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Abstract

Solving non-linear and in particular Multivariate Quadratic equations over �nite �elds is an
important cryptanalytic problem. Apart from needing exponential time in general, we also need very
large amounts of memory, namely ≈ Nn2 for n variables, solving degree D, and N ≈ nD. Exploiting
systematic structures in the linearization matrix, we show how we can reduce this amount of memory
by n2 to ≈ N . For practical problems, this is a signi�cant improvement and allows to �t the overall
algorithm in the RAM of one machine, even for larger values of n. Hence we call our technique Small
Linearization (s`).

We achieve this by introducing a probabilistic version of the F5 criterion. It allows us to replace
(sparse) Gaussian Elimination by black box methods for solving the underlying linear algebra prob-
lem. Therefore, we achive a drastic reduction in the algorithm's memory requirements. In addition,
Small Linearization allows for far easier parallelization than algorithms using structured Gauss.

Keywords: Multivariate Quadratic systems of equations, Finite Fields, F5, XL, HybridF5, Gröbner
Basis, XL, eXtended Linearization, Algebraic Cryptanalysis

1 Introduction

Solving systems of non-linear equations is a subject of intensive study for more than hundred years. In
cryptanalysis, these systems proved particularly useful not only in the case of stream ciphers [Cou02,
FM07], but also for block ciphers [MR02b, BPW06] and hash functions [SKPI07]. Similarly, it was
possible using algebraic techniques to break asymmetric schemes such as variants of McEliece [FOPT10],
MQ-schemes such as Hidden Field Equations [FJ03], or the Isomorphism of Polynomials identi�cation
scheme [Per05]. They are all subsumed under the term algebraic cryptanalysis.

A main drawback of algebraic cryptanalysis is the huge memory consumption, which is even the
case for advanced methods such as HybridF5 [BFP09]. In this article we concentrate on the class of a
Gröbner Bases algorithms like F4, F5 and XL (eXtended Linearization) to solve equations of degree 2.
We call these equationsMultivariate Quadratic (MQ). Note that it is su�cient to concentrate on them
asMQ is already NP-complete [GJ79]. In addition, any systems of degree higher than 2 can be reduced
e�ciently toMQ. In particular we show how to fuse F5 and XL into a variant that uses substantially
less memory than any other known solver of Multivariate Quadratic equations. Even for theoretical
running times of above 280, the amount of memory needed still �ts into the RAM of a normal computer
(≈ 4 GB, cf. Sect. 4.4).

1.1 Related Work

To solve Multivariate Quadratic equations, di�erent algorithms are used in cryptanalysis. They can
be traced back to two di�erent origins, namely algorithms based on Buchberger's thesis [Buc65], and
algorithms based on a technique called Relinearization, introduced by Shamir et al. [KS99]. We call the
�rst Gröbner basis, the second XL algorithms. While Gröbner basis algorithms take a more symbolic
view, XL is strongly connected to linear algebra. In either case, we can use these algorithms to solve a
system P(x) ofMultivariate Quadratic equations over a �nite �eld F.
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For Gröbner basis algorithms, we compute the Gröbner basis of the ideal associated to the system
P(x) by the mean of so-called S-Polynomials. This yields at least one univariate equation which we can
then solve. Main step forward in this area was the F4 algorithm [Fau99] as it computed S-Polynomials
blockwise rather than pairwise and thereby omitted many unnecessary steps in Buchberger's initial
algorithm. It was later improved to the so-called F5 algorithm [Fau02b] which removed trivial syzygies
by keeping track of its computation through so-called signatures. For example, this algorithm was used to
break HFE challenge 1 [Fau02a] in under 96 hours. To the knowledge of the authors, the fastest general
purpose realization of F5 is the so-called hybrid strategy which was used to break many symmetric
and asymmetric challenges [BFP09]. However, there are also special instances of F5 for cryptographic
purposes [JV11]. We summarize the last three algorithms under the heading F-class.

In the case of XL algorithms, �nding solutions for P(x) is reduced to linear algebra from the start
and a univariate equation over the ground �eld F is obtained by producing a matrix in row echelon form.
As for the previous class, we can then solve the overall system, cf. Sect. 2 for more details. A re�ned
version of this idea was given in [CKPS00]. In particular, linear dependencies were removed after each
intermediate step. While there have been rumours that AES can be broken this way, they have later
been discarded [MR02a]. However, this has seriously damaged the reputation of XL in the cryptographic
community. Still, there was progress made in three areas. First, it was discovered that XL becomes
more e�cient by guessing r variables for some small value r ∈ N. This can be seen as a time-time
tradeo� between O(qr) and the running time of XL for (n − r) variables. Second, Faugère and Joux
showed that a careful implementation of the linear algebra step can drastically reduce memory [FJ03,
Sect. 5.2&5.3]. In fact, the idea sketched there is elaborated in Sect. 4.1. In addition, they provide
a randomized version of the algorithm presented in Sect. 4 neglecting systematic linear dependencies
between matrix rows. Third, XL was used in connection to sparse equation solvers such as Wiedemann.
This way, the inherent problem of memory consumption was mitigated [YCBC07, ADK+10]. However,
the fact that the linear algebra to be solved was signi�cantly larger than for the F-class remained. Forth,
the so-called �Mutant strategy� was invented to make use of values, which were previously discarded. As
a result, XL was sped up by one order of magnitude [SAD+08] as the size of the matrix was signi�cantly
reduced. It is the most e�cient representative of the XL class known to the authors.

During the last few years, both XL and F5 were treated as two rather di�erent algorithms. In
addition, there was a heated discussion, which algorithm is better. In particular, Ars et al. [AFI+04]
showed that XL is a redundant version of F4, i.e. it produces more equations than necessary. As F5 is
always more e�cient than F4, this was a devastating blow for the XL family. Moreover, in 2011 Albrecht
et al. [ACFP11] showed that even MutantXL is a redundant version of F4. A �unifying attempt� is due
to Albrecht who introduced the Matrix-F5 algorithm in [Alb10, Ch. 5]. This is an F5 version of the XL
algorithm. However, it is not competitive with F5 in terms of speed or memory. In particular, the whole
matrix needs to be stored to compute the Gröbner basis. All in all, these results suggest that F4/F5 is
always faster than the XL-family. Still, their main problem is memory consumption. We overcome this
problem with our algorithm Small Linearization (s`).

1.2 Organization and Achievement

Our main aim is to minimize memory for F5 while keeping a comparable speed. To this aim, we
provide a careful analysis of the linear dependencies occuring in the linear algebra step of XL (Sect. 3).
Thus we address the open problem if we can remove trivial syzygies and fully preserve the sparse structure
of the underlying matrix at the same time. We achieve this by introducing a probabilistic F5 criterion

in Sect. 3. In a nutshell, it works without checking the condition of weak semi-regular sequences but
leaving this to a random shu�e of the rows in the linear matrix step.

On the up-side, we do not need to store the full matrix but can evaluate it in a black box fashion .
As black box algorithms are among the fastest to solve matrix vector equations, we do not pay a penalty
in terms of speed for this strategy. However, we save on storing the matrix. This is explained in more
detail in Sect. 4. In addition, we do not need to keep track of the signature of each row but leave this to
randomness. As we see in Sect. 3, the odds are pretty good that this will actually destroy all trivial
syzygies this way. Consequently, we do not need to compute an iterative Gröbner basis like F5, as we do
not perform reductions.

Apart from reducing the memory requirements, it is also very easy to parallelize our approach. This
is mainly due to the existence of e�cient, black box solvers for linear systems of equations, but also to
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the way we can organize computations and data �ow.
In order to make optimal use of black box evaluation, we introduce a new transfer algorithm to

move the solution of the matrix step back to the original problem space (cf. 4.2). As a consequence, this
algorithm allows to reduce the solving degree D for many instances and hence can work with a smaller
matrix then other black box XL algorithms.

