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Abstract

Search for cryptographic keys in RAM is a new and prospective tech-
nology which can be used, primarily, in the computer forensics. In order
to use it, a cryptanalyst must solve, at least, two problems: to create
a memory dump from target machine and to distinguish target crypto-
graphic keys from other data. The latter leads to a new mathematical
task: ¾recognition of cryptographic keys in the (random) data stream¿.
The complexity of this task signi�cantly depends on target cryptoalgo-
rithm. For some algorithms (i.e. AES or Serpent) this task is trivial but
for other ones it may be very hard. In this work we present e�ective al-
gorithms of expanded key recognition for Blow�sh and Two�sh. As far as
we know this task for these algorithms has never been considered before.

1 Introduction

Decryption of encrypted data is a classical problem of cryptanalysis. Now this
problem is very practical in the digital forensics. There are many computer ap-
plications that use strong cryptographic algorithms with strong keys. Generic
cryptanalytic methods (like an exhaustive key search) are infeasible in this case
and the strength of used algorithms resists other attacks. As a result, forensic
experts need other ways to solve this problem which may be not ¾purely math-
ematical¿ but use mathematics, physics and organize aspects ¾in complex¿.

One of the prospective ways to solve this problem is a search for encryption
keys in the target machine's RAM (i.e. ¾live-memory analysis¿). This problem
has been discussed in many recent works ([2, 3, 4, 5]). Most of them describe
di�erent ways to get physical access to RAM. There are many methods: pre-
installed software, using DMA via connection protocols (e.g. Firewire, [6]),
restoring RAM from the hybernation �le, ¾ColdBoot¿, etc.

Anyway an analyst faces the problem of ¾encryption key recognition¿ in
the extracted RAM image. Typically, an analyst knows some information for
veri�cation of target encryption keys. It may be known signatures of decrypted
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�le system (for ¾whole-drive encryption¿) or known patterns in the target �le
format. But the exhaustive search for keys in RAM is a very expensive process.
Fast recognition of tiny numbers of ¾suspicious¿ candidiates in a large data
stream could signi�cantly reduce the time and cost of the expertise.

One of the interesting methods for key recognition is the ¾expanded key
method¿. It was discussed in [1] in respect to search for Bitlocker keys in RAM.
The main idea of this method is the following: typically, symmetric encryption
algorithms expand the small ¾encryption key¿ to the array of ¾round keys¿
which are used in the sequential encryption rounds. This array is much larger
than the original key. As a result there is a redundancy that can be used to
distinguish ¾expanded keys¿ from other data blocks.

Often this way works much faster than an exhaustive search. Another ad-
vantage is that this way doesn't depend on the implementation of the algorithm
in the target application but depends on the algorithm only. As a result an
expert can use this method for a wide class of applications without expensive
¾reverse-engineering process¿.

But this way signi�cantly depends on the target algorithm. From this point
of view, there are di�erent classes of algorithms: ¾simple¿, ¾hard¿ and ¾impos-
sibly hard¿. The latter type is not interesting in practice but we believe that
it could be designed. The two other classes are more interesting. For ¾simple¿
algorithms the original key is a part (typically, start values) of the expanded
key. In this case the ¾recognition problem¿ is trivial � an analyst must expand
start keys to a few rounds and check if the calculated values are equal to the
values from the checked array (from RAM). The example of ¾simple¿ algorithm
is AES.

The algorithm is ¾hard¿ in our classi�cation if expanded keys are derived
from original key through complex nonlinear scheme and the the array of ex-
panded keys does not contain the original key. Typically, dependencies between
di�erent round keys are non-trivial too. Examples of ¾hard¿ algorithms are
Two�sh ([7]) and Blow�sh ([8]).

In this work we present the solution to the problem of expanded key recog-
nition in (random) data stream for Two�sh and Blow�sh. Some previous works
discussed this task for concrete implementations but as far as we know there is
no proposed ¾purely algorithmic¿ solution to this problem which could use only
expanded keys properties. Proposed results have been published before only in
russian ([9, 10]).

The structure of our work is the following: for each target algorithm we
will start from its brief description and after that we will describe the proposed
attack and provide its complexity estimations.
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2 Blow�sh Keys Recognition

2.1 Blow�sh (448 bits) Key Expansion

Let's consider the key expansion only for maximal key length � 448 bits. Block
size of Blow�sh is 64 bits. The ¾word¿ is an array of 32 bits (which represents
32-bit unsigned integer). As a result ¾word¿ contains 4 bytes. ¾Encryption
Key¿ K is an array of 14 words.

