
Security Enhancement of the Vortex Family of Hash

Functions

Shay Gueron1,2 and Michael Kounavis3

1Mobility Group, Intel Corporation
2University of Haifa, Israel

3Intel Labs, Circuits and Systems Research

February 2009, revised May 2009

Abstract

Vortex is a new family of one-way hash functions which has been submitted to the
NIST SHA-3 competition. Its design is based on using the Rijndael block cipher round
as a building block, and using a multiplication-based merging function to support fast
mixing in a small number of steps. Vortex is designed to be a fast hash function, when
running on a processor that has AES acceleration and has a proven collision resistance [2].
Several attacks on Vortex have been recently published [3, 4, 5, 6] exploiting some structural
properties of its design, as presented in the version submitted to the SHA-3 competition.
These are mainly first and second preimage attacks with time complexity below the ideal,
as well as attempts to distinguish the Vortex output from random. In this paper we study
the root-cause of the attacks and propose few amendments to the Vortex structure, which
eliminate the attacks without affecting its collision resistance and performance.

1 Introduction

Vortex [1, 2] is a family of one way hash functions that can produce message digests of 224, 256,
384 and 512 bits. It uses the Rijndael round [10] and Galois Field or integer multiplication as
building blocks. By using well known cryptographic primitives, Vortex achieves faster diffusion
with a small number of steps, than algorithms that use primitives such as shift, rotate ADD or
XOR operations. The Vortex family is expected to perform very efficiently on processors that
have hardware acceleration for AES and carry-less multiplication. Vortex is collision resistant,
as shown in [2]: the number of queries required for finding a collision with probability greater
or equal to 0.5, under an ideal block cipher approximation of Vortex 256, is at least 1.18·2122.5,
if the attacker uses randomly selected message words.

Several attacks on Vortex have been published [3, 4, 5, 6]. References [3, 4] describe a
multi-collision attack that works with complexity 2124.5 on Vortex 256 and 2251.7 on Vortex
512. This attack reduces the collision resistance of Vortex by a few exponent bits and does
not invalidate the main security result of reference [2]. References [3, 4] also describe a first
preimage attack with time complexity O(20.75N) (the ideal is O(2N)), where N is the digest
length in bits. The storage complexity of this attack is O(20.25N), so the product of the
storage and time complexity remains O(2N). In fact, this attack is not specific to Vortex. It is
associated with the MDC-2 mode of operation [7] where two parallel block ciphers are feeding
their outputs into a merging function. Vortex inherits this structure from MDC-2. Reference
[4] describes a generic second preimage attack with time complexity O(20.75N) and storage
complexity O(20.25N). For this attack the product of the storage and time complexity also

remains ideal. Reference [4] describes a specialized second preimage attack for Vortex 256 that
works for a class of weak messages. There are 264 images associated with weak messages out
of a total of 2256 images. This attack has a preprocessing phase with 2128 time complexity
and storage requirement of 2128 state values plus an on-line phase with 233 time complexity.
Reference [5] shows that the Vortex output has impossible images and proves the existence of
2101 impossible images out of 2256 images. Reference [6] shows correlations in the output of
Vortex, as some output bits are equal to each other with probability higher than 0.5.

In this paper we present a root-cause analysis of the published attacks and show that most
of them result from a small number of structural properties of Vortex:

i Openness to inversion: The Vortex compression function can be inverted up to a point.
This facilitates multi-collision attacks, second preimage attacks, as well as second preim-
age attacks for weak messages;

ii Use of a narrow pipe across the whole domain extension transform. This facilitates first
preimage attacks;

iii Symmetry in the merging function. This leads to the existence of impossible images and
output bit correlation, and to preimage attacks for weak messages;

In response to these published attacks, we propose few simple amendments to the Vortex
structure, and show that these amendments address all of the attacks without affecting the
collision resistance and performance.

The first amendment is adding a feed-forward XOR inside and around the Vortex sub-block
transformation. A feed-forward XOR around the Vortex sub-block forces an adversary to guess
the message word processed by the sub-block. Such guessing can be hard, potentially increasing
the complexity of meet-in-the-middle attacks or making them impossible. This mitigates all
collision and second preimage attacks. We call this amended version of Vortex “Vortex-M”.

The second amendment is increasing the hash state (i.e., widen the pipe) only in the
last block. Widening the pipe in this manner substantially increases the complexity of first
preimage attacks based on the meet-in-the-middle principle. This is because an adversary needs
to maintain much larger state and perform substantially more operations, even if a single wide
pipe block is present in the hash chain. This addresses the first preimage attacks. We call this
version of Vortex “Vortex-W”.

The third amendment is skipping the final merging function transformation in the last
Vortex sub-block. This amendment eliminates the correlations between output bits, and makes
impossible images computationally harder to detect. We call this version of Vortex “Vortex-S”.
One can also consider variants of Vortex with more than one amendment. We call Vortex with
all three amendments “Vortex+” (this addresses all published attacks).

The paper is structured as follows: In Section 2 we provide a brief description of the Vortex
hash family. In Section 3 we discuss the published attacks. In Section 4 we present a root-cause
analysis of these attacks. In Section 5 we discuss the amendments. Finally, in Section 6 we
provide some concluding remarks.

2 Description of Vortex

The Vortex [1, 2] family of hashing algorithms is based on using Rijndael round primitives
as building blocks and a multiplication-based merging function for performing binary mix-
ing. Vortex also uses the Enveloped Merkle-Damg̊ard [8] construction as its domain extension

2

A ||B0 0

…

W0,W1 ,

W2, W3

W4k-4 W4K -3

W4 W4k -1

4 4k +1

||

TA || TB

A ||Bk k

k-2

k
W W message

digest

Figure 1: Enveloped Merkle-Damg̊ard Construction

transform. Here, we discus the domain extension transform of Vortex, its compression func-
tion called ‘Vortex block’, and the tunable parameters the algorithm accepts as input. The
complete description of Vortex is found in [2].

2.1 Domain Extension Transform

Vortex operates on a chaining variable resulting from the concatenation of two N/2-bit vari-
ables A and B initialized to A0||B0, where N is the digest size. Vortex also uses a tweak
value consisting of the concatenation of variables TA and TB. TA and TB are N/2 bits long. To
support collision resistance as well as pseudorandom function and pseudorandom oracle preser-
vation, Vortex uses the Enveloped Merkle-Damg̊ard construction [8] as its domain extension
transform (see Figure 1).

