
CommitCoin: Carbon Dating Commitments with Bitcoin?

Jeremy Clark1 and Aleksander Essex2

1 Carleton University
clark@scs.carleton.ca
2 University of Waterloo
aessex@cs.uwaterloo.ca

Abstract. In the standard definition of a commitment scheme, the sender commits to a message and
immediately sends the commitment to the recipient interested in it. However the sender may not always
know at the time of commitment who will become interested in verifying it. Further, when the interested
party does emerge, it could be critical to establish when the commitment was made. Employing a proof
of work protocol at commitment time will later allow anyone to “carbon date” when the commitment was
made, approximately, without trusting any external parties. We present CommitCoin, an instantiation
of this approach that harnesses the existing processing power of the Bitcoin peer-to-peer network; a
network used to mint and trade digital cash.

1 Introductory Remarks

Consider the scenario where Alice makes an important discovery. It is important to her that she receives
recognition for her breakthrough, however she would also like to keep it a secret until she can establish a
suitable infrastructure for monetizing it. By forgoing publication of her discovery, she risks Bob independently
making the same discovery and publicizing it as his own.

Folklore suggests that Alice might mail herself a copy of her discovery and leave the letter sealed, with
the postal service’s timestamp intact, for a later resolution time. If Bob later claims the same discovery, the
envelope can be produced and opened. In reality, this approach does not work as (among other shortcomings)
most postal services are pleased to timestamp and deliver unsealed empty envelopes that can be retroactively
stuffed with “discoveries.”

In our approach, Alice will use a commitment scheme to put the discovery in a “digital envelope” which can
be opened at some later time, but only by Alice. Alice can safely disclose the commitment value to anyone, but
she does not know ahead of time that Bob will rediscover her breakthrough. Alice might attempt to reach Bob
by broadcasting the commitment value to as many people as possible or she might have a trusted/distributed
third party timestamp it, however she is neither guaranteed to reach Bob, nor choose a party that Bob will
trust.

Instead we show that Alice can produce a commitment and later convince Bob that the commitment was
made at roughly the correct time, premised on the assumption that she does not have unusual computational
power. We call this “carbon dating.” We show a general approach to carbon dating using moderately hard
puzzles and then propose a specific instantiation: CommitCoin. CommitCoin harnesses the existing processing
power of the Bitcoin network without trusting it, and is designed to leave the commitment value evident in
the public Bitcoin transcript in a way that does not destroy currency. We use CommitCoin to augment the
verifiability of a real-world election.

2 Preliminaries and Related Work

Commitment Schemes. Briefly, Comm(m, r) takes message m and randomness r and produces commitment
c. Open(c,m, r) takes the commitment and purported message and returns accept iff c is a valid commitment

? A short version of this paper appeared at Financial Cryptography 2012



to m. Commitments should be binding and hiding. Respectively, it should be hard to find any 〈m1,m2, r〉
where m1 6= m2 such that Open(Comm(m1, r),m2, r) accepts, and it should be hard to find any 〈m, r〉 given
c such that Open(c,m, r) accepts.

Secure Time-Stamping. Secure time-stamping [18] is a protocol for preserving the chronological order of
events. Generally, messages are inserted into a hash chain to ensure their relative temporal ordering is pre-
served under knowledge of any subsequent value in the chain. The chain is constructed by a distributed time-
stamping service (TSS) and values are broadcast to interested participants. Messages are typically batched
into a group, using a hash tree [4,3,7,27] or an accumulator [5], before insertion in the chain. Time-stamping
is a mature field with standardization3 and commercial implementations.

A secure timeline is a “tamper-evident, temporally-ordered, append-only sequence” of events [24]. If an
event Eti occurs at time ti, a secure timeline can only establish that it was inserted after Eti−1

was inserted
and before Eti+1

was. To determine ti by consulting the chain, one must either trust the TSS to vouch for
the correct time, or, to partially decide, trust a recipient of a subsequent value in the chain to vouch for
when that value was received (if at tj , we can establish ti < tj). However should conflicting values emerge,
implying different hash chains, there is no inherent way to resolve which chain is correct beyond consensus.

