
Better Bootstrapping in Fully Homomorphic Encryption

Craig Gentry
IBM

Shai Halevi
IBM

Nigel P. Smart
University of Bristol

December 15, 2011

Abstract

Gentry’s bootstrapping technique is currently the only known method of obtaining a “pure” fully
homomorphic encryption (FHE) schemes, and it may offers performance advantages even in cases that
do not require pure FHE (such as when using the new noise-control technique of Brakerski-Gentry-
Vaikuntanathan).

The main bottleneck in bootstrapping is the need to evaluate homomorphically the reduction of one
integer modulo another. This is typically done by emulating a binary modular reduction circuit, using
bit operations on binary representation of integers. We present a simpler approach that bypasses the
homomorphic modular-reduction bottleneck to some extent, by working with a modulus very close to a
power of two. Our method is easier to describe and implement than the generic binary circuit approach,
and is likely to be faster in practice. In some cases it also allows us to store the encryption of the secret
key as a single ciphertext, thus reducing the size of the public key.

We also show how to combine our new method with the SIMD homomorphic computation techniques
of Smart-Vercauteren and Gentry-Halevi-Smart, to get a bootstrapping method that works in time quasi-
linear in the security parameter. This last part requires extending the techniques from prior work to
handle arithmetic not only over fields, but also over some rings. (Specifically, our method uses arithmetic
modulo a power of two, rather than over characteristic-two fields.)
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1 Introduction

Fully Homomorphic Encryption (FHE) [14, 10] is a powerful technique to enable a party to compute an
arbitrary function on a set of encrypted inputs; and hence obtain the encryption of the function’s output.
Starting from Gentry’s breakthrough result [9, 10], all known FHE schemes are constructed from Somewhat
Homomorphic Encryption (SWHE) schemes, that can only evaluate functions of bounded complexity. The
ciphertexts in these SWHE schemes include some “noise” to ensure security, and this noise grows when
applying homomorphic operations until it becomes so large that it overwhelms the decryption algorithm and
causes decryption errors. To overcome the growth of noise, Gentry used a bootstrapping transformation,
where the decryption procedure is run homomorphically on a given ciphertext, using an encryption of the
secret key that can be found in the public key,1 resulting in a new ciphertext that encrypts the same message
but has potentially smaller noise.

Over the last two years there has been a considerable amount of work on developing new constructions
and optimizations [8, 16, 12, 5, 17, 4, 11, 3, 13], but all of these constructions still have noise that keeps
growing and must be reduced before it overwhelms the decryption procedure. The techniques of Brakerski
et al. [3] yield SWHE schemes where the noise grows slower, only linearly with the depth of the circuit
being evaluated, but for any fixed public key one can still only evaluate circuits of fixed depth. The only way
to get “pure” FHE that can evaluate arbitrary functions with a fixed public key is by using bootstrapping.
Also, bootstrapping can be used in conjunction with the techniques from [3] to get better parameters (and
hence faster homomorphic evaluation), as described in [3, 13].

In nearly all SWHE schemes in the literature that support bootstrapping, decryption is computed by
evaluating some ciphertext-dependent linear operation on the secret key, then reducing the result modulo
a public odd modulus q into the range (−q/2, q/2], and then taking the least significant bit of the result.
Namely, denoting reduction modulo q by [·]q, we decrypt a ciphertext c by computing a = [[Lc(s)]q]2
where Lc is a linear function and s is the secret key. Given an encryption of the secret key s, computing
an encryption of Lc(s) is straightforward, and the bulk of the work in homomorphic decryption is devoted
to reducing the result modulo q. This is usually done by computing encryptions of the bits in the binary
representation of Lc(s) and then emulating the binary circuit that reduces modulo q.

The starting point of this work is the observation that when q is very close to a power of two, the
decryption procedure takes a particularly simple form. Specifically, we can compute the linear function
Lc(s) modulo a power of two, and then XOR the top and bottom bits of the result. We then explain how
to implement this simple decryption formula homomorphically, and also how the techniques of Gentry et
al. from [13] can be used to compute this homomorphic decryption with only polylogarithmic overhead.
We note that the techniques from [13] can in principle be applied to any function, but applying them to
homomorphic decryption is not straightforward since the input and output are not presented in the right
form. Also, for our case we need to extend the results from [13] slightly, since we are computing a function
over a ring (modulo a power of two) and not over a field.

We point out that in all work prior to [13], bootstrapping required adding to the public key many cipher-
texts, encrypting the individual bits (or coefficients) of the secret key. This resulted in very large public keys,
of size at least λ2 ·polylog(λ) (where λ is the security parameter). Using the techniques from [17, 3, 13], it is
possible to encrypt the secret key in a “packed” form, hence reducing the number of ciphertexts to O(log λ)
(so we can get public keys of size quasi-linear in λ). Using our technique from this work, it is even possible
to store an encryption of the secret key as a single ciphertext, as described in Section 5. We next outline our
main bootstrapping technique in a few more details.

1This transformation relies on the underlying SWHE being circularly secure.
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Our method applies mainly to “leveled” schemes that use the noise control mechanism of Brakerski-
Gentry-Vaikuntanathan [3].2 Below and throughout this paper we concentrate on the BGV ring-LWE-based
scheme, since it offers the most efficient homomorphic operations and the most room for optimizations.3

The scheme is defined over a ring R = Z[X]/F (X) for a monic, irreducible polynomial F (X) (over the

integers Z). For an arbitrary integer modulus n (not necessarily prime) we denote the ring Rn
def
= R/nR =

(Z/nZ)[X]/F (X). The scheme is parametrized by the number of levels that it can handle, which we denote
by L, and by a set of decreasing odd moduli q0 � q1 � · · · � qL, one for each level.

The plaintext space is given by the ring R2, while the ciphertext space for the i’th level consists of
2-vectors over Rqi . Secret keys are polynomials s ∈ R with “small” coefficients, and we view s as the
second element of the 2-vector s = (1, s). A level-i ciphertext c = (c0, c1) encrypts a plaintext polynomial
m ∈ R2 with respect to s = (1, s) if we have the equality over R, [〈c, s〉]qi = [c0 + s · c1]qi ≡ m (mod 2),
and moreover the polynomial [c0 + s · c1]qi is “small”, i.e. all its coefficients are considerably smaller
than qi. Roughly, that polynomial is considered the “noise” in the ciphertext, and its coefficients grow as
homomorphic operations are performed. The crux of the noise-control technique from [3] is that a level-i
ciphertext can be publicly converted into a level-(i+ 1) ciphertext (with respect to the same secret key), and
that this transformation reduces the noise in the ciphertext roughly by a factor of qi+1/qi.

Secret keys too are associated with levels, and the public key includes some additional information that
(roughly speaking) makes it possible to convert a ciphertext with respect to level-i key si into a ciphertext
with respect to level-(i + 1) key si+1. In what follows we will only be interested in the secret keys at level
L and level zero; which we will denote by s and s̃ respectively to ease notation.

For bootstrapping, we have as input a level-L ciphertext (i.e. a vector c ∈ R/qLR modulo the smallest
modulus qL). This means that the noise-control technique can no longer be applied to reduce the noise,
hence (essentially) no more homomorphic operations can be performed on this ciphertext. To enable further
computation, we must therefore “recrypt” the ciphertext c, to obtain a new ciphertext that encrypts the same
element of R with respect to some lower level i < L.

Our first observation is that the decryption at level L can be made more efficient when qL is close to a
power of two, specifically qL = 2r + 1 for an integer r, and moreover the coefficients of Z = 〈c, s〉 mod
F (X) are much smaller than q2L in magnitude. In particular if z is one of the coefficients of the polynomialZ
then [[z]qL ]2 can be computed as z〈r〉 ⊕ z〈0〉, where z〈i〉 is the i’th bit of z.

To evaluate the decryption formula homomorphically, we temporarily extend the plaintext space to poly-
nomials modulo 2r+1 (rather than modulo 2). The level-L secret key is s = (1, s), where all the coeffi-
cients of s are small (in the interval (−2r,+2r)). We can therefore consider s as a plaintext polynomial in
R/2r+1R, encrypt it inside a level-0 ciphertext, and keep that ciphertext in the public key. Thus, given the
level-L ciphertext c, we can evaluate the inner product [〈c, s〉 mod F (X)] homomorphically, obtaining a
level-0 ciphertext that encrypts the polynomial Z.

For simplicity, assume for now that what we get is an encryption of all the coefficients of Z separately.
Given an encryption of a coefficient z of Z (which is an element in Z/2r+1Z) we show how to extract
(encryptions of) the zero’th and r’th bit using a data-oblivious algorithm. Hence we can finally recover a
new ciphertext, encrypting the same binary polynomial at a lower level i < L.