The Enveloped Merkle-Damg̊ard construction is very similar to the strengthened Merkle-
Damg̊ard [9] with one exception: the processing done on the last block differs from the pro-
cessing done on other blocks. For the last block, the compression function uses the tweak value
TA||TB as a chaining variable and the concatenation of [Ak : Bk], which is the current value
of the hash state, and [W4·k : W4·k+1] which are the last message words, as input block. For
Vortex 256 and Vortex 512, the message digest resulting from the input stream is equal to
the final value of the chaining variable. For Vortex 224 and Vortex 384, the message digest
resulting from the input stream is equal to the 224 and 284 least significant bits of the chaining
variable respectively.

2.2 Vortex Block

Vortex design is built upon the Vortex block algorithm, which is the compression function
used as part of an Enveloped Merkle-Damg̊ard construction. The Vortex block algorithm
incorporates two repetitions of an algorithm called ‘Vortex sub-block’, as shown in Figure
2(a). The first repetition of Vortex sub-block accepts as input the chaining variable Ai||Bi

and two least significant input block words W4·i,W4·i+1. It returns an intermediate value for
the chaining variable A||B. The second repetition of Vortex sub-block accepts as input the
intermediate value of the chaining variable A||B and two most significant input block words
W4·i+2,W4·i+3. It returns an update on the chaining variable Ai+1||Bi+1. Pseudo-code for the
Vortex block algorithm is given below:

Vortex Block (Ai, Bi, W4·i,W4·i+1,W4·i+2,W4·i+3)
begin

A||B← Vortex Sub-block(Ai, Bi,W4·i,W4·i+1) // uses W4·i,W4·i+1

Ai+1||Bi+1← Vortex Sub-block(A,B, W4·i+2,W4·i+3) // uses W4·i+2,W4·i+3

3

Vortex

sub-block

Vortex

sub-block

W
4i ,W4i+1

W4i+2 ,W4i+3

W
4i ,W4i+1

W4i+2 ,W4i+3

Ai+1 ||Bi+1
Ai||Bi

VM
(A)(A, B)

AA(W0)
~
AA(W0)
~
AA(W0)
~

AB(W0)
~
AB(W0)
~
AB(W0)
~

W0

A B

VM
(A)(A, B)

AA(W1)
~
AA(W1)
~
AA(W1)
~

AB(W1)
~
AB(W1)
~
AB(W1)
~

W1

A B

(a) Vortex Block (b) Vortex Sub-block

Figure 2: The Compression Function of Vortex

return Ai+1||Bi+1

end

With the exception of the last sub-block (see below), the algorithm for processing a Vortex
sub-block is the following:

Vortex Sub-block (A, B,W0,W1)
begin

;W0 is the first word of the current sub-block to be processed
A←ÃA(W0)⊕W0

B←ÃB(W0)⊕W0 // Matyas-Meyer-Oseas transformation
A||B←V

(A)
M (A,B)

;W1 is the second word of the current sub-block to be processed
A←ÃA(W1)⊕W1

B←ÃB(W1)⊕W1

A||B←V
(A)
M (A,B)

return A||B
end

The Vortex sub-block is built upon two functions: The transformation ÃK(x) called ’A-
Rijndael’, a block cipher based on Rijndael rounds, and the merging function V

(A)
M . There are

four instances of the transformation ÃK(x) in the Vortex sub-block as shown in Figure 2(b).
Each instance is wrapped using a Matyas-Meyer-Oseas structure to make the transformation
non-reversible. The first two instances process input word W0. The other two instances process
the input word W1. W0 is the least significant word of the current sub-block to be processed.
Instances of ÃK(x) that accept the same input word processes a different variable from among
A, B. Each instance treats its input variable A or B as a key and its input word, which is one
from W0 or W1 as plaintext, as it is the norm in the a Matyas-Meyer-Oseas structure.

4

B
1

B
0

A
1

A
0

I
1

I
0

O
1

O
0

new B
1

new B
0

new A
1

new A
0

Figure 3: The Merging Function of Vortex

2.3 Merging Function

The merging function V
(A)
M combines the outputs of the two instances of ÃK(x) into a new

value of A||B. The merging function of Vortex is shown in Figure 3. It uses multiplication
as a building block. Multiplication can be carry-less or integer. The multiplication type
is determined by a tunable parameter MT . If the multiplication type is ”carry-less”, V

(A)
M

operates as follows:

V
(A)
M (A,B)

begin
let A = [A1 : A0] // A1, A0 are N/8 bit words
let B = [B1 : B0] // B1, B0 are N/8 bit words
O←A0⊗B1

I←A1⊗B0

let I = [I1 : I0] // I1, I0 are N/8 bit words
let O = [O1 : O0] // O1, O0 are N/8 bit words
return [B1¢I1 : B0¢O0 : A1⊕O1 : A0⊕I0]

end

where by ¢ we addition modulo 264, and ⊗ we mean carry-less multiplication.

2.4 Last Vortex Sub-block

The algorithm for the last Vortex sub-block repeats the stages of Matyas-Meyer-Oseas trans-
formations and merging several times (DF) to increase the security of the hash:

Last Vortex Sub-block (A, B,W0,W1, DF)
begin

;W0 is the first word of the last sub-block to be processed
A←ÃA(W0)⊕W0

B←ÃB(W0)⊕W0

A||B←V
(A)
M (A, B)

for i←1 to DF do
;DF is the degree of diffusion

5

;W1 is the second word of the last sub-block to be processed
A←ÃA(W1)⊕W1

B←ÃB(W1)⊕W1

A||B←V
(A)
M (A,B)

return A||B
end

2.5 The A-Rijndael Transformation

The A-Rijndael transformation ÃK(x) is a block cipher based on Rijndael rounds that encrypts
x, which is N/2 bits long, using the key K which is also N/2 bits long. ÃK(x) uses a tunable
number of Rijndael rounds which we symbolize as NR. For N/2 = 128 rounds are as specified
in AES, FIPS-197 [10]. A version of A-Rijndael is also defined, where the size of the cipher
state is 256. Each Rijndael round R() consists of an SBox() substitution phase, a ’Shift Rows’
transformation, a ’Mix Columns’ transformation and a round key addition in GF (2). The key
schedule algorithm used by ÃK(x) is different from that of Rijndael. ÃK(x) uses a variable
number NR of N/2-bit wide Rcon values RC1, RC2,. . ., RCNR

to derive NR round keys RK1,
RK2, . . ., RKNR

as follows:

RK1 ← Perm(SBox(K¢RC1)),
RK2 ← Perm(SBox(RK1¢RC2)),
. . .
RKNR

← Perm(SBox(RKNR−1¢RCNR
))

where Perm() is a byte permutation and by ¢ we mean addition modulo 264. The SBox()
transformation in the key schedule is applied on N/16 bytes, i.e., N/2 bits (i.e., 128 bits or
16 bytes for Vortex 256 and 256 bits or 32 bytes for Vortex 512). The Rcon values are set to
constant values.

