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Abstract. Camellia is one of the most worldwide used block ciphers, which has been selected as
a standard by ISO/IEC. In this paper, we propose several new 7-round impossible differentials of
Camellia with 2 FL/FL−1 layers, which turn out to be the first 7-round impossible differentials
with 2 FL/FL−1 layers. Combined with some basic techniques including the early abort approach
and the key schedule consideration, we achieve the impossible differential attacks on 11-round
Camellia-128, 11-round Camellia-192, 12-round Camellia-192, and 14-round Camellia-256, and the
time complexity are 2123.6, 2121.7, 2171.4 and 2238.2 respectively. As far as we know, these are the
best results against the reduced-round variants of Camellia. Especially, we give the first attack on
11-round Camellia-128 reduced version with FL/FL−1 layers.
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1 Introduction

Camellia is a 128-bit block cipher jointly developed by NTT and Mitsubishi in 2000, and supports
128-, 192-, and 256-bit key lengths [1]. It was adopted by cryptographic evaluation projects such
as CRYPTREC [5] and NESSIE [22], as well as the standardization activities at IETF [23]. Then
it was accepted by ISO/IEC [9] as an international standard.

Camellia has a Feistel structure with FL/FL−1 layers inserted every 6 rounds. The FL/FL−1

functions are keyed linear functions which are designed to provide non-regularity across rounds
and destroy the differential property [1]. As one of the most widely used block cipher, Camel-
lia has attracted a significant amount of attention of the cryptology researchers. The security
of Camellia against various attacks are discussed in many papers, such as linear and differen-
tial cryptanalysis [24], higher order differential cryptanalysis [7,11], truncated differential attack
[5,10,14,25], impossible differential cryptanalysis [4,16,17,18,20,21,25,26], collision attack [15,27],
square attack [8,15,28], square like attack [6] et.al. Among these methods, the impossible differ-
ential attack [3,12] is the most efficient.

In recent years, there are a number of results on simple versions of Camellia which ex-
clude the FL/FL−1 layers. In [4], the authors present the first 6-round impossible differentials
with FL/FL−1 functions, and give the impossible differential attacks on Camellia-192/-256
with FL/FL−1 functions. Then some 7-round impossible differentials with FL/FL−1 functions
are introduced in [16,17]. In this paper, we propose some new 7-round impossible differentials
including 2 FL/FL−1 layers, which are the first 7-round impossible differentials including 2
FL/FL−1 layers. Due to our new 7-round impossible differentials including one more FL/FL−1
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layer than all of those impossible differentials above, using our new impossible differentials could
achieve better attacks. Combined with the early abort approach [19] and the key schedule con-
siderations, we first present the attack on 11-round Camellia-128, which requires 2120.5 chosen
plaintexts and 2123.6 11-round encryptions. Then we give attacks on 11-round Camellia-192, 12-
round Camellia-192, and 14-round Camellia-256, and the time complexity are 2121.7, 2171.4 and
2238.2 respectively.

The rest of this paper is organized as follows. We give some notations and briefly describe
the block cipher Camellia in Section 2. Some properties of Camellia and 7-round impossible
differentials with 2 FL/FL−1 layers are given in Section 3. Section 4 presents the impossible
differential attacks on reduced-round Camellia with FL/FL−1 layers. Finally, we conclude the
paper in Section 5.

2 Preliminaries

2.1 Notations

In this paper, we will use the following notations:
Lr−1, L′

r−1 : the left 64-bit half of the r-th round input,
Rr−1, R′

r−1 : the right 64-bit half of the r-th round input,
∆Sr : the output difference of the S-box layer of the r-th round
Kr : the subkey used in the r-th round
Xl : the l-th byte of a 64-bit word X (l = 1, . . . , 8)
Y{i} : the i-th bit of a bit string Y (1 ≤ i ≤ 128)

x‖y : the concatenation of x and y
x ≪i : the left rotation of x by i bits
⊕, ∩, ∪ : bitwise exclusive-OR(XOR), AND, OR

2.2 Description of Camellia

Camellia [1] is a 128-bit block cipher with Feistel structure. It has 18 rounds for 128-bit key and
24 rounds for 192-/256-bit key. We give the encryption procedure of Camellia-128 as follows, see
Fig. 1.

Encryption Procedure. First a 128-bit plaintext M is XORed with subkeys KW1‖KW2 and
separated into two 64-bit intermediate values L0 and R0 : L0‖R0 = M ⊕ (KW1‖KW2). Then
the following operations are performed from r = 1 to 18, except for r = 6 and 12:

Lr = Rr−1 ⊕ F (Lr−1,Kr), Rr = Lr−1,

for r = 6 and 12, do the following:

L′
r = Rr−1 ⊕ F (Lr−1,Kr), R′

r = Lr−1,

Lr = FL(L′
r,KLr/3−1), Rr = FL−1(R′

r,KLr/3).