Non-Interactive Time-Stamping. An approach closely related to our notion of carbon dating is non-interactive
time-stamping [25]. In such a scheme, stampers are not required to send any message at stamping time. The
proposed scheme is in the bounded storage model. At each time interval, a long random bitstring is broadcast
to all parties. Stampers store a subset that is functionally dependent on the message they are timestamping.
Verifiers also captured their own subset, called a sketch, at every time interval. This allows verification of
the timestamp by anyone who is participating in the protocol, but not by a party external to the protocol.
By contrast, our notion of carbon dating allows verification by anyone but is not necessarily non-interactive.

Proof of Work. A certain body of work considers applications of moderately hard functions or puzzles that
take a certain amount of computational resources to solve. These are variably called pricing [14], timing [15],
delaying [17], or cost [16,2] functions; and time-lock [29,6,22] or client [20,1,12,32,33,13,31,10,30] puzzles. Proof
of work is sometimes used as an umbrella term [19]. Among other applications, proof of work can be used to
deter junk email [14,16] and denial of service attacks [20,12,2,32,33], construct time-release encryption and
commitments [29,6], and mint coins in digital currencies [28,2,26].

We consider proof of work as three functions: 〈Gen,Solve,Verify〉. The generate function p = Gen(d, r)
takes difficulty parameter d and randomness r and generates puzzle p. The solve function s = Solve(p) gen-
erates solution s from p. Solve is a moderately hard function to compute, where d provides an expectation on
the number of CPU instructions or memory accesses needed to evaluate Solve. Finally, verification Verify(p, s)
accepts iff s is a correct solution to p.

Time-Stamping & Proof of Work. Bitcoin is a peer-to-peer digital currency that uses secure time-stamping
to maintain a public transcript of every transaction [26]. However new events (groups of transactions) are
appended to the hash chain only if they include the solution to a moderately hard puzzle generated non-
interactively from the previous addition. Peers compete to solve each puzzle and the solver is awarded newly
minted coins. A secure timeline with proof of work provides a mechanism to both limit the creation of new
currency and to make it computationally difficult to change a past event and then catch up to the length of
the original chain (peers accept the longest chain as canonical).

3 Commitments with Carbon Dating

A protocol for carbon dating commitments is provided in Protocol 1. It is a natural application of proof of
work protocols but one that does not seem to have been specifically noted in the literature before.4 Alice
3 ISO IEC 18014-3; IETF RFC 3161; ANSI ASC X9.95
4 Concurrent to the review of this work, it is independently proposed and studied [23].

2



PROTOCOL 1 (Commitments with Carbon Dating)

Input: Alice has message m at t1.
Output: Bob decides if m was known by Alice prior to pivot time t2.
The protocol:
1. Pre-instantiation: At t0, Alice commits to m with randomness r by computing c = Comm(m, r). She

then generates puzzle based on c with difficulty d (such that the time to solve it is approximately ∆t) by
computing p = Gen(d, c). She outputs 〈c, p〉.

2. Instantiation: At t1, Alice begins computing s = Solve(p).
3. Resolution: At t3 = t1 + ∆t, Alice completes s = Solve(p) and outputs 〈s,m, r〉. Bob checks that both

Verify(s,Gen(d, c)) and Open(c,m, r) accept. If so, Bob decides if t3 −∆t
?
� t2

commits to a message m and instantiates a puzzle p based on the commitment value c that will take, on
expectation, ∆t units of time to solve. Alice begins solving p. Should a new party, Bob, become interested
in when c was committed to, Alice will later produce the solution s. When given s, Bob concludes that p,
and thus c, were created ∆t time units before the present time. Since p will not take exactly ∆t to solve,
there is some variance in the implied instantiation time. We consider the case where Bob is only interested
in whether the commitment was made well before a specific time of interest, which we call the pivot time.