3 Description of the Published Attacks

3.1 Collision Attacks

References [3, 4] describe a ’free start’ collision attack of complexity 2N/4 with N being the
digest size. The attack works as follows:

Attack A1:
A1, step1: The adversary computes 2N/4 values x = ÃA(W0)⊕W0 for fixed W0 and 2N/4 ran-
dom choices for A. These values are stored in a list LA.
A1, step2: The adversary computes another set of 2N/4 values y = ÃB(W0)⊕W0 for the same
fixed W0 and 2N/4 random choices for B. These values are stored in a second list LB.
A1, step3: In the third step, the adversary computes pairs (x, y) such that (x||y) = (ÃA(W1)⊕W1

||ÃB(W1)⊕W1) for arbitrary values of A and B and a different input message block W1.

Due to the birthday paradox, the number of efforts needed to find a match in the list LA

for x is 2N/4. Similarly, the number of efforts for finding a match in the list LB is 2N/4. Hence
the overall complexity of this attack is 2N/4.

This free-start collision attack works for appropriately selected chaining variable words A
and B. However, in a realistic situation, selecting A and B cannot be done in a straightfor-

6

ward manner because, typically, the adversary is in control of the message words W0, W1 but
not the chaining variable words A and B. Therefore, this attack scenario cannot be easily
applied to Vortex. To address this, references [3, 4] describe another attack based on creating
multi-collisions, which works as follows. Let LN/2() and MN/2() denote the N/2 least and
most significant bits of an N -bit quantity, respectively. We denote also the combination of
Matyas-Meyer-Oseas transformations and merging by:

Q(A,B, W) = V
(A)
M (ÃA(W)⊕W, ÃB(W)⊕W) (3.1)

(or Q(A||B,W) in other instances).

Attack A2:
A2, step1: The adversary computes R message blocks W

(0)
0 ,W

(1)
0 , . . .,W

(R−1)
0 such that

MN/2(Q(A,B, W
(i)
0)) = MN/2(Q(A,B, W

(j)
0)), ∀i, j∈[0, R− 1] for some A, B.

A2, step2: The adversary chooses an arbitrary message block W1 and computes all quantities

M̃i = ÃM(i)(W1)⊕W1 where M (i) = LN/2(Q(A,B,W
(i)
0)) and 06i6R−1. These computations

are done for the A, B variables used in step1 of A2.
A2, step3: The adversary checks if M̃i = M̃j for some i, j∈[0, R − 1], i6=j. If this is the case,

then the two messages W
(i)
0 ||W1 and W

(j)
0 ||W1 collide. Otherwise, step2 of A2 is repeated.

This attack works with complexity 2124.5 for Vortex 256 and 2251.7 for Vortex 512. In other
words, it reduces the collision resistance of Vortex by only a few exponent bits, and does not
invalidate the main security result proven in [2].

3.2 First Preimage Attacks

References [3, 4] describe a ’meet-in-the-middle’ first preimage attack that is associated with
time complexity O(20.75N) as opposed to the ideal O(2N), where N is the digest length in bits.
This attack is associated with the generic structure of two parallel block ciphers stages feeding
their outputs into a merging function. The attack works by creating a “special” set of inputs
to the basic structure of Vortex (i.e., Matyas-Meyer-Oseas transforms followed by merging)
that result in a given image. For Vortex 256, the time complexity of creating a set of size
264 is 2192. Once the set is created, a brute-force preimage attack can hit an element in the
pre-computed set in 2192 efforts.

For simplicity, the attack is described here as if the structure used was simple Merkle-
Damg̊ard and the last Vortex sub-block was the same as the regular Vortex sub-block trans-
formation (i.e., no padding and EMD applied). Let AF ||BF be a value coming out of the hash
function which is known. References [3, 4] suggest that the merging function V

(A)
M can be

inverted with complexity 2N/2. This can be done by guessing N/2 bits of the internal state of
the merging function and by solving the resulting system of equations.

Attack A3:
A3, step1: The adversary computes a pair AI ||BI = (V (A)

M)−1(AF , BF) by inverting the func-

tion V
(A)
M .

A3, step2: The adversary chooses a message word W3 arbitrarily and computes x = ÃA(W3)⊕W3

for many different values of the chaining variable word A until x = AI . The adversary also

7

computes y = ÃB(W3)⊕W3 for many different values of the chaining variable word B until
y = BI . This brute-force attack is accomplished with complexity 2N/2.
A3, step3: In step three, the previous step is repeated another 2N/4−1 times. In the end of this

step the adversary has a list of 2N/4 triplets (A,B,W3) for which: V
(A)
M (ÃA(W3)⊕W3, ÃB(W3)

⊕W3) = AF ||BF . The total complexity for creating this list of triplets is 23N/4.
A3, step4: In the last step of this attack the adversary computes the output of three succes-
sive sequences of Matyas-Meyer-Oseas transformations and merging for about 23N/4 choices
of message words W0, W1 and W2. The computation continues until a triplet is found that
results in a hash value A||B included in the list computed in the previous step.

The overall time complexity of the attack is O(20.75N), which is smaller than the ideal O(2N).
The attack is also associated with storage complexity of 20.25N . The attack can be extended
to cover the final padding and EMD extensions [3, 4].