Expanded keys contain two parts: array P (18 words) and array S (1024
words). The total size of the expanded key is (18 + 1024) · 4 = 4168 bytes.

Initially, both arrays contain constants (P̂ and Ŝ) which are determined
in the algorithm speci�cation. For speci�ed encryption key these arrays are
updated The update procedure is described by the following pseudocode:

// Stage 0: Key Addition

for( i = 0; i < 18; i++ )

P[ i ] = P[ i ] ^ K[ i mod 14 ]

// Stage 1: Generating of P

word block[ 2 ] = { 0, 0 }

( P[ 0 ], P[ 1 ] ) = encryptBlock( block )

for( i = 2; i < 18; i+=2 )

( P[ i ], P[ i+1 ] ) = encryptBlock( P[ i-2 ], P[ i-1 ] )

// Stage 2: Generating of S

( S[ 0 ], S[ 1 ] ) = encryptBlock( P[ 16 ], P[ 17 ] )

for( i = 2; i < 1024; i+=2 )

( S[ i ], S[ i+1 ] ) = encryptBlock( S[ i-2 ], S[ i-1 ] )

The function encryptBlock(. . . ) performs Blow�sh-like encryption of data block.
More precisely, all operations are the same to Blow�sh but use the current state
of P and S. In other words, each call of encryptBlock(. . . ) is slightly di�erent
from the previous one and the next one.

2.2 Search of Blow�sh Expanded Keys

For di�erent techniques of physical access to RAM some restrictions on the
gained image could occur. For example, it may be represented as an unordered
set of physical pages. The problem of mapping of physical addresses to logical
addresses space may be hard. In this case expanded keys may be fragmented,
i.e. lie on two or more non-adjacent pages. The size of Blow�sh expanded keys
is more than the size of the physical memory page (4096 bytes). As a result the
fragmentation of expanded keys is very likely.

However, all expanded keys can be recovered from array P only. Really, for
recovering S array we can ¾encrypt¿ prede�ned array Ŝ via encryptBlock(. . . )
function with known P . As a result we need to �nd in data stream only 18
words of P . Hence the following problem occurs: to recognize if �xed array of
18 words is a correct array P (for some original Blow�sh key).
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The size of checked array (18 words or 72 bytes) is more than the original
key size (448 bits or 56 bytes). As a result P array has a redundancy. The
probability of ¾false alarm¿ is 2−128 approximately (if data is random). But we
need an e�cient algorithm of checking ¾correctness¿. We are going to propose
such an algorithm below.

Let us know some pairs of plaintext and ciphertext. Then ¾naive¿ algorithm
of correctness checking is the following:

1. Calculate full expanded key (P, S) from checked array P

2. Try to decrypt ciphertext and compare the result with the known plaintext

Note that this way can work (with smaller probability) if we know only a small
part of plaintext or only some relations between plaintext bits. For this algo-
rithm we need to call encryptBlock(. . . ) at least 4 · 4 · 256/8 = 512 times for
generating S. Then for an exhaustive search in 4 GiB of RAM we need to per-
form approximately 241 blocks encryptions. It seems too hard and we are going
to propose a better way.

For optimization we can use two steps:

1. Firstly use some ¾fast correctness checking¿ for 18 word arrays

2. Use full veri�cation procedure (by knowledge about plaintext and cipher-
text pairs) only for ¾possibly correct¿ arrays

This way is better than ¾naive¿ approach if and only if there is ¾fast correct-
ness checking¿ algorithm (faster than 512 block encryptions per key). We will
consider these algorithms further.

Note that there is another reason to use a two-step approach. Correctness
checking uses only memory image and doesn't use encrypted data. It may be
an advantage if we can't have an access to RAM and data storage (e.g. HDD)
simultaneously.

2.3 Fast Correctness Checking for P

Let X be a checked 18-word array. We want to recognize if it's a P -part of the
expanded key for an original Blow�sh key.

For many software implementations of Blow�sh parts P and S of the ex-
panded key lie consequently. In this (simplest) case the checking procedure is
the following:

1. Call encryptBlock(. . . ) of Ŝ with checked values of X as P

2. Find resulted block in the same RAM page with X

It works successfully if S-part of expanded keys lies after (may be nonconse-
quently) P -part on one physical page of RAM. In this case we need to perform
only 1 block encryption (instead of 512). The probability of ¾false alarm¿ (for
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random data) is approximately 212/264 = 2−52 per checked key or totally 2−20

for 4 GiB of random RAM data.
If S-part of the expended key doesn't lie after P -part on the same page we

must use more complex checking. It is described in the next section.