If useful, a few extensions to Protocol 1 are possible. It should be apparent that carbon dating can be
used for any type of sufficiently random message (e.g., plaintexts, ciphertexts, signatures, etc.) by replacing
c in Gen(d, c) with the message. Second, the commitment can be guaranteed to have been made after a given
time by, e.g., including recent financial data in the puzzle instantiation [11]. Finally, the resolution period
can be extended by instantiating a new puzzle with the solution to the current puzzle (assuming the puzzles
are entropy-preserving; see [17] for a definition of this property).5

3.1 Puzzle Properties

For carbon dating, we require the proof of work puzzle to have specific properties. Consider two representative
proof of work puzzles from the literature (and recall c is the commitment value and d is a difficulty parameter).
The first puzzle (Prs), based on repeated squaring, is to compute Solve(d, c,N) = c2

d

mod N where N =
q1q2 for unknown large primes q1 and q2, and 2d � N [29,6,21]. The second puzzle (Ph), based on hash
preimages, is to find an x such that y = H(c, x) has d leading zeros (where H is a cryptographic hash
function)6 [16,1,2,26]. We contrast the properties of Prs and Ph with the properties of an ideal puzzle scheme
for carbon dating (Pcd).

Pcd should be moderately hard given a sufficiently random c as a parameter. Prs requires d modular
multiplications and Ph requires 2d−1 hashes on average. Neither precomputation, amortizing the cost of
solving many puzzles, or parallelization should be useful for solving Pcd. Parallelization is useful in solving
Ph, while Prs is by design inherently sequential. Verify in Pcd should be efficient for anyone. This is the case in
Ph but not Prs, where efficient verification requires knowing the factorization of N ,7 making Prs useful only
when the puzzle creator and solver are different parties.8 When surveying the literature, we found that like
5 It may be preferable to solve a chain of short puzzles, rather than a single long puzzle, to allow (by the law of large
numbers) the average solution time to converge and to reduce the amount of time Bob must wait for the solution.

6 Let H : {0, 1}∗ → {0, 1}m. Then for d ≤ m, find any x such that y ∈ ({0}d‖{0, 1}m−d).
7 The totient of N serves as a trapdoor: compute δ = 2d mod φ(N) and then s = cδ mod N .
8 Alice could use Ph with the smallest unfactored N from the RSA challenges. Assuming continued interest in
factoring these numbers, Alice’s solution will eventually be verifiable. However she risks (a) it being factored before
she solves the puzzle or (b) it never being factored at all. It also assumes non-collusion between Alice and RSA
(assuming they know the factors).

3



Prs and Ph, each type of puzzle is either parallelizable or only verifiable by the puzzle creator. Designing a
non-interactive, non-parallelizable puzzle appears to be an open problem.

Finally, we require a few properties specific to our scheme. It should be hard to choose c such that the
puzzle is not moderately hard. Given s = Solve(Gen(d, c)) and s′ = Solve(Gen(d, c′)), it should be hard to
find any pair of puzzles such that s = s′. Further, it should not be efficient to convert 〈s, c〉 into 〈s′, c′〉.

3.2 Limitations

Aside from a good candidate for Pcd, the primary limitation to Protocol 1 is that the implied instantiation
time is fuzzy. Carbon dating is best when the ratio between instantiation-to-pivot and pivot-to-resolution is
maximized but the timing of the pivot is often unknowable. Another limitation is that Alice could commit to
many different messages but only claim one. This excludes carbon dating (and non-interactive timestamping)
from, e.g., predicting election results or game outcomes. Generally, the scheme only works for accepting a
committed message from an exponentially large set. A final limitation is that Alice must devote a CPU to
solely solving the problem for a long period of time. We address this last limitation with CommitCoin, and
then latter provide an example where the first two limitations are not as applicable.

4 Carbon Dating with Bitcoin

Bitcoin is a peer-to-peer digital currency. A simplification of the scheme is as follows. Participants are
identified by a public signing key. A transaction includes a sender, receiver, and amount to be transferred
(units of bitcoins are denoted BTC), and it is digitally signed by the sender and broadcast to the network.
Transactions are batched together (into a “block”) and then appended to a hash chain (“block chain”) by
solving the Ph hash puzzle on the block (d = 53 bits currently). The first node to broadcast a solution is
awarded newly minted coins (currently 50 BTC) plus any transaction fees (currently optional). At the time
of writing, one large Bitcoin mining pool, Deepbit, reports being able to compute 242 hashes/second, while
the network solves a puzzle on average every 10 minutes.9

4.1 CommitCoin protocol

If Alice can put her commitment value into a Bitcoin transaction, it will be included in the chain of puzzles
and the network will provide carbon dating without Alice having to perform the computation herself. Bob
only has to trust that Alice cannot produce a fraudulent block chain, longer than the canonical one and
in less time (which would, incidentally, allow Alice to claim all the rewards for the fraudulent portion).
This idea has been considered on the Bitcointalk message board10in the context of the distributed network
vouching for the timestamp. Our observation is that even if you do not trust the timestamp or any node
in the network, the proof of work itself can be used to carbon date the transaction (and thus commitment
value).