Finally the 128-bit ciphertext C is calculated as: C = (R18‖L18) ⊕ (KW3‖KW4).
F is the round function defined below:

F : GF (2)64 × GF (2)64 → GF (2)64

(X,Kr) 7→ Z = P (S(X ⊕ Kr)),
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Fig. 1. Encryption procedure of Camellia-128

where S and P are defined as follows:

S : (GF (2)8)8 → (GF (2)8)8

(x1, x2, . . . , x8) 7→ (y1, y2, . . . , y8),

y1 = S1(x1), y2 = S2(x2), y3 = S3(x3), y4 = S4(x4),

y5 = S2(x5), y6 = S3(x6), y7 = S4(x7), y8 = S1(x8),

here S1, S2, S3 and S4 are the 8 × 8 S-boxes.

P : (GF (2)8)8 → (GF (2)8)8

(y1, y2, . . . , y8) 7→ (z1, z2, . . . , z8),

z1 = y1 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8, z5 = y1 ⊕ y2 ⊕ y6 ⊕ y7 ⊕ y8,

z2 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8, z6 = y2 ⊕ y3 ⊕ y5 ⊕ y7 ⊕ y8,

z3 = y1 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y8, z7 = y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y8,

z4 = y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7, z8 = y1 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7.

The inverse of P is as follows:

P−1 : (GF (2)8)8 → (GF (2)8)8

(z1, z2, . . . , z8) 7→ (y1, y2, . . . , y8),

y1 = z2 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8, y5 = z1 ⊕ z2 ⊕ z5 ⊕ z7 ⊕ z8,

y2 = z1 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8, y6 = z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8,

y3 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8, y7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7,

y4 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z7, y8 = z1 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8.
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FL is defined below:

FL : GF (2)64 × GF (2)64 → GF (2)64

(XL‖XR,KLL‖KLR) 7→ (YL‖YR),

YR = ((XL ∩ KLL) ≪1) ⊕ XR, YL = (YR ∪ KLR) ⊕ XL.

FL−1 is the inverse of FL, and all of them are linear as long as the keys are fixed [2].
Similarly to Camellia-128, Camellia-192/-256 have 24-round Feistel structure with FL/FL−1

layers inserted after 6, 12, 18 rounds. Before the first round and after the last round, there are
pre- and post-whitening layers which use bitwise exclusive-or operations with 128-bit subkeys,
respectively.

Key Schedule. Two 128-bit variables KA and KB are generated from the main key K =
KL‖KR. For Camellia-128, KL is the 128-bit K, and KR is 0. For Camellia-192, KL is the left
128-bit of K, and the concatenation of the right 64-bit of K and its complement is used as KR.
For Camellia-256, KL is the left 128-bit of K, and KR is the right 128-bit of K. All of the subkeys
are derived from rotating KL,KR,KA or KB , and KB is only used in Camellia-192/-256. For
details of Camellia, we refer to [1].

3 New 7-round Impossible Differentials of Camellia with 2 FL/FL−1 layers

In this section, we give some useful properties of Camellia, and then present several new 7-round
impossible differentials.

Property 1 (from [13]) Let x, x′, k be 32-bit values, and ∆x = x ⊕ x′, then the differential
properties of AND and OR operations are:

(x ∩ k) ⊕ (x′ ∩ k) = (x ⊕ x′) ∩ k = ∆x ∩ k,

(x ∪ k) ⊕ (x′ ∪ k) = (x ⊕ k ⊕ (x ∩ k)) ⊕ (x′ ⊕ k ⊕ (x′ ∩ k)) = ∆x ⊕ (∆x ∩ k).

Property 2 For FL−1 function, if the input difference is ∆Y = (a, 0, 0, 0, 0, 0, 0, 0), where
a is a non-zero byte whose most significant bit is 0, then the output difference is ∆X =
(a, 0, 0, 0, A, 0, 0, 0), where A is an unknown byte.

Proof. By Property 1, apparently we can get the output difference below (note that the most
significant bit of a is 0):

∆XL = XL ⊕ X ′
L = (YL ⊕ (YR ∪ KLR)) ⊕ (Y ′

L ⊕ (Y ′
R ∪ KLR))

= ∆YL ⊕ ∆YR ⊕ (∆YR ∩ KLR) = ∆YL = (a, 0, 0, 0),

∆XR = XR ⊕ X ′
R = ((XL ∩ KLL) ≪1) ⊕ YR) ⊕ ((X ′

L ∩ KLL) ≪1) ⊕ Y ′
R)

= ∆YR ⊕ ((∆XL ∩ KLL) ≪1) = (A, 0, 0, 0).

here Y and X are the 64-bit input value and output value of FL−1 function, and KL is the
64-bit subkey used in FL−1 function, and A is an unknown byte. ⊓⊔

Property 3 (from [16]) For FL−1 function, if the output difference is ∆X = (0, 0, 0, 0, b, 0, 0, 0),
where b is a non-zero byte, then the input difference should satisfy the form ∆Y = (B, 0, 0, 0, b, 0,
0, 0), where B is an unknown byte.
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Impossible Differential. We now demonstrate that the 7-round differential

