
Re-Encryption-Based Key Management Towards
Secure and Scalable Mobile Applications in Clouds

Piotr K. Tysowski
Dept. of Electrical & Computer Engineering

University of Waterloo
Waterloo, Ontario, Canada
pktysowski@uwaterloo.ca

M. Anwarul Hasan
Dept. of Electrical & Computer Engineering

University of Waterloo
Waterloo, Ontario, Canada

ahasan@uwaterloo.ca

Abstract—Cloud computing confers strong economic advan-
tages, but many clients are reluctant to implicitly trust a
third-party cloud provider. To address these security concerns,
data may be transmitted and stored in encrypted form. Major
challenges exist concerning the aspects of the generation, dis-
tribution, and usage of encryption keys in cloud systems, such
as the safe location of keys, and serving the recent trend of
users that tend to connect to contemporary cloud applications
using resource-constrained mobile devices in extremely large
numbers simultaneously; these characteristics lead to difficulties
in achieving efficient and highly scalable key management. In
this work, a model for key distribution based on the principle
of dynamic data re-encryption is applied to a cloud computing
system in a unique way to address the demands of a mobile
device environment, including limitations on client wireless data
usage, storage capacity, processing power, and battery life. The
proposed cloud-based re-encryption model is secure, efficient,
and highly scalable in a cloud computing context, as keys are
managed by the client for trust reasons, processor-intensive
data re-encryption is handled by the cloud provider, and key
redistribution is minimized to conserve communication costs
on mobile devices. A versioning history mechanism effectively
manages keys for a continuously changing user population.
Finally, an implementation on commercial mobile and cloud
platforms is used to validate the performance of the model.

Keywords-Distributed systems, mobile computing, security.

I. INTRODUCTION

Cloud computing is an evolutionary new model for distribut-
ed computing consisting of centralized data centres that pro-
vide resources for massively scalable units of computing.
These computational facilities are delivered as a service to
users over an insecure medium such as the Internet, and may
be bridged to wireless packet data networks. A client of a cloud
provider can address changes in demand for its processing
needs by replicating applications in the cloud to many runtime
instances, and by running them on cloud servers in concurrent
fashion. Unanticipated burst demands such as flash traffic on a
web server may be met automatically without noticeable delay.
The client does not need to incur a high capital expense up
front in anticipation of future application usage patterns that
may be difficult to predict accurately, and could otherwise lead
to outages if left unaddressed; excess capacity and idle cycles
are avoided. The easy scalability of cloud applications results
in equal opportunity of benefits to firms large and small.

Yet, despite all of its economic benefits, the cloud comput-
ing model poses very significant risks to its users. User data is
stored and executed within the domain of the cloud, and there
is little or no visibility into how the cloud is implemented and
internally managed by the cloud provider. There is significant
concern over the security and privacy of transactions and data
permanently stored in the cloud. Dominant opinion is that data
ought to be kept confidential not only from other users sharing
the cloud, but also from the cloud provider itself, as much
as possible. Indeed, a survey of IT executives by IDC rated
security as the chief concern in the use of cloud computing
services [1]; the concern is that the client requests storage of
application logic and data in the cloud without assurance of
exactly where it is stored, whether it is replicated or cached,
how long it is kept for, and who exactly has access to it.

Despite its need for protection, cloud data must remain
highly accessible, especially for a mobile user population.
The goal of security researchers is to develop techniques to
ensure communication security in cloud computing systems
at reasonable cost. Only by overcoming these challenges, will
enterprise companies invest in and migrate to the cloud to reap
its economic benefits. The topic of this work is the adaptation
of a leading key management scheme, that was originally
designed for a traditional client-server context, in a novel way
that addresses the communication security challenges of the
cloud environment. The intent is to find viable ways to protect
the security of the communication between the cloud and its
users, as well as to protect the privacy of the stored cloud data,
in an efficient and highly scalable way.

The main contribution of this work is a novel solution
that entails a key management scheme based on re-encryption
that effectively utilizes the cloud for cryptographic compu-
tation while supporting a frequently-changing mobile user
population that does not need to trust the cloud provider;
novel aspects such as a versioning array, key material sharing
tactics by users, and intelligent timing of re-encryptions, make
it possible. A cloud-based prototype has also been built to
provide real world data and demonstrate the viability of the
approach. This work is the only one that the authors are
aware of that provides a secure communication solution for a
forward-looking cloud system accessed by potentially millions
of resource-constrained device users.



II. SYSTEM MODEL

The system under study is a public cloud provider operating
a centralized data centre that is accessed by a large mobile
user population over an unprotected public Internet network
infrastructure bridged to a wireless network. A user may access
the cloud application from a mobile device such as a tablet,
smartphone, or even a wireless sensor. A highly scalable
multi-user cloud application is envisioned; it may service
a large user population for the purpose of e-collaboration,
a social network, or customer relationship management. It
is continuously accessed by a multitude of heterogeneous
mobile device users. Each mobile device user typically opens
a direct TCP/IP connection to a cloud application portal. Users
may upload and download content to and from the cloud
by having the cloud-hosted front end access a data partition
provisioned by a cloud’s blade server. Each data partition is
made accessible to a set of authorized mobile users. The client
organization is responsible for granting access rights. The
cloud provider is not fully trusted, and although it may assist
in enforcing those rights for users, it cannot gain access to
the data itself. This notion is in keeping with Gartner’s notion
of cloud computing security implying a shared environment
in which data is segregated and encrypted [2]. Members of
the same group, such as a work project team or a social
community having common interests, will typically require
access to a common data partition resident in the cloud storage
system. The objective is to subdivide and isolate all cloud data
into partitions and enforce appropriate access rights on each.