Alice has control over three parameters in a Bitcoin transaction: her private key(s), her public key(s),
and the randomness used in the signature algorithm which, importantly, is ECDSA. If she sets the receiver’s
public key 11to be her commitment value c and sends 1 BTC to it, the 1 BTC will be unrecoverable. We
consider this undesirable for two reasons: (a) it is financially wasteful for Alice and (b) it is not being a good
citizen of the Bitcoin community.

By setting c equal to a private key or the signature randomness and following the protocol, c itself will
never directly appear in the transcript. To get around this, Alice sets c to the private key of a new account
and then purposely leaks the value of the private key by signing two different transactions with the same
randomness. The CommitCoin protocol is given in Protocol 2. Since c is randomized, it has sufficient entropy
to function (temporarily) as a secret key. A few bits of the secret key could be used as a pointer (e.g., URL)
to a place to post the opening of the commitment.
9 http://deepbit.net; http://blockexplorer.com/q/interval

10 http://goo.gl/fBNnA
11 Technically, it is a fingerprint of the public key.

4

http://deepbit.net
http://blockexplorer.com/q/interval
http://goo.gl/fBNnA


PROTOCOL 2 (CommitCoin)

Input: Alice has message m, key pair 〈sk, pk〉 associated with a Bitcoin account. Without loss of generality the
account has a balance of >2 BTC.
Output: The Bitcoin block chain visibly containing the commitment to m (without burning money).
The protocol:
1. Pre-instantiation: At t0, Alice does the following:

(a) Alice commits to m with randomness r by computing c = Comm(m, r).
(b) Alice generates new temporary key pair 〈sk′, pk′〉 with sk′ = c.

2. Instantiation: At t1, Alice does the following:
(a) Alice generates transaction τ1 = 〈pk → pk′, 2〉 to send 2 BTC from pk to pk′ and signs it with randomness

ρ: σ1 = Signsk(τ1, ρ). She outputs 〈τ1, σ1〉 to the Bitcoin network.
(b) Alice generates transaction τ2 = 〈pk′ → pk, 1〉 to send 1 BTC from pk′ back to pk and signs it with

randomness ρ′: σ2 = Signsk′(τ2, ρ
′). She outputs 〈τ2, σ2〉 to the Bitcoin network.

3. Tag & Open: At t2, after τ1 and τ2 have been finalized, Alice generates transaction τ3 = 〈pk′ → pk, 1〉 to
send the remaining 1 BTC from pk′ back to pk and signs it with the same randomness ρ′: σ3 = Signsk′(τ3, ρ

′).
She outputs 〈τ3, σ3〉 to the Bitcoin network.

4. Extraction: At t3, Bob can recover c by extracting sk′ from σ2 and σ3.

Remark: For simplicity we do not consider transaction fees.

4.2 Implementation and use with Scantegrity

An interesting application of carbon dating is in end-to-end verifiable (E2E) elections. Scantegrity is an
election system where the correctness of the tally can proven unconditionally [9], however this soundness
relies, in part, on commitments made prior to the election. If a corrupt election authority changed the pre-
election commitments after the election without being noticed, an incorrect tally could be made to verify.
It is natural to assume that many people may only become interested in verifying an election after it is
complete. Since the pivot (election day) is known, the commitments can be made well in advance, reducing the
uncertainty of the carbon dating protocol. Moreover, owing to the design of Scantegrity, invalid commitments
will only validate negligibly, ruling out precommitting to many possible values as an attack. Scantegrity was
used in the 2011 municipal election in Takoma Park, MD (for a second time [8]) and CommitCoin was used
to provide carbon dating of the pre-election commitments (see the appendix for details).