((0, 0, 0, 0, 0, 0, 0, 0); (a, 0, 0, 0, 0, 0, 0, 0))
7R
→ ((0, 0, 0, 0, b, 0, 0, 0); (0, 0, 0, 0, 0, 0, 0, 0))

is impossible, where a is a non-zero byte whose most significant bit is 0, and b is an arbitrary
non-zero byte, see Fig. 2.
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Fig. 2. 7-round impossible differential with 2 FL/FL−1 layers

By Property 2, the input difference of the first round is ((0, 0, 0, 0, 0, 0, 0, 0); (a, 0, 0, 0, A, 0, 0, 0)),
and then the output differences of the second and third round are

(P (c, 0, 0, 0, C, 0, 0, 0); (a, 0, 0, 0, A, 0, 0, 0)) and

(P (c1, c2, c3, c4, c5, c6, c7, c8) ⊕ (a, 0, 0, 0, A, 0, 0, 0); P (c, 0, 0, 0, C, 0, 0, 0)),

where (c, 0, 0, 0, C, 0, 0, 0) is evolved from (a, 0, 0, 0, A, 0, 0, 0) after key-addition layer and S-box
layer, (c1, c2, c3, c4, c5, c6, c7, c8) is evolved from P (c, 0, 0, 0, C, 0, 0, 0) (note that P (c, 0, 0, 0, C, 0, 0,
0) = (c, c ⊕ C, c ⊕ C,C, c, C,C, c ⊕ C)), c, c1, c5 are unknown non-zero bytes, and C, ci(i =
2, 3, 4, 6, 7, 8) are unknown bytes. So we can get that the input difference of S-box layer of the
fourth round is

P (c1, c2, c3, c4, c5, c6, c7, c8) ⊕ (a, 0, 0, 0, A, 0, 0, 0).

In the backward direction, the input difference of the seventh round is ((0, 0, 0, 0, 0, 0, 0, 0); (0,
0, 0, 0, b, 0, 0, 0)), and the output difference of the sixth round deduced by Property 3 is ((0, 0, 0,
0, 0, 0, 0, 0); (B, 0, 0, 0, b, 0, 0, 0)). Then the output difference of the fifth round is

((B, 0, 0, 0, b, 0, 0, 0); P (D, 0, 0, 0, d, 0, 0, 0)),
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where (D, 0, 0, 0, d, 0, 0, 0) is evolved from (B, 0, 0, 0, b, 0, 0, 0) after key-addition layer and S-box
layer, d is an unknown non-zero byte, and D is an unknown byte. Hence, the output difference
of S-box layer of the fourth round is

P−1(P (c, 0, 0, 0, C, 0, 0, 0) ⊕ P (D, 0, 0, 0, d, 0, 0, 0)) = (c ⊕ D, 0, 0, 0, C ⊕ d, 0, 0, 0).

Now the input and output differences of S-box layer of the fourth round are all determined.
According to the output difference of S-box layer, the input difference of S-box layer should
satisfy the form (?, 0, 0, 0, ?, 0, 0, 0) (? denotes an unknown byte). So we can get:

P (c1, c2, c3, c4, c5, c6, c7, c8) ⊕ (a, 0, 0, 0, A, 0, 0, 0) = (?, 0, 0, 0, ?, 0, 0, 0)

⇒ P (c1, c2, c3, c4, c5, c6, c7, c8) = (?, 0, 0, 0, ?, 0, 0, 0) ⊕ (a, 0, 0, 0, A, 0, 0, 0) = (?, 0, 0, 0, ?, 0, 0, 0)

⇒ c1 = 0,

which contradicts with c1 6= 0. As a result, the differential

((0, 0, 0, 0, 0, 0, 0, 0); (a, 0, 0, 0, 0, 0, 0, 0))
7R
→ ((0, 0, 0, 0, b, 0, 0, 0); (0, 0, 0, 0, 0, 0, 0, 0))

is impossible. Actually, we can get three more 7-round impossible differentials with 2 FL/FL−1

layers, which are:

((0, 0, 0, 0, 0, 0, 0, 0); (0, a, 0, 0, 0, 0, 0, 0))
7R
9 ((0, 0, 0, 0, 0, b, 0, 0); (0, 0, 0, 0, 0, 0, 0, 0)),

((0, 0, 0, 0, 0, 0, 0, 0); (0, 0, a, 0, 0, 0, 0, 0))
7R
9 ((0, 0, 0, 0, 0, 0, b, 0); (0, 0, 0, 0, 0, 0, 0, 0)),

((0, 0, 0, 0, 0, 0, 0, 0); (0, 0, 0, a, 0, 0, 0, 0))
7R
9 ((0, 0, 0, 0, 0, 0, 0, b); (0, 0, 0, 0, 0, 0, 0, 0)),

where a, b are non-zero bytes, and the most significant bit of a is 0.