To achieve efficient bootstrapping, we exploit the ability to perform operations on elements modulo
2r+1 in a SIMD fashion; much like in prior work [17, 3, 13]. Some care must be taken when applying these

2Our method can be used also with other schemes, as long as the scheme allows us to choose a modulus very close to a power
of two. For example they can be used with the schemes from [5, 4].

3Our description of the BGV cryptosystem below assumes modulo-2 plaintext arithmetic, generalizing to modulo-p arithmetic
for other primes p > 2 is straightforward.
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techniques in our case, since the inputs and outputs of the bootstrapping procedure are not in the correct
format: Specifically, these techniques require that inputs and outputs be in CRT representation, whereas
decryption (and therefore recryption) inherently deals with polynomials in coefficient representation. We
therefore must use explicit conversion to CRT representation, and ensure that these conversions are efficient
enough. See details in Section 5.

Also, the techniques from prior work must be extended somewhat to be usable in our case: Prior work
demonstrated that SIMD operations can be performed homomorphically when the underlying arithmetic is
over a field, but in our case we have operations over the ring Z/2r+1Z, which is not a field. The algebra
needed to extend the SIMD techniques to this case is essentially an application of the theory of local fields
[6]. We prove many of the basic results that we need in Section 4, and refer the reader to [6] for a general
introduction and more details.

Notations

Throughout the paper we denote by [z]q the reduction of z mod q into the interval (− q
2 ,

q
2 ]. We also denote

the i’th bit in the binary representation of the integer z by z〈i〉. Similarly, when a is an integer polynomial
of degree d with coefficients (a0, a1, . . . , ad), we denote by a〈i〉 the 0-1 degree-d polynomial whose co-
efficients are all the i’th bits (a0〈i〉, a1〈i〉, . . . , ad〈i〉). If c, s are two same-dimension vectors, then 〈c, s〉
denotes their inner product.

Organization

We present the simplified decryption formula in Section 2 and explain how to evaluate it homomorphically
in Section 3. Then we recall some algebra in Section 4, and in Section 5 we explain how to use techniques
similar to [13] to run bootstrapping in time quasi-linear in the security parameter. Some further optimizations
are described in Section 6, and all the proofs are deferred to Appendix A.

2 A simpler decryption formula

Our first observation is that if the small modulus qL has a special form – in particular, if it equals u · 2r + v
for some integer r and for some small positive odd integers u, v – then the mod-qL decryption formula can
be made to have a particularly simple form. Below, we will focus on the case of qL = 2r + 1, which suffices
for our purposes.

So, assume that qL = 2r + 1 for some integer r and that we decrypt by setting a ← [[〈c, s〉 mod
F (X)]qL ]2. Consider now the coefficients of the integer polynomial Z = 〈c, s〉 mod F (X), without the
reduction mod qL. Since s has small coefficients (and we assume that reduction mod-F (X) does not increase
the coefficients by much) then all the coefficients of Z are much smaller than q2L. Consider one of these
integer coefficients, denoted by z, so we know that |z| � q2L ≈ 22r. We consider the binary representation
of z as a 2r-bit integer, and assume for now that z ≥ 0 and also [z]qL ≥ 0. We claim that in this case, the bit
[[z]qL ]2 can be computed simply as the sum of the lowest bit and the r’th bit of z, i.e., [[z]qL ]2 = z〈r〉⊕z〈0〉.
(Recall that z〈i〉 is the i’th bit of z.)

Lemma 1. Let q = 2r + 1 for a positive integer r, and let z be a non-negative integer smaller than q2

2 − q,
such that [z]q is also non-negative, [z]q ∈ [0, q2 ]. Then [[z]q]2 = z〈r〉 ⊕ z〈0〉.
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The proof of Lemma 1 is in Appendix A. We note that the proof can easily be extended for the case
q = u2r + v, if that the bound on z is stengthen by a factor of v. To remove the assumption that both z and
[z]q are non-negative, we use the following easy corollary (whose proof is also in Appendix A):

Corollary 1. Let r ≥ 3 and q = 2r + 1 and let z be an integer with absolute value smaller than q2

4 − q,
such that [z]q ∈ (− q

4 ,
q
4). Denote z′ = z + (q2 − 1)/4, then [[z]q]2 = z′〈r〉 ⊕ z′〈0〉.

Using Corollary 1 we can get our simplified decryption formula. First, we set our parameters such that
qL = 2r+1 and all the coefficients of the integer polynomial Z = 〈c, s〉 mod F (X) are smaller than q2L

4 −1

in absolute value, and moreover they are all less than qL−1
4 away from a multiple of qL. Let c∗ = 1 · q

2
L−1
4

be the fixed integer polynomial that has all of its coefficients equal to the integer q
2
L−1
4 . Given a two-element

ciphertext c = (c0, c1) ∈ ((Z/qLZ)[X]/F (X))2, we compute a new ciphertext c′ = (c0 + c∗, c1), and next
we decrypt c′ using our new formula.

Specifically, since the first entry in s is 1, we have Z ′ = 〈c′, s〉 = 〈c, s〉+c∗ = Z+c∗, over Z[X]/F (X)
(without reduction modulo qL). Hence for every coefficient z′ in Z ′, the corresponding coefficient in Z is
z = z′ +

q2L−1
4 , and we can use Corollary 1. Putting it all together, to decrypt c we set c′ = (c0 + c∗, c1),

then compute Z ′ ← 〈c′, s〉 mod F (X) over the integers (without reduction mod qL), and finally recover the
plaintext as Z ′〈r〉 + Z ′〈0〉. Ultimately, we obtain the plaintext polynomial a ∈ F2[X]/F (X), where each
coefficient in a is obtained as the XOR of bits 0 and r of the corresponding coefficient in Z ′.

2.1 Working modulo 2r+1

Since we are only interested in the contents of bit positions 0 and r in the polynomial Z ′, we can compute Z ′

modulo 2r+1 rather than over the integers. Observing that when qL = 2r+1 then q2L−1
4 ≡ 2r−1 (mod 2r+1),

our simplified decryption of a ciphertext vector c = (c0, c1) proceeds as follows (denoting c∗ = 1 · 2r−1):
0. Before Recryption, we post-process the ciphertext to get c′ ← ([c0 + c∗]2r+1 , [c1]2r+1);
1. Compute Z ′ ← [〈c′, s〉 mod F (X)]2r+1 ;
2. Recover the 0-1 plaintext polynomial a = [Z ′〈r〉+ Z ′〈0〉]2.

(Note that when reducing modulo a power of 2, the bit representation is the same when reducing into the
interval [−2r, 2r − 1] as when reducing into the interval [0, 2r+1 − 1]. We can then interpret the reduction
mod 2r+1 as done into either interval.)

3 Basic Homomorphic Decryption

To get a homomorphic implementation of the simplified decryption formula from above, we use an instance
of our homomorphic encryption scheme with underlying plaintext space Z2r+1 . Namely, denoting by s̃ the
level-0 secret-key and by q0 the largest modulus, a ciphertext encrypting a ∈ (Z/2r+1Z)[X]/F (X) with
respect to s̃ and q0 is a 2-vector c̃ over (Z/q0Z)[X]/F (X) such that |[〈c̃, s̃〉 mod F (X)]q0 | � q0 and
[〈c̃, s̃〉 mod F (X)]q0 ≡ a (mod 2r+1).

Recall that the ciphertext before bootstrapping is with respect to secret key s and modulus qL = 2r+1. In
this section we only handle the simple case where the public key includes an encryption of each coefficient of
the secret-key s separately. Namely, denoting s = (1, s) and s(X) =

∑d−1
j=0 sjX

j , we encode for each j the
coefficient sj as the constant polynomial sj ∈ (Z/2r+1Z)[X]/F (X). (I.e., the degree-d polynomial whose
free term is sj ∈ [−2r + 1, 2r] and all the other coefficients are zero.) Then for each j we include in the
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public key a ciphertext c̃j that encrypts this constant polynomial sj with respect to s̃ and q0. Below we abuse
notations somewhat, using the same notation to refer both to a constant polynomial z ∈ (Z/2rZ)[X]/F (X)
and the free term of that polynomial z ∈ (Z/2rZ).

3.1 Computing Z′ Homomorphically

Given the qL-ciphertext c = (c0, c1) (that encrypts a plaintext polynomial a ∈ F2[X]/F (X)), we post-
process it to get c′ = (c0 + c∗, c1) mod 2r+1 as above, and then use the encryption of s from the public
key to compute the simple decryption formula from above. Computing an encryption of Z ′ = [〈c′, s〉 mod
F (X)]2r+1 is easy, since the coefficients of Z ′ are just affine functions (over (Z/2r+1Z)) of the coefficients
of s, which we can compute from the encryption of the sj’s in the public key.