5 Concluding Remarks

Acknowledgements. This research is supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC)—the first author through a postdoctoral fellowship and the second through a postgraduate
scholarship.

References

1. T. Aura, P. Nikander, and J. Leiwo. DoS-resistant authentication with client puzzles. In Security Protocols, 2000.
2. A. Back. Hashcash: a denial of service counter-measure, 2002.
3. D. Bayer, S. A. Haber, and W. S. Stornetta. Improving the efficiency and reliability of digital time-stamping. In

Sequences, 1991.
4. J. Benaloh and M. de Mare. Efficient broadcast time-stamping. Technical Report TR-MCS-91-1, Clarkson

University, 1991.
5. J. Benaloh and M. de Mare. One-way accumulators: a decentralized alternative to digital signatures. In EURO-

CRYPT, 1993.

5



6. D. Boneh and M. Naor. Timed commitments. In CRYPTO, 2000.
7. A. Buldas, P. Laud, H. Lipmaa, and J. Villemson. Time-stamping with binary linking schemes. In CRYPTO,

1998.
8. R. T. Carback, D. Chaum, J. Clark, J. Conway, A. Essex, P. S. Hernson, T. Mayberry, S. Popoveniuc, R. L.

Rivest, E. Shen, A. T. Sherman, and P. L. Vora. Scantegrity II municipal election at Takoma Park: the first E2E
binding governmental election with ballot privacy. In USENIX Security Symposium, 2010.

9. D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc, R. L. Rivest, P. Y. A. Ryan, E. Shen, and A. T.
Sherman. Scantegrity II: end-to-end verifiability for optical scan election systems using invisible ink confirmation
codes. In EVT, 2008.

10. L. Chen, P. Morrissey, N. P. Smart, and B. Warinschi. Security notions and generic constructions for client
puzzles. In ASIACRYPT, 2009.

11. J. Clark and U. Hengartner. On the use of financial data as a random beacon. In EVT/WOTE, 2010.
12. D. Dean and A. Subblefield. Using client puzzles to protect TLS. In USENIX Security, 2001.
13. S. Doshi, F. Monrose, and A. D. Rubin. Efficient memory bound puzzles using pattern databases. In ACNS,

2006.
14. C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In CRYPTO, 1992.
15. M. K. Franklin and D. Malkhi. Auditable metering with lightweight security. In Financial Cryptography, 1997.
16. E. Gabber, M. Jakobsson, Y. Matias, and A. Mayer. Curbing junk e-mail via secure classification. In Financial

Cryptography, 1998.
17. D. M. Goldschlag and S. G. Stubblebine. Publicly verifiable lotteries: Applications of delaying functions. In

Financial Cryptography, 1998.
18. S. Haber and W. S. Stornetta. How to time-stamp a digital document. In CRYPTO, 1990.
19. M. Jakobsson and A. Juels. Proofs of work and bread pudding protocols. In Communications and Multimedia

Security, 1999.
20. A. Juels and J. Brainard. Client puzzles: A cryptographic defense against con- nection depletion attacks. In

NDSS, 1999.
21. G. O. Karame and S. Capkun. Low-cost client puzzles based on modular exponentiation. In ESORICS, 2010.
22. M. Mahmoody, T. Moran, and S. Vadhan. Time-lock puzzles in the random oracle model. In CRYPTO, 2011.
23. M. Mahmoody, S. P. Vadhan, and T. Moran. Non-interactive time-stamping and proofs of work in the random

oracle model. IACR ePrint 553, 2011.
24. P. Maniatis and M. Baker. Enabling the long-term archival of signed documents through time stamping. In

FAST, 2002.
25. T. Moran, R. Shaltiel, and A. Ta-Shma. Non-interactive timestamping in the bounded storage model. In

CRYPTO, 2004.
26. S. Nakamoto. Bitcoin: A peer-to-peer electionic cash system. Unpublished, 2008.
27. B. Preneel, B. V. Rompay, J. J. Quisquater, H. Massias, and J. S. Avila. Design of a timestamping system.