Robustness of the cloud provider is not a significant concern
in this study, as a cloud by design is typically engineered as a
distributed system with data replication, reliable servers, mul-
tiple endpoints, and other safeguards that virtually guarantee
its continuous operation.

A. Threat model

It is important to consider the unique security risks present
in a cloud environment in order to be able to find adequate
security solutions. Clients need assurance of the existence of
sufficiently robust security and privacy features in a cloud
system before committing to it tasks that add core value to
an organization and cannot be placed at risk. Communication
security for cloud systems, of particular interest in this work,
ensures that unauthorized persons cannot read or manipulate
data that is in transit to or stored in the cloud. A related con-
cern is that data may be automatically replicated for reliability
or retrieval performance reasons, and remain in storage in the
cloud indefinitely, thus requiring strong encryption not only
when it is in-flight but also when it is at-rest. Additionally,
user identity management and authentication are considered
important to realizing safe computing in the cloud.

The parties contributing to an attack may include an eaves-
dropper located along the open Internet path to the cloud, a
user whose access has been revoked yet retains key material,
a user belonging to the client organization but of insufficient
clearance to access all of the data belonging to the client,
and the administrator of the cloud system with unrestricted

access to cloud resources. The focus here is on communication
security rather than the integrity of stored cloud data, which
may require the addition of digital signature record-keeping.
Forward secrecy is always desirable, in that a user whose ac-
cess is revoked will be unable to access information encrypted
using the key material still in the user’s possession. For some
applications, backward secrecy may also prove useful, where
a party joining the authorized user set does not immediately
obtain access to resources that were encrypted for the benefit
of the preceding membership.

B. Resource constraints

The distinction between a mobile user and a fixed one
is important from the standpoint of the cloud provider for
various reasons: in the wireless case, communication ses-
sions with users must be minimized to avoid unnecessary
energy drain and to avoid incurring high wireless data usage
costs; expensive client-side calculations must be minimized
to maintain battery life and user interface responsiveness;
and, the availability of mobile devices may be limited due to
connectivity loss. Uploads conducted on 3G wireless networks
consume considerable energy due to a typical wireless radio
remaining in a high-power active state after transfer [3] [4].
In addition, the CPU of a smartphone is considerably slower
than that of a server. The system model is thus asymmetric;
the cloud server has much greater computational ability than
a mobile client to process a security protocol [5].

Despite the asymmetry, cryptographic operations will incur
a significant computational penalty on a server that had no
security to begin with. In one test, throughput was degraded
by a factor of 10 when SSL authentication was added to
web servers [6]. The advantage of a cloud system is that,
if designed properly, it can take advantage of its inherent
scaling property to carry out cryptographic work. Thousands
of instances can be commissioned within a matter of minutes;
a mobile device user does not enjoy the same capability.

III. RELATED WORK

There is a clear need for a scalable and efficient key man-
agement solution for cloud computing systems, but so far it
has not been fully addressed in commercial cloud systems. The
Key Management Interoperability Protocol (KMIP) addresses
the issue of interoperability of key management services, but
fails to account for the unique scalability potential in cloud
systems and the performance problems that can result. OpenID
is an open-source Single Sign-On (SSO) solution that permits
a single login to access different sites and resources, but
effectively the same password is used to access multiple sites,
with no fine-grained access control.

A traditional approach to communication security has been
centralized key management, which requires public-key certifi-
cates to be generated by the authority and deployed to all users
before communication can occur. In a highly scalable system,
the authorization server may become overloaded as a result of
this responsibility. Security enforcement based on monitoring
of user behaviour can mitigate these performance concerns,



such as in TrustCube [7], but the cloud provider must be
entrusted with aggregated data on user contexts and activities,
thus relaxing the trust model. In Certificateless Public Key
Cryptography (CLPKC) [8], the Key Generation Centre (KGC)
residing in the cloud does not have access to users’ private
keys, but the KGC would need to ensure that partial private
keys would be delivered securely to the right users using some
secure, or out-of-band, transport. Broadcast encryption may
be employed, in which the key manager generates symmetric
keys for multiple users, but whenever the membership changes,
then new keys must be rebroadcast to all users, which is an
unrealistic proposition in a highly scalable system.

The high turnover of cloud user membership poses a great
challenge; expensive re-keying operations are normally re-
quired whenever group membership changes. In the Logical
Key Hierarchy [9] scheme, the processing time per request
scales linearly with the logarithm of group size, and the
signing of rekey messages increases server processing time
by an order of magnitude. Another approach is distributed key
management, where multiple distributed public key generators
(PKGs) hold shares of a master key using the concept of
threshold decryption [10], or portions of a private key are dis-
tributed among users [11]. The problem with these approaches
is that a user must assemble a key from multiple sources,
resulting in expensive communication sessions.

Data re-encryption is gaining traction as a viable mecha-
nism for controlling access to data stored in the cloud. Re-
encryption has previously been applied to an encrypted file
storage system, where a content owner encrypts blocks of
content with unique, symmetric content keys that are then
encrypted using an asymmetric master key to form a lockbox
[12]. Concerns include the following: the content owner man-
ages access control for all other users, which is a great burden
if the owner is a mobile device user; it requires dynamic re-
encryption of the same data whenever multiple users want to
access it; access rights need not be enforced by individual
users; and it is possible for a single user to divulge the keys
of all other users to the cloud provider.