3.2 Extracting the Top and Bottom Bits

Now that we have encryptions of the coefficients of Z ′, we need to extract the top and bottom bits in each of
these coefficients and add them (modulo 2) to get encryptions of the plaintext coefficients. In more details,
given a ciphertext c̃ satisfying [〈c̃, s̃〉 mod F (X)]q0 ≡ z (mod 2r+1) where z is some constant polynomial,
we would like to compute another ciphertext c̃′ satisfying [〈c̃′, s̃〉 mod F (X)]q0 ≡ z〈0〉 + z〈r〉 (mod 2)
(with [〈c̃′, s̃〉 mod F (X)]q0 still much smaller then q0 in magnitude). To this end, we describe a procedure
to compute for all i = 0, 1, . . . , r a ciphertext c̃i satisfying [〈c̃i, s̃〉 mod F (X)]q0 ≡ z〈i〉 (mod 2). Clearly,
we can immediately set c̃0 = c̃, we now describe how to compute the other c̃i’s.

The basic observation underlying this procedure is that modulo a power of 2, the second bit of z − z2 is
the same as that of z, but the LSB is zero-ed out. Thus setting z′ = (z − z2)/2 (which is an integer), we get
that the LSB of z′ is the second bit of z. More generally, we have the following lemma, whose proof is in
Appendix A:

Lemma 2. Let z be an r-bit integer with binary representation z =
∑r

i=0 2iz〈i〉. Define w0
def
= z, and

∀i > 1, wi
def
=

z −
∑i−1

j=0 2jw 2i−j

j mod 2r+1

2i
(division by 2i over the rationals/integers).

Then the wi’s are integers and we have wi〈0〉 = z〈i〉 for all i.

Our procedure for computing the ciphertexts c̃i mirrors the process of Lemma 2. Specifically, we
are given the ciphertext c̃ = c̃0 that encrypts z = w0 mod 2r+1, and we iteratively compute ciphertexts
c̃1, c̃2, . . . such that c̃i encrypts wi mod 2r−i+1. Eventually we get c̃r that encrypts wr mod 2, which is what
we need (since the LSB of wr is the r’th bit of z).

Note that most of the operations in Lemma 2 are carried out in (Z/2r+1Z), and therefore can be evalu-
ated homomorphically in our (Z/2r+1Z)-homomorphic cryptosystem. The only exception is the the division
by 2i in Equation (2), and we now show how this division can also be evaluated homomorphically.

To implement division we begin with an arbitrary ciphertext vector c̃ that encrypts a plaintext element
a ∈ (Z/2jZ)[X]/F (X) (for some j) with respect to the level-0 key s̃ and modulus q0. Namely, we have the
equality over Z[X]:

(〈c̃, s̃〉 mod F (X)) = a+ 2j · S + q0 · T

for some polynomials S, T ∈ Z[X]/F (X), where the coefficient norm of a+ 2jS is much smaller than q0.
Assuming that a is divisible by 2 over the integers (i.e., all its coefficients are even) consider what happens
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when we multiply c̃ by the integer (q0 + 1)/2 (which is the inverse of 2 modulo-q0). Then we have

(
〈
q0+1
2 · c̃, s̃

〉
mod F (X)) = q0+1

2 · (〈c̃, s̃〉 mod F (X))

=
(q0 + 1) · a

2
+

(q0 + 1) · 2j · S
2

+
q0 · (q0 + 1) · T

2

= (q0 + 1) · (a/2) + (q0 + 1) · 2j−1S + q0 · q0+1
2 · T

= a/2 + 2j−1 · S + q0 ·
(
a/2 + 2j−1S + q0+1

2 T
)

Clearly the coefficients of a/2 + 2j−1S are half the size of those of a + 2jS, hence they are much smaller
than q0. It follows that c̃′ = [c̃ · (q0 + 1)/2]q0 is a valid ciphertext that encrypts the plaintext a/2 ∈
(Z/2j−1Z)[X]/F (X) with respect to secret key s̃ and modulus q0.

The same argument shows that if a is divisible by 2i over the integers (for some i < j) then [c̃ ·
((q0 + 1)/2)i]q0 is a valid ciphertext encrypting a/2i ∈ (Z/2j−iZ)[X]/F (X). Combining this division-
by-two procedure with homomorphic exponentiation mod 2r+1, the resulting homomorphic bit-extraction
procedure is described in Figure 1.

Bit-Extraction(c̃, r, q0):
Input: A ciphertext c̃ encrypting a constant b ∈ (Z/2r+1Z) relative to secret key s̃ and modulus q0.
Output: A ciphertext c̃′ encrypting the constant b〈0〉 ⊕ b〈r〉 ∈ F2 relative to secret key s̃ and modulus q0.

1. Set c̃0 ← c̃ // c̃ encrypt z w.r.t. s̃
2. For i = 1 to r
3. Set acc← c̃ // acc is an accumulator
4. For j = 0 to i− 1 // Compute z −

∑
j 2jwi−1j

5. Set tmp← HomExp(c̃j , 2
i−j) // Homomorphic exponentiation to the power 2i−j

6. Set acc← acc− 2j · tmp mod q0
7. Set c̃i ← acc · ((q0 + 1)/2)i mod q0 // c̃i encrypts z〈i〉
8. Output c̃0 + c̃r mod q0

HomExp(c̃, n) uses native homomorphic multiplication to multiply c̃ by itself n times. To aid exposition,
this code assumes that the modulus and secret key remain fixed, else modulus-switching and key-switching
should be added (and the level should be increased correspondingly to some i > 0).

Figure 1: A Homomorphic Bit-Extraction Procedure.

3.3 Packing the Coefficients

Now that we have encryption of all the coefficients of a, we just need to “pack” all these coefficients back
in one polynomial. Namely, we have encryption of the constant polynomials a0, a1, . . ., and we want to
get an encryption of the polynomial

∑
i aiX

i. This can be done simply by generating encryptions of the
monomialsXi, 4 using the native homomorphism of the cryptosystem to multiply each monomialXi by the
corresponding constant ai, and then add them all.

4For example, the vector (Xi, 0) is always an encryption of the monomial Xi when the key has the form (1, s).
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4 Algebraic Background

Below we describe the algebra needed when using the techniques of Gentry et al. from [13] of computing
on packed ciphertexts for our needs. Recall that the BGV scheme is defined over a polynomial ring R =
Z[X]/F (X). If the polynomial F (X) factors modulo two into distinct irreducible polynomials F0(X) ×
· · ·×F`−1(X), then, by the Chinese Remainder Theorem, the plaintext space factors into a product of finite
fields

R2
∼= F2[X]/F0(X)× · · · × F2[X]/F`−1(X).

This factorization is used in [17, 3, 13] to “pack” a vector of ` elements (one from each F2[X]/Fi(X))
into one plaintext polynomial, which is then encrypted in one ciphertext; each of the ` components called
a plaintext slot. The homomorphic operations (add/mult) are then applied to the different slots in a SIMD
fashion. When F (X) is the m-th cyclotomic polynomial, F (X) = Φm(X), then the field Q[X]/F (X)
is Galois (indeed Abelian) and so the polynomials Fi(X) all have the same degree (which we will denote
by d). It was shown in [13] how to evaluate homomorphically the application of the Galois group on the
slots, and in particular this enables homomorphically performing arbitrary permutations on the vector of
slots in time quasi-linear in m. This, in turn, is used in [13] to evaluate arbitrary arithmetic circuits (of
average width Ω̃(λ)) with overhead only polylog(λ).

However, the prior work only mentions the case of plaintext spaces taken modulo a prime (in our case
two), i.e. R2. In this work we will need to also consider plaintext spaces which are given by a power of a
prime, i.e. R2t for some positive integer t. (We stress that by R2t we really do mean (Z/2tZ)[X]/F (X)
and not F2t [X]/F (X).) We now show how the techniques from [13] extends also to this case. We start by
considering general polynomials, and then specialize to cyclotomic polynomials.

4.1 General F (X)

It turns out that for monic and square free F (X) modulo 2, all the properties we had modulo two carry over
to when working modulo a power of two (i.e. the ` slots, the Galois actions, etc). The “high brow” way
of seeing this is to consider the message space modulo 2t as the precision t approximation to the 2-adic
integers; namely we need to consider the localization of the field K = Q[X]/F (X) at the prime 2. We
sketch the underlying algebra for those who are interested, and provide elementary proofs of some of the
main results, so as to obtain a somewhat self-contained treatment of what we require. However, the reader
if referred to [6] for a complete treatment of local fields and their Galois theory.