3.3 Second Preimage Attacks

Vortex is vulnerable to two second preimage attacks described in [4]. The first attack (A4) is
a meet-in-the-middle generic attack and applies to messages of three N/2 bit-blocks or more.
We denote (as in [4]) the chaining variable words coming out of successive invocations of the
function Q(A,B, W) as A0||B0, A1||B1, A2||B2, A3||B3, where Q() is defined by equation 3.1.
We also denote:

X2||Y2 = ÃA2(W)⊕W ||ÃB2(W)⊕W (3.2)

for some W , and A3||B3 = V
(A)
M (X2, Y2). The attack works as follows:

Attack A4:
A4, step1: The adversary tries all N/2 message words W until he finds a word Wx such that
X2 = Wx⊕Ã(0||x)(Wx) for some 64-bit value x∈[0, 264− 1]. The complexity of this step is 2128.
On average there is one value Wx for every x∈[0, 264−1]. The adversary stores the pair (x,Wx)
in a table.
A4, step2: The adversary repeats step1 of A4 264 − 1 times for all remaining values of x and
fills the table with (x,Wx) pairs. In the end the table should have 264 entries. The complexity
of this step is 2192.
A4, step3: The adversary tries 2192 random messages and computes the resulting chaining
variable words A2||B2 for each of them. If is not of the form 0||y for some y∈[0, 264 − 1], then
the adversary discards the message. On the other hand, if A2 is of the form 0||y then the
adversary retrieves the message word Wy from the table computed in step2 of A4 and checks
whether Y2 = ÃB2(Wy)⊕Wy. If this is true, then the message resulting in 0||y||B2 together
with Wy can replace three message words of the original message.

Reference [4] shows that at least one preimage is found following steps A4, step1 through
A4, step3. The overall time complexity of this attack is 2192 and its storage requirement is 264

state values.
In addition to this generic attack, reference [4] describes a specialized attack that works for

a class of weak messages. These are messages which result in chaining variables of the form
A||A where A = 0||x or A = y||0, x, y∈[0, 264 − 1]. There are 264 images associated with such
weak messages out of 2256 images. For this class of chaining variables V

(A)
M (A,A) = A||A. We

8

denote:

S = {x||0||x||0, x∈[0, 264 − 1]}∪{0||y||0||y, y∈[0, 264 − 1]} (3.3)

The following attack refers to a simplified version of Vortex that uses the Merkle-Damg̊ard
construction with strengthening as opposed to EMD. It works as follows:

Attack A5, preprocessing:
A5, prep1: The adversary finds two message blocks W0 and W1 such that Q(A0, B0, W0) = Y ||Y
and Q(Y, Y,W1) = s′∈S for some intermediate value Y ∈[0, 2128 − 1]. The words A0, B0, are
the initial chaining variable words used by the Merkle-Damg̊ard construction. The function
Q() is defined by equation 3.1. It is easy to show that this step can be completed with time
complexity 2128.
A5, prep2: For each value B, the adversary finds a special chaining value s of the form 0||x
or y||0, x, y∈[0, 264 − 1], and a message word W ′ such that B = Ãs(W ′)⊕W ′. The adversary
stores the result in a table for all possible values of B. This step is associated with 2128 time
and space complexity.
A5, prep3: For each s of the form 0||x or y||0, x, y∈[0, 264−1], the adversary finds two message
words W1 and W2 such that the quantities Ãs(W1)⊕W1 and Ãs(W2)⊕W2 are also of the form
0||x or y||0.The time complexity of this step is 265.

Attack A5, on-line phase:
A5, step1: The adversary finds a special chaining value s that leads to a given image from the
table computed in the prep2 step of A5.
A5, step2: The adversary begins constructing a second preimage starting with the message
blocks W0 and W1 computed in the step prep1 of A5. These message blocks result in a special
chaining value s′∈S.
A5, step3: The adversary connects the chaining value s′ with s using two trees of depth 33
blocks. These trees are constructed from the values computed in step prep3 of A5.

Reference [4] shows that this attack requires a preprocessing phase with time complexity 2128

and storage complexity of 2128, plus an on-line phase having 233 time complexity. There are
264 images associated with weak messages out of a total of 2256 images.

3.4 Impossible Images

Reference [5] points out that Vortex has impossible images, and therefore its output can be
distinguished from random. It suggests that the Vortex merging function has at least 2101

colliding pairs. Since the output of the Vortex hash is obtained from this merging function,
this means that more than 2101 elements of the set {0, 1}256 are impossible images.

Let A = [A1 : A0] and B = [B1 : B0] where A1, A0, B1 and B0 are N/8 bit words. Let
also A1 = B1 = 1 and A0⊕B0 = A0¢B0. Then V

(A)
M (A, B) = V

(A)
M (B,A) = [1 : A0⊕B0 :

1 : A0⊕B0]. Hence the pairs A, B and B, A are colliding. Since the size of the domain of
V

(A)
M (A,B), which is 2256, is equal to the size of its range (also 2256) each different colliding pair

is associated with a different impossible image. References [4, 5] claim that there are at least
2101 colliding pairs which result in 2101 impossible images. They also describe an algorithm of
complexity 296 that determines whether a given image is impossible or not. A distinguisher
attack is constructed as follows:

9

Attack A6:
A6, step1: The adversary selects an image from an input set. It tests whether the image is
in the set of impossible images of Vortex. Impossible images are independent of the input
message and, hence, a property of the hash structure.
A6, step2: If the answer to the step1 of A6 is yes then the distinguisher returns a reply that the
input is definitely not coming from Vortex. Otherwise it repeats step1 of A6 for all remaining
input images.

3.5 Output Bit Correlation

Reference [6] shows that some bits of the Vortex output are equal with much higher proba-
bility as compared to a random signal, and therefore the output can be distinguished from
random. It therefore suggests that Vortex is not applicable to random number generation and
key derivation. The least significant bits of the variables A0 and B0 depend on 3 bits only,
two of which are in common. A0 and B0 derive from the following logical equations A0 = (X
AND Y)⊕Z and B0 = (Z AND W)⊕Y for some input bit values W , X, Y , Z. If X = W = 1
then A0 = B0. Hence these bits are equal with probability 5/8 (higher than the ideal 0.5).
The distinguisher attack works as follows:

Attack A7:
A7, step1: The adversary counts the frequency of equality of output bits A0 and B0 in a set
of given images. If this is 5/8 then the distinguisher returns that these images are generated
by Vortex .

4 Structural Analysis of the Vortex Hash

We present here a root-cause analysis of the various attacks (whether practical or not): (i)
openness to inversion, (ii) use of a narrow pipe across the entire transform, and (iii) symmetry
in merging;

The design characteristics (ii) and (iii) result from conscious decisions made in order to
balance the security of Vortex with high enough performance. As we show later, simple amend-
ments can address the attacks.