2.4 Original Key Recovery and Full Correctness Checking
for P

When we know P -part of expanded key we can recover the original key K.
During this process we can precisely check a ¾correctness¿ of P -part.

Consider the block encryption in detail. It works as follows:

EP,S(X) :
(L0, R0) = (X[0]⊕ P [0], X[1])
for(i = 1; i < 17; i++) :

(Li, Ri) = (Ri−1 ⊕ P [i]⊕ F (Li−1, S), Li−1)
(L17, R17) = (R16 ⊕ P [17], L16)
return(L17, R17)

Function F depends on S but doesn't depend on P . But during stage 1
S = Ŝ and is known.

Note that known P [16] and P [17] are the result of encryption of known P [14]
and P [15]. And all other P [i] for the last encryption are known (P [0], . . . , P [15]
as a part of checked P -array and P [16] and P [17] as a part of initial array P̂ .
As a result we can calculate all intermediate values Li and Ri. Now we have
the relations:

P [16] = L17 ⊕K[17 mod 14]⊕ P̂ [17]

P [17] = F (L17)⊕K[16 mod 14]⊕ P̂ [16]⊕R17

and we can easily reconstruct appropriate K[2] and K[3].
Other K[i] can be reconstructed in a similar way. First R and L are calcu-

lated ¾forward¿ by known P [i] from the checked array and last R and L are
calculated ¾backward¿ by known P̂ [i] from the initial array. Complexity of
¾forward¿ and ¾backward¿ rounds are the same because it's Feistel network.
Total complexity of recovering two key words is equal to one block encryption.

We need to recover totally 18 words of the key. But for the last two rounds
we can check ¾correctness¿. Really, K[3] is reconstructed two times: at �rst
round asK[17 mod 14] and at last-but-one round asK[3 mod 14]. Both values
must be the same (for ¾correct¿ P -part). The situation is the same for K[2].
As a result after 8 ¾pseudo-encryptions¿ we have 64 control bits for checking.
For a stronger check we can use K[1] and K[0]. The probability of a false
alarm is approximately 2−128. The total complexity is approximately 8 block
encryptions (9-th ¾pseudo-encryption¿ is required very rare). It's easy to see
that this process is ≈ 512/8 = 64 times as fast as ¾naive¿ approach (but 8 times
as slow as ¾fast check¿ from previous section).
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3 Two�sh Keys Recognition

3.1 Two�sh (256 bits) Key Expansion

Let's consider Two�sh key expansion for maximal key length � 256 bits (32
bytes). As before the ¾word¿ is an array of 32 bits (which represents 32-bit
unsigned integer). ¾Encryption key¿ M is and array of 32 bytes. The expanded
key contains 40 words K0, . . . ,K39 and 4 S-boxes which depend on the encryp-
tion key.

In order to expand key M , �rstly two 4-word vectors are derived:
Me = (M0,M2,M4,M6) and Mo = (M1,M3,M5,M7), where Mi =
(m4i+3,m4i+2,m4i+1,m4i).

After that S-boxes are derived but it is not important for further analysis
and we don't provide it here.

The core of Two�sh key expansion is non-linear function
h(X, (L0, L1, L2, L3)) which handles 5 words X,L0, L1, L2, L3 and returns
the word Z. The �rst step of h is calculation of intermediate vector
Y = (y0, y1, y2, y3) by the following formulae:

y0 = q0[q1[q1[q0[q1(x0)⊕ l3,0]⊕ l2,0]⊕ l1,0]⊕ l0,0]
y1 = q1[q1[q0[q0[q0(x1)⊕ l3,1]⊕ l2,1]⊕ l1,1]⊕ l0,1]
y2 = q0[q0[q1[q1[q0(x2)⊕ l3,2]⊕ l2,2]⊕ l1,2]⊕ l0,2]
y3 = q1[q0[q0[q1[q1(x3)⊕ l3,3]⊕ l2,3]⊕ l1,3]⊕ l0,3]

Here xi is i-th byte ofX, li,j is j-th byte of Li. q0 and q1 are non-linear invertible
byte permutations.

The second step of h is calculating Z as a result of multiplication of Y on
�xed invertible MDS-matrix M over �eld F256.

The expanded key words K0, . . . ,K39 are derived from Me and Mo by the
following formulae:

% = 224 + 216 + 28 + 1
Ai = h(2i%,Me)
Bi = h((2i+ 1)%,Mo) <<< 8
K2i = (Ai +Bi) mod 232

K2i+1 = (Ai + 2Bi) mod 232 <<< 9

where <<< means cyclic rotation of 32-bit word.