We present the basic theory for a general prime p, to demonstrate their is nothing special about the prime
2. As usual when dealing with local fields we use the notation Zp to denote the p-adic integers, this is the
ring of formal power series in p, i.e.

Zp =

{ ∞∑
i=0

ai · pi : ai ∈ Fp

}
.

In holding an element in Zp we only hold it to a given p-adic precision, by which we mean we hold it as
an integer in the ring (Z/ptZ). Then addition and multiplication in Zp is defined by the induced operations
obtained from the equivalent operations on (Z/ptZ). Intuitively one should think of Zp as representing the
rings (Z/ptZ), for all values of t at once; indeed Zp is the projective limit of (Z/ptZ) as t −→∞. The field
of fractions of Zp is denoted by Qp, which is the field of p-adic numbers. A p-adic number can be held as a
numerator/denominator pair (num, den) where num ∈ Zp and den = pv for some v ∈ N.
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We will write Rp∞ = Zp[X]/F (X) and note that the approximation to p-adic precision t of this ring
is our desired space Rpt . The field of fractions of Rp∞ is given by Qp[X]/F (X). Our first goal is to
understand the algebra of Rp∞ , and in so doing, to understand the algebra of Rpt . The following Lemma is
key:

Lemma 3. Let p be a prime, let t ≥ 1 be an integer, and let G,H,F ∈ Z[X] be monic integer polynomials,
such that G,H are co-prime modulo p, and G · H = F (mod pt). Then there exist monic polynomials
G̃, H̃ ∈ Z[X] such that G ≡ G̃ (mod pt) and H ≡ H̃ (mod pt) and G̃ · H̃ = F (mod pt+1).

All proofs are given in Appendix A. Note, the process in the proof of Lemma 3 of turning a solution modulo
pt to a solution modulo pt+1 is called “Hensel Lifting” in the literature.

Corollary 2. Let p be a prime, let t ≥ 1 be an integer and let F ∈ Z[X] be a monic integer polynomial,
which is square-free modulo p. Then F is irreducible modulo pt if and only if it is irreducible modulo p.

Theorem 1. Let p be a prime, let t ≥ 1 be an integer and let F ∈ Z[X] be a monic integer polynomial, which
is square-free modulo p. Then the factorization of F modulo pt is determined uniquely by the factorization
of F modulo p.

The above theorem tells us that the factorization ofRpt into plaintext slots is the same as the factorization
of Rp into plaintext slots, for all positive t. Thus if a = (a0, . . . , a`−1) ∈ Rp consisting of a vector of `
values, where each value ai is modulo Fi(X), then we can “lift” it to an element a = (a0, . . . , a`−1) ∈ Rpt
where ai ≡ ai (mod p) and ai is defined modulo Fi(X), where Fi ≡ Fi (mod p) and Fi divides F modulo
pt.

4.2 Cyclotomic Polynomials

For our purposes, we will select F (X) to be the m’th cyclotomic polynomial Φm(X). If d is the smallest
integer such that m divides pd − 1 then Φm(X) will factor into ` = φ(m)/d irreducible polynomials
modulo p, each of degree d, i.e. Φm(X) =

∏`−1
j=0 Fj(X) (mod p). By the above results we also see that

Φm factors mod pt as Φm(X) =
∏`−1
j=0 Fj(X) (mod pt) where Fj ≡ Fj (mod p) and the Fj’s are monic

and irreducible mod pt.
So if we select F (X) to be Φm(X) then the algebra Rpt splits into ` rings (Z/ptZ)[X]/Fj(X) each of

degree d. The following standard result from the theory of p-adic extensions can be found in either Cassels
[6, Lemma 2.1] or Cohen [7, Lemma 4.4.26].

Lemma 4. For every d, upto isomorphism there exists exactly one unramified extension K of Qp of degree
d, which is the splitting field of Xq −X over Qp, where q = pd.

This implies that our ` rings (Z/ptZ)[X]/Fj(X) are isomorphic to each other; via linear maps defined
over Z/pZ (on any linear basis of (Z/ptZ)[X]/Fj(X) when considered as a Z/ptZ-module). Indeed the
above Lemma is the p-adic analogue of the result from finite field theory that all finite fields of a given
degree are isomorphic. Just as in [13, 17] (which concerned themselves with the case of finite fields), this
allows the following presentational (and computational) simplification. We can pick a single irreducible
(over Fp) polynomial of degree d; let us call this polynomial G(X). We then define the ring R d

pt to be
(Z/ptZ)[X]/G(X), then each of our ` slots in Rpt are isomorphic to R d

pt ; so we can think of operations in
Rpt as being operations on (R d

pt)
`. Moreover, again by the above Lemma, we know R d

pt contains all of the
dth roots of unity.
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We now turn to examining the Galois Theory of the rings Rpt and R d
pt . The same description as in

[13] applies. Namely, that the Galois group of Rpt is isomorphic to the group (Z/mZ)∗. The elements
of the Galois group providing the map X −→ Xi on Rpt for i ∈ (Z/mZ)∗. The group Gal contains the
decomposition group at p, namely the subgroup G generated by the element p, which is also the Galois
group of R d

pt . The decomposition group has order d, and its elements map roots of Fj to roots of Fj for
the same value of j. The generator of the decomposition group maps the interdeterminant X to Xp in all
of our rings, and it commutes with the isomorphisms between the representations (Z/pZ)[X]/Fj(X) and
R d
pt . Thus we can apply the Frobenius map to elements of Rpt and think of it applying simultaneously to the

representation
∏

(Z/pZ)[X]/Fj and the representation (R d
pt)

`.
The quotient group H ∼= Gal/G is of order ` and given a set of coset representatives for H we can

produce via Galois conjugation, addition and multiplication an arbitrary permutation on the slots of Rpt ;
just as was done in [13] for the case t = 1.

5 Homomorphic Decryption with Packed Ciphertexts

The homomorphic decryption procedure from Section 3 is rather inefficient, mostly because we need to
repeat the bit-extraction procedure from Figure 1 for each coefficient separately. Instead, we would like to
pack many coefficients in one ciphertext and extract the top bits of all of them together. To this end we
employ a batching technique, similar to Smart-Vercauteren (and later works) [3, 13, 17], using Chinese re-
maindering over the ring of polynomials to pack many “plaintext slots” inside a single plaintext polynomial.
These techniques rely on polynomial arithmetic modulo cyclotomic polynomials, so for the rest of this paper
we assume F (X) = Φm(X) for an appropriately chosen integer m.

Using these techniques for bootstrapping is not quite straightforward, however. The main difficulty is
that the input and output of are not presented in a packed form: The input is a single qL-ciphertext that
encrypts a single plaintext polynomial a (which may or may not have many plaintext elements packed in its
slots), and similarly the output needs to be a single ciphertext that encrypts the same polynomial a (but with
respect to a larger modulus). Moreover, the bit extraction procedure yields the coefficients of a, again not in
a packed form. Our “packed bootstrapping” procedure consists of the following steps:

1. Using the encryption of the qL-secret-key with respect to the modulus q0, we convert the initial qL-
ciphertext into a q0-ciphertext encrypting the polynomial Z ′ ∈ (Z/2r+1Z)[X]/Φm(X).

2. Next we apply a homomorphic inverse-DFT transformation to get encryption of polynomials that have
the coefficients of Z ′ in their plaintext slots.

3. Now that we have the coefficients of Z ′ in the plaintext slots, we can apply the bit extraction procedure
to all these slots in parallel. The result is encryption of polynomials that have the coefficients of a in
their plaintext slots.

4. Finally, we apply a homomorphic DFT transformation to get back a ciphertext that encrypts the poly-
nomial a itself.

Below we describe each of these steps in more detail. We note that the main challenge is to get an efficient
implementation of Steps 2 and 4.
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5.1 Encrypting the qL-Secret-Key

As in Section 3, we use an encryption scheme with underlying plaintext space modulo 2r+1 to encrypt the
qL-secret-key s under the q0-secret-key s̃. The qL-secret-key is a vector s = (1, s), where s ∈ Z[X]/Φm(X)
is an integer polynomial with small coefficients. Viewing these small coefficients as elements in Z/2r+1Z,
we encrypt s as a q0-ciphertext c̃ = (c̃0, c̃1) with respect to the q0-secret-key s̃ = (1, s̃), namely we have

[〈c̃, s̃〉 mod Φm]q0 = [̃c0 + c̃1 · s̃ mod Φm]q0 = 2r+1k̃ + s (equality over Z[X])

for some polynomial k̃ with small coefficients.