So in contrast to F5, we need far less memory but loose on e�ciency. In contrast to black box XL
implementations like [YCBC07, ADK+10], we also save a factor of n2 on memory. In addition, we avoid
linear dependencies and hence gain on e�ciency. In a sense, we have fused ideas from both areas to
obtain a memory e�cientMQ-solver.

Taking another point of view, we have started with Matrix-F5 and removed both the incremental
computation of the Gröbner basis as the need for Gaussian elimination after such each step. So on the
up-side, we can use black box methods instead of Gaussian (less memory). On the down-side, Matrix-
F5 starts at XL and has hence a bigger matrix. In terms of algorithmics, the �rst noticeable di�erence
between our algorithm and Matrix-F5 is that the latter proceeds step-by-step and thus produce a Gröbner
Basis. We only use the last step, what is �ne as long as we only want to �nd one solution of the system
P. Nevertheless we could easily adapt our algorithm to proceed step-by-step, by using all the techniques
of Matrix-F5 such as signatures.

In this context, probabilistic means that we produce all possible equations without any reduction to
zero. Due to random dependencies between the coe�cients of P, this can be done with su�ciently high
probability. Note that in practice our algorithm is still useful, even if a few reductions to zero occur.
As we see in App. B, the probability that there is at least one such reduction is very small for values q
occuring in cryptography.

In the other parts of this paper, some basic de�nitions onMultivariate Quadratic systems and some
basic facts about simultaneous equation solving are given in Sect. 2. Moreover, App. A deals with
working degree D = 3, and App. B explores the running time for Small Linearization.

2 Some Basics about Solving Multivariate Quadratic Equations
In this section we �x some notation and repeat the basic facts about solving non-linear systems of
equations over a �nite �eld Fq with q elements. To ease the analysis we restrict to homogeneous systems,
i.e. no linear and constant terms. Note that we can reformulate any inhomogeneous system in (n − 1)
variables x1, . . . , xn−1 as a homogeneous system by adding the variable xn and the implicit equation
xn = 1. Hence, solving the homogeneous case for n variables and solving the inhomogeneous case
for (n − 1) variables are equivalent. Now a MQ-system of m equations and n variables is de�ned by

interpreting m polynomials p(1), . . . , p(m) as equations p(i) = 0 with coe�cients γ
(k)
ij F and

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

γ
(k)
ij xixj . (1)

Further, we need the set of all monomials of a certain degree D.

Definition 2.1 Let P := {p(k)| 1 ≤ k ≤ m} be the set of homogeneous quadratic polynomials de�ned in
(1). We de�ne the set of all monomials of degree D by

Mon0 := {1}, MonD := {ab : a ∈ MonD−1, b ∈ {x1, . . . , xn}} .

Multiplying P by all monomials of degree D is described by the set

BlowD := {ab | a ∈ MonD and b ∈ P}.

Note that we also reduce BlowD by the �eld equations xqi − xi = 0 as we are only interested in solutions
over the ground �eld and not the algebraic closure.

Let D̃ := D + 2. To solve P by linearizing BlowD, we need the following de�nition.

Definition 2.2 Let M := |MonD̃|. We call π ∈ Mon
M
D̃

a semantic of MonD̃ if ∀i 6= j : πi 6= πj. Let

N := |BlowD| and A ∈ FN×M be the coe�cient matrix of BlowD. Then each polynomial b ∈ BlowD with

b =
∑M
i=1 biπi corresponds to some row Ak of A, i.e. we have ∀b ∈ BlowD ∃k : Ak = (b1, . . . , bM ).
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Throughout the paper, the semantic π will be in lexicographical ordering. We use it for simplicity, al-
though other orderings are possible, too, and do in particular not a�ect the proofs. The only requirement
is that the last D+2 entries of π depend only on the variables xn−1, xn. If |MonD̃|−rankA ≤ D̃, we call
D̃ the saturation degree for A. Working with a matrix A instead of the get BlowD is the linearization
step. In addition, we call the matrix A the XL matrix if it was derived in the XL algorithm and s`matrix
in the case of s`. Last but not least, we use �number of linear independent equations� for the number of
linear independent rows in the matrix A.

Algorithm 1 High-Level view of the linearization algorithm

Require: Let P be a homogeneous, degree 2 system of polynomials in n variables and m equations. Let
D ∈ N be a solving degree, and π be a semantic for MonD̃

Ensure: A solution x ∈ Fn for P(x) = 0
1: Blow := {piµ : pi ∈ P, µ ∈ MonD}, N := |Blow |, M := |MonD̃|,

2: A := ZeroMatrix(FN×M ), i← 1
3: for all p ∈ BlowD do

4: Assign coe�cients of p to ith row of A, according to semantic π
5: i← i+ 1
6: end for

7: Solve Ax̃ = 0 for x̃ ∈ FM
8: Derive univariate equation from x̃, resubstitute into Ax̃, compute full x
9: return x

The idea of eXtended Linearization (XL) [Laz79, CKPS00] is quite simple. Basically we multiply
every polynomials from P by every monomial of a certain degree D, i.e. we produce BlowD. Obviously
this preserves the original solution. For some degree D the corresponding vector space spanned by
{Ai | 1 ≤ i ≤ N} is large enough, i.e. we obtain roughly as many linearly independent equations as
monomials and thus we can solve the system by linearization, cf. also Alg. 1. Note that for inhomogeneous
equations XL would proceed step-wise and multiply by all monomials of degree ≤ D. However this is
equivalent to just use BlowD for the homogenised system.

As previously mentioned, there is another unifying view on the question XL vs. F5 called Matrix-F5

[Alb10]. It is an F5 version of the XL algorithm. For F5, the role of the saturation degree D̃ is taken by
the degree of regularity (dreg)�another way of phrasing this is to say that F5 solves as soon as degree
dreg is reached. In a nutshell, Matrix-F5 is not competitive with F5 as its saturation degree is almost
always larger than the degree of regularity dreg in F5 if we take the same number of variables. To
keep track for each row in the coe�cient matrix A by which polynomial and monomial it was produced,
Matrix-F5 uses signatures. The main di�erence of both algorithms is the application of the F5 criterion.
This criterion enables F5 and Matrix-F5 to remove all redundant calculations caused by so called trivial
syzygies. Essientially, the F5 criterion consists of applying the de�nition of weak semi-regular sequences
to its input.

Definition 2.3 (weak semi-regular sequence) The sequence (p(1), . . . , p(m)) of m homogeneous
polynomials is called weak semi-regular if for all i = 1, . . . ,m and g such that gp(i) ∈

〈
p(1), . . . , p(i−1)

〉
and deg(gp(i)) < dreg then g ∈

〈
p(1), . . . , p(i−1)

〉
also holds.

To apply this criterion, we have to represent the ideal
〈
p(1), . . . , p(i−1)

〉
in a way that allows an easy

membership test of gpi. So to use Def. 2.3, Matrix-F5 has to produce the set BlowD equation by equation
alternated by Gaussian Eliminations. Consequently, the sparsity of the equations decreases, as well as
does the e�ciency of Matrix-F5.

The crucial question to analyse the complexity of XL is, how many of A's equations are linearly
independent. Obviously this can become very hard, as soon as P contains some structure. Therefore,
we restrict our analysis to generic MQ-systems. A �rst attempt to describe such systems was due to
Macaulay [Mac16], who de�ned regular sequences for m = n. Bardet et al. extended this de�nition to
weak semi-regular sequences for m ≥ n in their complexity analysis of F5 [BFS04]. Moh [Moh01] and
later Yang and Chen [YC04] went on the same path for XL and mentioned the following lemma, although
the proof in [YC04] is disputed.
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Lemma 2.4 If a homogeneousMQ-system P is a weak semi-regular sequence over Fq and D̃ < q, then
the number of linearly independent equations produced for D = 2k + b and b ∈ {0, 1} by BlowD is

ID :=

k∑
i=0

(−1)i
(

m

i+ 1

)(
n+ 2(k − i) + b− 1

2(k − i) + b

)
(2)

Unfortunately it is not proven yet that generic sequences are weak semi-regular. However, we have
experimentially veri�ed for values up to D = 8 that the conjecture holds, cf. Sect. 4.3.