A related work proposes the merging of attribute-based en-
cryption with proxy re-encryption while attempting to offload
re-encryption activity to the cloud provider [13]. However, the
data owner (originator) is involved in generating a key for each
new user that joins or leaves the system, which is not only a
prohibitive cost for a mobile user, but also impractical due
to the user’s mobility and hence occasional unavailability. A
secret key must be regenerated and re-distributed for each user,
in lazy fashion, whenever user revocation occurs. Also, the
data re-encryption activity is aggregated in lazy fashion, rather
than on-demand. Similar limitations are evident in another
related approach that combines Hierarchical Identity-Based
Encryption (HIBE) and Ciphertext-Policy Attribute-Based En-
cryption (CP-ABE), which uses hierarchical domain masters to
distribute user keys and uses the cloud provider to re-encrypt
data on user revocation depending on the attribute keys held
by the revoked user [14]; this is done at the cost of increased
storage requirements for key material held by users and a

greater amount of processing when generating ciphertext.
Another method of trusted data sharing over untrusted cloud
providers has been proposed that uses a progressive elliptic
curve encryption scheme [15]. However, it relies upon a
writer uploading encrypted data to the cloud, then distributing
credentials to the cloud to perform re-encryption, and also
to the reader on each data access attempt; this is clearly
impractical when applied to resource-constrained devices.

Encrypted file storage systems exist, such as SiRiUS [16]
and Plutus [17], but their designs are rooted in a traditional
client-server setting. They typically offload all cryptographic
operations, including key generation, to clients, rather than the
server; this characteristic is the opposite of what is desired in a
cloud-based system accessed by resource-constrained mobile
users. Constant availability of data owners is required to re-
generate and distribute encryption and signature keys, but
mobile users suffer from transient connectivity and thus this
cannot be assured. A more detailed discussion of related work
is found in the authors’ original technical report [18].

IV. MANAGER-BASED RE-ENCRYPTION

The overall goal of this work is to explore, adapt, and
evaluate system security engineering techniques to achieve
a high level of communication security for cloud computing
systems. A key management scheme is now described that is
closely based on the original work suggested in [12]; however,
it has been mapped to a cloud computing system. Its primary
involvement here is to demonstrate a technique that will serve
as a foundation and point of comparison for the novel scheme
proposed in the following Section V. Some novel variations
of the original scheme are still suggested here, however. The
scheme permits access to a common data partition in the cloud
among multiple users, ensures confidential data storage not
privy even to the cloud provider, and offers greater data access
efficiency in a mobile-based cloud system at lower overall
communication and processing cost than traditional centralized
solutions; all of these features are accomplished through the
process of data re-encryption. Table I summarizes the notation
used.

TABLE I
LEGEND FOR THE SYMBOLIC NOTATION USED IN THE DESCRIPTION OF

THE KEY MANAGEMENT MODELS.

Symbol Description
P Cloud data partition
UP User group with authorized access to P
M Manager or trusted proxy
A,B,C Users Alice, Bob, Charlie
m Plaintext
Cx Ciphertext encrypted using key x
PKXv Public key of entity X (with version v optionally speci-

fied)
SKXv Private key of entity X (with version v optionally spec-

ified)
RKX→Y Re-encryption key for converting from content unlocked

by SKX to that unlocked by SKY

A manager, or trusted proxy node, controls the access
of its users to the cloud. This manager is typically under



the control of the client organization, and ensures that key
management functions need not be outsourced to an untrusted
cloud provider. The manager may comprise a server situated
behind the firewall of the client organization that is securely
accessed by a mobile user population. At the same time,
the cloud stores user data in encrypted form such that it is
accessible to all authorized users at any time; it does so by
regularly performing one-way re-encryption of the data in the
cloud as it is being accessed, so that a reader in the authorized
user group can decode it using the reader’s own private key.

A. System operation

1) Key generation and encryption: Consider a proxy re-
encryption scheme [12], based on the BBS encryption method
[19] and the El Gamal crypto-system [20]. The proof of
the underlying encryption technique is presented in [12], and
is assumed here. The manager generates public and private
keys (PKX and SKX ) for each user X belonging to the
system, and is responsible for maintaining an access control
list for enforcing the authorized user set. A data partition P
in the cloud is accessible by a user group UP and belongs
to the entire set of partitions P . In this example, Manager M
manages the access of user group UP to data partition P . Note
that a single user may belong to multiple groups. A high-level
diagram is shown in Figure 1.

Manager M

User 
A

User 
B

User 
C... ...

Data 
partition 

P

Controller

Cloud

cP

Public key
directory

cP

cB cC

PKA, SKA PKB, SKB PKC, SKC

PKp

SKP, PKx, SKx

User group UP

Fig. 1. Model of key management using manager-based re-encryption.

Let G1, G2 be groups of prime order q with a bilinear map
such that: e : G1 × G1 → G2. The system parameters are
the random generator g ∈ G1 and Z = e(g, g) ∈ G2. A
secret key SKX is randomly selected for each user X ∈ UP .
Let: SKX = x ∈ Z∗q . A public key PKX is also chosen

for user X as follows: PKX = gx. Similarly, the manager
M also creates a private key SKP = p ∈ Z∗q and public
key PKP = gp for Data Partition P in the cloud that it
manages. The public partition key may reside in a directory
inside the cloud that is accessible by all users in the system,
or be distributed to all users in UP by the manager; it is
considered public information. The manager, however, retains
the private decryption key SKP required to read the cloud
data; the cloud provider and other users cannot decode the
data even if they download it directly from the cloud, with
or without authentication. A unique property of this model is
that all read requests initiated by users are normally serviced
through the manager.

User A, Alice, encrypts a message m ∈ G2 using random
r ∈ Z∗q and the public key PKP of the data partition where
it is to be stored, and uploads the cipher-text Cp to the cloud,
where Cp = (Zr ·m, gpr), so that it is stored in encrypted form
in partition P . The cloud provider will be unable to extract
the original content m.

2) Re-encryption: Suppose that a user B, Bob, belonging
to the same group, makes a request to the cloud provider
for the same message m stored earlier by Alice. The cloud
provider does not send it to B directly; instead, it sends it
to M , which decides whether that data should be accessible
by B based on its Access Control List (ACL). If so, then the
manager creates a re-encryption key RKP→B using the private
key of the partition. The manager then fetches the encrypted
message Cp from the cloud, and computes a re-encryption
key using B’s private key SKB . Note that SKB is equal to
b ∈ Z∗q , chosen randomly by M . In general, the re-encryption

key computed for user X in UP is: RKP→X = g
SKX
SKP .