5.2 Step One: Computing Z′ Homomorphically

Given a qL-ciphertext c = (c0, c1) we first post-process it by adding c∗ to c0, getting c′0 = [c0 + c∗]2r+1 .
Then, given the q0 ciphertext c̃ = (c̃0, c̃1) that encrypts s, we compute the mod-2r+1 inner product homo-
morphically by setting

z̃ =
(

[c′0 + c1c̃0 mod Φm]q0 , [c1c̃1 mod Φm]q0
)
. (1)

We claim that z̃ is a q0-ciphertext encrypting our Z ′ with respect to the secret key s̃ (and plaintext space
modulo 2r+1). To see that, recall that we have the following two equalities over Z[X],

(c′0 + c1s mod Φm) = 2r+1k + Z ′ and (c̃0 + c̃1s̃ mod Φm) = q0k̃ + 2r+1k̃′ + s,

where k, k̃, k̃′ ∈ Z[X]/Φm, the coefficients of 2r+1k + Z ′ are smaller than 2q2L � q0, and the coefficients
of 2r+1k̃′ + s are also much smaller than q0. It follows that:

(〈z̃, s̃〉 mod Φm) = [c′0 + c1c̃0 mod Φm]q0 + (s̃ · [c1c̃1 mod Φm]q0 mod Φm)

= (c′0 + c1(c̃0 + c̃1s̃) mod Φm) + q0κ

= (c′0 + c1(2
r+1k̃′ + s) mod Φm) + q0κ

′

= (c′0 + c1s mod Φm) + q0κ
′ + 2r+1(c1 · k̃′ mod Φm)

= q0κ
′ + 2r+1(k + c1k̃

′ mod Φm) + Z ′ (equality over Z[X])

for some κ, κ′ ∈ Z[X]/Φm. Moreover, since the coefficients of c1 are smaller than qL � q0 then the
coefficients of 2r+1(k + c1k̃

′ mod Φm) + Z ′ are still much smaller than q0. Hence z̃ is decrypted under s̃
and q0 to Z ′, with plaintext space 2r+1.

5.3 Step Two: Switching to CRT Representation

Now that we have an encryption of the polynomial Z ′, we want to perform the homomorphic bit-extraction
procedure from Figure 1. However, this procedure should be applied to each coefficient of Z ′ separately,
which is not directly supported by the native homomorphism of our cryptosystem. (For example, homomor-
phically squaring the ciphertext yields an encryption of the polynomial Z ′2 mod Φm rather than squaring
each coefficient of Z ′ separately.) We therefore need to convert z̃ to CRT-based “packed” ciphertexts that
hold the coefficients of Z ′ in their plaintext slots.

The system parameter m was chosen so that m = Θ̃(λ) and Φm(X) factors modulo 2 (and therefore
also modulo 2r+1) as a product of degree-d polynomials with d = O(logm), Φm(X) =

∏`−1
j=0 Fj(X)

(mod 2r+1). This allows us to view the plaintext polynomial Z ′(X) as having ` slots, with the j’th slot
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holding the value Z ′(X) mod (Fj(X), 2r+1). This way, adding/multipliying/squaring the plaintext polyno-
mials has the effect of applying the same operation on each of the slots separately.

In our case, we have φ(m) coefficients of Z ′(X) that we want to put in the plaintext slots, and each
ciphertext has only ` = φ(m)/d slots, so we need d ciphertexts to holds them all. The transformation from
the single ciphertext z̃ that encrypts Z ′ itself to the collection of d ciphertexts that hold the coefficients of Z ′

in their slots is described in Section 5.6 below. (We describe that step last, since it is the most complicated
and it builds on machinery that we develop for Step Four in Section 5.5.)

5.4 Step Three: Extracting the Top and Bottom Bits

Once we have the coefficients of Z ′ in the plaintext slots, we can just repeat the procedure from Figure 1.
The input to the the bit-extraction procedure is a collection of some d ciphertexts, each of them holding
` = φ(m)/d of the coefficients of Z ′ in its ` plaintext slots. (Recall that we chose m = Õ(λ) such that
d = O(logm).) Applying the procedure from Figure 1 to these ciphertexts will implicitly apply the bit
extraction of Lemma 2 to each plaintext slot, thus leaving us with a collection of d ciphertexts, each holding
` of the coefficients of a in its plaintext slots.

5.5 Step Four: Switching Back to Coefficient Representation

To finally complete the recryption process, we need to convert the d ciphertexts holding the coefficients of a
in their plaintext slots into a single ciphertext that encrypts the polynomial a itself. For this transformation,
we appeal to the result of Gentry et al. [13], which says that every depth-L circuit of average-width Ω̃(λ)
and size T can be evaluated homomorphically in time O(T ) · poly(L, log λ), provided that the inputs and
outputs are presented in a packed form. Below we show that the transformation we seek can be computed
on cleartext by a circuit of size T = Õ(m) and depth L = polylog(m), and hence (since m = Θ̃(λ)) it can
be evaluated homomorphically in time Õ(m) = Õ(λ).

To use the result of Gentry et al. we must first reconcile an apparent “type mismatch”: that result
requires that both input and output be presented in a packed CRT form, whereas we have input in CRT form
but output in coefficient form. We therefore must interpret the output as “something in CRT representation”
before we can use the result from [13]. The solution is obvious: since we want the output to be a in
coefficient representation, then it is a polynomial that holds the value Aj = a mod Fj in the j’th slot for
all j.

Hence the transformation that we wish to compute takes as input the coefficients of the polynomials
a(X), and produces as output the polynomials Aj = a mod Fj for j = 0, 1, . . . , ` − 1. It is important
to note that our output consists of ` values, each of them a degree-d binary polynomial. Since this output
is produced by an arithmetic circuit, then we need a circuit that operates on degree-d binary polynomials,
in other words an arithmetic circuit over GF(2d). This circuit has ` · d inputs (all of which happen to be
elements of the base field F2), and ` outputs that belong to the extension field GF(2d).

Theorem 2. Fix m ∈ Z, let d ∈ Z be the smallest such that m|2d − 1, denote ` = φ(m)/d and let
G ∈ F2[X] be a degree-d irreducible polynomial over F2 (that fixes a particular representation of GF(2d)).
Let F0(X), F1(X), . . . , F`−1(X) be the irreducible (degree-d) factors of the m-th cyclotomic polynomial
Φm(X) modulo 2.

Then there is an arithmetic circuit Πm over F2[X]/G(X) = GF(2d) with φ(m) inputs a0, a1, . . . , aφ(m)−1
and ` outputs z0, z1, . . . , z`−1, for which the following conditions hold:
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• When the inputs are from the base field (ai ∈ F2 ∀i) and we denote a(X) =
∑

i aiX
i ∈ F2[X], then

the outputs satisfy zj = a(X) mod (Fj(X), 2) ∈ F2[X]/G(X).

• Πm has depth O(logm) and size O(m logm).

The proof is in Appendix A. An immediate corollary of Theorem 2 and the Gentry et al. result [13, Thm. 3],
we have:

Corollary 3. There is an efficient procedure that given d ciphertexts, encrypting d polynomials that hold
the coefficients of a in their slots, computes a single ciphertext encrypting a. The procedure works in time
O(m) · polylog(m) (and uses at most polylog(m) levels of homomorphic evaluation).

5.6 Details of Step Two

The transformation of Step Two is roughly the inverse of the transformation that we described above for
Step Four, with some added complications. In this step, we have the polynomial Z ′(X) over the ring

Z/2r+1Z, and we view it as defining ` plaintext slots with the j’th slot containingBj
def
= Z ′ mod (Fj , 2

r+1).
Note that the Bj’s are degree-d polynomials, and we consider them as elements in the “extension ring”

R d
2r+1

def
= Z[X]/(G(X), 2r+1) (where G is some irreducible degree-d polynomial modulo 2r+1).

Analogous to Theorem 2, we would like to argue that there is an arithmetic circuit over R d
2r+1 that get as

input the Bj’s (as elements of R d
2r+1), and outputs all the coefficients of Z ′ (which are elements of the base

ring Z/2r+1Z). Then we could apply again to the result of Gentry et al. [13] to conclude that this circuit
can be evaluated homomorphically with only polylog overhead.

For the current step, however, the arithmetic circuit would contain not only addition and multiplication
gates, but also Frobenius map gates. Namely, gates ρk(·) (for k ∈ {1, 2, . . . , d−1}) computing the functions

ρk
(
u(X)

)
= u(X2k) mod (G(X), 2r+1).