3 Systematic Dependencies

By de�nition a weak semi-regular sequences can be viewed as a sequence without any special internal
structure. So the only relations are trivial ones. We therefore call them trivial syzygies; the case of F5,
they are called principal syzygies. Our overall goal is to relax the F5 criterion in a way that we still can
identify trivial syzygies but without checking for ideal membership according to Def. 2.3. As we will
see in the remainder of this section, this is possible by carefully mixing random choices with educated
guesses on the monomials used in the generation of the set BlowD and �nally leads to the formulation
of Alg. 2.

Let us denote two quadratic polynomials by f :=
∑σ
i=1 αiai and g :=

∑τ
i=1 βibi for αi, βj ∈ Fq and

monomials ai, bi ∈ Mon2 then a trivial syzygy is given by

gf =

τ∑
i=1

βibif =

τ∑
i=1

βibi

σ∑
i=1

αiai =

σ∑
i=1

αiai

τ∑
i=1

βibi =

σ∑
i=1

αiaig = fg. (3)

According to Lem. 2.4 the number of linearly independent equations produced by Blow 2 is m
(
n+1

2

)
−(

m
2

)
, i.e. all dependencies are due to the

(
m
2

)
possible trivial syzygies. The question we want to answer

is, which of the equations we have to remove from Blow 2 to derive a set Blow ′2 of exactly m
(
n+1

2

)
−
(
m
2

)
linearly independent equations. Let

πM (f, g) :=
∑

bif∈M

βibif −
∑

aig∈M
αiaig

with f, g as above and M a set of monomials. (3) can now be written as πM (f, g) = 0.

3.1 Solving Degree D = 2

Example 3.1 Let m = n = 3 and P be de�ned by homogeneous quadratic equations p(1), p(2) and p(3).
Obviously Mi = {ap(i) | a ∈ Mon2} contains no linear dependencies for i = 1, 2, 3. Due to (3) there is
each a syzygy over the sets M1 ∪M2 and M1 ∪M3. Thus we have to choose c, d ∈ Mon2 and remove cp(2)

from M2 and dp(3) from M3. Note c = d is possible but not necessary. Denote αp
(1)

c the coe�cient of
the monomial c in p(1). Then the following hold.

πM1∪M2
(p(1), p(2)) = αp

(1)

c cp(2)

πM1∪M3(p(1), p(3)) = αp
(1)

d dp(3) (4)

πM2∪M3
(p(2), p(3)) = αp

(2)

d dp(3) − αp
(3)

c cp(2). (5)

And thus M1 ∪M2 ∪M3 still contains one linear dependency. We have to choose e ∈ Mon2 with e 6= d
and remove ep(3) from M3 to destroy this last dependency by changing equation (4) and (5). This leads
to the following equations:

πM1∪M2
(p(1), p(2)) = αp

(1)

c cp(2) (6)

πM1∪M3(p(1), p(3)) = αp
(1)

d dp(3) + αp
(1)

e ep(3) (7)

πM2∪M3
(p(2), p(3)) = αp

(2)

d dp(3) + αp
(2)

e ep(3) − αp
(3)

c cp(2). (8)
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Changing our point of view, investigate whenα
p(1)

c 0 0

0 αp
(1)

d αp
(1)

e

0 αp
(2)

d αp
(2)

e

 (9)

is regular over Fq. Consequently (6�8) are now linearly independent with probability(
1− 1

q

)
(q2 − 1)(q2 − q)

q4

q→∞−→ 1. (10)

So with high probability we produced the maximal number of linearly independent equations. See App. B
for a more detailed analysis.

The strategy of example 3.1 can easily be extended to more than 3 equations, which leads to Alg. 5,
cf. App. B. Note that we can choose c = d in example 3.1. We use this to simplify the algorithm
accordingly. In App. B we will see that this choice also increases the probability of (9) to be regular to(
q−1
q

)m−1

.

The extension to degree D = 3 is given in App. A. To deduce a general algorithm it is more important
to understand the case D = 4 shown in the next section.

3.2 Solving Degree D = 4

The number of linear independent equations produced by Blow 4 is

m

(
n+ 3

4

)
−
(
m

2

)(
n+ 1

2

)
+

(
m

3

)
. (11)

Let us consider the following three quadratic polynomials f :=
∑σ
i=1 αiai, g :=

∑τ
j=1 βjbj and h :=∑υ

k=1 γkck for αi, βj , γk ∈ Fq and monomials ai, bj , ck ∈ Mon2. Besides the dependency fg = gf we have
new dependencies through ghf = fhg = fgh.

τ∑
j=1

βjbj

υ∑
k=1

γkckf =

σ∑
i=1

αiai

υ∑
k=1

γkckg =

σ∑
i=1

αiai

τ∑
j=1

βjbjh . (12)

De�ne
πkM (f, g) :=

∑
bickf∈M

βibickf −
∑

ajckg∈M
αjajckg

with f, g as above and ck ∈ Mon2 �xed. Let us explain the algorithm at the following example.

Example 3.2 Let m = n = 3 and P be given by homogeneous quadratic equations p(1), p(2) and p(3).
Obviously Mi = {ap(i) | a ∈ Mon4} contains no linear dependency for i = 1, 2, 3. Due to ck(p(i)p(j) −
p(j)p(i)) = 0 the sets M1 ∪M2 and M1 ∪M3 are linear dependent for every ck ∈ Mon2. To destroy these
dependencies we have to choose c ∈ Mon2 and remove all dp(2) from M2 for d ∈ Mon4 and c|d. Analogous
we choose e ∈ Mon2 and remove all `p(3) from M3 with ` ∈ Mon4 and e|` . Then the following holds.

πkM1∪M2
(p(1), p(2)) = αp

(1)

c ckcp
(2)

πkM1∪M3
(p(1), p(3)) = αp

(1)

e ckep
(3)

πkM2∪M3
(p(2), p(3)) = αp

(2)

e ckep
(3) − αp

(3)

c ckcp
(2) (13)

Thus M1 ∪M2 ∪M3 is still linearly dependent. We have to choose additionally u ∈ Mon2 with u 6= e
and remove all vp(3) from M3 with v ∈ Mon4 and u|v. This leads to the same situation as for degree 3.
If v = ` we have to choose a new monomial e′ ∈ Mon2 and destroy all linear dependencies obtained by
producing monomials twice by removing `′p(3) with `′ ∈ Mon4 and `′ contains e′ from M3.

6



Counting the number of produced equations at this stage give us a value greater than m
(
n+3

4

)
−(

m
2

)(
n+1

2

)
+
(
m
3

)
. The reason is that we did not use fh g = gh f = gf h until now. This additional

systematic dependency tells us that destroying the systematic dependency between f and g also destroys
the systematic dependency between g and h. This holds for every ckg we remove from M2. Thus we have
to remove less equations from M3 as some dependencies are already destroyed.

Now we are able to handle arbitrary solving degrees D with Alg. 2. The step from even to odd degree
is analogous to the step from D = 2 to D = 3 and the step from odd to even degree is analogous to the
step from D = 3 to D = 4.

Algorithm 2 Generating linear independent equations (D = 2k + b with b ∈ {0, 1})
1: eqn← {};
2: list← MonD−2;
3: for µ ∈ MonD do

4: eqn← eqn ∪ {µp(1)};
5: end for

6: µ ∈R Mon2; miniList← Mon2\{µ}; bigList ← MonD;
7: for i := 2 to m do

8: count← 0;
9: bound←

(
n+D−3
D−2

)
;

10: for p := 1 to min{i− 2, k − 1} do
11: bound← bound+ (−1)p

(
n+D−3−2p
D−2−2p

)(
i−2
p

)
;

12: end for

13: repeat

14: j ← 0;
15: repeat

16: j ← j + 1;
17: if list[j] · µ ∈ bigList then
18: bigList← bigList\{list[j] · µ};
19: count← count+ 1;
20: end if

21: until j =
(
n+D−3
D−2

)
or count = bound

22: if j =
(
n+D−3
D−2

)
then

23: µ ∈R miniList; miniList← miniList\{µ};
24: end if

25: until count = bound
26: for η ∈ bigList do
27: eqn← eqn ∪ {ηp(i)};
28: if |eqn| = T −D − 2 then
29: Stop;
30: end if

31: end for

32: end for

3.3 General Case

Lemma 3.3 The number of equations produced by Alg. 2 equals the number of linearly independent
equations given by Lem. 2.4.