4.1 Openness to Inversion

The Vortex sub-block transformation is open to inversion: the merging function, which is the
last processing step of this transformation, can be inverted at computational cost ranging from
296 [5] to 2128 [3] operations, depending on the algorithm used. This makes Vortex vulnerable
to a class of meet-in-the-middle attacks, where an adversary inverts the transformations that
result in an image up to a middle point. The adversary also creates some state for this middle
point and connects the state with the initial or final value of the hash by choosing appropriate
message blocks. This is the rationale behind all first and second preimage attacks A3, A4 and
A5.

Solutions to this problem could be to change the merging function or to introduce additional
processing steps in the Vortex sub-block to prevent adversaries from inverting it. Changing
the merging function is not a trivial task. We fear it would result in radical modifications
of the Vortex specification with potentially unpredictable security implications. The merging
function design was motivated by performance [2] and from the need to perform non-linear

10

mixing of bits across 128-bit blocks. Given these design requirements, we believe that the
merging function fulfils its role as part of the Vortex structure.

Another solution to this problem is to introduce more processing steps in the Vortex sub-
block transformation to make it less open to inversion. The processing step we can think of
with the least performance impact is a feed-forward XOR around Vortex sub-block. Such feed-
forward XOR was present in an earlier version of Vortex that was presented at ISC 2008 [1].
In this section we argue that Vortex needs feed-forward XOR operations at both levels: inside
and around the Vortex sub-block transformation. A feed-forward XOR around the Vortex
sub-block forces an adversary to guess the message word processed by the sub-block. Such
guessing can be hard, potentially increasing the complexity of meet-in-the-middle attacks or
making them impossible. In Section 5 we show that such feed-forward XOR mitigates attacks
A2, A4 and A5.

4.2 Narrow Pipe Across the Domain Extension Transform

Another characteristic of the Vortex design is that it maintains a narrow pipe across its entire
domain extension transform. By ”narrow pipe” we mean that the size of the hash state inside
its compression function is equal to the size of the output digest. A wide pipe, in contrast,
maintains hash state which is much larger in size than the output digest. The narrow pipe
design of Vortex is also motivated by performance.

The narrow pipe of Vortex uses block cipher stages based on the Rijndael round transfor-
mation and multiplication. These are very strong mixing primitives and result in good collision
resistance [2]. While having a good narrow pipe design is not necessarily a design flaw it may
make a design vulnerable to a class of attacks. For example in the case of Vortex, the first
preimage attack A3 results from using a narrow pipe across its entire domain extension trans-
form. Because of the presence of a narrow pipe, an adversary can reduce the first preimage
resistance of the hash from the ideal of 2256 to 2192 efforts by just maintaining intermediate
state of 264 triplets (A,B, W). Such attack cannot be mitigated by a feed-forward XOR mech-
anism like the one discussed earlier in Section 4.1. This is because, in this attack, the adversary
has the freedom to use arbitrary message words to connect a middle point with the final hash
value.

A solution to this problem is to increase the hash state inside every compression function
call Vortex makes. Such solution, however needs a radical revision of the Vortex compression
function, which we want to avoid due to its performance and security implications. We propose
an alternative solution where, instead of increasing the hash state size inside every compression
function call, we only increase the state size in the last Vortex block transformation. Widening
the pipe in this manner substantially increases the complexity of first preimage attacks based
on the meet-in-the-middle principle. This is because an adversary needs to maintain much
larger state and perform substantially more operations, even if a single wide pipe block is
present in the hash chain. In the next section we suggest a modification to the last Vortex
block transformation that mitigates the first preimage attack A3. Our modification is based
on increasing the internal hash state from 256 bits to 384 bits for Vortex 256 and from 512
bits to 764 bits for Vortex 512. We show that the complexity of this attack is pushed back to
the ideal values of 2256 and 2512 efforts for Vortex 256 and Vortex 512.

4.3 Symmetry in the Merging Function

The merging function of Vortex has some symmetry which can be exploited. Symmetry results
from using multiplication as a building block. Multiplication is a highly non-linear operation,

11

and hence a good cryptographic component due to its ability to destroy bit differentials. How-
ever it has several weaknesses. First it is a commutative operation. Second, the degree of
mixing is not uniform across all bits of the output. For example, in the case of 64-bit carry-less
multiplication bits 0 and 126 of the output result from a single logical product. Bit 63 of the
output, however, results from XOR-ing 64 logical products. The Vortex merging function uses
multiplication in a rather simple way. It first splits the input words into two halves and then
computes the products of the inner and outer halves. The resulting products are added with
the input words producing the merging function output. The only measure Vortex takes inside
the merging function to avoid collisions is to make merging non-commutative. This is done
by performing additions between computed products and input words as XORs for the least
significant half of the output, and as integer additions modulo 264 for the most significant half
of the output.

References [5, 6] show that such structure has impossible images and correlates few bits
of the output. One implication is that an adversary can distinguish the Vortex output from
random. Another implication is that Vortex cannot be used as a replacement for a random
oracle in any cryptosystem, because the Vortex compression function does not approximate
a fixed input length random oracle, even though Vortex uses the EMD transform, which is
pseudo-random oracle preserving.

To improve upon the current design we propose to skip the merging step in the last block
of Vortex. This amendment solves the output bit correlation problem [6]. It does not eliminate
impossible images, however, but makes them harder to detect. Another amendment would be
to extend the Vortex block transformation with an additional block cipher stage eliminating
all impossible images and output bit correlation but the security of the resulting hash would
be depending on the design of this additional stage. Such amendment is not trivial and may
have unexpected security implications.

5 Amendments to the Vortex Specification

This section details minor amendments to the Vortex structure, that address all of the above
attacks.

5.1 Vortex-M: Sub-block with additional Feed-forward XOR

The first amendment is to include a feed-forward XOR operation around the Vortex sub-block
transformation, as illustrated in Figure 4. We call this amended version of Vortex “Vortex-
M”. Pseudo-code for the Vortex-M sub-block and last Vortex-M sub-block is given below. The
processing steps in the Vortex-M sub-block are the same as in the original Vortex sub-block,
apart form the inclusion of a feed-forward XOR operation in the end of the transformation.

