 1.5 month to complete.

Comparing current GPU implementation with the previous parallel search implemen-
tation in [1], we estimate a single GPU to be as fast as 39 x86 CPU cores. Thus the
equivalent number of CPU cores for the second computation would be 17745, which is
about the same number used in our previous computation. However, given the demand
for CPUs on “Lomonosov”, it was highly unlikely that we could get so many cores for
several weeks. The demand for GPUs was much lower, and it was therefore possible to
get the required number of GPU cores for the required time.

5 Acknowledgements

We are thankful to Research Computing Center of Moscow State University, for providing
us with access to computational resources we required. We are also thankful to support
team of “T-Platforms”, and particularly to Anton Korzh for assistance in solving problems
related to hardware and drivers.

References

[1] E. A. Grechnikov. Collisions for 72-step and 73-step SHA-1: Improvements in the
Method of Characteristics. Cryptology ePrint Archive: Report 2010/413, available at
http://eprint.iacr.org/2010/413.

[2] Christophe De Canniere and Christian Rechberger. Finding SHA-1 Characteristics:
General Results and Applications. In Proceedings of ASTACRYPT, volume 4284 of
LNCS, pages 1-20. Springer, 2006.

[3] Christophe De Canniere, Florian Mendel, and Christian Rechberger. Collisions for 70-
step SHA-1: On the Full Cost of Collision Search. In Proceedings of Selected Areas
in Cryptography, volume 4876 of LNCS, pages 56-73. Springer, 2007.

[4] Andrew V. Adinetz. NUDA Programmer’s Guide. URL: http://nuda.sf .net.

[5] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen, Victor W.
Lee, Daehyun Kim, and Pradeep Dubey. Fast sort on CPUs and GPUs: a case for
bandwidth oblivious SIMD sort. In Proceedings of the 2010 international conference

on Management of data (SIGMOD ’10), pages 351-362. ACM, New York, NY, USA,
2010.

A Collision for the 75-step reduced SHA-1

Table 1. Example of a 75-step SHA-1 collision using the standard IV

i Message 1, first block Message 1, second block
1-4 FO1EES8EE BDDFF313 B2F59EE4 BB37F2BB FO72633F 0D32226A DFF74459 98507743
58 2F472A36 1CO52F6A 96403EFO0 F144298B EEFE63DD FE10D5C5 AFE33902 EF74984E
9-12 DAF5519C 7A90DD71 2BF3718E A7E3DE6D 350272F7 DB382ABC 155B0414 B800179D
13-16 EFFA975E 9BOOAA95 6056E3EE 2BA4483A 18ECD4BC 15497213 1505284C 60C4F869
i Message 2, first block Message 2, second block
1-4 O01EE884 3DDFF353 22F59E94 O0B37F2E8 00726355 8D32222A 4FF74429 28507710
5-8 1F472A3E 1CO52F29 46403E82 4144299B DEFE63D5 FE10D586 7FE33970 b5F74985E
9-12 2AF551FE BA90DD33 2BF371BE 47E3DE2F C5027295 1B382AFE 155B0424 580017DF
13-16 CFFA973E T7BOOAAD4 4056E3BE EBA4487B 38ECD4DC F5497252 3505281C AO0C4F828
i XOR-differences are the same for both blocks
1-4 FOO0006A 80000040 90000070 B0000053 FOO0006A 80000040 90000070 B0000053
5-8 30000008 00000043 DO0000072 B0O000010 30000008 00000043 DO0O000072 B0O000010
9-12 F0000062 (C0000042 00000030 E0000042 FO0000062 (C0000042 00000030 E0000042
13-16 20000060 EO0000041 20000050 C0000041 20000060 E0000041 20000050 C0000041
7 The colliding hash values
1-5 3DF7F21E 130079F3 C2E6EFFF FD9C4141 [9AA8723A