For user B, as in this example, the re-encryption key
computed is RKP→B = g

b
p . Using this key, M re-encrypts

the ciphertext Cp as Cb and sends it to B directly.

Compute: e(gpr, RKP→B) = e(gpr, g
b
p ) = Zbr

Publish: Cb = (Zr ·m,Zbr)

3) Decryption: The recipient B can then decode the ci-
phertext Cb using his own private key SKB : m = Zr·m

(Zbr)
1
b

. If

the original user Alice wished to decrypt the message, then
a similar process would unfold; the manager would create
a re-encryption key RKP→A and Alice would decrypt her
ciphertext Ca using her private key SKA. Thus, the manager
can allow any user within the group to access the encrypted
data stored within the cloud. Here, first-level encryption is
demonstrated [12], where the content published by the man-
ager may be decrypted only by the holder of SKB ; the content
may not be re-encrypted a second time and read by a third
party such as user C in UP . If C requires access, then the
use of RKP→C to carry out a re-encryption of Cp to Cc is
required. The flow of ciphertext in the system is as follows:

A Cp−→
P Cp−→

M Cb−→ B



TABLE II
SUMMARY OF OPERATIONS IN MANAGER-BASED RE-ENCRYPTION.

Alice (A) Cloud (P ) Manager (M ) Bob (B)
1 Computes PKp = gp and

SKp = p, and shares
PKp with cloud. Simi-
larly, computes SKB = b
and sends it to B.

2 Obtains PKp from cloud,
picks random r, encrypts
m as Cp = (Zr ·m, gpr),
and sends it to the cloud.

3 Stores Cp, and sends a
copy of it to M on request.

4 Computes RKP→B =

g
b
p . Re-encrypts Cp as

Cb = (Zr ·m,Zbr).
5 Downloads Cb and de-

codes m = Zr·m

(Zbr)
1
b

using

SKB .

The cryptographic operations described in this section are
summarized in Table II.

4) Key re-generation: If a new user Charlie, or C, joins
the group, then he registers with the manager which grants
authorization, and is given a decryption key SKC . C will be
able to receive and decrypt only the content that the manager
is willing to re-encrypt for him, as ciphertext Cc. If C leaves
the group, then the manager removes him from its access list;
it will no longer re-encrypt data for C on a retrieval attempt.

B. Analysis

A chief advantage of this model lies in its elimination of
expensive key re-generation and re-distribution for all users
whenever group membership changes. It preserves data con-
fidentiality for the client; data in the cloud remains encrypted
and unreadable in its original form by the cloud provider at
all times. For a new user that joins the group, the manager can
choose to decrypt data stored only after a certain time, hence
providing backward secrecy. For a user that leaves the group,
and whose access is revoked, none of the stored data can be
decoded independently by that user, hence providing forward
secrecy. A disadvantage of this approach, however, is that
for each retrieval attempt of a new data block or record, the
manager must perform re-encryption using an asymmetric key.
A bilinear pairing operation based on a Weil and Tate pairing
is several times more costly than a scalar multiplication [21].
Although it is an expensive operation, it can be accomplished
in the private portion of a hybrid cloud if the manager is a
component of it, thus taking advantage of its scalability.

Because the manager stores all decryption keys, it must be
fully trusted; hence, it is a point of vulnerability. However,
a private cloud would typically possess the same safeguards
as that of a public cloud. Collusion between the manager and
users is not deemed to be a concern, as the manager and all
its authorized users are expected to belong to the same client
organization and share equal access to the data partition.

The chief problem with the manager-based encryption
scheme is that the manager is allocated all re-encryption tasks,
and its ability to scale may be limited.

C. Possible and novel variants

1) User-managed keys: In order to reduce the cost of re-
encryption for all requests, the protocol may be modified so
that rather than using the partition key PKP for encryption,
user A would use her own public key PKA, and upload
ciphertext Ca to the cloud. Upon data retrieval, the manager
would be required to decrypt Ca using its own retained copy
of SKA, then perform the re-encryption for another user, such
as B, using RKA→B = g

SKB
SKA = g

b
a .

This technique would allow Alice to retrieve data directly
from the cloud that she could then decrypt without the aid
of the manager. This has good practical application; in many
conceivable use cases, it would be expected that the same
user that uploaded data would be the one that would most
frequently access it. The trade-off is that in case A was to
leave the group, the manager would need to invalidate all data
uploaded by A; one option would be for the cloud provider to
re-encrypt it to the partition key, and then control all access
to it from that point going forward, as described earlier. Even
so, no key re-distribution would need to occur.

2) Partial ciphertext fetch by user: If the manager intro-
duces too much latency in the system due to its workload,
it is possible to substantially reduce its communication and
processing burden by transferring some of it to the users. The
manager’s critical role in the described protocol is to perform
the re-encryption task. However, the Zr ·m subcomponent of
the encrypted ciphertext Cp stored in the cloud is not directly
involved in this operation; it may be downloaded from the
cloud by the recipient B directly. B will then await the second
component Zbr from M . In this way, M avoids the overhead
of fetching Cp in its entirety from the cloud.



An undesirable side effect is that if B leaves the group, he
can continue to download and access encrypted data in the
cloud. This is solved in the next model, where the cloud data
undergoes a transformation preventing this.

