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Abstract. H2-MAC was proposed to increase efficiency over HMAC by
omitting its outer key, and keep the advantage and security of HMAC
at the same time. However, as pointed out by the designer, the security
of H2-MAC also depends on the secrecy of the intermediate value (the
equivalent key) of the inner hashing. In this paper, we propose an efficient
method to break H2-MAC, by using a generalized birthday attack to
recover the equivalent key, under the assumption that the underlying
hash function is secure (weak collision resistance). We can successfully
recover the equivalent key of H2-MAC in about 2n/2 on-line MAC queries
and 2n/2 off-line MAC computations with great probability. Moreover, we
can improve the attack efficiency by reducing the on-line MAC queries,
which can’t be done concurrently. This attack shows that the security
of H2-MAC is totally dependent on the (weak) collision resistance of
the underlying hash function, instead of the PRF-AX of the underlying
compression function in the origin security proof of H2-MAC.
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1 Introduction

HMAC [2, 1], a derivative of NMAC, is a practically and commonly used, widely
standardized MAC construction nowadays. HMAC has two advantages. First,
HMAC can directly make use of current hash functions, the most widely used
ones are based on Merkle-Damg̊ard construction [4, 7], as black boxes. Second,
it is provable secure under the assumption that the compression function of the
underlying hash function is a pseudo random function (PRF) [1].

For an iterated hash function H with Merkle-Damg̊ard construction, HMAC
is defined with secret prefix approach [9], by

HMAC(kin, kout)(M) = H(kout||H(kin||M))

where M is an input message with arbitrary length, kin and kout are secret b-bit
keys derived from a base key K.

However, HMAC has a drawback of managing its secret keys. It has to call
the secret keys twice to complete the MAC computation. In ISC 2009, Yasuda



proposed H2-MAC [15], a variant of HMAC, which aims to remedy the drawback
of HMAC and keep its advantages and security at the same time. H2-MAC is
defined by removing the outer key of HMAC.

H2-MAC is proven to be a secure PRF (pseudorandom function) under the
assumption that the underlying compression function is a PRF-AX [15].

This year, Wang [11] proposed an equivalent key recovery attack to H2-MAC
instantiated with the broken MD5 [8, 12, 14], combining the technologies used in
[3] and [13], with complexity about 297 on-line MAC queries.

Our contributions. We propose the first equivalent key recovery attack that
breaks the security of H2-MAC instantiated with secure hash functions, without
related key setting. The attack is based on the assumption that the underlying
hash function is (weak) collision resistance (WCR), which is stronger than the
PRF assumption of the underlying compression function in origin security proof
in [15]. Moreover, our attack is suitable to all of the H2-MACs instantiated
with secure1 iterated hash functions, since our attack is based on the birthday
paradox. This attack is also applicable to NMAC [6], in a related key setting.

We implement the equivalent key recovery attack to H2-MAC through a
generalized birthday attack, which contains two groups. First, we get the corre-
sponding MAC values of H2-MAC by on-line queries in group G1, using different
messages. Second, we directly compute the values of H(H(C||m))2, called H2,
in group G2 through off-line, where Cs and ms can be both randomly gener-
ated. If the number of queries in G1 is 2n/2 and the number of computation in
G2 is also 2n/2, then, there is a pair (m, m′) of that the inner hashing part of
H2-MAC and H2 that equates with great probability [5]. Hence, the equivalent
key of H2-MAC is recovered by computing the corresponding value of H2.

Since the on-line MAC queries to the H2-MAC oracle can’t be done concur-
rently, and the off-line computations of the H2 can be completed in parallel, we
can improve the attack efficiency by reducing the on-line queries and increasing
the number of off-line computations at the same time, without reducing the suc-
cess ratios of the attack. Moreover, once the off-line computation is done, it can
be reused while recovering the equivalent key of other H2-MACs with different
keys.

Organization of this paper. We introduce some preliminaries and back-
ground, such as birthday paradox, in section two. In section three, We break the
security of H2-MAC by using a generalized birthday attack with two groups,
based on the assumption that the underlying hash function is (weak) collision
resistance. Further, in section four, we show some optimizations, such as enlarg-
ing the success probability of the equivalent key recovery attack to H2-MAC.
We conclude the paper in the last section.

1 In this paper, a secure hash function means it is WCR.
2 The secret key of H2-MAC is replaced with a constant, for example, the IV of the

underlying hash function.