Proof. Let us restrict to D = 2k, as the case D = 2k+ 1 is analogous. We have to show that algorithm
2 cut out the right number of equations. According to (2) the number of columns of M, i.e. the sum

7



∑m−1
i=1 si of all block sizes have to be

k∑
i=1

(−1)i+1

(
m

i+ 1

)(
n+ 2(k − i)− 1

2(k − i)

)
︸ ︷︷ ︸

:=σi

.

To show this we make us of the following equality

m−1∑
i=1

si =

m−1∑
i=1

s1i+

k−1∑
j=1

m−1∑
i=j+1

(m− i)τij .

First
m−1∑
i=1

s1i = s1

m−1∑
i=1

i = s1

(
m
2

)
= σ1 holds. We �nish the proof by showing that

σj =

m−1∑
i=j

(m− i)τi(j−1)

holds for j ∈ {2, . . . , k}.

m−1∑
i=j

(m− i)τi(j−1) = (−1)j−1

(
n+D − 3− 2(j − 1)

D − 2− 2(j − 1)

)m−1∑
i=j

(m− i)
(
i− 1

j − 1

)
∗
= (−1)j+1

(
n+D − 2j − 1

D − 2j

)(
m

j + 1

)
= σj

Equality ∗ used that we can rearrange the order of the terms of the sum and get

m−1∑
i=j

(m− i)
(
i− 1

j − 1

)
=

m−j∑
i=1

i

(
m− i− 1

j − 1

)
=

m−1∑
i=1

(
i

1

)(
m− i− 1

j − 1

)
=

(
m

j + 1

)
.

The last equality is due to the well known equality
n∑

m=0

(
m
j

)(
n−m
k−j

)
=
(
n+1
k+1

)
. �

4 Implementation Issues

Until now we have explored the structure of the matrix A from a mathematical point of view. In
particular, we do not generate linearly dependent rows in our approach. In this section, we deal with
implementation issues, in particular connected to memory consumption and sparse equation solving.

As the authors of [YCBC07], we have chosen to use Wiedemann's algorithm here [Wie86], in particular
to its easier structure and fewer requirements on the matrix given. In a nutshell, Wiedemann allows us
to solve matrix equations of the form

Ax = 0

for a matrix A ∈ FN×M , and an unknown vector x ∈ FM . The key point for our memory friendly
approach is that we do not need access to the matrix A itself to solve this equation. Instead, a function
fA(x) which computes the matrix-vector product Ax (black box access) is su�cient. This means that we
have fA(x) = Ax ∀x ∈ FM , without the need to write down the matrix A explicitly.

In general, all solutions to Ax = 0 form a kernel. We denote this space by kern(A). For N ≥M and
R := Rank(A), we have r = M −R as corresponding nullity.

For N ≈M , Wiedemann's algorithm has a running time of O(N2) and a memory requirement of 5N
as it needs to store 5 vectors elements for intermediate computations.
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4.1 Implicit Evaluation

We have N := #rows and M := #columns of the s` matrix A. Moreover, for a given semantic π we
de�ne an access function Π(µ) : MonD̃ → N : µ 7→ i such that πi = µ. So ∀1 ≤ i ≤ M : Π(πi) = i.
Analogous, we de�ne Π2(a) : Mon2 → N : a 7→ k.

We now discuss evaluating function fA for a given s` matrix. To this aim, we exploit its regular block
structure. Denote with A(2) ∈ Fm×|Mon2| the coe�cient matrix of the initial system P. From a high
level view, we choose some monomial µ ∈ MonD and interpret the initial system P as a block µP. For
this block we compute the monomials MonP,µ := {aµ : a ∈ Mon2}, assign each variable ν ∈ F|Mon2| its
corresponding value νΠ2(a) := x̃Π(aµ), and then evaluate this block Pµ by A(2)ν.

This works as each column in A is associated to one particular monomial. Consequently, we can
identify each column in A(2) with exactly one column in A and hence one monomial aµ. Hence, each
coe�cient in this column will be multiplied by the same �eld element x̃Π(µ) for some �xed monomial
from MonD̃. Note that the de�nition of MonP,µ is independent of the coe�cients of the initial system P.
So each block µP is associated with |µMon2| = |Mon2| = n(n + 1)/2 �xed monomials, and always the
same coe�cients, namely these of the system P. So we do not need to store the coe�cients of BlowD
for each individual block µP, but only once for all blocks.

The algorithm sketched above is actually a memory e�cient implementation of the original lineariza-
tion algorithm (Alg. 1). To take care of the linear dependencies from sect. 3, we also need to delete some
rows in the corresponding computation. To transfer Alg. 2 into a memory friendly version, we need to
make a few changes. See alg. 3�4 for the result. In particular, we only compute one block at a time
and hence store only n2/2 intermediate �eld elements. Note that we can have M > N . As the system
is overdetermined in this case, we cut o� the remaining rows here (lines 10�12 in Alg. 4) for e�ciency
reasons.

Algorithm 3 Precomputation for a given s` matrix A

Require: D ∈ N be a solving degree, n,m be the number of variables and equations of P
Ensure: Random permutation Γ from MonD, start-values in start
1: Γ← (), perm2 = Permute(Mon2), k ← bD/2c, binStop ←

(
n+D−3
D−2

)
, bound ← 0

2: for all α ∈R perm2 do

3: for all β ∈ MonD−2 do

4: if αβ /∈ ρ then
5: Γ.append(αβ)
6: end if

7: end for

8: end for

9: starts ← (∞, . . . ,∞), spares ← (0, . . . , 0) {m+ 1 values each}
10: for i← 0 to m-1 do
11: for p← 1 to k − 1 do
12: spares[p] ←

(
i−1
p

)
if i ≤ 1 + p else 0

13: end for

14: for p← 1 to k do
15: bound ← bound + (−1)p ∗

(
n+D−3−2∗p
D−2−2∗p

)
∗spares[p]

16: end for

17: starts[i] = bound if bound ≥ 0 else 0
18: bound ← bound +

(
n+D−3
D−2

)
19: end for

20: return Γ, starts

Discussion. There are two subtilities in Alg. 4 worth mentioning: First, the monomials α ∈R perm2

are chosen in random order while the monomials from β ∈ MonD−2 are chosen in any order, as explained
in Sect. 3 and in more detail in Ex. A.1: Here, we need to destroy dependencies of degree 2. On an
empirical level, we have tried all other possible choices of αβ here, namely: Choosing α in a systematic
fashion, β at random, choosing the coe�cient ω := αβ at random, and choosing ω systematically. Not
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Algorithm 4 Fast Evaluation of fA for A ∈ FN×M an s` matrix

Require: x̃ ∈ FN a vector, Γ a random permutation of MonD, Π an access function to the semantic π
of MonD̃, and m+ 1 starts values from Alg. 3.

Ensure: ỹ ← Ax̃
1: ỹ = (), e = 1
2: for j = 0 to |MonD| − 1 do
3: for all η ∈ Mon2 do

4: µ = ηΓ[j], ν[i] = x̃Π(µ)

5: end for

6: while starts[e] ≤ j do
7: e← e+ 1
8: end while

9: for i← 0 to e− 1 do
10: if |ỹ| ≥M then

11: return ỹ
12: end if

13: ỹ.append(p(i)(ν))
14: end for

15: end for

16: return ỹ

surprisingly, for all three algorithms linear dependencies became more likely than in the setting of this
algorithm.