V. CLOUD-BASED RE-ENCRYPTION

An alternative and novel model is now presented, where the
cloud provider is delegated the responsibility of re-encryption,
in order to leverage its advantages in computational capacity.
The manager still exists in this scenario, playing the role of
key coordinator; however, it is no longer a bottleneck for
re-encryption operations in the system. All data encryption
operations are handled by the cloud provider, which is highly
scalable. A high-level diagram is shown in Figure 2.

Manager M

User 
A

User 
B

User 
C... ...

Data partition 1

Controller

Cloud

cP0
cP1

cP1

Key hash 
directory

h1,h2

h1 h2

PKP0

User group UP

SKP0
SKP1

SKP1

cP0
cP1

cP2

h1
SKP0 → SKP1 → SKP2

h2

SKP0
, SKP1

, SKP2

SKp1

PKP1
PKP2

Key generation:

Fig. 2. Model of key management using cloud-based re-encryption.

A. System operation

1) Key generation and encryption: As before, in the setup
phase, the manager M generates version 0 of a public and
private key pair, PKP0

and SKP0
for the data partition P ,

in a similar manner as described in Section IV, using the
BBS scheme; it then distributes a copy of PKP0 to all current
authorized users in the user group UP , including A and B.
Alternatively, PKP0

may be stored in the public key directory
accessible to all users. The secret partition key is never shared
with the cloud provider. M directly distributes SKP0

to all of
its current users who are entrusted with the safekeeping of it.

Once again, Alice, or user A, wishes to store encrypted
data in the cloud. A encrypts a message m with PKP0

. A
then uploads the ciphertext CP0 , and any optionally associated
policy settings, to the cloud provider: CP0 = (Zr ·m, gP0r).
The data is stored in P , in encrypted form.

2) Decryption: Bob, user B, is another user in the same
group as A, and requests the data Cp0

that A has uploaded
to partition P . Since B has a copy of the secret partition key
SKP0 , he can decrypt the data: m = Zr·m

(Zp0r)
1
p0

. Both A and B

receive SKP0 during the set-up phase from the cloud provider.
A may also provide it directly to B in peer-to-peer fashion,
over a secured Bluetooth channel, for instance. A local link
such as this would not incur the same high transmission cost
as a 3G wireless channel. All users in UP may retrieve the
message uploaded by A to the cloud, by directly obtaining Cp0

from the cloud provider, and using the same shared decryption
key SKP0

. Thus, in this model, second-level encryption is
demonstrated [12]; as applied here, the ciphertext published
by the cloud may be decrypted by a recipient who holds
the original secret partition key; additionally, a re-encryption
round on the ciphertext is possible by the cloud provider, a
delegate, which will transform it into a first-level ciphertext
so that it may be decrypted only by the holder of a newer
partition key.

3) Re-encryption: If a new user Charlie, or C, joins the
group and the manager authorizes him, then the present
partition key PKP0 is invalidated; it becomes obsolete, and a
new version of the key must be generated. M first authorizes
C, approving membership. The manager then creates a new
random salt, with value h1, and adds it to the key SKP0

; it
then hashes the result through a secure hash such as SHA-2,
to generate the new (version 1) key SKP1 . In general:

SKPv
= pv = f(SKPv−1

, hv)

for version v = 1, . . . , n, random hv ∈ Z and secure
hash function f . The public key PKPv

is then derived from
the secret key SKPv , as before: PKPv = gpv . The hash
value used to generate the new key is then shared with all
current authorized users in the group. The entire hash chain
H = {hx|x ∈ N, x ≤ y}, where y is the current version
number corresponding to the most recently created key, can
be stored in the cloud and shared with authorized users in UP ;
the random hash input values themselves are insufficient for
the cloud provider to determine the key. Newly joined user C
will be unable to decrypt the message already stored by A as
it was encrypted with an older key, with a value less than y.

The accessibility of the ciphertext by C may be dependent
on the default policy, or an optional custom policy originally
attached to the data by A. By default, it may require that
the data CP0

presently stored in the cloud partition be re-
encrypted with the new partition key. If the policy rule requires
permission from A to accomplish this, then C will be unable
to decode the data until it is given. The re-encryption need not
necessarily occur at the time of C’s admission into the group;
it may be triggered at the time of his data access attempt. It



may also be requested by the manager or any other authorized
user at any time, i.e. when that data is next accessed. If the
data is re-encrypted by the cloud provider using h1 to form
ciphertext CP1 , then it can be decoded by C using the new
key SKP1

, where y = 1.
To re-encrypt the message, the cloud provider requires

knowledge of the re-encryption key that is based on the latest
version of the private partition key. This re-encryption key is
generated and provided by the manager as soon as the key is
updated. The re-encryption key RKP0→P1

is a transformation
from SKP0

to SKP1
:

SKP1 = p1 = f(SKP0 , h1) = f(p0, h1)

RKP0→P1
= g

SKP1
SKP0 = g

p1
p0

During re-encryption, ciphertext CP0 is transformed into CP1 :

Compute: e(gp0r, RKP0→P1) = e(gp0r, g
p1
p0 ) = Zp1r

Publish: CP1 = (Zr ·m,Zp1r)

C can now proceed to download and decrypt the message
as: m = Zr·m

(Zp1r)
1
p1

. The cloud provider stores a history of the

key versions, including the version number of each key, the
public partition key itself, the corresponding re-encryption key
required to re-encrypt the original uploaded ciphertext to the
corresponding new version, and the hash value used to create
the re-encryption key, as illustrated in the following versioning
array: 

0 PKP0
− −

1 PKP1
RKP0→P1

= g
p1
p0 h1

2 PKP2
RKP0→P2

= g
p2
p0 h2

...
...