4 Impossible Differential Attacks on Camellia with FL/FL−1 Layers

In this section, we present some new impossible differential attacks on 11-round Camellia-128,
11-round Camellia-192, 12-round Camellia-192, and 14-round Camellia-256, using the new 7-
round impossible differential proposed in Section 3. All of these attacks start from the middle
round, and exclude the whitening layers to not change the structure of the algorithm.

4.1 Impossible Differential Attack on 11-round Camellia-128

As illustrated in Fig. 3, the 7-round impossible differential is applied in rounds 7 to 13, and the
attack is from round 5 to 15. The attack procedure is as follows.

1. Take 2n structures of plaintexts M = (L4, R4) with following form:

(P (x1, α2, α3, α4, α5, α6, α7, α8); P (y1, y2, y3, y4, y5, β6, β7, y8)),

where αi (i = 2, . . . , 8), βj (j = 6, 7) are fixed constants, x1, yi (i = 1, 2, 3, 5, 8) take all the
8-bit values, and y4 takes all the 7-bit values with the most significant bit fixed. As a result,
each structure contains 255 plaintexts which can provide about 2109 plaintext pairs with the
difference

(P (e, 0, 0, 0, 0, 0, 0, 0); P (a1 , a2, a3, a, a5, 0, 0, a8)),

where e, a1, a are non-zero bytes (the most significant bit of a is 0), and ai 6= a (i = 2, 3, 5, 8)
are unknown bytes. Aggregately, we can collect about 2n+109 plaintext pairs.
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Fig. 3. Attack on 11-round Camellia-128

2. Obtain the ciphertexts of each structure and choose only the pairs that satisfy the following
difference by birthday paradox

(P (0, b2, b3, b4, b, b6, b7, b8); (0, f, f, f, 0, f, f, f)),

where b, b8, f are non-zero bytes, and bi 6= b (i = 2, 3, 4, 6, 7) are unknown bytes. We expect
to have about 2n+109−64 = 2n+45 pairs remaining with this condition.

3. For each plaintext pair, we immediately get the difference ∆S5 = P−1(P (a1, a2, a3, a, a5, 0, 0,
a8) ⊕ P (0, a, a, a, a, 0, 0, a)) = (a1, a2 ⊕ a, a3 ⊕ a, 0, a5 ⊕ a, 0, 0, a8 ⊕ a). So for l = 1, 2, 3, 5, 8
guess K5,l and keep only the pairs whose ∆S5,l is equal to the corresponding value above.
The probability of this event is 2−40, thus there remains 2n+45−40 = 2n+5 pairs. Note that
K5,l(l=1,2,3,5,8) = KA{16−39,48−55,72−79}.

4. For each ciphertext pair corresponding to a remaining plaintext pair, obtain the difference
∆S15 = (0, b2 ⊕ b, b3 ⊕ b, b4 ⊕ b, 0, b6 ⊕ b, b7 ⊕ b, b8). Based on the fact that the bits KA{16−30}

are already known, perform the following substeps.

4.1 The value of K15,8 (KA{23−30}) is already known, so use it to partially decrypt every
remaining ciphertext pair and keep only the pairs satisfying ∆S15,8 = b8. The probability
of this event is 2−8, thus the expected number of remaining pairs is 2n+5−8 = 2n−3.

4.2 Since K15,7 = KA{15−22}, 7 bits including KA{16−22} are already known and guess the
only unknown bit KA{15}. Keep only the pairs satisfying ∆S15,7 = b7⊕b. The probability
of this event is 2−8, so we expect 2n−3−8 = 2n−11 pairs remain.

4.3 The values of K15,l(l=2,3,4,6) (KA{7−14,103−126}) are unknown, so for l = 2, 3, 4, 6 respec-
tively guess K15,l and choose only the pairs whose ∆S15,l is equal to the corresponding
value above. The probability of this event is 2−32, thus the expected number of such pairs
is 2n−11−32 = 2n−43.

4.4 Guess K15,1 and decrypt every remaining pair to get (L13,5, L
′
13,5), so this step does not

effect the number of the remaining pairs.

5. For each remaining pair, obtain the difference ∆S14 = (0, 0, 0, 0, f, 0, 0, 0). Guess K14,5 and
choose only the pairs satisfying ∆S14,5 = f . The probability of this condition is 2−8, thus we
expect 2n−43−8 = 2n−51 pairs remain.

6. For l = 4, 6, 7 guess K5,l and encrypt every remaining pair to get (L5,1, L
′
5,1).
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7. For every remaining pair, guess the 8-bit value of K6,1 and calculate the difference ∆S6,1.
The probability that ∆S6,1 is equal to a fixed value e is 2−8, where e is already determined
by ∆L4. Such a difference is impossible, so if there exits a pair satisfying this condition,
discard the 121-bit wrong subkey guess. Unless the initial assumption on the subkeys K5,
K15,l(l=1,2,3,4,6,7,8) and K14,5 is correct, it is expected that we can discard the whole 8-bit
value of K6,1 for each guessed 113-bit value above since the 121-bit wrong value remains
with a very small probability by choosing a proper n. Hence if there remains a value of K6,1

after the filtering, we can assume that the guessed value above is right.