It was shown in [13] that arithmetic circuits with Frobenius map gates can also be evaluated homomor-
phically with only polylog overhead. The Frobenius operations being simply an additional automorphism
operation which can be applied homomorphically to ciphertexts.

Theorem 3. Fix m, r ∈ Z, let d ∈ Z be the smallest such that m|2d − 1, denote ` = φ(m)/d and let
G(X) be a degree-d irreducible polynomial over Z/2r+1Z (that fixes a particular representation of R d

2r+1).
Let F0(X), F1(X), . . . , F`−1(X) be the irreducible (degree-d) factors of the m-th cyclotomic polynomial
Φm(X) modulo 2r+1.

Then there is an arithmetic circuit Ψm,r with Frobenius-map gates overR d
2r+1 that has ` inputB0, B1, . . .,

B`−1 and φ(m) outputs b0, b1, . . . , bφ(m)−1, for which the following conditions hold:

• On any inputs B0, . . . , B`−1 ∈ R d
2r+1 , the outputs of Ψm,r are all in the base ring, Z ′i ∈ Z/2r+1Z ∀i.

Moreover, denoting Z ′(X) =
∑

i Z
′
iX

i, it holds that Z ′(X) mod (Fj(X), 2r+1) = Bj for all j.

• Πm has depth O(logm+ d) and size O(m(d+ logm)).

The proof is in Appendix A. As before, a corollary of Theorem 3 and the result from [13], is the following;
where we apply the above theorem for b to our polynomial Z ′.

Corollary 4. There is an efficient procedure that given a single ciphertext encrypting Z ′ outputs d cipher-
texts encrypting d polynomials that hold the coefficients of Z ′ in their plaintext slots. The procedure works
in time Õ(m) (and uses at most polylog(m) levels of homomorphic evaluation).
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Remark. We note that the transformation from Theorem 3 is nontrivial, mainly because it involves homo-
morphically reducing a degree-(m − 1) polynomial modulo Φm(X). This can be done for any m in depth
polylog(m) and size Õ(m), (see, e.g., [15, Sec. 7.2] or [1, Sec. 17]), but this procedure is rather involved.
In some special cases (e.g., when m is prime) reduction modulo Φm(X) is immediate.

5.7 An Alternative Variant

The procedure from Section 5.6 works in time Õ(m), but it is still quite expensive. One alternative is to
put in the public key not just one ciphertext encrypting the qL-secret-key s, but rather several ciphertexts
(approximately d), encrypting polynomials that hold the coefficients of s in their plaintext slots. Then, rather
than using the simple formula from Equation (1) above, we evaluate homomorphically the inner product of
s = (1, s) and c′ = (c0 + c∗, c1) modulo Φm(X) and 2r+1. This procedure will be even faster if instead
of the coefficients of s we encrypt their transformed image under length-m DFT. Then we can compute the
DFT of c1 (in the clear), multiply it homomorphically by the encrypted transformed s (in SIMD fashion)
and then homomorphically compute the inverse-DFT and the reduction modulo Φm. Unfortunately this
procedure still requires that we compute the reduction mod-Φm(X) homomorphically, which is likely to
be the most complicated part of bootstrapping. Finding a method that does not require this homomorphic
polynomial modular reduction is an interesting open problem.

6 Lower-Degree Bit Extraction

As described in Figure 1, extracting the r’th bit requires computing polynomials of degree upto 2r, here we
describe a simple trick to lower this degree. Recall our simplified decryption process: we first post-process
the ciphertext to get c′ ← [c0 + c∗, c1]2r+1 (where c∗ = 1 · 2r−1), then set Z ′ ← [〈c′, s〉 mod Φm(X)]2r+1 ,
and finally recover a = [Z ′〈r〉+ Z ′〈0〉]2.

Consider what happens if we add qL to all the odd coefficients in c′, call the resulting vector c′′: On
one hand, now all the coefficients of c′′ are even. On the other hand, the coefficients of Z ′′ = 〈c′′, s〉 mod
Φm(X) are still small enough to use Lemma 1 (since they are at most cm · q · ‖s‖1 larger than those of Z ′

itself, where cm is the ring constant of mod-Φm(X) arithmetic and ‖s‖1 is the l1-norm of s). Since c′′ = c′

(mod qL) then we have

[[
〈
c′, s

〉
mod Φm(X)]qL ]2 = [[

〈
c′′, s

〉
mod Φm(X)]qL ]2 = Z ′′〈r〉+ Z ′′〈0〉

However, since c′′ is even then so is Z ′′. This means that Z ′′〈0〉 = 0, and if we divide Z ′′ by two (over
the integers), Z∗ = Z ′′/2, then we have [[〈c′, s〉 mod Φm(X)]qL ]2 = Z∗〈r − 1〉. We thus have a varia-
tion of the simple decryption formula that only needs to extract the r − 1’st bit, so it can be realized using
polynomials of degree upto 2r−1. Note that we can implement this variant of the decryption formula ho-
momorphically, because for an even Z ′′ we can easily convert an q0-encryption of Z ′′ into an encryption of
Z ′′/2 by multiplying by q0+1

2 modulo q0 (as described in Section 3.2).
This technique can be pushed a little further, adding to c′ multiples of q so that it is divisible by 4, 8,

16, etc., and reducing the required degree correspondingly to 2r−2, 2r−3, 2r−4, etc. The limiting factor
is that we must maintain that 〈c′′, s〉 has coefficients sufficiently smaller than q2L, in order to be able to use
Lemma 1. Clearly, if c′′ = c′+qκwhere all the coefficients of κ are smaller than some boundB (in absolute
value), then the coefficients of 〈c′′, s〉 can be larger than the coefficients of Z ′ = 〈c′, s〉 (in absolute value)
by at most cm · q ·B · ‖s‖1. (Heuristically we expect the difference to depend on the l2 norm of s more than
its l1 norm.)
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If we choose our parameters such that the l1-norm of s is belowm, and work over a ring with cm = O(1),
then the coefficients of Z ′ can be made as small as cm ·m · q, and we can make the coefficients of κ as large
as B ≈ q/(4cm ·m) in absolute value while maintaining the invariant that the coefficients of Z ′′ are smaller
than q2/4 (which is what we need to be able to use Lemma 1). By choosing an appropriate κ, we can ensure
that the least significant blog(q/(4cmm))c = r − dlog(4cmm)e bits of c′′ are all zero. This means that we
can implement bit extraction using only polynomials of degree at most 2dlog(4cmm)e < 8cmm = O(m).
(Heuristically, we should even be able to get polynomials of degree O(

√
m) since the l2 norm of s is only

O(
√
m).)

To get an even smaller degree we can use squashing: Recall that we have s = (1, s) for some secret
polynomial s. We can add to the public key a small number t = O(logm) of polynomials u1, u2, . . . , ut,
such that for some “very sparse polynomials” v1, . . . , vt it holds that

∑
i uivi = s (mod Φm(X), qL). The

vi’s are even much sparser than s itself, specifically the l1 norm of all of them together is only mε for some
constant ε < 1. Given the ciphertext c = (c0, c1) we can post-process it by setting fi = c1 · ui mod
(Φm(X), qL), then decryption of the post-processed ciphertext f = (c0, f1, . . . , ft) using the new secret key
v = (1, v1, . . . , vm) is done in principle using the same formula a = [[〈f ,v〉 mod Φm(X)]qL ]2. We can
now simplify the decryption formula and evaluate it homomorphically exactly as we did in Sections 2, 3,
and 5. The advantage of doing this is that the l1 norm of the new key v is much smaller, only mε as opposed
to m, so using the same trick as above the bit extraction procedure can be computed by polynomials of
degree only O(mε). (This squashing technique is essentially equivalent to using key-switching in order to
switch the qL ciphertext c into a ciphertext f with respect to the very sparse key v = (1, v1, . . . , vm).)
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A Proofs

Lemma 1. Let q = 2r + 1 for a positive integer r, and let z be a non-negative integer smaller than q2

2 − q,
such that [z]q is also non-negative, [z]q ∈ [0, q2 ]. Then [[z]q]2 = z〈r〉 ⊕ z〈0〉.