Second, in Alg. 4 the end marker e is used to determine the last polynomial pe which is used in the
construction of the s` matrix A. By the choice of the start values, this destroys all systematic linear
dependencies (cf. Sect. 3).

Speed. To evaluate the cost for one matrix-vector-multiplication or function evaluation fA(x) is a bit
problematic. When only counting operations in F, we have the same speed as any other sparse evaluation
function for the s` matrix A, namely n2/2 operations per row. In terms of memory access to the long
vector x̃, we are better, as each block only needs to access n2/2 elements in comparison to n2/2 elements
in the case of unstructured sparse matrices. However, we need to compute all monomials from Mon[P, µ],
which results in n2/2 monomial multiplications. To derive a realistic comparison, we need to know if
costs for a given computer are dominated by computations or (more likely) memory access.

Memory Considerations. We see that our procedure needs to store 2N ≈ nD̃ �eld elements for ỹ, x̃.
All other values such as the m start values or the D|MonD| ≈ nD �eld elements we need to store for the
permutation Γ are negligible in comparison. Hence, the overall memory consumption is not dominated
by the storage requirements of the implicit matrix A but by the memory requirement of Wiedemann's
algorithm. Taking into account the 3N elements of the Berlekamp-Massey sub-routine, this number

becomes 5N ≈ 5nD̃ = O(nD̃).
In any case, we can use the whole tool-kit of di�erent Wiedemann implementations such as paral-

lelization, block-Wiedemann algorithm to speed up our solution �nding algorithm, cf. [Tho02, ADK+10].
Moreover, Alg. 4 is easily paralleliszable: We distribute the small matrix A(2) to k computers, as the
permutation Γ, and can then evaluate the function fA(x) in parallel.

In addition, for n ≤ 25 n2/2 is bounded from above by ≈ 300. This �ts easily into the cache of
a modern micro-processor, so we gain an additional speed-up to linear solvers which do not exploit a
similar structure.

4.2 Computing Solutions of Kernels

In the orginal XL algorithm, the matrix A was reduced to upper triangular form and all rows containing
only univariate equations were then solved. As we work with homogenised equations, and know xn, this
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corresponds to rows which only contain monomials of the form xixn for some i : 1 ≤ i < n. Substituting
xn = 1, leads to

βD̃x
D̃
i + . . .+ β1xi + α = 0

for some coe�cients α, βk ∈ F and 1 ≤ k ≤ D̃, which can now be e�ciently solved over the �nite �eld F.
In case of black box solving, the situation is di�erent. For simplicity, we assume a 1-dimensional

kernel space, i.e. a ∈ FM , a 6= 0 with Aa = 0 is the only kernel vector (up to a scalar factor s ∈ F∗).
Then we can compute the values of x ∈ Fn using

xD̃i − saΠ(xD̃
i )

= 0, . . . , xi − saΠ(xix
D̃−1
n )

= 0, 1− saΠ(xD̃
n ) = 0 (14)

for 1 ≤ i < n, a = (a1, . . . , aM ). By the construction of the s` matrix A, (14) yields a consistent solution
for x = (x1, . . . , xn−1, 1).

However, in general we have D̃ ≥ N −M ≥ 1 and the nullity of A becomes r := N −M . Here, the
situation is a little more cumbersome. In particular, it seems we are dealing with (qr − 1) parasiteric
solutions here. However, we know that these solutions need to be consistent with a solution x ∈ Fn of
the original system. Let K ∈ Fr×M be the base vectors of kern(A), written as a matrix. We know that
the correct solution must be expressible as linear combination of rows of K. Denote the corresponding
vector η ∈ Fr. We generalize (14) to

xD̃i − η1k1,Π(xD̃
i )
− . . .− ηrkr,Π(xD̃

i )
= 0,

... (15)

xi − η1k1,Π(xix
D̃−1
n )

− . . .− ηrkr,Π(xix
D̃−1
n )

= 0,

1 − η1k1,Π(xD̃
n ) − . . .− ηrkr,Π(xD̃

n ) = 0

for 1 ≤ i < n and ki,j ∈ F the coe�cients of the kernel matrix K. Each block in one xi can be solved
individually by eliminating all r variables η1, . . . , ηr. As the degee of these variables is one, we obtain
one univariate equation in xi of degree at most D̃. Note that we have r ≤ D̃, i.e. we can eliminate all
variables η1, . . . , ηr. As Ax̃ has a solution, at least one block xi will yield a vector η ∈ Fr, so we can now
solve all other blocks and recover the full solution x ∈ Fn. Empirically, we have found a solution to (15)
already for the �rst choice of i in most cases.

To our knowledge, this solving algorithm has not been described so far in the open literature. In
particular [YCBC07, ADK+10, Abd11] neglected this question and hence required N −M = 1, which
also implies the existence of only one solution. For cryptographic systems, this is usually �ne. Still, in
practice this strategy leads to a signi�cant loss of performance as we need a higher solving degree D as
we have replaced the condition |MonD| − ID ≤ D̃ by |MonD| − ID ≤ 1.

4.3 Implementation and Veri�cation

We have implemented Small Linearization in SAGE [S+10], using a total of 2000 lines of code (including
comments). However, most of the code is verifying the correctness of intermediate values, so the actual
code contains only a few 100 lines. While SAGE is a good tool to investigate mathematical problems, it
has some serious performance issues. Hence, we were only able to investigate systems up to n = 7 and
m = 8. All in all, our implementation is a prototype of Small Linearization and was used to verify the
agreement between theory and practice. In particular, we have worked with random systems as they are
the hardest case forMQ-systems. With random we mean to choose the coe�cients γkij ∈R F uniformly
at random for the polynomials in theMQ-system P.

To obtain a fair comparison between F5 and s`, we need a high speed implementation, for example
in C++. Hence, we had to use the theory from Sect. 3 and the open literature to derive the values of
tables 1�2.

In addition, we did extensive empirical veri�cation of Lem. 2.4 by computer simulation written in
[MAG], giving more than 10,000 data points. Parameters were running for various tuples (n,m,D) in
the range 3 ≤ n ≤ 15, 3 ≤ m ≤ 50, 1 ≤ D ≤ 8. All data points were in line with theory and are hence
an empirical veri�cation of our analysis.

11



4.4 Comparison with Other Algorithms

Random Systems In this section, we compare the e�ciency of our approach with previously known
algorithms. Throughout this section, we use as �eld GF(256) and the most di�cult case n = m for
benchmarking, cf. Table 1. In particular, our set of competitors includes the best known attack against
Multivariate Quadratic schemes, namly HybridF5 [BFP09]. In addition to use F5, they brute force r
variables and balance the workload of qr against the running time of F5 for (n− r) variables and m = n
equations. This has proved very e�cient for XL and s`, too. To keep the comparison fair, we have hence
included guessing r variables for all algorithms, i.e. the �xing strategy in the notation of XL.

Table 1: HybridF5 (H5) from [BFP09], plain XL (Alg. 1), XL with Wiedemann solver (Wied), and
Small Linearization (s`) regarding running time (T) and memory consumption (M). dreg the degree of

regularity for F5, and D̃ the solving degree for XL, WiedemannXL, and s`. In all cases, we have guess r
variables over F = GF(28) and use a system with n = m variables, and equations. For each set parameter
set in m, minimal values in T and M are marked in bold.