Vortex-M Sub-block (A,B, W0,W1)
begin

;W0 is the first word of the current sub-block to be processed
A←ÃA(W0)⊕W0

B←ÃB(W0)⊕W0 // Matyas-Meyer-Oseas transformation
A||B←V

(A)
M (A, B)

;W1 is the second word of the current sub-block to be processed
A←ÃA(W1)⊕W1

B←ÃB(W1)⊕W1

A||B←V
(A)
M (A, B)

12

Vortex

sub-block

Vortex

sub-block

W
4i ,W4i+1

W
4i+2 ,W4i+3

Ai||Bi

Ai+1 ||Bi+1

(a) Original Vortex Block

old Vortex

sub-block

old Vortex

sub-block

W
4i ,W4i+1

W
4i+2 ,W4i+3

Ai||Bi

Ai+1 ||Bi+1

new Vortex

sub-block

(b) Vortex-M Block

Figure 4: Feed-forward XOR Amendment

13

return A⊕W0⊕W1||B⊕W0⊕W1

end

Last Vortex-M Sub-block (A, B,W0,W1)
begin

;W0 is the first word of the current sub-block to be processed
A←ÃA(W0)⊕W0

B←ÃB(W0)⊕W0

A||B←V
(A)
M (A, B)

for i←1 to DF do
;DF is the degree of diffusion
;W1 is the second word of the current sub-block to be processed
A←ÃA(W1)⊕W1

B←ÃB(W1)⊕W1

A||B←V
(A)
M (A,B)

return A⊕W0⊕W1||B⊕W0⊕W1

end

In what follows we analyze the security of Vortex-M:

Theorem 5.1 The feed-forward XOR amendment of Vortex-M mitigates collision attack A2.

Proof : Step3 of A2 returns two message pairs W
(i)
0 ||W1 and W

(j)
0 ||W1 which collide. By

“collide” we mean that Q(Q(A,B,W
(i)
0),W1) = Q(Q(A,B, W

(j)
0),W1) for some index pair

i, j∈[0, R − 1], i6=j . We distinguish between two cases. Case 1: W
(i)
0 and W

(j)
0 are the first

message words fed into a Vortex-M sub-block transformation, and W1 is the second word
fed into the same transformation. Case 2: W

(i)
0 and W

(j)
0 are the second message words fed

into a Vortex-M sub-block transformation, and W1 is the first word fed into a subsequent
sub-block transformation. Let’s assume that case 1 is true. The output from the Vortex-M
sub-block is Q(Q(A,B, W

(i)
0),W1)⊕(W (i)

0 ⊕W1||W (i)
0 ⊕W1) if the input is W

(i)
0 ||W1. Similarly,

the output from the Vortex-M sub-block is Q(Q(A,B,W
(j)
0),W1)⊕(W (j)

0 ⊕W1||W (j)
0 ⊕W1) if

the input is W
(j)
0 ||W1. Since W

(i)
0 6=W

(j)
0 , the two outputs differ, so no collision occurs un-

der this attack. If case 2 is true, then the output from the first Vortex-M sub-block is
Q(Q(A, B,W−1),W

(i)
0)⊕(W−1⊕W

(i)
0 ||W−1⊕W

(i)
0) if the input is W−1||W (i)

0 . Similarly, the out-
put from the first Vortex-M sub-block is Q(Q(A, B,W−1), W

(j)
0)⊕(W−1⊕W

(j)
0 ||W−1⊕W

(j)
0) if

the input is W−1||W (j)
0 . Since W

(i)
0 6=W

(j)
0 the feed-forward XOR in the first Vortex-M sub-

block modifies the chaining variable words fed into the second Vortex-M sub-block so no left
collisions occur, which attack A2 is based upon.

Theorem 5.2 The feed-forward XOR amendment of Vortex-M mitigates the second preimage
attack A4.

Proof : Step3 of A4 returns two message blocks W0 and W1 resulting in hash state A2||B2 =
0||y||B2. These blocks together with a third message block Wy replace three message words
W

(m)
0 , W

(m)
1 ,W

(m)
2 of the original message, in the original attack. This is because the mes-

sage sequences W0,W1, Wy and W
(m)
0 ,W

(m)
1 ,W

(m)
2 result in the same hash state A3||B3 =

V
(A)
M (X2, Y2). Once merging is complete, the feed-forward XOR of Vortex-M, further mod-

ifies the hash state coming out of the Vortex-M sub-block processing Wy (or W
(m)
2). Since

Wy 6=W
(m)
2 , the final hash-state associated with sequences W0,W1,Wy and W

(m)
0 ,W

(m)
1 ,W

(m)
2

is different.

14

Theorem 5.3 The feed-forward XOR amendment of Vortex-M mitigates the second preimage
attack A5.

Proof : In step3 of A5, the adversary connects the chaining value s′ with s using two trees
of depth 33 blocks. These message blocks span multiple Vortex-M sub-block transformations
each ending in a feed-forward XOR operation. Since message blocks do not have, in general,
their 64 most or least significant bits equal to zero these feed forward XOR operations push the
intermediate hash state out of the set S which is the basic assumption under which the attack
works. Moreover let’s assume that W (s) and W (m) are message words of a second preimage,
returned by A5, and an original message for which the two sequences differ. Let’s also assume
that all subsequent message words are the same. Once merging is complete the sub-block that
processes W (s) (or W (m)) applies a feed-forward XOR operation on the resulting hash state.
Such XOR operation further modifies the hash state coming out of this Vortex-M sub-block.
Since W (s) 6= W (m), the final hash-state associated with the returned second preimage is not
the same as the one of the original message.

5.2 Vortex-W: Widen the Pipe in the Last Block

The second amendment is to widen the pipe of the last block transformation of Vortex, as
illustrated in Figure 5. The idea behind this amendment is to increase the internal state of
the hash so that the complexity of any pre-image attack is pushed back to 2N .