2 Preliminaries

In this section, we first present some notations, and then we recall the birthday
paradox in brief, at last, we present a brief description of H2-MAC.

2.1 Notations

Let h be a compression function mapping {0, 1}n×{0, 1}b→{0, 1}n, and let H
be a concrete hash function mapping {0, 1}∗ → {0, 1}n. Let IV be the initial
chaining variable of H. Let k denote a secret key with b bits. K denote a secret
key with n bits. x||y denotes the concatenation of two bit strings x and y. |G|
denotes the number of elements of the set G. ⊕ means the bit wise exclusive OR.
pad(M) denotes the padding bits of M in Merkle-Damg̊ard style. H2 means that
the secret key to H2-MAC is replaced with a constant C or known to everybody,
hence, H2 can be also viewed as the application of the underlying hash function
H twice.

2.2 Birthday Paradox

The famous birthday paradox is stated as follows [5]: “Let r be the number of
the students in a classroom and let q(r) be the probability that at least two
students in this classroom have the same birthday. The minimal value of r is 23
for q(r) ≥ 1/2.”

A generalized variant. Given two groups G1 with r elements, G2 with
s elements drawn uniformly and independently at random from {0, 1}n, find
x1∈G1 and x2∈G2, such that x1=x2.

The probability Pr(|G1 ∩ G2)| = i that there are i distinct elements in the
intersection of the two groups is denoted by P (2n, r, s, i). P (2n, r, s, i) converges
towards a Poisson distribution ℘λ(i) with parameter λ, where r·s/2n → λ,
r, s, 2n → +∞ [5].

A solution x1, x2 exists with great probability once r× s� 2n holds, and if
the list sizes are favourably chosen, the complexity of the optimal algorithm is
O(2n/2) [5, 10].

The birthday problem has numerous applications throughout cryptography
and cryptanalysis, and the direct application is collision searching.

2.3 Brief Description of H2-MAC

H2-MAC [15] was proposed by Yasuda in ISC 2009, it is defined as

H2-MAC(k)(M) = H() (1)

where k is a b-bit key3. It is a reduced version of HMAC by removing the outer
key.

3 In the origin paper, k = K||pad, where K is a n-bit key, pad is some (b−n)-bit fixed
padding. Here, we use k just for simplifying the notation.



Compared with HMAC, H2-MAC can also utilize the underlying hash func-
tions as black box, it is also provable secure under the assumption that the under-
lying compression function is a PRF-AF [15]. Moreover, H2-MAC can achieve
higher performance and simpler key management over HMAC, especially for
short messages, since it only access the secret key once.

However, the key reduction of H2-MAC introduces another security problem,
as pointed out by the designer [15], once the intermediate chaining variable of
the inner hashing (the equivalent key of H2-MAC) is leaked, it can be used
to perform a selective forgery attack. Hence, the security of H2-MAC is also
dependent on the secrecy of intermediate chaining variable.

3 Breaking H2-MAC Using Birthday Paradox

We call Ik = H(k||M) the inner hashing of H2-MAC, Oh = H(Ik) the outer
hashing of H2-MAC. On-line birthday attack is launched by query the MAC or
hash oracle on-line.

3.1 On-Line Birthday Attack for Verifiable Forgery Attack

If we apply the on-line birthday attack to the H2-MAC oracle, after about 2n/2

queries, we may get a collision pair (M,M ′), which satisfies H2-MAC(M) =
H2-MAC(M ′). It means H2-MAC(M ||pad(M)||x) = H2-MAC(M ′||pad(M ′)||x)
always holds, for arbitrary message x. Hence, we can generate verifiable forgeries
to H2-MAC after a collision pair of H2-MAC is found. We first query the MAC
value of M ||pad(M)||x, and we get the very MAC value for M ′||pad(M ′)||x,
eventually.

After 2n/2 on-line queries, any verifiable forgery to H2-MAC, based on the
collision pair (M,M ′), can be made with one additional on-line query.

3.2 Equivalent Key Recovery Attack to H2-MAC

If we know the inner intermediate chaining variable of H2-MAC, Ik = H(k||M),
we can construct any selective forgery attack to H2-MAC, based on that. How-
ever, it seems that we can’t get the value of inner hashing H(k||M) for the
application of outer hashing Oh.