Characteristics for the 75-step reduced SHA-1

Table 2. Characteristics used for the first block of the 75-step collision

[VA; VW; Fw | Pu(?) | P(?) | Ns(v)
-4 00001111010010111000011111000011
-3: 01000000110010010101000111011000
-2: 01100010111010110111001111111010
-1: 11101111110011011010101110001001
0: 01100111010001010010001100000001 uuuu000000-——--——--- 10-01uululu0 10 -0.28 0.00 0.00
1: 100n111111-———--—- 0--00-1u01n0Onnl1 uwilll-————————————— 110n010011 10 -0.07 -0.06 0.06
2: n0011111000-------- u--nn010100n1 u01u00 01uun0100 6 -0.33 -0.31 9.87
3: | Onnn0000010--Ounu-u--0-001unnnn0 | uwOuulO--0------------——- 01nlulOuu 3 0.00 0.00 15.54
4: 1uniuu011unuilu0-000-10-111110ul0 OOun11110----—=-==——==———- 011n110 2 -4.19 -4.19 18.54
5: | nnnn0Ouun011000nu00-0-1101uu0010 | 000111000000--=--=-=-===—==—~ u1010un 2 -2.34 -2.13 16.35
6: 0100n0101n0111-1001u0-u000uuu01l | unOu0110 uuu00n0 2 0.00 0.00 16.01
7 100nuuuulOOuunn-1uln-1uluululi10l | uwluu00010--------—--==——-- 00n1011 2 0.00 0.00 18.01
8: 1111010unnnnnOOn11n0-0-001nn1001 | uwunul010111101----0------nn111n0 0 0.00 0.00 20.01
9: | n0001101110011nu00011inniuluuuln | nul1110101001000---------0u1100ni 0 0.00 0.00 20.01
10: n11100010010101n011n100100u10110 001010111111 -—----—- ----0nn1110 5 -2.00 -1.00 20.01
11: 11101011110----unl-unnninnniniin | unuOOll------————————— 0-u1011ini 11 -1.01 -0.54 23.01
12: 11101101---———--—- 10--11010011000 11u0---—--————--— 0---1-1-un11110 9 -1.00 -0.98 33.00
13: 1111101101 -——--—- 01--01011010n11 unnl10------—---———---- 0-01n01010u 10 -4.00 -0.83 41.00
14: n00111010--————---—---—- 0-000110001 01u00 1 11ulni1110 7 -6.00 -0.66 47.00
15: 001111-0111--—----——--—- n01111101 nnl1010 0 n11101n 10 -1.00 0.00 48.00
16: | n-011--0 1110u01 | nnnOO1 OnnnO1u0 0 -1.00 -0.01 57.00
17: --1--1 0111-un0 | nOul 0011011un 0 -2.00 -0.68 56.00
18: | u-0-0 1---1-- | nn1110 110n1in1 0 0.00 0.00 54.00
19: 0-0-1 | OnnO1 0u11010n 0 -1.00 | -0.91 54.00
20: | n uu011 11un11n0 0 -1.00 | -1.00 | 53.00
21: 10n11 0111001n 0 -1.00 -1.00 52.00
22: nu00 111011n0 0 -2.00 | -2.00 | 51.00
23: n- | uuul 0u0110n0 0 -2.00 | -2.00 | 49.00