...
...

y PKPy
RKP0→Py

= g
py
p0 hy


Note once again that the cloud provider can never decrypt

and view the original contents of the message, as the original
key SKP0

in the chain is unknown. Each new re-encryption
corresponds to a new and higher version number. Each new
key is traceable to a version number, so that any user may
determine whether the key required to decrypt the ciphertext
is in possession. If not, when the client requests the ciphertext
from the cloud provider, he can request that it be re-encrypted
to the same version of the key that is actually in the user’s
possession, if the ciphertext is encoded with an earlier version.
On the other hand, if the ciphertext version is more recent,
then the user can re-assemble the correct private key using
the hash value chain history H that can be downloaded at any
time from the cloud. The user must then perform only a single
decryption; multiple decryptions are not required.

At the latest, the stored data needs to be re-encrypted
when access to it is attempted; the effect of this is that re-
encryption will only occur on the most frequently-accessed
data. Whenever a fetch request for cloud data is made,
the cloud provider first checks whether the message version

matches the version of its most recent key in possession, and
performs re-encryption if it does not.

If C leaves the group, then the manager will increment the
key version, re-generate the partition key, and inform the server
that re-encryption is required. C will not be issued any further
key updates; he will no longer be authorized to access the key
hashes stored within the key hash directory on the cloud, or
request them from the manager. To guarantee that the cloud
cannot collude with C and reveal the hash history even when
C fails authentication, the hash history may either be published
by the manager only, or the manager may periodically reset
the hash history and designate a new starting key version 0
while still allowing the history to reside in the cloud.

The flow of ciphertext in the system is now as follows:

A Cp−→
P Cp−→

B

The cryptographic operations described in this section are
summarized in Table III.

B. Analysis

The cloud-based re-encryption model off-loads the
processor-intensive task of re-encryption to the cloud
provider. It is consistent with the underlying assumption
behind a cloud computing system: that it can scale to a much
greater degree than its client can in terms of computational
ability. Crucially, unlike in the previous scheme, the manager
is not involved in each data fetch operation; it is only
occasionally involved in creating new keys when new users
join. Another advantage is that the re-encryption task may be
executed only when necessary; it is only required at most once
for each data record whenever group membership changes.
The re-encryption tasks may be batched and executed during
off-peak hours, or may be done only when a new fetch of the
record is made, at the latest.

This model permits more direct access to the cloud while
allowing all security requirements to continue to be satisfied.
Any authorized user can write and read encrypted data directly
to and from the cloud without involvement of the manager or
any other proxy, resulting in fast access on a regular basis. Data
confidentiality is preserved in this model even when changes
to group membership occur. Since a new user is only given the
latest iteration of a key and cannot decrypt messages encrypted
earlier with older keys, backward secrecy is preserved. The
reciprocal is that a user that leaves the group is no longer
issued key updates. Since re-encryption occurs prior to a new
data fetch request, the user is no longer able to decrypt data;
forward secrecy is preserved. As user memberships typically
increase, not decrease, this will be the normal course of events.

The use of hashes as public key material makes it unneces-
sary to distribute a new version of the partition key to all users
when it becomes re-generated by the manager. The history of
re-encryption keys can be stored with the encrypted data and
made available to all users by the cloud provider; it can be
downloaded along with the ciphertext. An existing user will be
able to generate the partition key by knowing the hash value
history; the cost of re-distribution of keys on every change



TABLE III
SUMMARY OF OPERATIONS IN CLOUD-BASED RE-ENCRYPTION.

Alice (A) Cloud (P ) Manager (M ) Bob (B) Charlie (C)
1 Obtains PKP0 =

gp0 from the cloud
provider, picks ran-
dom r, encrypts m
as Cp0 = (Zr ·
m, gp0r), and sends
it to the cloud.

2 Stores Cp0 and its
associated version 0.

3 Downloads Cp0 . Re-
ceives SKP0 = p0
from M and uses
it to decode m =

Zr·m

(Zp0r)
1
p0

.

4 Authorizes
new member
C. Computes
RKP0→P1 = g

p1
p0

and sends it to P .
Sends SKP1 =
f(p0, h1) = p1 to
C.

5 Re-encrypts
Cp0 as Cp1 =
(Zr ·m,Zp1r) using
RKP0→P1 , and
updates version to 1.

6 Downloads Cp1

and decodes
m = Zr·m

(Zp1r)
1
p1

using SKP1 .

in membership is avoided. Storage requirements for each user
are modest; it is unnecessary to store the original key and the
entire history of hash values. On a key re-generation, each user
can use his hash values to arrive at the latest key, and discard
all remnants of its history. Thus, only one secret key must
be locally stored for each data partition that the user interacts
with.

Note that the original re-encryption protocol based on BBS
[19] allowed the same encrypted content to be re-encrypted
multiple times by the cloud provider; the cost of this in
the proposed protocol is that it would allow transitivity of
delegations. For example, it would allow the cloud provider to
derive its own re-encryption key RK ′Px→Px+2

based on public
key PKx to PKx+2 as follows:

RK′PKx→PKx+2
= RK′PKx→PKx+1

×RK′PKx+1→PKx+2
=

px+2

px

This flexibility would allow the cloud provider to only
retain the most recent re-encryption from the newest available
key, and to keep re-encrypting it multiple times as the key
evolved through a process of delegation. In this case, CPx+1

would be re-encrypted directly to CPx+2
, rather than from

the original CPx
. The cost is that it would allow a newly

joined user to collude with the holder of SKx+1 and the

provider by sharing its private key SKx+2; the cloud provider
could deduce RK ′PKx+1→PKx+2

, as shown, and re-encrypt
data for the new user that was not actually intended to be
accessed by him. In contrast, the re-encryption protocol based
on bilinear maps, as described here, is not transitive, and thus
such delegation to new users is not allowed without arbitration
from the manager. The protocol is collusion-safe, as discussed
in [12]; a user that knows SKp1 = p1 cannot collude with
the cloud provider, which knows: RKPKp0

→PKp1
= g

p1
p0 ,

and recover: SKp0
= p0. This protection is at the expense

of having to retain the original ciphertext Cp0
in the cloud for

use in all future re-encryptions. The provider may still cache
the ciphertext resulting from the most recent re-encryption.