Complexity. After analyzing the 2n−51 remaining pairs, the expected number of remaining
121-bit wrong keys is N = (2121 − 1)(1 − 2−8)2

n−51
. In order to let N ≪ 0, we choose n = 65.5.

Then the data complexity is 2120.5 chosen plaintexts. The memory complexity is dominated by
storing the 2110.5 proper pairs in step 2, which requires 2115.5 bytes. Table 1 shows the time
complexity of each step, so the total complexity of the attack, in encryption unit, is about
2127/11 ≈ 2123.6.

Table 1. Time Complexity of the Attack on 11-round Camellia-128

Step Time Complexity

2 2n+55 E

3
P4

i=0 2 × 2n+45−8i
× 28(i+1)

×
1
8

= 2n+51
× 5 1

11
E

4.1 2 × 2n+5
× 240

×
1
8

= 2n+43 1
11

E
4.2 2 × 2n−3

× 240
× 21

×
1
8

= 2n+36 1
11

E

4.3
P3

i=0 2 × 2n−11−8i
× 241

× 28(i+1)
×

1
8

= 2n+38 1
11

E
4.4 2n−43

× 273
× 28

×
1
8

= 2n+35 1
11

E
5 2 × 2n−43

× 281
× 28

×
1
8

= 2n+44 1
11

E

6
P2

i=0 2n−51
× 289

× 28(i+1)
×

1
8

= 2n+43 + 2n+51 + 2n+59 1
11

E

7 2 × 2113
× 28

× (1 + (1 − 2−8) + . . . + (1 − 2−8)2
n−51

−1) × 1
8
≈ 2127 1

11
E

4.2 Impossible Differential Attack on 11-round and 12-round Camellia-192

In this section, first we give a brief description of the attack on 11-round Camellia-192, and then
present the attack on 12-round Camellia-192.

Attack on 11-round Camellia-192. A similar 11-round attack as described in Section 4.1
is equally applicable to Camellia-192 from round 11 to 21, utilizing the 7-round impossible
differential in rounds 13 to 19 as shown in Fig.3. According to the key schedule of Camellia-
192/-256, we get

K11 = KA{46−109}, K12,1 = KA{110−117},

K20,5 = KR{63−70}, K21,l(l=1,2,3,4,6,7,8) = KA{7−30,95−126}.

Considering the redundancy in K11,K12,1 and K21,l(l=1,2,3,4,6,7,8), in fact we only need to guess
113 bits KA{7−30,46−126}‖KR{63−70}. By choosing n = 65.4, then N ≪ 0. Consequently, this
attack requires 2120.4 chosen plaintexts, 2115.4 bytes of memory and an overall effort of 2120.4 +
2124.4/11 ≈ 2121.7 eleven-round Camellia-192 encryptions. The details see Table 3 in Appendix
A.
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Attack on 12-round Camellia-192. We add one round on the bottom of the 11-round attack,
and give a 12-round attack on Camellia-192, which is from round 11 to 22, see Fig. 4. The attack
procedure is as follows.

P(g1,g2,g3,g4,g5,g6,g7,g8)

(a,0,0,0,0,0,0,0)
(0,0,0,0,0,0,0,0)

(a,0,0,0,0,0,0,0)

(0,0,0,0,b,0,0,0)

P(0,b2,b3,b4,b,b6,b7,b8)
P(0,0,0,0,f,0,0,0)

(0,f,f,f,0,f,f,f)
P(0,b,b,b,b,b,b,0)

(0,0,0,0,0,0,0,0)

P(a1,a2,a3,a,a5,0,0,a8)

P(0,a,a,a,a,0,0,a)

P(e,0,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0)

7-round ID

with 2 FL/FL
-1

Layers

⊕PKS

⊕PKS

⊕PKS

⊕PKS

⊕PKS

P(0,b2,b3,b4,b,b6,b7,b8)

Fig. 4. Attack on 12-round Camellia-192

1. The choice of plaintexts is the same as the 11-round attack, and the ciphertext pairs are
sieved by the difference

(P (g1, g2, g3, g4, g5, g6, g7, g8); P (0, b2, b3, b4, b, b6, b7, b8)),

where b, b8 are non-zero bytes, and gi (i = 1, . . . , 8), bj 6= b (j = 2, 3, 4, 6, 7) are unknown
bytes. The probability of this condition is about 2−8, so the expected number of remaining
pairs is about 2n+109−8 = 2n+101.

2. Obtain the difference ∆S11 = (a1, a2 ⊕a, a3 ⊕a, 0, a5 ⊕a, 0, 0, a8 ⊕a), then for l = 1, 2, 3, 5, 8
guess K11,l and keep the pairs whose ∆S11,l is equal to the corresponding value above. So we
expect 2n+101×2−40 = 2n+61 pairs remain. Note that K11,l(l=1,2,3,5,8) = KA{46−69,78−85,102−109} .