Proof. Let z0 = [z]q ∈ [0, q2 ], and consider the sequence of integers zi = z0 + iq for i = 0, 1, 2, · · · . Since
we assume that z ≥ 0 then z can be found in this sequence, say the k’th element z = zk = z0 + kq. Also
since z < q2

2 − q then k = bz/qc < q
2 − 1. The bit that we want to compute is [[z]q]2 = z0〈0〉. We claim

that z0〈0〉 = zk〈0〉+ zk〈r〉 (mod 2). This is because

zk = z0 + kq = z0 + k(2r + 1) = (z0 + k) + k2r,

which in particular means that zk〈0〉 = z0〈0〉+k〈0〉 (mod 2). But since 0 ≤ z0 ≤ q/2 and 0 ≤ k < q/2−1
then 0 ≤ z0 + k < q − 1 = 2r, so there is no carry bit from the addition z0 + k to the r’th bit position. It
follows that the r’th bit of zk is equal to the 0’th bit of k (i.e., zk〈r〉 = k〈0〉), and therefore

zk〈0〉 = z0〈0〉+ k〈0〉 = z0〈0〉+ zk〈r〉 (mod 2),
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which implies that z0〈0〉 = zk〈0〉+ zk〈r〉 (mod 2), as needed.

Corollary 1. Let r ≥ 3 and q = 2r + 1 and let z be an integer with absolute value smaller than q2

4 − q,
such that [z]q ∈ (− q

4 ,
q
4). Denote z′ = z + (q2 − 1)/4, then [[z]q]2 = z′〈r〉 ⊕ z′〈0〉.

Proof. Note that

z′ = z + (q2 − 1)/4 = z + (q + 1)(q − 1)/4 =
(
z +

q − 1

4

)
+ q · q − 1

4
,

and since (q− 1)/4 = 2r−2 is an even integer, then z′ ≡ z + q−1
4 (mod q). Moreover since [z]q ∈ (− q

4 ,
q
4 ]

then [z]q + q−1
4 ∈ [0, q/2], hence [z′]q = [z]q + q−1

4 (over the integers), and as q−1
4 is an even integer then

[z]q = [z′]q (mod 2), or in other words [[z]q]2 = [[z′]q]2.
Since z > − q2

4 and z is an integer then z ≥ − q2−1
4 and therefore z′ = z + q2−1

4 ≥ 0. Thus z′ satisfies
all the conditions set in Lemma 1, so applying that lemma we have [[z]q]2 = [[z′]q]2 = z′〈r〉 ⊕ z′〈0〉.

Lemma 2. Let z be an r-bit integer with binary representation z =
∑r

i=0 2iz〈i〉. Define w0
def
= z, and

∀i > 1, wi
def
=

z −
∑i−1

j=0 2jw 2i−j

j mod 2r+1

2i
(division by 2i over the rationals/integers). (2)

Then the wi’s are integers and we have wi〈0〉 = z〈i〉 for all i.

Proof. The lemma clearly holds for i = 0. Now fix some i ≥ 1, assume that the lemma holds for all j < i,
and we prove that it holds also for i. It is easy to show by induction that for any integer u and all j ≤ r we
have

u2
j

mod 2r+1 = u〈0〉+ 2j+1t for some integer t.

Namely, the LSB of u2
j

mod 2r+1 is the same as the LSB of u, and the next j bits are all zero. This
means that the bit representation of vj

def
= 2jw2i−j

j mod 2r+1 has bits 0, 1, . . . , j − 1 all zero (due to the
multiplication by 2j), then vj〈j〉 = wj〈0〉 = z〈j〉 (by the induction hypothesis), and the next i − j bits are
again zero (by the observation above). In other words, the lowest i+ 1 bits of vj are all zero, except the j’th
bit which is equal to the j’th bit of z.

This means that the lowest i bits of the sum
∑i−1

j=0 vj are the same as the lowest i bits of z, and the
i + 1’st bit of the sum is zero. Hence the lowest i bits of z −

∑i−1
j=0 vj are all zero, and the i + 1’st bit is

z〈i〉. Hence z −
∑i−1

j=0 vj is divisible by 2i (over the integers), and the lowest bit of the result is z〈i〉, as
needed.

Lemma 3. Let p be a prime, let t ≥ 1 be an integer, and let G,H,F ∈ Z[X] be monic integer polynomials,
such that G,H are co-prime modulo p, and G · H = F (mod pt). Then there exist monic polynomials
G̃, H̃ ∈ Z[X] such that G ≡ G̃ (mod pt) and H ≡ H̃ (mod pt) and G̃ · H̃ = F (mod pt+1).
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Proof. Considering the product G ·H modulo pt+1, we know that it is of the form G ·H = F + pt · F ′ for
some F ′ ∈ Fp[X] (since it equals F modulo pt). Moreover, since G,H are monic then the top coefficient
of G · H = F + pt · F ′ is one, which means that F ′ must have lower degree than F . We next prove that
there exist G′, H ′ ∈ Fp[X] such that (G+ pt ·G′) · (H + pt ·H ′) = F (mod pt+1). Opening parentheses,
removing terms that vanish modulo pt+1, and substituting F + pt · F ′ for G · H , we get the equivalent
formula:

F = (G+ pt ·G′) · (H + pt ·H ′)
= G ·H + pt · (G ·H ′ +G′ ·H) + p2t

= (F + pt · F ′)− pt · (G ·H ′ +G′ ·H)

= F + pt · (F ′ −G ·H ′ −G′ ·H) (mod pt+1),

which after subtracting F and dividing by pt is equivalent to the condition G ·H ′ +G′ ·H = F ′ (mod p).
Since G,H are co-prime over the field Fp, then there exists an inverse of H modulo (G(X), p) and vice

versa. Defining G′ = F ′ ·H−1 mod (G(X), p) and H ′ = G−1 mod H(X), p, we see

G ·H ′ +G′ ·H = 0 ·H ′ + (F ′ ·H−1) ·H = F ′ (mod G(X), p)

and similarly G · H ′ + G′ · H = F ′ (mod H(X), p). By Chinese remainders (and using G · H = F
(mod p)) we have GH ′ + G′H = F ′ (mod F (X), p). But the degree of G ·H ′ + G′ ·H is smaller than
that of F = G ·H , and so is the degree of F ′, hence we obtain G ·H ′+G′ ·H = F ′ (mod p), without the
reduction modulo F .

It follows that for G̃ = G+pt ·G′ mod pt+1 and H̃ = G+pt ·H ′, we have G̃ ·H̃ = F (mod pt+1), and
since G,H are monic and have degrees larger than G′, H ′, respectively, then also G̃ and H̃ are monic.

Corollary 2. One direction is obvious: if F is not irreducible modulo pt then there exist two nontrivial
monic polynomials G,H ∈ Z[X] such that G ·H = F (mod pt), so in particular G ·H = F (mod p).

For the other direction, fix F which is square free but not irreducible modulo p, and we show by in-
duction on t that it has two nontrivial monic factors modulo pt, which are co-prime over Fp. The base case
t = 1 is obvious, and the induction step is exactly Lemma 3.

Theorem 1. Let p be a prime, let t ≥ 1 be an integer and let F ∈ Z[X] be a monic integer polynomial, which
is square-free modulo p. Then the factorization of F modulo pt is determined uniquely by the factorization
of F modulo p.

Proof. Suppose F modulo pt factors into irreducible factors F0, . . . , F`−1. Then by setting Fi = Fi
(mod p) we obtain the factorization of F modulo p. Since Fi is irreducible modulo pt, by Corollary 2
we have that Fi is irreducible modulo p. In addition we cannot have Fi = Fj modulo p since F is square
free.

Going in the other direction: Given a factorization modulo p we can obtain a factorization modulo pt by
repeated application of Lemma 3

Theorem 2. Fix m ∈ Z, let d ∈ Z be the smallest such that m|2d − 1, denote ` = φ(m)/d and let
G ∈ F2[X] be a degree-d irreducible polynomial over F2 (that fixes a particular representation of GF(2d)).
Let F0(X), F1(X), . . . , F`−1(X) be the irreducible (degree-d) factors of the m-th cyclotomic polynomial
Φm(X) modulo 2.
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Then there is an arithmetic circuit Πm over F2[X]/G(X) = GF(2d) with φ(m) inputs a0, a1, . . . , aφ(m)−1
and ` outputs z0, z1, . . . , z`−1, for which the following conditions hold:

• When the inputs are from the base field (ai ∈ F2 ∀i) and we denote a(X) =
∑

i aiX
i ∈ F2[X], then

the outputs satisfy zj = a(X) mod (Fj(X), 2) ∈ F2[X]/G(X).

• Πm has depth O(logm) and size O(m logm).

Proof. Recall that GF(2d) contains a primitive m-th root of unity τ , and that Φm factors into linear terms
over GF(2d), Φm(X) =

∏
i∈(Z/mZ)∗(X − τ i). Moreover, each of the irreducible factors of Φm modulo 2

is a product of the terms (X − τ i) from one conjugacy class: namely there is a size-` set of representative
indexes L = {e0, e1, . . . , e`−1} ⊂ (Z/mZ)∗ such that for each j = 0, 1, . . . , `− 1 it holds that

Fj(X) = (X − τ ej )(X − τ2ej )(X − τ4ej ) · · · (X − τ2d−1ej ).