Parameters T(H5) T(XL/Wied) T(s`) Parameters
m H5 [log2] [log2] M(Wied) [log2] M(s`) XL/Wied/s`

10 r = 1, dreg = 6 37.75 40.55 179 kB 39.10 15 kB r = 2, D̃ = 6

10 r = 2, dreg = 5 41.90 44.46 35 kB 43.26 4 kB r = 3, D̃ = 5

12 r = 1, dreg = 7 43.66 46.27 2 MB 44.49 95 kB r = 2, D̃ = 7

12 r = 2, dreg = 6 47.75 50.13 381 kB 48.58 24 kB r = 3, D̃ = 6

14 r = 1, dreg = 8 49.50 51.98 19 MB 49.89 615 kB r = 2, D̃ = 8

14 r = 2, dreg = 6 50.81 52.44 1 MB 51.19 60 kB r = 3, D̃ = 6

16 r = 1, dreg = 9 55.28 57.65 183 MB 55.28 4 MB r = 2, D̃ = 9

16 r = 2, dreg = 7 56.48 58.13 12 MB 56.48 379 kB r = 3, D̃ = 7

18 r = 1, dreg = 10 61.02 63.32 2 GB 60.68 25 MB r = 2, D̃ = 10

18 r = 2, dreg = 8 62.15 63.80 109 MB 61.81 2 MB r = 3, D̃ = 8

20 r = 1, dreg = 11 66.73 68.96 15 GB 66.09 165 MB r = 2, D̃ = 11

20 r = 2, dreg = 9 67.79 69.45 987 MB 67.15 15 MB r = 3, D̃ = 9

22 r = 1, dreg = 12 72.42 74.60 126 GB 71.50 1 GB r = 2, D̃ = 12

22 r = 2, dreg = 10 73.43 75.08 8 GB 72.51 96 MB r = 3, D̃ = 10

24 r = 1, dreg = 13 78.09 80.23 1 TB 76.92 7 GB r = 2, D̃ = 13

24 r = 2, dreg = 11 79.06 80.71 72 GB 77.89 615 MB r = 3, D̃ = 11

26 r = 1, dreg = 14 83.74 85.84 9 TB 82.34 45 GB r = 2, D̃ = 14

26 r = 2, dreg = 12 84.67 86.33 604 GB 83.27 4 GB r = 3, D̃ = 12

28 r = 1, dreg = 15 89.38 91.45 71 TB 87.77 295 GB r = 2, D̃ = 15

28 r = 2, dreg = 13 90.28 91.94 5 TB 88.67 25 GB r = 3, D̃ = 13

30 r = 1, dreg = 16 95.01 97.06 573 TB 93.20 2 TB r = 2, D̃ = 16

30 r = 2, dreg = 14 95.89 97.54 39 TB 94.07 164 GB r = 3, D̃ = 14

To compute this table, we have determined the minimal workload (�rst line for each parameter m),
individually for HybridF5 (H5) and XL with �xing. Note that H5 on the one hand and the XL family on
the other hand di�er in the number of variables they need to guess for an optimal workload. The workload
for Wied and s` was computed by (#columns)ω for ω = 2, and #columns implied by the corresponding
saturation degree D̃. The corresponding degree of regularity dreg (F5) is given in the left-most column,

the saturation degree D̃ (for XL/Wied/sl) in the right-most column. We see that HybridF5 consistently
needs to guess one variable less than the XL family. The reason is that the saturation degree D̃ is larger
than the degree of regularity dreg for the same number of variables guessed in Table 1. To account for
this disadvantage, XL needs to invest more time in the precomputation step.

First we see that the memory consumption of s` is far less than that of Wied. Even for an overall
workload close to 280 (m = 24) we can �t the whole algorithm in memory (7 GB and 615 MB, respec-
tively). For Wied, this is more tricky (1 TB or 72 GB, respectively). The reason is that Wied still uses
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Table 2: Comparison between Small Linearization (s`) and HybridF5 (H5)from [BFP09]. In all cases, we
have guess r variables over F = GF(28). Fields with ? were not given in [BFP09]. Particularly relevant
values are bold.

HybridF5 Small Linearization
m r Time Memory Time Memory

[log2] [log2]

UOV (n = 30) 10
1 37.75 2 MB 40.99 451 kB
2 41.90 ? 39.10 15 kB

UOV (n = 60) enTTS
(n = 28)

20
1 66.73 139 GB 80.01 321 GB
2 67.79 12 GB 66.09 165 MB
3 71.62 ? 67.15 15 MB

Rainbow (n = 48)
amTTS (n = 34)

24
1 78.09 10 TB 95.75 73 TB
2 79.06 816 GB 76.92 7 GB
3 ? ? 77.89 615 MB

the randomly dependent rows of the XL matrix. In any case, the running times for r and (r + 1) (�rst
and second line for each value m) gives a running time not more than a factor of 4 apart. On the other
hand, the memory reduction is quite drastic, so it may be sensible in practice to choose the higher of the
two values. For HybridF5, we are unfortunately not aware of a closed formula to compute its memory
consumption. We hence refer to Table 2 for a pointwise comparison and see that s` needs far less memory
than H5.

Second, s` seems to outperform HybridF5 for all values m ≥ 18 in Table 1. This is in clear violation
of the theorems from [AFI+04]. As they show that XL is a redundant version of F4, this basically implies
that our upper bound for the number of computations in s` is tighter than the corresponding bound for
H5. However, we want to stress that for the same number of guessed variables (r), we had dreg < D̃ in
Table 1, so F5 is faster than s` according to the corresponding bounds.

However, inspecting the formulæ for T(H5) and T(s`) closer, we see that both use (#rows)
ω
with

ω = 2. This choice is justi�ed in both cases as they deal with very sparse equations. Now, the term for
#rows is

#rowsF5(n,m, dreg) = m

(
n+ dreg − 1

dreg

)
and #rowsSL(n,m, D̃) =

(
n+ D̃ − 1

D̃

)
(16)

Apparently, for D̃ = dreg we have #rowsSL(n,m, D̃) ≤ #rowsF5(n,m, dreg) ∀(n,m) ∈ N2 : m ≥ n. So
for large values dreg, and small �eld sizes |F |, Hybrid-s` can outperform H5 according to this expression.
However, as we know that XL is a redundant version of F5, this basically implies that #rowsF5(n,m, dreg)
is too pessimistic and needs to be corrected.

Cryptographic Challenges. We now compare HybridF5 with Small Linearization in the case of
three MQ-schemes, cf. Table 2. As before, we see for m = 20, 24 a lower running time for s` than for
H5, see previous section for an explanation. However, we want to stress that s`needs far less memory
consumption than H5. For example, we have 15 MB for m = 20, r = 3 for s` and 12 GB for m = 20, r = 2
for H5. Similarly, we see that 816 GB of memory (m = 24, r = 2) for H5 is reduced to only 615 MB
(m = 24, r = 3) for s`.

5 Conclusions

We have demonstrated that eXtended Linearization (XL) and F5 can be fused into a combined algorithm
that uses the best from both worlds: Taking a matrix view, we can use black box methods while taking
a symbolic view, we get rid of trivial syzygies.

Using this formula, we have estimated the running time for s` in hybrid strategy, that is by �xing
some variables. This showed that s` for practical parameters is of comparable speed to HybridF5. More
importantly, the memory requirements are drastically reduced. This is true for both algorithm classes,
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Table 3: Asymptotic Running time for F5 and Small Linearization (s`) for given n variables, m equations,
degree of regularity dreg (F5), and solving degree D̃, respectively.

F5 O

(
m
(n+dreg−1

dreg

)ω)
s` O

((n+D̃−1
D̃

)ω)

namely the original XL algorithm, even when executed with the Wiedemann solver, cf. Table 1 and
HybridF5, cf. tables 2. For example, the UOV-challenge with m = 20 equations requires 12 GB for H5,
but only 15 MB (!) for s`.