3. We can get the difference ∆S22 = (g1, g2, g3, g4, g5 ⊕ f, g6, g7, g8) (∆S22,5 6= g5 since f 6= 0),
and the bits KA{46−69,78−85} are already known. Then perform the following substeps.

3.1 The values of K22,l(l=3,4) (KA{47−62}) are already known, so for l = 3, 4 ∆S22,l can be
computed, then choose the pairs satisfying ∆S22,l = gl. Thus there remains 2n+61×2−16 =
2n+45 pairs.

3.2 Since K22,7 = KA{79−86}, guess the only unknown bit KA{86} and keep the pairs satisfying
∆S22,7 = g7. Next K22,2 = KA{39−46}, guess the unknown 7 bits KA{39−45} and keep the
pairs satisfying ∆S22,2 = g2. Similarly, as K22,6 = KA{71−78}, we guess the unknown 7
bits KA{71−77} and keep the pairs satisfying ∆S22,6 = g6. Thus the expected number of
remaining pairs is 2n+45 × 2−24 = 2n+21.

3.3 The values of K22,l(l=1,8) (KA{31−38,87−94}) are unknown, so for l = 1, 8 guess K22,l and
choose the pairs satisfying ∆S22,l = gl. Then 2n+21 × 2−16 = 2n+5 pairs remain. As
K22,5 = KA{63−70}, guess the only unknown bit KA{70} and keep only the pairs satisfying
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∆S22,5 6= g5. The probability of this event is (28 − 1)/28 ≈ 1, thus we expect about 2n+5

pairs remain. And now the intermediate values (L21‖R21, L
′
21‖R

′
21) also can be computed.

4. We can obtain ∆S21 = (0, b2 ⊕ b, b3 ⊕ b, b4 ⊕ b, 0, b6 ⊕ b, b7 ⊕ b, b8), and the bits KA{102−109}

are already known. So perform the substeps below.
4.1 As K21,2 = KA{103−110}, guess the only unknown bit KA{110} and keep the pairs satisfying

∆S21,2 = b2 ⊕ b. Then we expect 2n+5 × 2−8 = 2n−3 pairs remain.
4.2 The values of K21,l(l=3,4,6,7,8) (KA{7−30,111−126}) are unknown, so for l = 3, 4, 6, 7, 8 guess

K21,l and keep only the pairs whose ∆S21,l is equal to the corresponding value above.
Then the expected number of such pairs is 2n−3 × 2−40 = 2n−43.

4.3 Since K21,1 = KA{95−102}, guess the unknown 7 bits KA{95−101} and get (L19,5, L
′
19,5).

5. Obtain the difference ∆S20 = (0, 0, 0, 0, f, 0, 0, 0), then guess K20,5 and choose the pairs
satisfying ∆S20,5 = f . So there remains 2n−43 × 2−8 = 2n−51 pairs.

6. The values of K11,l(l=4,6,7) (KA{70−77,86−101}) are already known, so we can get (L11,1, L
′
11,1).

7. Since K12,1 (KA{110−117}) are already known, for every remaining pair, ∆S12,1 can be com-
puted. We expect with probability of 2−8 that we get a pair with ∆S12,1 = e, where e is a
fixed value determined by ∆L10. Such a difference is impossible, and every subkey we guessed
that proposes such a difference is definitely a wrong key. If there remains a value of K12,1

after the filtering, we can assume that the guessed value above is right.

Complexity. The number of remaining 128-bit wrong keys after analyzing all the 2n−51 pairs
is N = (2128 − 1)(1 − 2−8)2

n−51
. In order to let N ≪ 0, we choose n = 65.6. Then the data

complexity is 2120.6 chosen plaintexts. The memory complexity is dominated by storing the 2166.6

pairs in step 2, which is about 2171.6 bytes. The time complexity is dominated by step 3, which
is about 2n+107 × 5/12 = 2172.6 × 5/12 ≈ 2171.4 12-round encryptions. The details see Table 4 in
Appendix A.

4.3 Impossible Differential Attack on 14-round Camellia-256.

We add one more round respectively on the top and bottom of the 12-round attack, and present
a 14-round attack on Camellia-256, which is from round 10 to 23 as illustrated in Fig. 5. The
attack procedure is below.

1. Take 2n structures of plaintexts M = (L9, R9) with following form:

(P (x1, x2, x3, x4, x5, α6, α7, x8); P (y1, y2, y3, y4, y5, y6, y7, y8)),

where αi (i = 6, 7) are fixed constants, xi (i = 1, 2, 3, 5, 8), yj (j = 1, . . . , 8) take all the 8-bit
values, and x4 takes all the 7-bit values with the most significant bit fixed. It is obvious that
each structure contains 2111 plaintexts which can provide about 2221 plaintext pairs with the
difference

(P (a1, a2, a3, a, a5, 0, 0, a8);P (h1, h2, h3, h4, h5, h6, h7, h8)),

where a1, a are non-zero byte (the most significant bit of a is 0), and ai 6= a (i = 2, 3, 5, 8),
hj (j = 1, . . . , 8) are unknown bytes. Hence, we can collect about 2n+221 plaintext pairs, then
obtain the ciphertexts of each structure.