3.2 Original Key Recovery

The expanded key for Two�sh is relatively small (160 bytes) and it's very likely
to �nd all Ki on the same physical page. We are going to consider an e�cient
algorithm of recovering the original key M by known array K = (K0, . . . ,K39).

Firstly note that we can easily recover all values of h(2i%),Me) and h((2i+
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1)%,Mo). Really

T = K2i+1 <<< 23
h(2i%,Me) = (2K2i − T ) mod 232

h((2i+ 1)%,Me) = (T −K2i) mod 232 <<< 24

for each i = 0, . . . , 19. Furthermore, matrix M and permutations q0, q1 are
easily invertible. Then for each i = 0, . . . , 39 we can calculate:

ki,0 = q1[q1[q0[q1(x0)⊕ l3,0]⊕ l2,0]⊕ l1,0]⊕ l0,0
ki,1 = q1[q0[q0[q0(x1)⊕ l3,1]⊕ l2,1]⊕ l1,1]⊕ l0,1
ki,2 = q0[q1[q1[q0(x2)⊕ l3,2]⊕ l2,2]⊕ l1,2]⊕ l0,2
ki,3 = q0[q0[q1[q1(x3)⊕ l3,3]⊕ l2,3]⊕ l1,3]⊕ l0,3

For even i li,j are bytes of Me and for odd i li,j are bytes of Mo.
How can we recover l0,0, . . . l3,0 (i.e. least signi�cant bytes of 4 words ofMe)?

We must use relations for even i. There are 20 known bytes k0,0, k2,0, . . . , k38,0
and 20 relations

k2i,0 ⊕ f(2i, (l3,0, l2,0, l1,0)) = l0,0

where
f(2i, (l3,0, l2,0, l1,0)) = q1[q1[q0[q1(x0)⊕ l3,0]⊕ l2,0]⊕ l1,0]

Consequently, for each (i, j) we have

k2i,0 ⊕ k2j,0 = f(2i, (l3,0, l2,0, l1,0))⊕ f(2j, (l3,0, l2,0, l1,0))

Note that values of f(2i, (l3,0, l2,0, l1,0)) for �xed i depend on 24 bits only
and can be precalculated fast and stored in a small amount of memory (near
16 MiB for each index i). But a more convenient way is to precalculate values
of kij = f(2i, (l3,0, l2,0, l1,0)) ⊕ f(2j, (l3,0, l2,0, l1,0)) for each (l3,0, l2,0, l1,0) and
store them in the table which is ordered by kij . For any k there are 216 ap-
preciate vectors (l3,0, l2,0, l1,0) on average (or 1/256 part of all vectors). If the
checked array is ¾correct¿ and if kij = ki ⊕ kj for calculated k0, . . . , k19 then
for corresponding tables for all kij contain at least one common value (true
(l3,0, l2,0, l1,0)). Otherwise, for ¾incorrect¿ array it is highly unlikely that the
tables for four values k01, k02, k03, k04 contain a common element (probability of
¾false alarm¿ is approximately 224/24·8 = 2−8). It's a rather good way to check
an array fast. For a stronger checking we can use another k0j . Final probability
of ¾false alarm¿ is approximately 224−8·19 = 2−128.

Checking is much faster if we precalculate all compatible values of
(k01, k02, k03, k04) and store them with corresponding tuples (l3,0, l2,0, l1,0) in
the sorted table. The total size of this table is 7 ·224 bytes (112 MiB). Checking
is equivalent to search for an element in a table (24 comparisons). If correct
tuple (l3,0, l2,0, l1,0) is found l0,0 is easily calculated as f(0, (l3,0, l2,0, l1,0))⊕k0,0.

For Mo and k2i+1,j the situation is the same.
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4 Conclusions

Recognition of cryptographic keys in the data stream has been considered very
rarely in previous works. In common case this problem seems to be very hard.
However in some practically important cases it can be solved e�ciently. It's
very actual, �rstly, in the digital forensic practice. Methods which are proposed
in this work, are successfully applied for analysis of wide-spread cryptographic
systems (e.g TrueCrypt, PGP, Bestcrypt, etc). Our results are implemented in
special forensic tools (Passware Kit Forensic). We believe that similar methods
can be used for reverse engineering and security analysis of computer systems.

Further research of key recognition may be used to increase resistance of
computer systems against side-channel attacks.
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