We extend the last block transformation to include a tweak value consisting of 3 N/2-bit
variables TA||TB||TC instead of two. These are passed into three Matyas-Meyer-Oseas stages
instead of two. Let A,B, C be their outputs. The merging function employed on these outputs
is:

V
(A+)
M (A,B, C) = V

(A)
M (A⊕C,B⊕C)||MN/2(V

(A)
M (A⊕B, C))⊕LN/2(V

(A)
M (A⊕B, C)) (5.1)

instead of just V
(A)
M (A,B) . Here, MN/2() and LN/2() we denote the N/2 most and least sig-

nificant bits of V
(A)
M (A,B), respectively. The new merging function V

(A+)
M (A,B, C), shown in

Figure 6, uses the function V
(A)
M (A,B) as building block in the following manner: It first XORs

the input word Cwith A and B and passes the results as input to V
(A)
M (). The output of this

function call (N bits) constitutes the N most significant bits of the output of V
(A+)
M (A,B, C).

It also XORs A with B and passes the words A⊕B, C as input to V
(A)
M (). The N/2 most

and least significant bits of this output are XOR-ed with each other. This makes up for the
remaining N/2 least significant bits of the output of V

(A+)
M (A,B, C). The amended last block

transformation is listed below:

Last Vortex-W Block (Ak, Bk,W4·k,W4·k+1)
begin

A||B||C← Vortex-W Sub-block(TA, TB , TC , Ak, Bk)
A||B||C← Last Vortex-W Sub-block(A,B, C, W4·k,W4·k+1)
return A||B

end

The algorithms Vortex-W sub-block() and Last Vortex-W sub-block() are:

Vortex-W Sub-block (A,B,C, W0,W1)

15

VM
(A)(A, B)

AA(W0)
~
AA(W0)
~
AA(W0)
~

AB(W0)
~
AB(W0)
~
AB(W0)
~

W0

A B

VM
(A)(A, B)

AA(W1)
~
AA(W1)
~
AA(W1)
~

AB(W1)
~
AB(W1)
~
AB(W1)
~

W1

A B

(a) Narrow Pipe Vortex Sub-block

VM
(A+)(A, B, C)

AA(W0)
~
AA(W0)
~
AA(W0)
~
AA(W0)
~

AB(W0)
~
AB(W0)
~
AB(W0)
~
AB(W0)
~

W0

A B

AB(W0)
~
AB(W0)
~
AC(W0)
~

(W0)
~

C

W0

VM
(A+)(A, B, C)

AA(W0)
~
AA(W0)
~
AA(W1)
~
AA(W
~

AB(W0)
~
AB(W0)
~
AB(W1)
~
AB(W
~

W1

AB(W0)
~
AB(W0)
~
AC(W1
~

(W
~

W1

)

(b) Wide Pipe Vortex Sub-block

Figure 5: Last Block Wide Pipe Amendment

16

VM
(A) VM

(A)

A B C

A B C

Figure 6: The Merging Function Used in the Last Block of Vortex-W

begin
;W0 is the first word of the current sub-block to be processed
A←ÃA(W0)⊕W0

B←ÃB(W0)⊕W0 // Matyas-Meyer-Oseas transformation
C←ÃC(W0)⊕W0

A||B||C←V
(A+)
M (A,B, C)

;W1 is the second word of the current sub-block to be processed
A←ÃA(W1)⊕W1

B←ÃB(W1)⊕W1

C←ÃC(W1)⊕W1

A||B||C←V
(A+)
M (A,B, C)

return A||B||C
end

Last Vortex-W Sub-block (A,B, C, W0,W1, DF)
begin

;W0 is the first word of the last sub-block to be processed
A←ÃA(W0)⊕W0

B←ÃB(W0)⊕W0

C←ÃC(W0)⊕W0

A||B||C←V
(A+)
M (A,B,C)

for i←1 to DF do
;DF is the degree of diffusion
;W1 is the second word of the last sub-block to be processed
A←ÃA(W1)⊕W1

B←ÃB(W1)⊕W1

C←ÃC(W1)⊕W1

A||B||C←V
(A+)
M (A,B, C)

return A||B||C
end

By extending the internal state of the hash from N to 3N/2 bits we increase the complexity
of the described preimage attack to 2N . This is because the optimal size of the list pre-computed
by the adversary is increased to 2N/2 from 2N/4. In this case the adversary needs 2N efforts to
find an element in the list.

17

Theorem 5.4 The wide pipe amendment of Vortex-W mitigates the first preimage attack A3.

Proof : We follow the steps of this attack on Vortex-W instead of the original Vortex and
determine its complexity. For simplicity, we consider the strengthened Merkle-Damg̊ard con-
struction instead of EMD.

Attack A3 on Vortex-W:
A3, step1: The adversary computes a triplet AI ||BI ||CI = (V (A+)

M)−1(AF , BF , CF) by inverting

the function V
(A)
M () and using an arbitrary value for CF .

A3, step2: The adversary chooses a message word W3 arbitrarily and computes x = ÃA(W3)⊕W3

for many different values of the chaining variable word A until x = AI . The adversary also
computes y = ÃB(W3)⊕W3 for many different values of the chaining variable word B until
y = BI . Finally, the adversary computes z = ÃC(W3)⊕W3 for many different values of the
chaining variable word C until z = CI . This brute-force attack is accomplished with complex-
ity 2N/2.
A3, step3: In step three, the previous step is repeated another 2T − 1 times, where T is
a tunable parameter of the attack. In the end of this step the adversary has a list of
2T quadruplets (A,B, C, W3) for which: V

(A+)
M (ÃA(W3)⊕W3, ÃB(W3)⊕W3, ÃC(W3)⊕W3) =

AF ||BF ||CF . The total complexity for creating this list is 2T+N/2.
A3, step4: In the last step of this attack the adversary computes the output of successive
sequences of Matyas-Meyer-Oseas transformations and merging. The computation continues
until a quadruplet is found, giving a hash state value A||B||C included in the list computed
in the previous step. The number of possible values for the hash state A||B||C is 23N/2. The
size of the list computed in step3 of A3 is 2T . Hence the number of iterations needed to find
one element in the list is 23N/2−T . The complexity of this attack is max(2T+N/2, 23N/2−T).

If one uses the value T = N/4 as in the case of the original attack the complexity of this
attack becomes 21.25N which is higher than the complexity of the brute-force attack. The
complexity of this attack is minimized for T = N/2 becoming 2N , which is ideal. Hence attack
A3 is mitigated.

We note that this second amendment modifies the definition of the EMD construction as
described in [8]. The changes we make is that the size of the tweak value TA||TB||TC is larger
than the size of the chaining variable A||B. Also, the compression function used in the last
block (i.e., the envelope) is different form the one used in all other blocks. It is not difficult to
show that the properties of EMD hold for this variant as well.