The circuit for computing all the polynomials Aj
def
= a mod Fj , consists of first applying the DFT to the

coefficients of a, thus computing the evaluations a(τ j) for all j ∈ (Z/mZ)∗, and then computing each Aj
from the d values a(τ ej ), a(τ2ej ), . . . , a(τ2

d−1ej ).
The first part, computing the size-m DFT over GF(2d), can be accomplished by a circuit of depth

O(logm) and size-Õ(m logm) using FFT techniques (e.g., using Bluestein’s trick [2]). The result is them-
vector of values a(τ i) for i = 0, 1, . . . ,m−1, from which we extract only the values a(τ i) for i ∈ (Z/mZ)∗.

Next, consider an arbitrary index j ∈ {0, 1, . . . , ` − 1} for which we want to compute Aj = a mod
Fj ∈ GF(2d). We show that Aj can be obtained as a fixed linear combination over GF(2d) of the values
a(τ ej ), a(τ2ej ), . . . , a(τ2

d−1ej ). To see that, first note that for all i ∈ {0, 1, . . . , d−1} we have Fj(τ ej2
i
) =

0. Since Aj = a mod Fj = a− κFj (for some κ), then we get

Aj(τ
ej2

i
) = a(τ ej2

i
)− κ(τ ej2

i
)Fj(τ

ej2
i
)︸ ︷︷ ︸

=0

= a(τ ej2
i
).

The coefficients of the degree-(d−1) polynomialAj can therefore be computed from the d valuesAj(τ ej2
i
) =

a(τ ej2
i
), for i = 0, 1, . . . , d − 1. Specifically, let Vj ∈ GF(2d)d×d be the Vandermonde matrix on the

points τ2
iej :

Vj
def
=



1 1 1 1 . . . 1

1 τ ej τ2ej τ3ej . . . τ (d−1)ej

1 τ2ej τ4ej τ6ej . . . τ2(d−1)ej

1 τ4ej τ8ej τ12ej . . . τ4(d−1)ej

...
...

...
...

. . .
...

1 τ2
d−1ej τ2

d−1·2ej τ2
d−1·3ej . . . τ2

d−1(d−1)ej


.

If we denote by u the column vector u def
=
(
a(τ ej ), a(τ2ej ), a(τ4ej ), . . . , a(τ2

d−1ej )
)t ∈ GF(2d)d, then the

coefficient vector of Aj is obtained as V −1j u.
Moreover, we can get the field element Aj ∈ GF(2d) from its vector of coefficients by multiplying the

free term by 1 ∈ GF(2d), the next coefficient by X ∈ GF(2d), the one after that by X2 ∈ GF(2d), etc., and

then summing all these products. Denoting x
def
=
(
1, X,X2, . . . , Xd−1) ∈ GF(2d)d and w

def
= xV −1j , we

have
〈w,u〉 = xV −1j u =

(
1, X,X2, . . . , Xd−1) · (V −1j u

)
= Aj .

18



We conclude that once we have all the values a(τ i), they can be partitioned into the ` different conjugacy
classes, and then each Aj can be computed as a fixed linear combination of the values in the corresponding
conjugacy class. Thus following the FFT circuit we need to compute ` linear combinations of d terms each,
which takes an additional circuit of size ` · d = O(m) (and insignificant depth).

Theorem 3. Fix m, r ∈ Z, let d ∈ Z be the smallest such that m|2d − 1, denote ` = φ(m)/d and let
G(X) be a degree-d irreducible polynomial over Z/2r+1Z (that fixes a particular representation of R d

2r+1).
Let F0(X), F1(X), . . . , F`−1(X) be the irreducible (degree-d) factors of the m-th cyclotomic polynomial
Φm(X) modulo 2r+1.

Then there is an arithmetic circuit Ψm,r with Frobenius-map gates overR d
2r+1 that has ` inputB0, B1, . . .,

B`−1 and φ(m) outputs b0, b1, . . . , bφ(m)−1, for which the following conditions hold:

• On any inputs B0, . . . , B`−1 ∈ R d
2r+1 , the outputs of Ψm,r are all in the base ring, Z ′i ∈ Z/2r+1Z ∀i.

Moreover, denoting Z ′(X) =
∑

i Z
′
iX

i, it holds that Z ′(X) mod (Fj(X), 2r+1) = Bj for all j.

• Πm has depth O(logm+ d) and size O(m(d+ logm)).

Proof. Recall that the structure of R d
2r+1 is determined by that of GF(2d). In particular R d

2r+1 contains a
primitivem-th root of unity τ , and Φm factors into linear terms overR d

2r+1 , Φm(X) =
∏
i∈(Z/mZ)∗(X−τ i).

Moreover, each of the irreducible factors of Φm modulo 2r+1 is a product of the terms (X − τ i) from one
conjugacy class: namely for the same size-` set of representative indexes as in the proof of Theorem 2,
L = {e0, e1, . . . , e`−1} ⊂ (Z/mZ)∗, it holds that Fj(X) = (X − τ ej )(X − τ2ej ) · · · (X − τ2d−1ej ) for
all j. Conceptually, the circuit Ψm,r consists of first computing the coefficients of the input polynomialsBj ,
then computing the values Z ′(τ i), and finally computing the coefficients of b (but the first two parts can be
combined into one step).

For the first part, we need a circuit that takes as input the ` extension-ring elements B0, . . . , B`−1 ∈
R d
2r+1 and outputs the φ(m) elements of the base ring which are the coefficients of these extension-ring

elements (as represented by degree-d polynomials in Z[X]/(G(X), 2r+1)).
We claim that for each extension-ring element u ∈ R d

2r+1 the coefficients of u(X) can be computed
as fixed linear combinations of the d Frobenius maps µk = ρk(u): Indeed, for the extension-ring element
u(X) =

∑
i uiX

i we have the equalities over R d
2r+1 ρk(u(X)) = u(X2k) =

∑d−1
i=0 uiX

i2k for all k.
Writing these equalities in matrix form, we have

u(X)
ρ1(u(X))
ρ2(u(X))

...
ρd−1(u(X))

 =


1 X X2 Xd−1

1 X2 X4 . . . X2(d−1)

1 X4 X8 X4(d−1)

...
. . .

1 X2d−1
X2·2d−1

X(d−1)2d−1

 ·


u0
u1
u2
...

ud−1


Denoting the above matrix by M (namely Mi,k = Xi2k mod (G(X), 2r+1) ∈ R d

2r+1), we can obtain the
coefficient vector of u as M−1 ·

(
u, ρ1(u), ρ2(u), . . . , ρd−1(u)

)t.
Once we have the coefficients of theBj’s, we can evaluate them at them-th roots of unity τ i by multiply-

ing by the corresponding Vandermonde matrices. As in the proof of Theorem 2, we have Bj(τ i) = Z ′(τ i)
for the indexes i in the j’th conjugacy class (namely i = ej · 2k for some k). Denoting again the Vander-
monde matrix for the j’th conjugacy class by Vj , we can therefore compute the values Z ′(τ i) for the j’th
conjugacy class as

(
Z ′(τ ej ), Z ′(τ2ej ), . . . , Z ′(τ2

d−1ej )
)t

= VjM
−1(Bj , ρ1(Bj), ρ2(Bj), . . . , ρd−1(Bj))t.
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The first two parts of the circuit Ψm,r therefore consist of applying to each input Bj the d Frobenius
maps, and then multiplying each of the resulting d-vectors by the corresponding matrices VjM−1. Hence
for these parts we have size O(` · d2) = O(m · d) and depth at most O(log d).

Once we have all the values Z ′(τ i) for i ∈ (Z/mZ)∗, we can compute the coefficients of Z ′ using
an inverse-DFT transform, and moreover this can be done in depth polylog(m) and size Õ(m) using FFT
techniques. We note that this transformation is nontrivial, since computing the size-m inverse DFT trans-
formation requires also the values Z ′(τ i) for i which is not co-prime with m. One option is to pad with
zeros and compute the size-m inverse DFT to get the coefficients of degree-(m − 1) polynomial Z ′′ such
that Z ′′ = Z ′ (mod Φm(X), 2r+1), and then reduce modulo Φm(X) homomorphically to get Z ′ itself. The
reduction modulo Φm can be done generically in depth polylog(m) and size Õ(m), (see, e.g., [15, Sec. 7.2]
or [1, Sec. 17]), even though this procedure is rather involved.
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