The main drawback with this approach is the re-encryption
task required whenever group membership changes, which is
a relatively expensive operation. Unlike the previous model, it
is performed within the cloud, however, which has the ability
to instantly scale to meet the processing demand. Also, there
still exists the risk of the key being illegitimately shared by a
misbehaving (yet authorized) user with that of an unauthorized
one. All users are inherently entrusted with the secret parti-
tion key, unlike in the previous manager-based re-encryption
scheme. The cloud provider can perform user authentication



against its ACL as a fallback mechanism, however.
Although the focus of this protocol is on data confidentiality,

data integrity may be provided through the use of message
authentication codes to achieve a holistic security solution.

C. Possible variants

It is possible to restrict the scope of trust of the manager
for highly sensitive user data. In a variant of this model, as
opposed to employing a manager-generated initial partition
key, A herself may generate the key pair PKP0

and SKP0
.

These keys may then be used for the first encryption of a data
record that is uploaded to the cloud. The advantage of this
approach is that A can then completely control access to that
data record by creating new re-encryption keys based on the
manager-created hashes. The manager will never obtain a copy
of the first-version key so that it can reconstruct the key history
and be in a position to decrypt all data in the partition uploaded
by A. The granularity of access control may be controlled by
the user; A may generate a secret key pair for each new data
record created, or the same key pair for all records. The cost of
this approach is that A must share her keys with all users who
require read access to the data. In a mobile scenario, this may
be accomplished by A pairing with another user via Bluetooth
in peer-to-peer fashion to avoid costly wireless 3G transfer.

VI. EVALUATION AND IMPLEMENTATION OF MODELS

A. Qualitative cost comparison

The processing and communication costs of the transactions
in the two proposed re-encryption models are shown in Ta-
ble IV. In the cloud-based re-encryption model, the partition
key is generated by the manager, but the re-encryption itself
is carried out by the cloud provider; importantly, fetching
data from the cloud does not involve the manager as an
intermediary in each data fetch session. The initial proxy
re-encryption model requires the manager to perform re-
encryption on each client request, however, and so it is not
as scalable in a cloud context.

B. Implementation results

In order to understand the execution cost of the protocol
on real hardware, the cloud-based re-encryption algorithm
described here was implemented in Java using jPBC (Java
Pairing-Based Cryptography Library) [22], a porting of the
PBC (Pairing-Based Cryptography Library) in C [23]. The
encryption, re-encryption, and de-cryption tasks, as described
earlier, were timed on different platforms; portability was
provided by Java. The desktop platform consisted of an
Apple iMac with a quad-core 64-bit 3.4 GHz Intel Core i7
processor and 16 GB of RAM, running Mac OS X 10.6.7. The
smartphone platform consisted of a Google Nexus One phone
with a single-core 1 GHz Qualcomm QSD 8250 Snapdragon
ARM processor and 512 MB of memory, running Android
OS 2.3.4. The cloud platform consisted of a single Google
App Engine (GAE) web application instance. The reference for
billing is a front-end instance comprising a 1.2 GHz Intel x86
processor with 128 MB RAM, at 10 cents per hour; the actual

TABLE IV
PROCESSING AND COMMUNICATION COSTS OF RE-ENCRYPTION MODELS.
OPERATIONS INCLUDE: HASHING (H ), EXPONENTIATION (E), BILINEAR

PAIRING (BP ), AND MULTIPLICATION (M ).

Computational complexity
Description Proxy re-

encryption
Cloud re-
encryption

Key generation (manager) BP + E BP + E
Key generation (user) - -
Encryption (user) 2 · E +M 2 · E +M
Decryption (user) E +M E +M
Key re-generation (mgr.) - H + E
Key re-generation (user) - -
Re-encryption (server) - BP
Re-encryption (manager) BP + E E

Computational costs
Description Proxy re-

encryption
Cloud re-
encryption

Re-encryption 1 per join/leave 1 per join/leave
(operation done
by proxy)

(operation done
by cloud)

Access model
Description Proxy re-

encryption
Cloud re-
encryption

Data fetch Via proxy Direct-from-
cloud

number of CPU cycles used is internal to the App Engine and
not exposed. A “Type A” pairing was utilized in the algorithm;
for direct comparison, the field size was reduced to 32 bits to
avoid stack overflows during curve generation, owing to the
limited heap available on the phone.

The average timing results are shown in Table V. The
re-encryption was much more feasible on a cloud instance
or a fast desktop computer; in the latter case, it was 38
times faster than on the smartphone. Note that each operation
was performed on a 48-bit message block. Although the re-
encryption task may be performed on a scalable server, the
advantage of off-loading it to the cloud is that it can scale
almost without bound. Additionally, GAE provides back-end
instances with up to 4.8 GHz CPU and 1 GB of memory. Note
that these benchmark results were achieved using libraries that
are not yet highly mature and optimized for a mobile platform.

TABLE V
PERFORMANCE RESULTS OBTAINED FROM THE IMPLEMENTATION.

Cryptographic task on 48-bit data block Desktop Phone Cloud
(iMac) (Android) (GAE)

Encryption time (ms), using P0 key 8.3 200.1 8.8
Decryption time (ms), using P0 key, 4.9 128.9 2.9
i.e. with pairing, before re-encryption
Re-encryption time (ms), with pairing,
from P0 to P1 keys

4.2 159.6 3.0

Decryption time (ms), using P1 key, 0.5 15.2 0.5
i.e. without pairing, after re-encryption

VII. SUMMARY

A cryptographic protocol based on data re-encryption has
been adapted to a cloud computing system model in order
to gauge its viability in improving communication security



and supporting highly scaleable and secure cloud computing
applications serving an extremely large mobile device user
population. A novel protocol based on data re-encryption has
been proposed that leverages the cloud provider’s scalability to
perform the required re-encryption tasks inside the cloud itself,
rather than inside the manager; at the same time, this must
occur without granting the cloud provider access to sufficient
key material to decode the user data. The manager, as a trusted
authority is only responsible for key re-generation, but the
evolving key material to construct iterations of secret keys can
be securely shared through the cloud provider itself, resulting
in a more efficient and scalable security protocol.