Technical Report WP3, TIMESEC Project, 1998.
28. R. L. Rivest and A. Shamir. PayWord and MicroMint: two simple micropayment schemes. In Security Protocols,

1996.
29. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto. Technical Report

TR-684, MIT, 1996.
30. D. Stebila, L. Kuppusamy, J. Rangasamy, C. Boyd, and J. M. Gonzalez Nieto. Stronger difficulty notions for

client puzzles and denial-of-service-resistant protocols. In CT-RSA, 2011.
31. S. Tritilanunt, C. Boyd, E. Foo, and J. M. Gonzalez Nieto. Toward non-parallelizable client puzzles. In CANS,

2007.
32. X. Wang and M. K. Reiter. Defending against denial-of-service attacks with puzzle auctions. In IEEE Symposium

on Security and Privacy, 2003.
33. B. Waters, A. Juels, J. A. Halderman, and E. W. Felten. New client puzzle outsourcing techniques for DoS

resistance. In CCS, 2004.

A Proof of Concept

We committed to the title and abstract of this paper and, as proof of concept, inserted it into the Bitcoin
block chain on September 15, 2011 (the submission deadline for FC 2012). We used a simplified version of
CommitCoin, with c set to be the public key fingerprint. As noted, this effectively burns the money. A proper
implementation using c as the private key is forthcoming.

First we ran,

6



openssl rand -out random.dat 20

creating a file containing a 20 byte random factor.12 Then we concatenated the randomness to the end
of the abstract PDF13 and hashed it using RIPEMD-160,

cat abstract.pdf random.dat > preimage.dat
openssl dgst -ripemd160 preimage.dat

giving us the result:

135e3712334428d4061efe4e5ffd5ff817aeb817

This serves as a basic commitment scheme. We called an online tool14 to convert this hash into a valid
Bitcoin address giving us:

12mQhpvGYdBrvDJq6sFGwEe3GETaqEM4Jk

Finally, we used the Bitcoin Faucet15 to send BTC0.005 to this address. This transaction ostensibly
appeared in the Bitcoin blockchain on 2011-09-16 00:24:32 which can be seen in blockexplorer.16 However
it may be the case that we actually committed to our abstract long after 2011-09-16 00:24:32 and colluded
with blockexplorer or the Bitcoin network to display the wrong timestamp. How can you really be sure?

By the time you are reading this, many more blocks will have been added to the blockchain. Each block
that is added is a solution to a moderately hard problem. Suppose we actually committed to the abstract
yesterday. That means we would have had to forge the entire chain from Block 14553517 to the current
block.18 Given each block takes on average 10 minutes for the entire Bitcoin network to solve, we could not
have solved that many blocks in a single day even if we controlled the whole network.

B Use with Scantegrity

The Scantegrity pre-election commitments were made with CommitCoin on Oct 18, 2011 for the municipal
election of Takoma Park, MD held on Nov 08, 2011. The 6 MeetingOneOut.xml files from the Scantegrity
data (which contain the pre-election commitments of the 6 wards of Takoma Park’s election) were inserted
into the block chain using the same simplified version of CommitCoin used for the proof-of-concept above.
Since the files already contained randomized commitments generated by Scantegrity, we simply hashed them
to an appropriate size. The Bitcoin blockchain will show BTC0.01 was sent to the hash of each of these 6
files.

Bitcoin’s blockchain forms a proof-of-work. Participants in the Bitcoin network use their computers to
compete to “solve blocks” (i.e., to find partial hash preimages). The average number of hashes required to
slove a block at the current difficulty level is 252. The network is currently able to solve one block on average
every 12 minutes. An adversary attempting to change the commitments of the Takoma Park election (e.g.,
on election night, Nov 8th, 2011) would have to produce an alternate (but valid) block chain, which would
require them to compute over 263 hashes. As the block chain grows through time (through the course of
commerce done with Bitcoin), so would the attackers work load.

We used the following approach:

1. Convert file to hash: RIPEMD160(file) = hash
12 http://people.scs.carleton.ca/~clark/commitcoin/random.dat
13 http://people.scs.carleton.ca/~clark/commitcoin/abstract.pdf
14 http://blockexplorer.com/q/hashtoaddress/135e3712334428d4061efe4e5ffd5ff817aeb817
15 https://freebitcoins.appspot.com/
16 http://blockexplorer.com/tx/2993c284f0b6838386ddd286af415384560d93cc4e27d25087fd6534f8e0d276
17 http://blockexplorer.com/b/145535
18 http://blockexplorer.com/q/getblockcount

7

http://people.scs.carleton.ca/~clark/commitcoin/random.dat
http://people.scs.carleton.ca/~clark/commitcoin/abstract.pdf
http://blockexplorer.com/q/hashtoaddress/135e3712334428d4061efe4e5ffd5ff817aeb817
https://freebitcoins.appspot.com/
http://blockexplorer.com/tx/2993c284f0b6838386ddd286af415384560d93cc4e27d25087fd6534f8e0d276
http://blockexplorer.com/b/145535
http://blockexplorer.com/q/getblockcount


2. Convert hash to Bitcoin address format: Hash2Address(hash) = BitcoinAddress
3. Send funds to BitcoinAddress: URL of transaction

The files already contain the commitments. The transactions below appeared in the Bitcoin blockchain
at (2011-10-18 17:26:00):

baseURL = https://scantegrity.org/svn/data/takoma-nov8-2011/

RIPEMD160(./ward1/MeetingOneOut.xml) = f6458eceefd326af9d4fe74125bdc2e762d28ac9
http://blockexplorer.com/q/hashtoaddress/f6458eceefd326af9d4fe74125bdc2e762d28ac9 =

1PTAZ9wMZ2Ff9RgLt4UMXMh7vbBNdTDVbs
Transaction: http://blockexplorer.com/tx/3789397fc352e93e7f1e7be3b770a04bff251ae36fa601125372336c626cb743

RIPEMD160(./ward2/MeetingOneOut.xml) = d2a8535ba5a61bad576d2adecb54c700c40ae2d4
http://blockexplorer.com/q/hashtoaddress/d2a8535ba5a61bad576d2adecb54c700c40ae2d4 =

1LCrYkh7nDRippJXx79kzVRvsbG13gKagN
Transaction: http://blockexplorer.com/tx/769104a1676b56232a1e64f3001c874926945ff1ca2854484ccea32faf10621a

RIPEMD160(./ward3/MeetingOneOut.xml) = abc960bcd48b89b8b2a8e6fdb3713d6f2a50ecf5
http://blockexplorer.com/q/hashtoaddress/abc960bcd48b89b8b2a8e6fdb3713d6f2a50ecf5 =

1GfKnnSffFBEtb3334M19LX5GCtQjNV3Du
Transaction: http://blockexplorer.com/tx/9a7c41157b09a5df78cbeb0b9158d310639eded63a015fe571ba96c8dd012903

RIPEMD160(./ward4/MeetingOneOut.xml) = a6866ea967e326fe9f28f8ae76ea32a396cb5f29
http://blockexplorer.com/q/hashtoaddress/a6866ea967e326fe9f28f8ae76ea32a396cb5f29 =

1GBWDMzPjREp1kh6UDKfrqzJySpMNKJCF8
Transaction: http://blockexplorer.com/tx/a265acda0eb4f71fd6655894810d11b268f1e4de56dd018a90897f7d6c28a4ce

RIPEMD160(./ward5/MeetingOneOut.xml) = 5dce8714c84d7df569e4c4dc7dad24fd3d8aeccc
http://blockexplorer.com/q/hashtoaddress/5dce8714c84d7df569e4c4dc7dad24fd3d8aeccc =

19Z1FdkgY4ab7S2oF2mrVJmHTkbRNsZV3X
Transaction: http://blockexplorer.com/tx/630630365bd80cf0c5011709bb23f2f3bd4e9944c513ba79d2d43b45fdb0e848

RIPEMD160(./ward6/MeetingOneOut.xml) = 8e62d49a002b35e5463c887a8961739d70d45ac5
http://blockexplorer.com/q/hashtoaddress/8e62d49a002b35e5463c887a8961739d70d45ac5 =

1DysM6u7Mu7Gfp1cug6EpBSshijZg1CakY
Transaction: http://blockexplorer.com/tx/0a1f9361f068c1f3f05f16a8bea89173ad20045bd6f5e6f57611ce6e925185f5

8


	CommitCoin: Carbon Dating Commitments with Bitcoin