Attack principle. To find a way out, we notice that if we consider the
inner intermediate chaining variable (the equivalent key) of H2-MAC as a n-bit
input x, then we can view H2-MAC as a simple hash of H(x). Intuitively, find
a collision pair that satisfies H(x) = H(x′) is easier than recover the secret key
of a MAC, even if H is collision resistance. However, we can’t use the birthday
attack with one group to recover the equivalent key, because we can’t know the
value of x and x′, even a collision pair (x, x′) is found.

Fortunately, we can use the generalized birthday attack with two groups. If
we can get a collision pair (M,M ′) that satisfies H2-MAC(k)(M) = H2

(c)(M
′),



and further we have H(k||M) = H(c||M ′)4, where c is a constant or known
parameter set by us. Then, we get the very equivalent key Ke of H2-MAC, since
Ke = H(k||M) = H(c||M ′). Finally, we know the value of c and M ′, hence, Ke

can be easily computed.
So the equivalent key recovery attack to H2-MAC is transformed to the

problem of finding a collision pair in two groups, where the elements of one
group must be computed by on-line query to H2-MAC, and the elements of the
other group can be computed directly through H2 off-line. Thus problem is the
generalized birthday attack with two groups (sometimes, it is also named as
meet-in-the-middle attack).

Generalized Birthday Attack to Recover Equivalent Key of H2-MAC
Here, we apply the generalized birthday attack with two groups [5] to H2-MAC
and then recover its equivalent key Ke = H(k||M0).

We use 1-block message M0s to generate the corresponding H2-MAC values,
and use 1-block message M ′0s to generate the corresponding H2 values. The
overall strategy of equivalent key recovery attack to H2-MAC is shown as follows.

1. Generate a group one G1 with r = 2n/2 elements, by computing the corre-
sponding values of H(H(c||M ′0)) for r different cs and M ′0s, which can be
randomly generated. Specifically, c can be a pre-chosen constant.

2. Generate a group two G2 with s = 2n/2 elements, by querying the corre-
sponding values to H2-MAC oracle with the secret key k for s different M0s,
where M0s are randomly generated.

3. There is a collision pair (M0,M
′
0) that not only satisfies H2-MACk(M0) =

H2
c (M ′0), but also satisfies H(k||M0) = H(c||M ′0) (an inner collision between

H2 and H2-MAC happens), with great probability [5].
4. Since H(k||M0) = H(c||M ′0), and we know the value of c and M ′0, we can

compute the value of Ke = H(k||M0) = H(c||M ′0).
5. Let pad0 and pad1 be the padding bits of k||M0 and k||M0||pad0||x, re-

spectively, for arbitrary message x. Hence, we can generate the result of
H(k||M0||pad0||x) by computing y = h(Ke, x||pad1), then we compute H(y)
further, and finally we get the very value of H2-MAC(k||M0||pad0||x).

Why inner collision. In the above attack, an inner collision must be found
first. The problem is why an inner collision must happens. If we remove the outer
hashing of H2-MAC, we can directly observer that a collision pair (M0,M

′
0)

can be found with great probability, after querying the oracle of H(k||M0) and
H(c||M ′0) with enough times. Moreover, the application of outer hashing of H2-
MAC can’t hide the existence of such inner collision.

How to judge the inner collision. After a collision pair (M0,M
′
0) sat-

isfying H2-MACk(M0) = H2
c (M ′0) is found, we first generate the padding bits

pad0 for M0 and M ′0, where pad0 = pad(c||M ′0). Further, we randomly generate
a message x, and append x to M0||pad0 and M ′0||pad0, respectively. We query

4 Here, an inner collision happens between H2-MAC and H2.



the corresponding MAC value on-line to the H2-MAC oracle for M0||pad0||x,
and we compute the corresponding value for M0||pad0||x off-line using H2. Af-
ter that, we further check whether H2-MACk(M0||pad0||x) = H2

c (M ′0||pad0||x)
still holds. If so, (M0,M

′
0) is also an inner collision pair between H2-MAC and

H2, the attack succeeds. Otherwise, (M0,M
′
0) is an outer collision, which will

be simply discarded.
Success Probability. We calculate the success probability of the above

attack. We notice that r = s = 2n/2 (hence λ = r·s/2n = 1), the probability sp
of that at least one inner collision happens is computed as

sp = 1− P (2n, r, s, 0) = 1− ℘λ(0) + ε = 1− e−1 + ε ≥ 0.632

where ε ≤ 10−5 [5].
Complexity analysis. The elements of group G1 computed by H2 need 2n/2

off-line H2 computations. The elements of group G2 computed by H2-MAC need
2n/2 on-line H2-MAC queries. We can store the values of both group using hash
table. Then the above algorithm will require O(2n/2) time and space.