VIII. ACKNOWLEDGMENTS

This work was supported in part by a National Sciences
and Engineering Research Council (NSERC) grant awarded
to Dr. Hasan, and an NSERC Alexander Graham Bell Canada
Graduate Scholarship (Doctoral) awarded to Piotr Tysowski.

REFERENCES

[1] N. Leavitt, “Is Cloud Computing Really Ready for Prime Time?”
Computer, vol. 42, pp. 15–20, January 2009.

[2] J. Brodkin, “Gartner: Seven Cloud-Computing Security Risks,” Network
World, July 2008.

[3] A. Sharma, V. Navda, R. Ramjee, V. N. Padmanabhan, and E. M.
Belding, “Cool-Tether: Energy Efficient On-the-fly WiFi Hot-spots using
Mobile Phones,” in CoNEXT ’09: Proceedings of the 5th international
conference on Emerging networking experiments and technologies. New
York, USA: ACM, 2009, pp. 109–120.

[4] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “En-
ergy consumption in mobile phones: a measurement study and im-
plications for network applications,” in Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement conference, ser. IMC
’09. New York, NY, USA: ACM, 2009, pp. 280–293.

[5] Y. Shin, M. Gupta, and S. Myers, “A Study of the Performance of
SSL on PDAs,” in Proceedings of IEEE INFOCOM Global Internet
Symposium (GI), 2009, pp. 1–6.

[6] P. Dhawan, “Performance comparison: Security design choices,” Mi-
crosoft Developer Network, Tech. Rep., October 2002.

[7] R. Chow, M. Jakobsson, Y. Niu, E. Shi, J. Molina, R. Masuoka, and
Z. Song, “Authentication in the clouds: a framework and its application
to mobile users,” in ACM Cloud Computing Security Workshop (CCSW),
October 8, 2010 2010.

[8] S. S. Al-Riyami and K. G. Paterson, “Certificateless public key
cryptography,” Cryptology ePrint Archive, Report 2003/126, 2003,
http://eprint.iacr.org/.

[9] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications
using key graphs,” IEEE/ACM Trans. Netw., vol. 8, pp. 16–30, February
2000.

[10] D. Boneh and M. Franklin, “Identity-based encryption from the weil
pairing,” in Advances in Cryptology — CRYPTO 2001, ser. Lecture Notes
in Computer Science, J. Kilian, Ed. Springer Berlin / Heidelberg, 2001,
vol. 2139, pp. 213–229.

[11] J. Baek and Y. Zheng, “Identity-Based Threshold Decryption,” in Public
Key Cryptography – PKC 2004, ser. Lecture Notes in Computer Science,
F. Bao, R. Deng, and J. Zhou, Eds. Springer Berlin / Heidelberg, 2004,
vol. 2947, pp. 262–276.

[12] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy
re-encryption schemes with applications to secure distributed storage,”
ACM Trans. Inf. Syst. Secur., vol. 9, pp. 1–30, Feb. 2006.

[13] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and
fine-grained data access control in cloud computing,” in Proceedings of
the 29th conference on Information communications, ser. INFOCOM’10.
Piscataway, NJ, USA: IEEE Press, 2010, pp. 534–542.

[14] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for
fine-grained access control in cloud storage services,” in Proceedings of
the 17th ACM conference on Computer and communications security,
ser. CCS ’10. New York, NY, USA: ACM, 2010, pp. 735–737.

[15] G. Zhao, C. Rong, J. Li, F. Zhang, and Y. Tang, “Trusted data
sharing over untrusted cloud storage providers,” in Proceedings of
the 2010 IEEE Second International Conference on Cloud Computing
Technology and Science, ser. CLOUDCOM ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 97–103. [Online]. Available:
http://dx.doi.org/10.1109/CloudCom.2010.36

[16] E. jin Goh, H. Shacham, N. Modadugu, and D. Boneh, “Sirius: Securing
remote untrusted storage,” in in Proc. Network and Distributed Systems
Security (NDSS) Symposium 2003, 2003, pp. 131–145.

[17] Kallahalla, M., et al, “Plutus: Scalable secure file sharing on untrusted
storage,” in Proceedings of the 2nd USENIX Conference on File and
Storage Technologies. Berkeley, CA, USA: USENIX Association, 2003,
pp. 29–42.

[18] P. Tysowski and M. A. Hasan, “Towards Secure Communication for
Highly Scalable Mobile Applications in Cloud Computing Systems,”
Centre for Applied Cryptographic Research, University of Waterloo,
Tech. Rep. CACR 2011-33, 2011.

[19] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic
proxy cryptography,” in In EUROCRYPT. Springer-Verlag, 1998, pp.
127–144.

[20] T. El Gamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” in Proceedings of CRYPTO 84 on Advances in
cryptology. New York, NY, USA: Springer-Verlag New York, Inc.,
1985, pp. 10–18.

[21] Kim, Y., et al, “Key establishment scheme for sensor networks with low
communication cost,” in Autonomic and Trusted Computing, ser. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2007, vol.
4610, pp. 441–448.

[22] [Online]. Available: http://libeccio.dia.unisa.it/projects/jpbc/
[23] [Online]. Available: http://crypto.stanford.edu/pbc/