5.3 Vortex-S: Skipping the Merging Function in the Last Sub-block

The third amendment is to skip the last merging stage in the last Vortex sub-block transfor-
mation. The last Vortex sub-block repeats the stages of Matyas-Meyer-Oseas transformations
and merging DF − 1 times instead of DF and then does Matyas-Meyer-Oseas one more time
without merging. In this way the output comes directly from block cipher stages, which ap-
proximate ideal block ciphers. As a result, no output bit correlation characterizes this version
of Vortex, and attack A7 is mitigated. Further, impossible images become much harder to
detect. To find impossible images in this case, one has to invert a Matyas-Meyer-Oseas trans-
formation. Ideally that should be impossible, but in practice we say it is hard. We call this
version of Vortex, Vortex-S. We note that attack A7 is in our opinion the only practical attack
on Vortex, and this amendment the simplest to implement. So Vortex can become secure from
a practical stand-point with only this amendment. The Vortex-S last sub-block pseudo-code

18

attack A2 attack A3 attack A4 attack A5 attack A6 attack A7

description

collision
attack at

time
complexities
2

124.5
, 2

251.7

pre-image attacks with product of time
and space complexity equal to ideal

distinguisher
at time

complexity
at least 2

96

practical
distinguisher

 protected against?

Vortex NO NO NO NO NO NO

Vortex-M YES NO YES YES NO NO

Vortex-W NO YES NO NO NO NO

Vortex-S NO NO NO NO YES YES

Vortex+ YES YES YES YES YES YES

Table 1: The Impact of Amendments on the Security of Vortex

is given below.

Last Vortex-S Sub-block (A, B,W0,W1, DF)
begin

;W0 is the first word of the last sub-block to be processed
A←ÃA(W0)⊕W0

B←ÃB(W0)⊕W0

A||B←V
(A)
M (A, B)

for i←1 to DF − 1 do
;DF is the degree of diffusion
;W1 is the second word of the last sub-block to be processed
A←ÃA(W1)⊕W1

B←ÃB(W1)⊕W1

A||B←V
(A)
M (A,B)

A←ÃA(W1)⊕W1

B←ÃB(W1)⊕W1

return A||B
end

5.4 The Impact of the Amendments

The impact of each amendment on the security of Vortex is summarized in Table 1. Attack A1

is not included as it assumes control of variables A and B which Vortex does not offer to the
attacker. As shown in the table Vortex as submitted to the SHA-3 competition does not offer
protection against attacks A2-A7. We remind that among these attacks, A2 drops only few
exponent bits of collision resistance, A3 A4 and A5 have time and space complexity product
equal to ideal, and A6 is associated with time complexity which is at least 296. A7 is the only
practical attack. Vortex-M adds protection against A2, A4 and A5 but not A3, A6 and A7.
Vortex-W adds protection against A3 only. Finally Vortex-S adds protection against A6 and
A7 but not A2-A5, making Vortex secure from a practical point of view. One can also consider
variants of Vortex with more than one amendment. For example by combining our first, second
and third amendments we create a version of Vortex (“Vortex+”) that addresses all published
attacks. It is quite obvious that the performance impact of the amendments is marginal. This
is because the wide pipe (Vortex-W) and skipping (Vortex-S) amendments apply only to the
last sub-block, and hence do not impact performance, whereas the feed-forward XOR (Vortex-
M) amendment adds only 3 XOR operations per sub-block (256 or 512 bits) which can be

19

completed in a few clocks by most processors.

6 Concluding Remarks

We presented here a root-cause analysis of a number of recently published attacks on the Vortex
hash function family, and showed that they stem from: (i) Openness to inversion (resulting
in multi-collision attacks, second pre-image attacks, and second pre-image attacks for weak
messages) (ii) Use of a narrow pipe across the whole domain extension transform (resulting
in first pre-image attacks); (iii) Symmetry in the merging function (resulting in impossible
images and output bit correlation). We derived three amendments to the Vortex structure
and showed that they address all of the attacks. These amendments can be used separately
or in combination, depending on those attacks that need to be addressed. From the practical
standpoint, the only practical attack is Attack A7 and it is mitigated by the third amendment
(Vortex-S).

References

[1] Shay Gueron and Michael Kounavis “Vortex: A New Family of One Way Hash Functions based
on AES Rounds and Carry-less Multiplication” ISC 2008.

[2] Shay Gueron and Michael Kounavis “Vortex: A New Family of One Way Hash Functions based
on Rijndael Rounds and Carry-less Multiplication” Submission to NIST, 2008, available online:
http://ehash.iaik.tugraz.at/wiki/Vortex_(SHA-3_submission)

[3] Lars R. Knudsen, Florian Mendel, Christian Rechberger and Søren S. Thomsen ”Collision
and Preimage Attacks on Vortex as submitted to the SHA-3 competition” available online:
http://ehash.iaik.tugraz.at/wiki/Vortex_(SHA-3_submission)

[4] Jean-Philippe Aumasson, Orr Dunkelman, Florian Mendel, Christian Rechberger and Søren S.
Thomsen ”Cryptanalysis of Vortex” AfricaCrypt 2009.

[5] Jean-Philippe Aumasson and Orr Dunkelman ”A note on Vortex’s security” available online:
http://ehash.iaik.tugraz.at/wiki/Vortex_(SHA-3_submission)

[6] Niels Ferguson ”Simple correlation on some of the output bits of Vortex” available online:
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html

[7] B. Brachtl, D. Coppersmith, M. Hyden, S. Matyas, C. Meyer, J. Oseas, S. Pilpel, and M. Schilling
”Data authentication, using modification detection ocdes based on a public one-way encryption
function” United States Patent No. 4,908,861. Filed August 28, 1987.

[8] M. Bellare and T. Ristenpart ”Multi-Property-Preserving Hash Domain Extension and the EMD
Transform” Advances in Cryptology - ASIACRYPT 2006, LNCS 4284, pp. 299-314, 2006.

[9] I. Damg̊ard ”A Design Principle for Hash Functions” Advances in Cryptology - CRYPTO 1989,
LNCS 435, pp. 416-427, 1989.

[10] ”Advanced Encryption Standard” Federal Information Processing Standards Publication 197,
available at: http://csrc.nist.gov/publication/fips

20