2. We can get that ∆S10 = (h1 ⊕ e, h2, h3, h4, h5, h6, h7, h8) (∆S10,1 6= h1 since e 6= 0), so for
l = 2, . . . , 8, 1 respectively guess K10,l and choose only the pairs with ∆S10,l satisfying the
condition above. Then we expect about 2n+221 × 2−56 = 2n+165 pairs remain. Note that
K10 = KL{1−45,110−128}. In this step, we can get (L10‖R10, L

′
10‖R

′
10).
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P(e,0,0,0,0,0,0,0)

P(h1,h2,h3,h4,h5,h6,h7,h8)P(a1,a2,a3,a,a5,0,0,a8)

P(g1,g2,g3,g4,g5,g6,g7,g8)

(a,0,0,0,0,0,0,0)
(0,0,0,0,0,0,0,0)

(a,0,0,0,0,0,0,0)

(0,0,0,0,b,0,0,0)

P(0,b2,b3,b4,b,b6,b7,b8)
P(0,0,0,0,f,0,0,0)

(0,f,f,f,0,f,f,f)
P(0,b,b,b,b,b,b,0)

(0,0,0,0,0,0,0,0)

P(0,a,a,a,a,0,0,a)
(e,e,e,0,e,0,0,e)

(0,0,0,0,0,0,0,0)

P(j1,j2,j3,j4,j5,j6,j7,j8)

7-round ID

with 2 FL/FL-1 Layers

⊕PKS

⊕PKS

⊕PKS

⊕PKS

⊕PKS

⊕PKS

⊕PKS

P(g1,g2,g3,g4,g5,g6,g7,g8)

P(0,b2,b3,b4,b,b6,b7,b8)

Fig. 5. Attack on 14-round Camellia-256

3. We can obtain the difference ∆S23 = (j1, j2 ⊕ b2, j3 ⊕ b3, j4 ⊕ b4, j5 ⊕ b, j6 ⊕ b6, j7 ⊕ b7, j8 ⊕ b8)
(∆S23,5 6= j5 since b 6= 0), and the bits KL{1−45,112−128} are already known.
3.1 The values of K23,l(l=1,...,7) (KL{1−39,112−128}) are already known, so for l = 1, . . . , 7,

∆S23,l can be computed, then choose only the pairs satisfying ∆S23,1 = j1 and ∆S23,5 6=
j5. The probability of this condition is 2−8 × ((28 − 1)/28) ≈ 2−8, thus the expected
number of remaining pairs is 2n+165−8 = 2n+157.

3.2 Since K23,8 = KL{40−47}, guess the unknown 2 bits KL{46,47} and get the intermediate
values (L22‖R22, L

′
22‖R

′
22).

Next, we perform the steps 4 to 9, which are totally the same as steps 3 to 8 of Section 4.2.
Finally we expect 2n+5 pairs remain.

Complexity. The expected number of remaining 194-bit wrong keys after analyzing all the
2n+5 pairs is N = (2194 − 1)(1 − 2−8)2

n+5
. In order to let N ≪ 0, we choose n = 10.2. Then the

data complexity is 2121.2 chosen plaintexts. The memory complexity is dominated by storing the
2n+165 = 2175.2 pairs in step 2, which is about 2180.2 bytes. The time complexity is dominated
by step 2 and step 4, which is about (2n+230 + 2n+229 × 5)/14 = 2n+228 = 2238.2 encryptions.
Table 5 in Appendix A shows the details of each step.

5 Conclusion

In this paper, we propose some new 7-round impossible differentials including 2 FL/FL−1 layers,
and then present attacks on 11-round Camellia-128, 11-round Camellia-192, 12-round Camellia-
192 and 14-round Camellia-256 without whitening layers. A summary of the previous works and
our attacks on Camellia with FL/FL−1 layers is given in Table 2.
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Table 2. Summary of Attacks on Camellia with FL/FL−1 Layers

Cipher #Rounds Attack Type Data Time Source

Camellia-128 9∗ Square Attack 248CP 2122 [15]
10∗ Impossible DC 2118CP 2118 [20]
10∗ Impossible DC 2118.5CP 2123.5 [16]

10 (Weak Key) Impossible DC 2110.4CP 2110.4 [17]
10 Impossible DC 2112.4CP 2120 [17]
11∗ Impossible DC 2120.5CP 2123.6 this paper

Camellia-192 11∗ Impossible DC 2118CP 2163.1 [20]
11 (Weak Key) Impossible DC 2119.5CP 2138.54 [17]

11 Impossible DC 2113.7CP 2184 [17]
11∗ Impossible DC 2120.4CP 2121.7 this paper
12∗ Impossible DC 2120.1CP 2184 [17]
12∗ Impossible DC 2120.6CP 2171.4 this paper