24: n- | 1lunil 1u0011n0 0 -1.00 | -1.00 47.00
25: n100 001111n1 0 -1.00 | -1.00 | 46.00
26: 00001 10001010 0 0.00 0.00 45.00
27: 110 10000001 0 0.00 | -0.00 | 45.00
28: n01110 11000010 0 0.00 -0.00 45.00
29: 0100 101011u0 0 -1.00 | -1.00 | 45.00
30: u- | 11-0 10n001011 0 0.00 0.00 | 44.00
31: 10100 10011101 0 -2.00 | -2.00 | 44.00
32: n- nl0 10u010011 0 0.00 0.00 42.00
33: n-1 001011001 0 -2.00 | -2.00 | 42.00
34: n- 1001 00u101100 0 0.00 0.00 40.00
35: n0-1 11010100n 0 -2.00 | -2.00 | 40.00
36: -—-u | -0-1 10nui10111 0 0.00 0.00 | 38.00
37: nil 1110100nu 0 -1.00 | -1.00 | 38.00
38: 1x0 1000001u0 0 -2.00 | -1.00 | 37.00
39: u- | nx0 11n01111- 0 -1.00 0.00 | 35.00
40: uu 1100010n1 0 -1.00 | -1.00 | 34.00
41: x10-1 0111000110 0 -1.00 -1.00 33.00
42: x1 1011101-1 0 -1.00 | -1.00 | 32.00
43: u----1 0000111n0 0 -1.00 | -1.00 | 31.00
44: n- | 0 00u11000- 0 0.00 0.00 | 30.00
45: 1--1 1100101-u- 0 -1.00 | -1.00 | 30.00
46: x--11--—-—-————————————- 1010000101 0 -1.00 -1.00 29.00
47: —-——= n-1-0-0--—————-——=————- 0010101-1 0 -1.00 -1.00 28.00
48: x-0 110011-0-1 0 0.00 0.00 | 27.00
49: ---0 01011001n- 0 -1.00 | -0.42 | 27.00
50: n- 001u110-1- 0 0.00 0.00 | 26.00
51: -1 10101-1-0- 0 -2.00 | -1.42 | 26.00
52: n- | x01 100u0010-- 0 -1.00 | -1.00 | 24.00
53: n 110010-1u- 0 -2.00 | -2.00 | 23.00
54: 0 0101-0-1-- 0 -1.00 | -1.00 | 21.00
55: x0 0010001--- 0 -1.00 | -1.00 | 20.00
56: x--0 01110-0--- 0 0.00 0.00 19.00
57: 111-1-0--0 0 0.00 0.00 19.00
58: 0-- 101111---0 0 0.00 0.00 19.00
59: 0-1 0010-11-1- 0 0.00 0.00 19.00
60: 10-0-1--0- 0 0.00 | -0.00 19.00
61: 01010----1 0 0.00 0.00 19.00
62: -0 0001-0 0 0.00 0.00 19.00
63: 1-0-0--n-- 0 -1.00 | -0.19 19.00
64: n-- 110u0---10- 0 0.00 0.00 18.00
65: 0001-10-1x-- 0 -1.00 | -0.00 18.00
66: 1-0-0--n--x 0 -2.00 | -0.19 17.00
67: n--= [—=-mememmmme o 1-11u0----n-x 0 -2.00 | -0.42 15.00
68: n-- 00-u---x--u 0 -1.00 | -0.00 13.00
69: 0-1--n-xx-— 0 -3.00 | -0.36 12.00
70: n---- 1u0---0On-xx 0 -3.00 | -0.42 9.00
71: n--- 0-u0-0xu-ux 0 -3.00 | -0.42 6.00
72: u--- 0-n--u-xx-u 0 -3.00 | -0.36 3.00
73: u 1n0----nxxx- 0 -4.00 | -0.91 0.00
74: n---- u---x--u-- 0 -1.00 | -0.00 0.00
75:

Table 3. Characteristics

used for the second block of the 75-step collision

i VA, W, Fw [Pu(i) [Pei) [Ns()
-4: 0100111001001000110001100001n000
-3: 10110110011011111000100010unn011
-2: 00000110011100111011010110u10010
-1: 010001110000111001101011101n1000
0: 11100000000001001100101111110101 uuuu000001-—--- 0---—-—= 110nuluiul 8 0.00 0.00 0.00
1: 000n1000101----0-1--0-10010n0nn0 n00011----1--—--——=——- 0100u101010 4 -0.42 -0.42 3.69
2: n110111010110111-1---1n1n0010u00 ulOuiiit11l---------- 1-00unui001 6 -0.96 -0.83 7.28
3: | uOun110001010--1-n-n-0-Ouunininl | uOnulO0 0uOnOOuu 2 0.00 0.00 12.31
4: 101n0n0110nuluul-01u-uun01110inn | 1luniil------—-—------———- 1101u101 2 0.00 0.00 14.31
5: | uuuuuuuuln0101ulOuul-1-nOuOOullOn | 111111100001------------ 1u0001nu 3 -2.00 -2.00 16.31
6: 10001000u1101n00-n-uu0-1110nn01in uniniiiitil-——————---——-—-—- nnn00u0 2 -1.00 -1.00 17.31
7 n110101unn1000u01--10110011011un ulun1111011---------————- 10n1110 4 0.00 0.00 18.31
8: 010000100100--1uu--0000100001000 nnuu010------- 1----- 0--0-uu1l0iul 3 -0.05 0.00 22.31
9: 0011100001000-0-n01-1u001n1n011in uwu011011----—-=———==————~ n1111n0 8 -0.02 0.00 25.27
10: n010000010---11-u----1uuulOinniul 000101--0--1--=-—==——————- Onu0100 1 -1.10 -1.09 33.24
11: 1011100001110101n0100--n00n1uuln unul1100000000000—------- 11n011in1 5 -3.64 -2.98 33.15
12: 11001011111111111-0----111001001 00n1100 1nul11100 9 0.00 0.00 34.50
13: 1001001000100----- 0--0--11111n01 nnnl010 n01001u 6 0.00 0.00 43.50
14: n10010111111-—-—----——- 1-0-0101000 00n101 1 uOn1100 9 -7.22 0.00 49.50
15: 111101-101111-------——~ u-1001101 nul000-01--—————————————- 1ul10100u 10 -0.21 0.00 51.29
16: n-0010-1--—======————————— 1000n01 nnniiil Onnn01n0 0 -0.07 -0.03 61.07
17: 0-1 11--nu0 uwlul01l-—--————--———-————- 101100un 0 -3.00 -2.68 61.00
18: | n-0-0 0-- | un0010 111u00u0 0 -1.00 | -0.83 58.00
19: --0 0 | 1nn000 00Oniiiiiu 0 -1.00 -0.96 57.00
20: | n uu0111 10unOOul 0 0.00 | -0.00 56.00
21: ---- | 00n11 1101010u 0 -1.00 -1.00 56.00
22: nn01100 000011n0 0 -2.00 | -2.00 55.00
23: n- | nnni01 O0u1100n1 0 -2.00 -2.00 53.00
24: n- | Oun0-0 0u1001n0 0 -1.00 -1.00 51.00
25: u00110 001111ul 0 -1.00 | -1.00 50.00
26: 00100-0 01010111 0 0.00 0.00 49.00
27: 110-1 10101010 0 0.00 | -0.00 | 49.00
28: u00100 11011000 0 0.00 0.00 49.00
29: 1001-1 111100n0 0 -1.00 | -1.00 | 49.00
30: n- 10-1-0 1u011101 0 0.00 -0.00 48.00
31: 10100 11100100 0 -2.00 -2.00 48.00
32: --n- | u00-0 101u000100 0 0.00 | -0.00 | 46.00
33: n-1-1---———-————————— 1011011110 0 -2.00 | -2.00 | 46.00
34: n- | 1010 111000101 0 0.00 0.00 | 44.00
35: u0-00 10000100u 0 -2.00 | -2.00 | 44.00
36: n | -1-1 10un10010 0 0.00 0.00 | 42.00
37: ni1 1001000un 0 -1.00 | -1.00 | 42.00
38: 1x0 1011110n0 0 -2.00 | -1.00 | 41.00
39: n- | ux1--0 11u11000- 0 -1.00 0.00 39.00
40: nn---0 1101010ul 0 -1.00 | -1.00 | 38.00
41: x10-0 001100111 0 -1.00 -1.00 37.00
42: x1--1 1011101-1 0 -1.00 | -1.00 | 36.00
43: u----0 1111100n1 0 -1.00 | -1.00 | 35.00
44: n- | 0 000u10000- 0 0.00 | -0.00 | 34.00
45: 0--1 010000-u- 0 -1.00 | -1.00 | 34.00
46: x--11 100100000 0 -1.00 -1.00 33.00
47: n-0-1 1010101-0 0 -1.00 | -1.00 | 32.00
48: x-1 000101-0-0 0 0.00 | -0.00 | 31.00
49: ---0 01001000n- 0 -1.00 | -0.42 | 31.00
50: n- 1 010u101-0- 0 0.00 | -0.00 | 30.00
51: -0 11000-0-0- 0 -2.00 | -1.42 | 30.00
52: --n- | x11 101u0101-- 0 -1.00 | -1.00 28.00
53: u 100111-0u- 0 -2.00 | -2.00 27.00
54: 0 0111-0-1-- 0 -1.00 | -1.00 25.00
55: x0 0000101--- 0 -1.00 | -1.00 24.00
56: x--1 01111-1--- 0 0.00 0.00 23.00
57: 101-1-0--1 0 0.00 | -0.00 23.00
58: 1 001010---0 0 0.00 | -0.00 23.00
59: 0-0 1100-10-0- 0 0.00 0.00 23.00
60: 10-1-0--0- 0 0.00 0.00 23.00
61: 10000----0 0 0.00 | -0.00 23.00
62: -1 110-0 0 0.00 0.00 23.00
63: —-——= | --- 0-0-1--n-- 0 -1.00 | -0.19 23.00
64: n-- 1-101u0---01- 0 0.00 0.00 22.00
65: 111-01-0x-- 0 -1.00 0.00 22.00
66: 1-0-1--n--x 0 -2.00 | -0.19 21.00
67: n--- 111ul----n-x 0 -2.00 | -0.42 19.00
68: n-- 110-u---x--u 0 -1.00 -0.00 17.00
69: 0-0--u-xx- 0 -3.00 | -0.36 16.00
70: u---- Onl---Ou-xx 0 -3.00 -0.42 13.00
71: u--- 1-n0-1xn-ux 0 -3.00 | -0.42 10.00
72: n--- 0-u--n-xx-u 0 -3.00 -0.36 7.00
73: n ul----uxxx- 0 -4.00 | -0.91 4.00
;4: u---- n---x--n-- 0 -1.00 -0.00 1.00
5:

