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Abstract. The diversity of computing platforms is increasing rapidly. In order to allow security applica-
tions to run on such diverse platforms, implementing and optimizing the same cryptographic primitives
for multiple target platforms and heterogeneous systems can result in high costs. In this paper, we report
our efforts in developing and benchmarking a platform-independent Crypto Tools Library (CTL). CTL is
based on a dataflow programming framework called Reconfigurable Video Coding (RVC), which was re-
cently standardized by ISO/IEC for building complicated reconfigurable video codecs. CTL benefits from
various properties of the RVC framework including tools to 1) simulate the platform-independent designs,
2) automatically generate implementations in different target programming languages (e.g., C/C++, Java,
LLVM, and Verilog/VHDL) for deployment on different platforms as software and/or hardware modules,
and 3) design space exploitation such as automatic parallelization for multi- and many-core systems. We
benchmarked the performance of the SHA-256 and AES implementations in CTL on single-core target
platforms and demonstrated that implementations automatically generated from platform-independent
RVC applications can achieve a run-time performance comparable to reference implementations manually
written in C and Java. For a quad-core target platform, we benchmarked a 4-adic hash tree application
based on SHA-256 that achieves a performance gain of up to 300% for hashing messages of size 8 MB.

Keywords: Crypto Tools Library (CTL), Reconfigurable Video Coding (RVC), dataflow programming,
reconfigurability, platform independence, multi-core.

1 Introduction

Nowadays we are living in a fully digitized and networked world. The ubiquitous transmission of data over the
open network has made security one of the most important concerns in almost all modern digital systems, being
privacy another. Both security and privacy concerns call for support from applied cryptography. However,
the great diversity of today’s computing hardware and software platforms is creating a big challenge for
applied cryptography since we need building blocks that should ideally be reused at various platforms without
reprogramming. For instance, a large-scale video surveillance system (like those we have already been seeing
in many big cities) involves many different kinds of hardware and software platforms: scalar sensors, video
sensors, audio sensors, mobile sensors (e.g. mobile phones), sensor motor controller, storage hub, data sink,
cloud storage servers, etc. [12]. Supporting so many different devices in a single system or cross the boundary
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of multiple systems is a very challenging task. Many cryptographic libraries have been built over the years to
partly meet this challenge, but most of them are written in a particular programming language (e.g. C, C++,
Java and VHDL) thus their applications are limited in nature. While it is always possible to port a library
written in one language to the other, the process requires significant human involvement on reprogramming
and/or re-optimization, which may not be less easier than designing a new library from scratch.

In this paper, we propose to meet the above-mentioned technical challenges by building a platform-
independent5 library based on a recently-established ISO / IEC standard called RVC (Reconfigurable Video
Coding) [37, 38]. Unlike its name suggests, the RVC standard offers a general development framework for all
data-driven systems including cryptosystems, which is not surprising because video codecs are among the most
complicated data-driven systems we can have. The RVC framework follows the dataflow paradigm, and enjoys
the following nice features at the level of programming language: modularity, reusability, reconfiguration, code
analyzability and parallelism exploitability. Modularity and reusability help to simplify the design of compli-
cated programs by having functionally separated and reusable computational blocks; reconfigurability makes
reconfiguration of complicated programs easier by offering an interface to configure and replace computational
blocks; code analyzability allows automatic analysis of both the source code and the functional behavior of
each computational block so that code conversion and program optimization can be done in a more systematic
manner. The automated code analysis enables to conduct a fully-/semi-automated design-space exploitation
to find critical paths and/or parallel data-flows, which suggests different optimization refactorings (merging
or splitting) of different computational blocks [47], and/or to achieve concurrency by mapping different com-
putational blocks to different computing resources [22]. In contrast to the traditional sequential programming
paradigm, the dataflow programming paradigm is ideally suited for such optimizations thanks to its data-driven
nature as described next.

The dataflow programming paradigm, invented in the 1960s [66], allows programs to be defined as a
directed graph in which the nodes correspond to computational units and edges represent the direction of the
data flowing among nodes [27, 44]. The modularity, reusability and reconfigurability are achieved by making
each computational unit’s functional behavior independent of other computational units. In other words,
the only interface between two computational units is the data exchanged. The separation of functionality
and interface allows different computational units to run in parallel, thus easing parallelism exploitation.
The dataflow programming paradigm is suited ideally for applications with a data-driven nature like signal
processing systems, multimedia applications, and as we show in this paper also for cryptosystems.

Our Contributions: In this paper, we present the Crypto Tools Library (CTL) as the first (to the best
of our knowledge) open and platform-independent cryptographic library based on a dataflow programming
framework (in our case the RVC framework). In particular, the CTL achieves the following goals:

– Fast development/prototyping: By adapting the dataflow programming paradigm the CTL compo-
nents are inherently modular, reusable, and easily reconfigurable. These properties do not only help to
quickly develop/prototype security algorithms but also make their maintenance easier.

– Multiple target languages: The CTL cryptosystems are programmed only once, but can be used to
automatically generate source code for multiple programming languages (C, C++, Java, LLVM, Verilog,
VHDL, XLIM, and PROMELA at the time for this writing6).

– Automatic code analyzability and optimization: An automated design-space exploitation process
can be performed at the algorithmic level, which can help to optimize the algorithmic structure by refactor-

5 In the context of MPEG RVC framework, the word “platform” has a broader meaning. Basically, it denotes any
computing environment that can execute/interpret code or compile code to produce executable programs, which
includes both hardware and software platforms and also hybrid hardware-software systems.

6 More code generation backends are going to be made in the future, especially OpenCL for GPUs.
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ing (merging or splitting) selected computational blocks, and by exploiting multi-/many-core computing
resources to run different computational blocks in parallel.

– Hardware/Software co-design: Heterogenous systems involving software, hardware, and various I/O
devices/channels can be developed in the RVC framework [67].

– Adequate run-time performance: Although CTL cryptosystems are highly abstract programs, the run-
time performance of automatically synthesized implementations is still adequate compared to non-RVC
reference implementations.

In this paper, along with the development of the CTL itself, we report some performance benchmarks
of CTL that confirm that the highly abstract nature of the RVC code does not compromise the run-time
performance. In addition, we also briefly discuss how different key attributes of the RVC framework can be
used to develop different cryptographic algorithms and security applications.

Outline: The rest of the paper is organized as follows. In Sec. 2 we will give a brief overview of related work,
focusing on a comparison between RVC and other existing dataflow solutions. Sec. 3 gives an overview of the
building blocks of the RVC framework and Sec. 4 describes the design principles of CTL and the cryptosystems
that are already implemented. In Sec. 5, we give performance benchmarks of SHA-256 and AES implemented
in CTL on a single-core and a quad-core machine. In Sec. 6, we conclude the paper by giving directions for
future works.

2 Related Work

Many cryptographic libraries have been developed over the years (e.g., [17, 26, 32, 45, 50, 60, 61, 68, 69]), but
very few can support multiple programming languages. Some libraries do support more than one programming
language, but often in the form of separate sets of source code and separate programming interfaces/APIs [68],
or available as commercial software only [9, 45]. There is also a large body of optimized implementations of
cryptosystems in the literature [19, 20, 23, 48, 49, 59, 72], which normally depend even more on the platforms
(e.g., the processor architecture and/or special instruction sets [30,49,71,72]).

Despite being a rather new standard, the RVC framework has been successfully used to develop different
kinds of data-driven systems especially multimedia (video, audio, image and graphics) codecs [13–15,21,39] and
multimedia security applications [11]. In [11], we highlighted some challenges being faced by developers while
building multimedia security applications in imperative languages and discussed how those challenges can be
addressed by developing multimedia security applications in the RVC framework. In addition, we presented
three multimedia security applications (joint H.264/MPEG-4 video encoding and decoding, joint JPEG image
encoding and decoding and compressed domain JPEG image watermark embedding and detecting) developed
using the CTL cryptosystems and the RVC implementations of H.264/MPEG-4 and JPEG codecs. Considering
the focus of that paper, we only used and briefly summarized CTL. In this paper, we give a detailed discussion
on CTL, its design principles, features and benefits, and performance benchmarking results.

The wide usage of RVC for developing multimedia applications is not the only reason why we chose it for
developing CTL. A summary of advantages of RVC over other solutions is given in Table 1 (this is an extension
of the table in [11]). We emphasize that this comparison focuses on the features relevant to achieve the goals of
CTL, so it should not be considered as an exhaustive overview of all pros and cons of the solutions compared.

3 Reconfigurable Video Coding (RVC)

The RVC framework was standardized by the ISO/IEC (via its working group JTC1 / SG29 / WG11, better
known as MPEG – Motion Picture Experts Group [52]) to meet the technical challenges of developing more
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Table 1: Comparison of RVC framework with other candidate solutions. Candidates with similar characteristics
are grouped together. These categories include 1) high-level specification languages for hardware programming
languages, 2) frameworks for hardware/software co-design, 3) commercial products, and 4) other cryptographic
libraries. The columns in the table represent the following features: A) high-level (abstract) modeling and
simulation; B) platform independence; C) code analyzability (i.e., semi-automated design-space exploitation);
D) hardware code generation; E) software code generation; F) hardware/software co-design; G) supported
target languages; H) open-source or free implementations; I) international standard.

Cat. Candidate A B C D E F G H I

RVC 3 3 3 3 3 3
C, C++, Java, LLVM, Verilog, VHDL,

XLIM, PROMELA
3 3

1 Handel-C [43] 7 7 7 3 7 7 VHDL 7 7

ImpulseC [16] 7 7 7 3 7 3 VHDL 7 7

Spark [31] 7 7 7 3 7 3 VHDL 7 7

2 BlueSpec [53] 3 7 3 3 3 7 C, Verilog 7 7

Daedalus [70] 3 3 3 3 3 3 C, C++, VHDL 3 7

Koski [42] 3 3 3 3 3 3 C, XML, VHDL 7 7

PeaCE [33] 3 3 3 3 3 3 C, C++, VHDL 3 7

3 CoWare [63] 3 3 7 3 3 3 C, VHDL 7 7

Esterel [1] 7 3 7 3 3 7 C, VHDL 3 7

LabVIEW [4] 3 3 3 7 7 7 - 7 7

Simulink [5] 3 3 3 3 3 7 C, C++, Verilog, VHDL 7 7

Synopsys System
Studio [8]

3 3 3 3 3 3 C++, SystemC, SystemVerilog 7 7

4 CAO [10,51] 3 3 7 7 3 7 C, x86-64 assembly, ARM 7 7

Cryptol [9, 45] 3 3 3 3 3 7 C, C++, Haskell, VHDL, Verilog 7 7

and more complicated video codecs [37, 38]. One main concern of the MPEG is how to make video codecs
more reconfigurable, meaning that codecs with different configurations (e.g., different video coding standards,
different profiles and/or levels, different system requirements) can be built on the basis of a single set of
platform-independent building blocks. To achieve this goal, the RVC standard defines a framework that covers
different steps of the whole life cycle of video codec development. The RVC community has developed support-
ing tools [2, 6, 7] to make the RVC framework not only a standard, but also a real development environment.

While the RVC framework is developed in the context of video coding, it is actually a general-purpose
framework that can model any data-driven applications such as cryptosystems. It allows developers to work
with a single platform-independent design at a higher level of abstraction while still being able to generate
multiple editions of the same design that target different platforms like embedded systems, general-purpose
PCs, and FPGAs. In principle, the RVC framework also supports hardware-software co-design by converting
parts of a design into software and other parts into hardware. Additionally, the RVC framework is based on two
languages that allow automatic code analysis to facilitate large-scale design-space exploitation like enhancing
parallelism of implementations running on multi-core and many-core systems [15,22,47].

The RVC standard is composed of two parts: MPEG-B Part 4 [38] and MPEG-C Part 4 [37]. MPEG-B
Part 4 specifies the dataflow framework for designing and/or reconfiguring video codecs, and MPEG-C Part 4
defines a video tool library that contains a number of Functional Units (FUs) as platform-independent building
blocks of MPEG standard compliant video codecs [37]. To support the RVC dataflow framework, MPEG-B
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Part 4 specifies three different languages: a dataflow programming language called RVC-CAL for describing
platform-independent FUs, an XML dialect called FNL (FU Network Language) for describing connections
between FUs, and another XML dialect called RVC-BSDL for describing the syntax format of video bitstreams.
RVC-BSDL is not involved in this work, so we will not discuss it further.

The real core of the RVC framework is RVC-CAL, a general-purpose dataflow programming language
for specifying platform-independent FUs. RVC-CAL is a subset of another existing dataflow programming
language CAL (Caltrop Actor Language) [28]. In RVC-CAL, FUs are implemented as actors containing a
number of fireable actions and internal states. Figure 1 shows the internal structure of a RVC-CAL actor in
an FU network. In the RVC-CAL’s term, the data exchanged among actors are called tokens. Each actor can
contain both input and output port(s) that receive input token(s) and produce output token(s), respectively.
Each action may fire depending on four different conditions: 1) input token availability; 2) guard conditions; 3)
finite-state machine based action scheduling; 4) action priorities. In RVC-CAL, actors are the basic functional
entities that can run in parallel, but actions in an actor are atomic, meaning that only one action can fire at
one time. This structure gives a balance between modularity and parallelism, and makes automatic analysis
of actor merging/splitting possible.

Actions

StateState

Fig. 1: The internal structure of a RVC-CAL actor in a dataflow network.

Figure 2 illustrates how an application can be modeled and how target implementations can be generated
with the RVC framework. At the design stage, different FUs (if not implemented in any standard library)
are first written in RVC-CAL to describe their I/O behavior, and then an FU network is built to represent
the functionality of a whole application. The FU network can be built by simply connecting all FUs involved
graphically via a supporting tool called Graphiti Editor [2], which translates the graphical FU network de-
scription into a textual description written in FU Network Language (FNL). The FUs and the FU network are
instantiated to form an abstract model. This abstract model can be simulated to test its functionality without
going to any specific platform. Two available supporting tools allowing the simulation are OpenDF [6] and
ORCC [7]. At the implementation stage, the source code written in other target programming languages can
be generated from the abstract application description automatically. OpenDF includes a Verilog HDL code
generation backend, and ORCC contains a number of code generation backends for C, C++, Java, LLVM,
VHDL, XLIM, and PROMELA. ORCC is currently more widely used in the RVC community and it is also
the choice of our work reported in this paper.
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Implementation Stage

Application Implementation
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Tool Library 
Implementation

Input Data Application Solution Output Data

Fig. 2: Process of application implementation generation in the RVC framework.

4 Crypto Tools Library (CTL)

Crypto Tools Library (CTL) is a collection of RVC-CAL actors and XDF networks for cryptographic primitives
such as block ciphers, stream ciphers, cryptographic hash functions and PRNGs (see Sec. 4.2 for a list of
currently implemented algorithms). Being an open project, the source code and documentation of CTL is
available at http://www.hooklee.com/default.asp?t=CTL.

As mentioned in Sec. 1, most existing cryptographic libraries are developed based on a single programming
language (mostly C/C++ or Java) that can hardly be converted to other languages. In contrast, CTL is a
platform-independent solution whose source code is written in RVC-CAL and FNL that can be automatically
translated into multiple programming languages (C, C++, Java, LLVM, Verilog, VHDL, XLIM, PROMELA).
More programming languages can be supported by developing new code generation tools for RVC applications.

4.1 Design Principles

The CTL is developed by strictly following the specifications/standards defining the implemented cryptosys-
tems. For block ciphers, both enciphers and deciphers are implemented so that a complete security solution
can be built. When it is possible, the CTL FUs are designed to exploit inherent parallelism in the implemented
cryptosystems. For instance, for block ciphers based on multiple rounds, the round number is also transmitted
among different FUs so that encryption/decryption of different blocks can be parallelized.

The CTL is designed so that different cryptosystems can share common FUs. We believe that this can
help enhance code reusability and ease reconfigurability of the CTL cryptosystems. In addition, CTL includes

http://www.hooklee.com/default.asp?t=CTL
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complete solutions (e.g., both encipher and decipher) of the implemented cryptosystems, normally a set of
CAL and XDF files.

4.2 Cryptosystems Covered

CTL contains some standard and frequently used cryptosystems. In the following, we list the cryptosystems
currently implemented in CTL. The correctness of all cryptosystems has been validated using the test vectors
given in the respective standards.

– Block Ciphers:
• AES-128/192/256 [55],
• DES [54] and Triple DES [54,56],
• Blowfish [64],
• Modes of operations: CBC, CFB, OFB, CTR.

– Stream Ciphers: ARC4 [65] and Rabbit [25].
– Cryptographic hash functions: SHA-1, SHA-2 (SHA-224, SHA-256) [57].
– PSNRs: 32-bit and 64-bit LCG [65] and LFSR-based PRNG [65].

CTL also includes some common utility FUs (e.g., multiplexing/demultiplexing of dataflows, conversion of
bytes to bits and vice versa etc.) that are shared among different cryptosystems and can also find applications
in non-cryptography systems. Currently implemented utilities are listed below. In addition, we also present
AES, DES and Blowfish as three exemplar cryptosystems from CTL in the Appendix.

– XOR 1b and XOR 8b: bitwise and bytewise XOR of two token sequences;
– Mux2 and Mux8: merging 2 and 8 sequences of tokens into a single one;
– Demux2 and Demux8: splitting a token sequence into 2 and 8 sub-sequences;
– Any2Bits: converting n-bit tokens into binary (i.e., 1-bit) tokens;
– Bit2Any: converting binary tokens into n-bit tokens;
– Smaller2Bigger: converting n2/n1 input tokens of bit size n1 into one output token of bit size n2 > n1;
– Bigger2Smaller: converting each input token of bit size n1 into n1/n2 output tokens of bit size n1 > n2.

In each RVC-CAL file of CTL FUs and testbeds, there is a header comments section giving detailed
information about that RVC-CAL file: FU name, FU interface (input ports, output ports, FU parameters),
how to use the CAL file, reference to corresponding standard document, and so forth. Furthermore, under
each folder there is also a readme file containing a list of all files in the corresponding folder.

5 Performance Benchmarking of CTL

Previous work has demonstrated that the RVC framework can outperform other sequential programming
languages in terms of implementing highly complex and highly parallelizable systems like video codecs [21].
However, there are still doubts about if the high-level abstraction of RVC-CAL and the automated code
generation process may compromise the overall performance to some extent at the platform level. In this
section, we clarify those doubts by showing that the automatically generated implementations from a typical
RVC-based application can usually achieve a performance comparable to manually-written implementations
in the target programming language. This was verified on SHA-256 (Sec. 5.1) and AES (Sec. 5.2) applications
in CTL. In Sec. 5.1, we take SHA-256 as an example to show how we did the benchmarking on a single-core
machine and a quad-core one. The main purpose of getting the quad-core machine involved is to show how easy
one can divide an FU network and map different parts to different cores to make a better use of the computing
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Table 2: Configuration of the test machine.

Machine Hardware and Operating System Details

Desktop PC: – Model: HP Centurion

– CPU: Intel(R) Core(TM)2 Quad CPU Q9550 2.83GHz

– Memory: 8GB RAM

– OS1: Windows Vista Business with Service Pack 2 (64-bit Edition)

– OS2: Ubuntu Linux (Kernel version: 2.6.27.11)

resources. In the given example, the partitioning and mapping were both done manually, but they can be
automated for large applications thanks to the code analyzability of RVC-CAL. In addition, Sec. 5.2 presents
the results of the performance benchmarking of AES on varying single-core platforms (general-purpose PCs,
a resource-constrained embedded device and Java virtual machines).

5.1 Benchmarking of SHA-256

We ran our experiments on Microsoft both Windows and Linux (see Table 2 for details). Both operat-
ing systems support high resolution timers to measure time in nanoseconds. More specifically, we used the
QueryPerformanceCounter() and QueryPerformanceFrequency() functions (available from Windows API)
on Windows, and the clock gettime() and clock getres() functions with CLOCK MONOTONIC clock (available
from the Higher Resolution Timer [24] package) on Linux. In addition, to circumvent the caching problem, we
conducted 100 independent runs (with random input data) of each configuration and used the average value
as the final performance metric.

The concrete specifications of our test machines can be found in Table 2. Due to the multi-tasking nature
of Windows and Linux operating systems, the benchmarking result can be influenced by other tasks running in
parallel. In order to minimize this effect, we conducted all our experiments under the safe mode of both OSs.
We used Microsoft Visual Studio 2008 and GCC 4.3.2 as C compilers for the Windows and the Linux operating
systems, respectively. Both compilers were configured to maximize the speed of generated executables. For Java
programs, we used Eclipse SDK 3.6.1 and Java(TM) SE Runtime Environment (build 1.6.0 12-b04).

Benchmarking of SHA-256 on Single-Core Platform In this subsection, we present the results of
benchmarking a single SHA-256 FU against some non-RVC reference implementations in C (OpenSSL [69],
OGay [29], and sphlib [60]) and Java (Java Cryptography Architecture (JCA) [58]). Figure 3 shows the results
of our benchmarking under Windows operating system while our test machine was configured to run only one
CPU core. One can see that the run-time performance of CTL implementation is better than OpenSSL but
inferior to carefully optimized (OGay and sphlib) implementations. In addition, the CTL’s Java implementation
of SHA-256 does not outperform the JCA implementation. This can probably be explained by the fact that
the current edition of the ORCC Java backend does not generate very efficient code. These results indicate
that the CTL’s SHA-256 implementation can achieve a performance similar to reference implementations. We
also did similar benchmarking experiments on the AES block cipher in CTL (presented in the next subsection
Sec. 5.2) and came to a similar conclusion.

Benchmarking of SHA-256 on Multi-Core Platform On a platform with multiple CPU cores, one
can map different parts of an FU network to different CPU cores so that the overall run-time performance
of the application can be improved. The C backend of the RVC supporting tool ORCC [7] supports multi-
core mapping, so one can easily allocate different FUs or FU sub-networks to different CPU cores. To see
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Fig. 3: Benchmarking of CTL’s SHA-256 implementation.

how much benefit we can get from a multi-core platform, we devised a very simple RVC application called
HashTree (shown in Fig. 4) that implements the following functionality using five hash H operations: given
an input signal x = x1 ‖ x2 ‖ x3 ‖ x4 consisting of four blocks xi, hash each block hi = H(xi) and then
output H(h1 ‖ h2 ‖ h3 ‖ h4). In our implementation of HashTree, we instantiated H with SHA-256. By
comparing this application with the simple single-core SHA-256 application computing H on the same input
(i.e., H(x1 ‖ x2 ‖ x3 ‖ x4)), we can roughly estimate the performance gain.

SHA_256_1

IP OP

Merger

IP1 OP

IP2

IP3

IP4

SHA_256_2

IP OP

SHA_256_3

IP OP

SHA_256_4

IP OP

SHA_256_5

IP

Source_1

OP

Source_2

OP

Source_3

OP

Source_4

OP

Fig. 4: HashTree Application.

In the benchmarking process, we considered three different configurations:

– Single SHA-256: This configuration represents a single SHA-256 FU running on a single-core, which
processes an input x and produces the hash. We used this configuration as the reference point to evaluate
the performance gain of the following two configurations, which implement HashTree using five SHA-256
instances.

– 5-thread with manual mapping: In this configuration, each SHA-256 instance is programmatically
mapped to run as a separate thread on a specific CPU core of our quad core machine. At the start of the
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Fig. 5: The performance gain we got from the benchmarked configurations.

hashing process, we manually mapped the 4 threads (processing hi = H(xi)) to four CPU cores. The 5th
thread performing the final hashing operation is created and mapped after the preceding 4 threads are
finished with their execution.

– 1-thread with manual mapping: Similar to above configuration, this configuration also implements
HashTree. However, all five SHA-256 instances are bounded to run in a single thread on a specific CPU
core of our quad core machine.

It should be noted that thread creation and mapping also consume some CPU time, which is the cost one
has to pay to achieve concurrency. Therefore, in order to make the study judicial, we also count the times
spent on thread creation and thread mapping.

The benchmarking results are shown in Fig. 5. One can see that the performance gain is between 200% to
300% when five threads are used.

5.2 Benchmarking of AES

In this section, we present the performance benchmarking of AES against some reference implementations on
varying single-core platforms (two general-purpose PCs, a resource-constrained embedded device and two Java
virtual machines). In this section, we first give the details of our experimental setup required to reproduce our
results. The last subsection presents the performance benchmarking results.

Tested AES implementations As presented in Appendix A.1, currently CTL contains two different imple-
mentations of AES targeting two different objectives. One implementation is created for educational/understanding
viewpoint and has been implemented by strictly following the AES standard [55]. The second implementation
has been created to achieve better run-time performance and has been implemented by following the look-
up-tables based optimized algorithm used in the Rijndael’s optimized reference implementation [62]. Both of
these AES implementations are benchmarked in this study. In the rest of this subsection, we will respectively
use “CTL-STD” and “CTL-LUT” as the short names for these two AES implementations in CTL.

Along with AES ECB encipher and decipher, AES running in CTR mode (shown in Fig. 8d) is also included
for this benchmarking study because the CTR mode has the benefit of being able to encrypt multiple blocks
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in parallel, so it can be considered as a better candidate for benchmarking cryptosystems implemented in
RVC-CAL. Hence, the following three CTL implementations of AES-128 were benchmarked in our study:

– AES-128 CTR Cipher
– AES-128 ECB Encipher
– AES-128 ECB Decipher

Reference implementations To benchmark the performance of the ORCC generated C code of AES-128,
some reference implementations are needed to compare with. For this study, the following three implementa-
tions are selected:

– Rijndael reference implementation ver. 2.2 [18]
– AES implementation available at www.X-N2O.com [73]
– Rijndael optimized reference implementation ver. 3.0 [62]

In the rest of this subsection, “Ref. 2.2”, “Ref. 3.0” and “X-N2O” are the short names used to refer to the
three reference implementations of AES-128. Not all of these three implementations support CTR mode, so
the code has been manually modified to add CTR support.

We select these three implementations because to make this performance benchmarking study judicial, we
need the reference implementations that follow the same implementation style and optimizations as our CTL
implementations. For instance, Ref.2.2 and X-N2O implementations are similar to our CTL-STD implemen-
tation because they do not contain any optimizations and are implemented by following the AES standard.
Similarly, Ref. 3.0 implementation is similar to our CTL-LUT implementation as both are optimized by using
pre-computed look-up tables.

Similarly, we also benchmarked the ORCC generated Java code of AES-128 against the AES implementation
available as part of the Java Cryptography Architecture (JCA) [58].

Platforms Our experiments were run on two PCs and one embedded system. This was done to represent two
typical configurations of today’s PCs, one new desktop and one old laptop are selected. For embedded systems,
we selected a resource constrained wireless sensor mote for our study. For both PCs, we have conducted this
performance evaluation under Windows and Linux operating systems whilst our embedded system runs a
stripped-down version of Linux operating system. The concrete configurations of these platforms are given
Table 3.

M1 has a dual-core CPU so the performance benchmarking may be less accurate due to the internal
scheduling of CPU instructions. So we switched the dual-core support off in M1’s BIOS setup. Furthermore,
the multi-task nature of operating systems may also influence the benchmarking results, so we ran all our tests
under their Safe Mode shell to minimize such effects.

To generate the executables running under different operating systems, we selected Microsoft Visual Studio
2008 as the C compiler for Windows XP/7, GCC 4.3.2 for Linux Debian Live and arm-linux-gcc 3.4.1 for
Imote2-Linux on M3. For Java programs, we used Eclipse SDK 3.6.1.

Run-time performance metric For each executable running under a specific OS, a continuous encryp-
tion/decryption process was run over the same test vector of 4096 bytes. We measured the total number of
CPU cycles consumed for the whole encryption/decryption process and divided it by 4096 to get the run-
time performance in cycles/byte. Since we only care about the core part of the encipher/decipher, the time
consumed in initial inputs and final output is not counted.
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Table 3: Configurations of Testing Platforms.

Platform Hardware and Operating System Details

Machine 1 (M1): – Model: HP Compaq 8000 Elite Convertible Minitower

Desktop PC – CPU: Intel Pentium Dual-Core CPU E5400 2.70GHz

– Memory: 2GB RAM

– OS1: Windows 7 Professional (32-bit Edition)

– OS2: Linux Debian Live (rescue image kernel version 2.6.26-2-686)

– Windows 7 Java(TM) SE Runtime Environment: build 1.6.0 26-b03

Machine 2 (M2): – Model: Samsung Q25

Laptop PC – CPU: Intel Pentium M 1.3GHz

– Memory: 504MB RAM

– OS1: Windows XP Professional SP 2

– OS2: Linux Debian Live (rescue image kernel version 2.6.26-2-686)

– Windows XP Java(TM) SE Runtime Environment: build 1.6.0 27-b07

Machine 3 (M3): – Model: Imote2 Wireless Sensor Mote [3]

Embedded – CPU: Intel ARM XScale PXA271 CPU 415.33MHZ [36]

System – Memory: 32MB SRAM

– OS1: Imote2-Linux (Kernel version 2.6.29.1)

On M1 and M2, the CPU cycles were measured using RDTSC and CPUID instructions of Intel proces-
sors [35]. For M3, we used Cycle CouNT (CCNT) register available in Intel ARM XScale processors [36].
However, the measured CPU cycles may vary depending on the availability of needed data/instructions in
the data/instruction cache. To solve this problem, we follow the suggestion given in [35] to run the same
executables for 100 times and use the averaged value of CPU cycles as the final measurement.

Benchmarking Results In this subsection, we present the results of our performance benchmarking study on
the CTL implementations of AES-128 and the corresponding reference implementations on all three machines.

AES-128 CTR Cipher As mentioned in the previous subsection, in order to compensate the cache effects,
each executable was run 100 times. Figure 6 shows the results obtained under Windows and Linux operating
systems on M1 and M3, respectively.

The results in these plots show some abrupt fluctuations in the performance curve, but they do not occur
very often. Most of the times, the CPU cycles counting remains consistent. Therefore, the CPU cycles counting
method based on RDTSC and CPUID instructions is stable enough as a metric of the run-time performance
for the evaluated implementations.

The average performance results for all implementations on PCs and embedded system are given in Ta-
bles 4a and 4b. It can be observed that, under both Windows 7/XP and Linux operating systems, the CTL-
STD and CTL-LUT implementations have a performance comparable to Ref. 2.2 and X-N2O, and Ref. 3.0,
respectively.

It deserves noticing that all algorithms perform better on M1 than M2 or M3. This can be easily explained
by the more powerful CPU and larger memory available on M1. On the contrary, all algorithms consume higher
number of CPU cycles on M3 because of its limited resources.

AES-128 ECB Encipher Tables 4a and 4b also contain the performance benchmarking results on AES-128
ECB encipher. One can see that the results of CTL-STD implementation in ECB mode are similar to the
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(a) On general-purpose PC – M1.
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(b) On embedded system – M3.

Fig. 6: Separate Runs of AES-128 CTR cipher under Windows and Linux OS.

corresponding CTL-STD implementation in CTR mode. In addition, unlike for the AES CTR cipher, the
performance of CTL-LUT encipher implementation in ECB mode is quite close to the corresponding Ref.3.0
implementation. This sudden performance gain in the ECB mode can be explained by the design of ECB and
CTR ciphers in the RVC framework. In CTR mode, the encryption process was jointly performed by CTR and
AES Cipher FUs while at any given time only one of them processing data and other one waiting for the data
(i.e., when the CTR FU processes data, AES Cipher waits for the data and vice versa). However, in ECB mode
the whole encryption process is encapsulated within a single FU and saves a considerable time that could be
depleted in waiting for the dataflows from other FUs. Based on these results it can safely established that: 1) if
the needed optimization are implemented within the same FU, the run-time performance similar to reference
implementations can be achieved; 2) on single-core machines, the introduction of dataflow networks between
FUs affects the run-time performance. In other words, these results suggest that the run-time performance
of the RVC applications on single-core machines is inversely related to the number of intermediate FUs (and
FIFOs). However, very small RVC applications (like cryptosystems) can be implemented within a single FU.
With the increase in the algorithmic complexity of applications, it become difficult to implement in fewer FUs,
which in a way also creates an opportunity to achieve better run-time performance by parallelizing the FUs
on multi-core machines. In the next section, this point is further highlighted while presenting the performance
benchmarking study on a quad-core machine.

AES-128 ECB Decipher Tables 4a and 4b also give the performance benchmarking results on AES-128 ECB
decipher. It can be seen that CTL-STD’s decipher implementation also has a performance similar to Ref.
2.2 and X-N2O. In addition, for CTL-LUT’s decipher implementation, we obtained the results similar to the
results of AES-128 ECB encipher.

Benchmarking of AES Java Implementations Since the C implementations of CTL-LUT achieved reasonable
performance, we also benchmarked the Java implementation of CTL-LUT against the AES implementation
available as part of the Java Cryptography Architecture (JCA) [58]. Tables 4c gives the results of the per-
formance benchmarking, which was conducted under the Windows 7/XP Java run-time environment of M1
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(a) Averaged performance benchmarking of AES-128 C implementations on PCs.

CTR
Cipher

M1 M2

CTL-STD Ref.2.2 X-N2O CTL-LUT Ref.3.0 CTL-STD Ref.2.2 X-N2O CTL-LUT Ref.3.0

Win XP/7 555.6 488.4 326.4 50.5 19.8 637.2 1292.0 393.7 65.4 24.4

Linux 3979.6 1632.4 353.1 71.6 37.0 4711.8 1991.3 581.7 77.3 41.5

ECB
Encipher

M1 M2

CTL-STD Ref.2.2 X-N2O CTL-LUT Ref.3.0 CTL-STD Ref.2.2 X-N2O CTL-LUT Ref.3.0

Win XP/7 418.8 484.5 296.3 21.8 18.8 472.2 1296.2 374.1 27.2 23.5

Linux 3088.1 1599.4 1439.6 36.3 34.7 4205.2 1948.3 1558.1 41.7 37.8

ECB
Decipher

M1 M2

CTL-STD Ref.2.2 X-N2O CTL-LUT Ref.3.0 CTL-STD Ref.2.2 X-N2O CTL-LUT Ref.3.0

Win XP/7 719.1 668.9 544.4 21.8 19.3 1769.9 1899.9 1572.1 26.6 23.8

Linux 4333.6 2229.4 1761.8 37.9 35.2 5630.2 1463.7 2641.2 42.0 37.9

(b) Averaged performance benchmarking of AES-128 C implementations on an embedded system.

CTL-STD Ref.2.2 X-N2O CTL-LUT Ref.3.0

CTR Cipher 2639.8 2161.8 1366.1 311.1 135.0

ECB Encipher 2058.1 2167.6 1364.2 147.6 132.1

ECB Decipher 4706.4 4231.9 2982.7 147.7 129.3

(c) Averaged performance benchmarking of AES-128 Java implementations on PCs.

M1 M2

CTL-LUT JCA CTL-LUT JCA

CTR Cipher 3926.5 1391.8 4632 1581.2

ECB Encipher 2820.3 2820.3 3731.5 1362

ECB Decipher 2791.2 779.5 3798.1 850.6

and M2. As we observed in the previous subsection for SHA-256, ORCC Java backend does not generate very
efficient code at this moment and these benchmarking results are not surprising.

6 Future Works

In order to allow researchers from different fields to extend CTL and use it for more applications, we have
published CTL as an open-source project at http://www.hooklee.com/default.asp?t=CTL. In our future
work, we plan to continue our research on the following possible directions.

Cryptographic Primitives. The CTL can be enriched by including more cryptographic primitives (especially
public-key cryptography), which will allow creation of more multimedia security applications and security
protocols. Another direction is to develop optimized versions of CTL cryptosystems. For instance, bit slicing
can be used to optimize parallelism in many block ciphers [30,49].

Security Protocols. Another direction is to use the RVC framework for the design and development of security
protocols and systems with heterogenous components and interfaces. While RVC itself is platform independent,

http://www.hooklee.com/default.asp?t=CTL
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“wrappers” [67] can be developed to bridge the platform-independent FUs with physical I/O devices/channels
(e.g., a device attached to USB port, a host connected via LAN/WLAN, a website URL, etc.). Although there
are many candidate protocols that can be considered, as a first step we plan to implement the hPIN/hTAN
e-banking security protocol [46], which is a typical (but small-scale) heterogeneous system involving a hardware
token, a web browser plugin on the user’s computer, and a web service running on the remote e-banking server.
We have already implemented an hPIN/hTAN prototype system without using RVC, so the new RVC-based
implementation can be benchmarked against the existing system.

Cryptographic Protocols. Many cryptographic protocols require a high amount of computations. One example
are garbled circuit protocols [74] that allow secure evaluation of an arbitrary function on sensitive data. These
protocols can be used as basis for various privacy-preserving applications. On a high-level, the protocol works
by one party first generating an encrypted form of the function to be evaluated (called garbled circuit) which
is then sent to the other party who finally decrypts the function using the encrypted input data of both
parties and finally obtains the correct result. Recent implementation results show that such garbled circuit-
based protocols can be implemented in a highly efficient way in software [34]. However, until now, there exist
no software implementations that exploit multi-core architectures. It was shown that such protocols can be
optimized when using both software and hardware together: For generation of the garbled circuit, a trusted
hardware token can generate the garbled circuit locally and hence remove the need to transfer it over the
Internet [40]. Here, the encrypted versions of the gate which require four invocations of a cryptographic hash
function can be computed in parallel similar to the 4-adic hash tree we have shown in Sec. 5. Furthermore,
the evaluation of garbled circuits can be improved when using hardware accelerations as shown in [41]. We
believe that the RVC framework can serve as an ideal basis for hardware-software co-designed systems with
parallelized and/or hardware-assisted garbled circuit-based protocols.
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A Exemplar CTL Cryptosystems

With the objective of giving a feel of how CTL cryptosystems look like, in this subsection, we present AES,
DES, and Blow fish block ciphers as examples of cryptosystems from CTL. We present the XDF networks for
encipher and decipher along with a brief description about the associated FUs.

A.1 AES

CTL includes two different implementations of AES: 1) one for the educational purpose, which has been
implemented by strictly following the AES standard [55]; 2) a look-up-tables (LUTs) based optimized imple-
mentation following the Rijndael’s optimized reference implementation [62]. In the following, we present both
of them.

Standard Implementation Figure 7 shows encipher and decipher FU networks of the standard AES im-
plementation in the CTL. Both have three input ports and one output tokens, all of type byte. Thus, AES
always consumes 16 byte tokens as plaintext/ciphertext and produces 16 byte tokens as ciphertext/plaintext.
The key size and key are always read at the beginning of the encryption/decryption process and remains the
same until it is not changed. All the four basic operations are implemented as separate RVC-CAL FUs. The
key expansion function (i.e., key scheduler) is implemented as part of the AddRoundKey FU since it is not used
in other FUs. It should be noted that both AES encipher and decipher have similar structure. However, for
AES decipher the four basic components are connected in a reversed order.

(a) AES Encipher (b) AES Decipher

Fig. 7: AES encipher and decipher in CTL.

http://www.x-n2o.com/aes-explained
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To enhance the parallelism of the AES encipher and decipher, we transmit a token representing the round
index together each plaintext/ciphertext block. This helps in parallel processing multiple blocks. Hence, each
data block in AES consists of 17 tokens (one round number + 16 data tokens).

The AES encipher and decipher shown above are running in the simplest Electronic Code Book (ECB)
mode. Since block ciphers running in ECB mode have the potential risks of known/chosen plaintext attack and
chosen-ciphertext attack, block ciphers are often run in other modes involving feedback of ciphertext and/or
use of counters. Each mode of operation is implemented as a single RVC-CAL FU, which can be connected
with the AES network running in ECB mode to make it work under the expected mode of operation.

Figure 8 shows the AES encipher running at four other modes of operation where AES Cipher FU in each
sub-figure encapsulates AES ECB encipher of Fig. 7a. It should be noted that, changing the mode from ECB
to another required target mode is just a matter of connecting the target mode’s FU with the basic FU network
of AES.

(a) CBC (b) 8-bit CFB

(c) OFB (d) CTR

Fig. 8: AES encipher running at different modes of operation.

Look-up-tables based Optimized Implementation The main objective for developing such implementa-
tion was to evaluate the run-time performance of AES when it is implemented in a way similar to an optimized
sequential program. This optimized AES implementation follows the look-up-tables based optimization algo-
rithm used in the Rijndael’s optimized reference implementation [62]. We implemented CTL-LUT encipher
and decipher as single FU each. Both FUs contain three actions: 1) readKeyInfo – receives the key size; 2)
keyExpansion – receives the key and performs the key scheduling/expansion; 3) encrypt/decrypt – receives
the plaintext/ciphertext, performs encryption/decryption operation and produces ciphertext/plaintext.

Similar to AES standard implementation, both encipher and decipher FUs of this optimized AES imple-
mentation can also be used with any operational mode FU without any problem.
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A.2 DES

Different from AES, DES is more bit-oriented. The current DES implementation in the CTL is based on bit
tokens. Figure 9a shows the top level FU network of the DES encipher in the CTL, where the two B2b FUs
(instances of Any2Bits) are used to convert byte tokens to bit tokens and the b2B FU (instance of Bits2Any)
is used to convert bit tokens into byte tokens. The KS FU is key scheduler generating round keys. DES is a
Feistel cipher that has an identical structure for the encipher and the decipher (except the key scheduler), so
the top level network of the DES decipher is the same as the DES encipher except that KS FU is reconfigured
to send keys in a reversed order.

(a) Top level FU network
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(b) Core FU network
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(c) Feistel network (d) f FU network

Fig. 9: DES encipher implementation in CTL.

The Core FU network in Fig. 9b is composed of an initial permutation (IP) FU, a Feistel cipher network,
an inverse permutation (InvIP) FU and the round function (f) FU, as shown in Fig. 9b. The Feistel network
is shown in Fig. 9c, where the Manager FU controls the dataflow inside the Feistel network in different rounds
and the f FU network implements the core round function, which is shown in Fig. 9d. As shown in Fig. 10,
the S FU in the f FU network is further composed of a demuxer FU, eight parallel 6 × 4-bit S-boxes and a
muxer FU.

A.3 Blowfish

Just like DES, Blowfish [64] is also a Feistel cipher but with a different round function f. Figure 11 shows the
top level FU network of the Blowfish encipher in the CTL. In this implementation of Blowfish, we have reused
the Feistel network of Fig. 9c, which we previously used to implement the DES block cipher. The processes of
building of Blowfish sub-keys and S-boxes have been grouped with the implementation of the round operation
in f FU. After 16 iterations through the Feistel network, the data block streams through the Final XOR FU,
which XORs last two sub-keys with the data block to generate the ciphertext.



CTL: A Platform-Independent Crypto Tools Library 21

Fig. 10: The eight S-boxes in the core f FU network of DES encipher and decipher in CTL.

Similar to our DES implementation, Blowfish encipher and decipher also have an identical structure. An
instance parameter is used to reconfigure f FU to use the sub-keys in either sequential order (for encipher) or
reversed order (for decipher).
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Fig. 11: Blowfish encipher implementation in CTL.
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