Camellia-256 12 (Weak Key) Impossible DC 2119.7CP 2202.55 [17]
12 Impossible DC 2114.8CP/CC 2240 [17]
14∗ Impossible DC 2120CC 2250.5 [17]
14∗ Impossible DC 2121.2CP 2238.2 this paper

∗: the attack does not include the whitening layers;
Weak Key: the weak key space which contains 3 × 2126 keys
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A Time Complexity of Attacks in Section 4

Table 3. Time Complexity of the Attack on 11-round Camellia-192

Step Time Complexity

2 2n+55 E

3
P4

i=0 2 × 2n+45−8i
× 28(i+1)

×
1
8

= 2n+51
× 5 1

11
E

4.1 2 × 2n+5
× 240

× 21
×

1
8

= 2n+44 1
11

E

4.2
P4

i=0 2 × 2n−3−8i
× 241

× 28(i+1)
×

1
8

= 2n+44
× 5 1

11
E

4.3 2n−43
× 281

× 27
×

1
8

= 2n+42 1
11

E
5 2 × 2n−43

× 288
× 28

×
1
8

= 2n+51 1
11

E
6.1 2n−51

× 296
× 21

×
1
8

= 2n+43 1
11

E

6.2
P1

i=0 2n−51
× 297

× 28(i+1)
×

1
8

= 2n+51 + 2n+59 1
11

E

7 2 × 2113
× (1 + (1 − 2−8) . . . + (1 − 2−8)2

n−51
−1) × 1

8
≈ 2119 1

11
E

Table 4. Time Complexity of the Attack on 12-round Camellia-192

Step Time Complexity

2 2n+55 E

3
P4

i=0 2 × 2n+101−8i
× 28(i+1)

×
1
8

= 2n+107
× 5 1

12
E

4.1
P1

i=0 2 × 2n+61−8i
× 240

×
1
8

= 2n+99 + 2n+91 1
12

E
4.2 2 × 2n+45

× 240
× 21

×
1
8

= 2n+84 1
12

E
2 × 2n+37

× 241
× 27

×
1
8

= 2n+83 1
12

E
2 × 2n+29

× 248
× 27

×
1
8

= 2n+82 1
12

E

4.3
P1

i=0 2 × 2n+21−8i
× 255

× 28(i+1)
×

1
8

= 2n+83 1
12

E
2 × 2n+5

× 271
× 21

×
1
8

= 2n+75 1
12

E
5.1 2 × 2n+5

× 272
× 21

×
1
8

= 2n+76 1
12

E

5.2
P4

i=0 2 × 2n−3−8i
× 273

× 28(i+1)
×

1
8

= 2n+76
× 5 1

12
E

5.3 2n−43
× 2113

× 27
×

1
8

= 2n+74 1
12

E
6 2 × 2n−43

× 2120
× 28

×
1
8

= 2n+83 1
12

E
7 2n−51

× 2128
×

1
8
× 3 = 2n+74

× 3 1
12

E

8 2 × 2128
× (1 + (1 − 2−8) + . . . + (1 − 2−8)2

n−51
−1) × 1

8
≈ 2134 1

12
E
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Table 5. Time Complexity of the Attack on 14-round Camellia-256

Step Time Complexity

1 2n+111 E

2
P7

i=0 2 × 2n+221−8i
× 28(i+1)

×
1
8

= 2n+230 1
14

E
3.1 2 × 2n+165

× 264
×

1
8

+ 2 × 2n+157
× 264

×
1
8
× 6 = 2n+227 + 2n+219

× 6 1
14

E
3.2 2 × 2n+157

× 264
× 22

×
1
8

= 2n+221 1
14

E

4
P4

i=0 2 × 2n+157−8i
× 266

× 28(i+1)
×

1
8

= 2n+229
× 5 1

14
E

5.1
P1

i=0 2 × 2n+117−8i
× 2106

×
1
8

= 2n+221 + 2n+213 1
14

E
5.2 2 × 2n+101

× 2106
× 21

×
1
8

= 2n+206 1
14

E
2 × 2n+93

× 2107
× 27

×
1
8

= 2n+205 1
14

E
2 × 2n+85

× 2114
× 27

×
1
8

= 2n+204 1
14

E

5.3
P1

i=0 2 × 2n+77−8i
× 2121

× 28(i+1)
×

1
8

= 2n+205 1
14

E
2 × 2n+61

× 2137
× 21

×
1
8

= 2n+197 1
14

E
6.1 2 × 2n+61

× 2138
× 21

×
1
8

= 2n+198 1
14

E

6.2
P4

i=0 2 × 2n+53−8i
× 2139

× 28(i+1)
×

1
8

= 2n+198
× 5 1

14
E

6.3 2n+13
× 2179

× 27
×

1
8

= 2n+196 1
14

E
7 2 × 2n+13

× 2186
× 28

×
1
8

= 2n+205 1
14

E
8 2n+5

× 2194
×

1
8
× 3 = 2n+196

× 3 1
14

E

9 2 × 2194
× (1 + (1 − 2−8) + . . . + (1 − 2−8)2

n+5
−1) × 1

8
≈ 2200 1

14
E