An interesting open question is the integration of the Mutant strategy into Small Linearization. On
the one hand, Mutants are alien to the central idea of s`: For the latter, we have exploited the very
regular structure of the s` matrix A while the former are slightly random by de�nition. On the other
hand, there are only very few mutants compared to the overall number of rows in the matrix A. Hence, it
might be possible to reduce the saturation degree D̃ by one in some situations of practical relevance and
hence speed up hybrid s` without jeopardizing the small memory consumption. However, more research
is needed to answer this questions.
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Appendix

A SolvingDegree D = 3

Using degree 3 monomials do not introduce new linear dependencies described by equation (3). But all
existing dependencies will be multiplied by x1 to xn. Intuitively it is clear that the number of linearly
independent equations is m

(
n+2

3

)
−
(
m
2

)
n, i.e. we have to cut out

(
m
2

)
n equations. But algorithmically it

is not as clear at all. For example if we cut out x1x1f and x1x2f in the degree 2 step and we multiply
the monomials x1x1 and x1x2 by all variables xi we produce the monomial x1x1x2 twice. Let us explain
the solution to this problem at the following example.

Example A.1 Let m = n = 3 and P be de�ned by homogeneous quadratic equations p(1), p(2) and p(3).
Obviously Mi = {ap(i) | a ∈ Mon3} is linearly independent for i = 1, 2, 3. Due to following equations

p(1)xkp
(2) = p(2)xkp

(1) and p(1)xkp
(3) = p(3)xkp

(1) (17)

M1 ∪M2 and M1 ∪M3 are linearly dependent for every xk. If we want to destroy this dependency we
have to choose c ∈ Mon2 and remove all dp(2) from M2 with d ∈ Mon3 and d contains c. Analogous we
choose e ∈ Mon2 and remove all `p(3) from M3 with ` ∈ Mon3 and ` contains e. Let de�ne

πkM (f, g) :=
∑

bixkf∈M

βibixkf −
∑

ajxkg∈M
αjajxkg

with f, g as in section 3. Equation (17) can now be formulated by πkM (f, g) = 0 for every xk. Let denote

αp
(1)

c the coe�cient of the monomial c in p(1). Then the following hold.

πkM1∪M2
(p(1), p(2)) = αp

(1)

c xkcp
(2)

πkM1∪M3
(p(1), p(3)) = αp

(1)

e xkep
(3)

πkM2∪M3
(p(2), p(3)) = αp

(2)

e xkep
(3) − αp

(3)

c xkcp
(2) (18)

Thus M1 ∪M2 ∪M3 is still linearly dependent. We have to choose u ∈ Mon2 with u 6= e and remove all
vp(3) with v ∈ Mon3 and v contains u from M3. This leads to the same situation as in equation (6)-(8)
for degree 2.

πkM1∪M2
(p(1), p(2)) = αp

(1)

c xkcp
(2)

πkM1∪M3
(p(1), p(3)) = αp

(1)

e xkep
(3) + αp

(1)

u xkup
(3)

πkM2∪M3
(p(2), p(3)) = αp

(2)

e xkep
(3) + αp

(2)

u xkup
(3) − αp

(3)

c xkcp
(2) (19)

But what happens, if v = `? For example if we choose e = x1x1 and u = x1x2 than x2 x1x1 = x1 x1x2

holds. In this case `p(3) is already removed. So if we choose xk such that ` = xke = v the equations
system (18) still holds and thus M1 ∪ M2 ∪ M3 is still linearly dependent. So we have to choose a
new monomial e′ ∈ Mon2 and destroy all linear dependencies obtained by producing monomials twice by
removing `′p(3) with `′ ∈ Mon3 and `′ contains e′.

B Success probability

With success probability we mean the probability that our algorithm produces the maximal number
of equations without any reduction to zero. Equation (10) showed that with some probability some
equations will still be linearly dependent. This dependencies are not systematic. They are a result of
the special choice of the MQ-system P and so we are not able to eliminate them beforehand. If even
one equation is linearly dependent we call the algorithm not successful. Note that this event is no big
problem for practical reasons. In most cases the equation system is still solvable if we produce few less
linearly independent equations. But nevertheless we want to calculate the success probability of our
algorithm to show that it works.
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B.1 Solving Degree D = 2

Let us �rst consider the degree 2 case. The formula (q2−1)(q2−q)
q4 given by (10) treats the case m = n = 3.

This could be generalized for arbitrary m. In table 4 we sketch the block structure of matrix (9) in the
general case. The �rst line denote the unknowns for some c, d, e, f, g, h ∈ Mon2, empty entries denote

zero and ∗ denotes some coe�cients αp
(j)

i .

Table 4: Structure of the systematic dependencies

cp(2) dp(3) ep(3) fp(4) gp(4) hp(4) · · ·
πM1∪M2

∗
πM1∪M3 ∗ ∗
πM2∪M3 ∗ ∗ ∗
πM1∪M4

∗ ∗ ∗
πM2∪M4

∗ ∗ ∗ ∗
πM3∪M4

∗ ∗ ∗ ∗ ∗ ∗
...

...

Let M by the matrix given by the body of table 4. Obviously M is regular i� all block matrices on
the diagonal are regular. As long as c 6= d 6= e 6= f 6= g 6= h this matrices are uniformly random, as we
assume theMQ-system to be uniformly random. The probability of an arbitrary (m×m) matrix to be
regular over Fq is given by

m−1∏
i=0

(qm − qi)

qm2 .

Thus the degree 2 algorithm succeed for some m > 1 with probability

m−1∏
i=1

i−1∏
j=0

(qi − qj)

m−1∏
i=1

qi2
. (20)

The general analysis in equation (20) di�ers from Alg. 5 in one important point � we chose c = d
for simplicity and thus the coe�cients in the matrix are no longer independent. More precisely every
block-matrix on the diagonal is a submatrix of the left upper corner of the next bigger block (see �gure
1). Thus the probability of our algorithm to succeed simpli�es to(

q − 1

q

)m−1

. (21)

This is always larger than equation (20). See table 5 for comparison with experimental data. Note q = 5
is the smallest �eld size for which the algorithm of degree 2 is valid as otherwise D + 2 < q do not hold
and thus equation (2) is not proper any longer.

Table 5: Probability of success for m = n. We run 10000 experiments each time to get an experimental
result for the probability of success.

equation (20) equation (21) experimental
q\m 5 6 7 5 6 7 5 6 7
11 0.665 0.599 0.540 0.683 0.621 0.564 0.680 0.620 0.574
29 0.866 0.835 0.805 0.869 0.839 0.810 0.868 0.839 0.808
127 0.969 0.961 0.953 0.969 0.961 0.954 0.972 0.963 0.957
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B.2 Solving Degree D > 2

Determining the exact probability of success becomes messy for D > 2 as it depends on the special
selection of monomials of Mon2 that we use to destroy the systematic dependencies. As our algorithm
choose this monomials by random, it becomes hard to analyze the probability of success. See examples
B.1 and B.2 for illustration. First let de�ne again

πkM (f, g) :=
∑

bixkf∈M

βibixkf −
∑

ajxkg∈M
αjajxkg

with f :=
∑σ
i=1 αiai and g :=

∑τ
i=1 βibi for αi, βj ∈ Fq and monomials ai, bj ∈ Mon2. After removing

some elements from BlowD we destroyed the systematic dependencies, i.e. πxk

M (f, g) 6= 0 for all f, g ∈ P.
With some probability over the random choice of the coe�cients of f and g there are still dependencies
among the destroyed systematic dependencies. Examples B.1 and B.2 will now show that the choice of
Mon2 monomials in algorithm 2 a�ects the exact probability. This monomials are chosen randomly in our
algorithm and so it seems infeasible to give a general and exact formula for the probability of success.

To ease notation we denote αp
(i)

c xkcp
(j) with c = xaxb by ab

i ·xkc(j). To keep the examples small we set
n = m = D = 3.

Example B.1 Let c = x1x2, d = x2x3 and e = x3x3 be the monomials we removed (see Sect. 3). Note,
as x3 x1x2 = x1 x2x3 we need a third monomial x3x3 to remove the correct number of (linearly dependent)
equations. Obviously 121 6= 0 is a necessary conditions for table 6 to be regular. Thus the �rst 3 rows are

Table 6: Matrix of destroyed systematic dependencies.

x1x1x
(2)
2 x1x2x

(2)
2 x1x2x

(2)
3 x1x1x

(3)
2 x1x2x

(3)
2 x1x2x

(3)
3 x2x2x

(3)
3 x2x3x

(3)
3 x1x3x

(3)
3

π1
M (p(1), p(2)) 121 221 231 0 0 0 0 0 0
π2
M (p(1), p(2)) 111 121 131 0 0 0 0 0 0
π3
M (p(1), p(2)) 0 0 121 0 0 0 0 0 0
π1
M (p(1), p(3)) 0 0 0 121 221 231 0 0 331

π2
M (p(1), p(3)) 0 0 0 111 121 231 231 331 0
π3
M (p(1), p(3)) 0 0 0 0 0 121 221 231 131

π1
M (p(2), p(3)) −123 −223 −233 122 222 232 0 0 332

π2
M (p(2), p(3)) −113 −123 −133 112 122 232 232 332 0
π3
M (p(2), p(3)) 0 0 −123 0 0 122 222 232 132

linearly independent with probability
(

1− 1
q

)2

. After Gaussian Elimination the remaining lower right

(3 × 3)-submatrix do not contain systematic zeros or dependencies and thus the overall probability of 6
to be regular is

2∏
i=0

(q3 − qi)

q9

(
1− 1

q

)2

. (22)

Example B.2 Let c = x1x1 and d = x2x2 be the monomials we remove (see Sect. 3). Obviously 111 6= 0
and (221 ∨ 222) 6= 0 are necessary conditions for table 7 to be regular. This holds with probability(

1− 1
q

)(
1− 1

q2

)
. The �rst six lines are now linearly independent and after Gaussian Elimination the

lower right 3×3 submatrix is of the following shape, where white stand for zero, gray for some entry and
x for the same entry:

x

x

The probability of this matrix to be regular is
(

1− 1
q

)2

and thus the overall probability is

(
1− 1

q

)3(
1− 1

q2

)
. (23)
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Table 7: Matrix of destroyed systematic dependencies.

x1x1x
(2)
1 x1x1x

(2)
2 x1x1x

(2)
3 x1x1x

(3)
1 x1x1x

(3)
2 x1x1x

(3)
3 x1x2x

(3)
2 x2x2x

(3)
2 x2x2x

(3)
3

π1
M (p(1), p(2)) 111 121 131 0 0 0 0 0 0
π2
M (p(1), p(2)) 0 111 0 0 0 0 0 0 0
π3
M (p(1), p(2)) 0 0 111 0 0 0 0 0 0
π1
M (p(1), p(3)) 0 0 0 111 121 131 221 0 0
π2
M (p(1), p(3)) 0 0 0 0 111 0 121 221 231

π3
M (p(1), p(3)) 0 0 0 0 0 111 0 0 221

π1
M (p(2), p(3)) −113 −123 −133 112 122 132 222 0 0
π2
M (p(2), p(3)) 0 −113 0 0 112 0 122 222 232

π3
M (p(2), p(3)) 0 0 −113 0 0 112 0 0 222

To study the behavior of our algorithm we �rst give a lower bound on the probability of success. This
bound is bad in some cases (cf. table 8) and thus we secondly give a expected probability of success by
using a heuristic.

As in equation (19) our algorithm destroy all systematic dependencies. For D > 2 we derive the
same matrix as in (4), but with blocks of a larger size si. Due to our algorithm the i-th block still is
a submatrix of the upper left part of the block i + 1 (see �gure 1). If block i is regular we can remove

Figure 1: Blockwise dependence of regularity.

i

i

i+ 1

the �rst s columns in the �rst s rows of block i+ 1 by Gaussian elimination. Thus block i+ 1 is regular
i� the obtained block of size (si+1 × si+1) is regular (see �gure 1). Unfortunately we cannot assume
the elements of a single block to be uniformly random. Depending on the choice of monomials of Mon2

there could be strong dependencies among the elements, especially for blocks with small i (see App. B.1,
Tab. 6 for examples). We can derive the size si directly from algorithm 2 and formulate the following
corrolary.

Corollary B.3 Let D = 2k + b with b ∈ {0, 1} be the solving degree of XL and

zi :=

(
n+D − 3

D − 2

)
+

min{i−1,k−1}∑
j=1

(−1)j
(
n+D − 3− 2j

D − 2− 2j

)(
i− 1

j

)
︸ ︷︷ ︸

:=τij

. (24)

The size si of the i-th block of matrix M with 1 ≤ i ≤ m− 1 is given by

si = si−1 + zi with s1 := z1 =

(
n+D − 3

D − 2

)
.

In order to determine the behavior of our algorithm we give a lower bound of the probability of
success.

Lemma B.4 Let m,n > 1 be the number of equations respectively variables of an uniformly random
MQ-system, D the solving degree of XL and zi as de�ned in corollary B.3. A lower bound for the
probability of success of algorithm 2 is given by(

1− 1

q

)∑m−1
i=1 zi

. (25)
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Algorithm 5 Generating linearly independent equations (D = 2)

1: eqn← {}; miniList ← Mon2;
2: for i := 1 to m do

3: for µ ∈ miniList do
4: eqn← eqn ∪ {µp(i)};
5: if |eqn| = T −D − 2 then
6: Stop;
7: end if

8: end for

9: η ∈R miniList;
10: miniList← miniList\{η};
11: end for

Proof. Let M be the matrix given the rows πkM (p(i), p(j)) with a �xed set A of elements that are zero
and a �xed set B of the remaining elements, i.e. |A| + |B| = z2 with s1 (see corollary B.3) the size of
the �rst block in M. All the elements of B are chosen uniformly random. We observe the probability
space of all matrices M such that the probability of being regular is not zero. Note that matrix M

has no systematic dependencies between the rows, i.e. for some choice of elements it has to be regular.
The worst case structure of a matrix M regarding the probability of being regular, is an upper (or
lower) triangular matrix. The probability of such a (s1 × s1) matrix to be regular is the probability of

every diagonal element to be di�erent from zero, i.e.
(

1− 1
q

)s1
. Obviously this probability gets better

if we introduce dependencies between variables. If for example x1 = x2 then the probability raise to(
1− 1

q

)s1−1

. It can be easily shown by induction that the probability of success also increase if we

increase the number of elements in B, i.e. if we destroy the triangular structure. As we have m− 1 such
matrices of size zi for 1 ≤ i ≤ m− 1 to be regular, equation (25) is a lower bound for the probability of
success. �

Table 8: Comparison experimental success probability, lower bound and heuristic.

m n D q Experimental No. of Exp. Lower Bound Heuristic
3 3 3 11 0.684 104 0.564 0.812
3 3 3 127 0.972 104 0.954 0.984
5 5 4 11 0.337 104 0.006 0.659
5 5 4 127 0.738 104 0.653 0.969
5 5 5 11 0.301 104 3 · 10−5 0.659
5 5 5 127 0.801 104 0.419 0.969
6 6 3 11 0.452 104 0.057 0.593
6 6 3 127 0.938 104 0.789 0.961
9 8 3 11 0.258 103 0.002 0.434
9 8 3 127 0.889 103 0.603 0.938

Table 8 shows that (25) is a quite bad bound in some case. The proof of lemma B.4 suggests that for
large n, m and D the i-th block of matrixM, precisely the lower right (zi×zi) submatrix after Gaussian
Elimination, is a random matrix and not, as for the lower bound assumed, a triangular matrix. This
leads to the following heuristic.

Heuristic. For large n, m and D the probability of success of algorithm 2 is close to

m−1∏
i=1

zi−1∏
j=0

(
1− qj−zi

)
. (26)
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For real worldMQ-systems, such as UOV with m = 26, n = 24, q = 256 and D = 12 the lower bound
is almost 0. The heuristic tells us that our algorithm should succeed with probability 0.901. Clearly it
will be subject of future research to get sharper bounds on the probability of success. Please mention
that even if our algorithm 2 is not successful, i.e. there are at least one reduction to zero, this does not
imply that algorithm 4 fails. Most times spending one or two extra equations gave us full rank again.
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