After an inner collision pair (M0,M
′
0) is found, we can apply H2

c (M ′0) to
compute the equivalent key of the H2-MAC. Finally, we can use the recovered
equivalent key ke to launch any selective forgery attack to H2-MAC without on-
line query, based on M0, which claims that the security of H2-MAC is broken.
Hence, we point out that the security of H2-MAC is solely dependent on the
(weak) collision resistance of the underlying hash function, not the strength of
the used key.

However, it is interesting to notice that H2-MAC is provable secure under
the assumption of that the underlying compression function h is a PRF-AX [15],
which means that (weak) collision resistance of the underlying hash function can
be dropped. Thus proof and assumption obvious violate our result.

4 Some Optimizations over the attack

Here, we discuss some improvements over the equivalent key recovery attack to
H2-MAC, such as enlarging the success probability and achieving more paral-
lelism in the attack.

4.1 Enlarging the success probability

In the above attack, the success probability of that at least one inner collision
happens is at least 0.632, which is acceptable sometimes. However, we can enlarge
the success probability, through doing more queries, since sp is determined by
P (2n, r, s, 0), which converges towards a Poisson distribution with parameter λ.

For example, if we now want the success probability sp to be sp ≥ 1− 10−4,
by changing only r and s (but preserving r = s both powers of 2), we can choose
r = s = 2n/2+2, and then λ = r · s/2n = 16, finally, we have

sp = 1− P (2n, 2n/2+2, 2n/2+2, 0) = 1− ℘λ(0) + ε = 1− e−16 + ε ≥ 1− 10−4

where ε ≤ 10−5.



4.2 Implementing more parallelism

We notice that the on-line queries to H2-MAC can’t be done concurrently, how-
ever, the off-line computations of H2 can be executed in parallel. For a hash
function with n = 128 bits result, the on-line queries of 2n/2 = 264 times can’t
be completed in practical time. Even if the H2-MAC oracle can reply at the
speed of 10Gbit/second, this could require continuous replying during 25,000
years. However, the 264 off-line computation of H2 is achievable by utilizing the
parallelism computation. For example, if use 1 million PCs in Internet, this work
may be done within 9 days.

In a extreme way, we hold the success probability of the equivalent key re-
covery attack to H2-MAC with 0.632, but we reduce heavily the on-line queries
to the H2-MAC oracle, at the cost of increasing the off-line computation of H2.
We set s = 2n/4 and r = 23·n/4 (hence λ = r·s/2n = 1). The success probability
sp of that at least one inner collision happens is computed as

sp = 1− P (2n, 23·n/4, 2n/4, 0) = 1− ℘λ(0) + ε = 1− e−1 + ε ≥ 0.632

where ε ≤ 10−5, and n = 128.
However, this work still can’t be done in practical, since 23·n/4 = 296 com-

putation s of H2 for n = 128 is still out of reach.
To do this attack more practically, we reduce the on-line queries to H2-MAC

to s = 2n/2−10 = 254 times, which can be done successfully. At the same time,
we increase the off-line computations of H2 to r = 2n/2+10 = 274 times, which
is also reachable by utilizing computing parallelism. Since λ = r·s/2n = 1, the
success probability sp of that at least one inner collision happens can be still
computed as

sp = 1− P (2n, 2n/2+10, 2n/2−10, 0) = 1− ℘λ(0) + ε = 1− e−1 + ε ≥ 0.632

where ε ≤ 10−5, and n = 128.

5 Conclusion

We recover the equivalent key of H2-MAC through applying a generalized birth-
day attack with two groups, based on the assumption of that the underlying
hash function is WCR. We can recover thus key in about 2n/2 on-line queries to
H2-MAC and 2n/2 off-line H2 computations. Moreover, this attack can be fur-
ther optimized, the success probability can be improved by doing more queries
and computations, and the on-line queries can also be reduced to the extent
of practicality by increasing the off-line computations, which can be done in
parallel. Our attack shows that the security of H2-MAC is totally dependent
on the WCR of the underlying hash function, which claims that the security of
H2-MAC is totally broken. WCR is a stronger basis than the assumption of that
the underlying compression function is a PRF in the origin paper to prove the
security of H2-MAC [15].
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