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Abstract. In this work we present the first practical key-aimed timing
attack against code-based cryptosystems. It arises from vulnerabilities
that are present in the inversion of the error syndrome through the Ex-
tended Euclidean Algorithm that is part of the decryption operation
of these schemes. Three types of timing vulnerabilities are combined to
a successful attack. Each is used to gain information about the secret
support, which is part of code-based decryption keys: The first allows
recovery of the zero-element, the second is a refinement of a previously
described vulnerability yielding linear equations, and the third enables
to retrieve cubic equations.
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1 Introduction

The McEliece PKC [1] and Niederreiter [2] Cryptosystems, built on error cor-
recting codes, are considered immune to quantum computer attacks [3], and thus
are of interest as candidates for future cryptosystems in high security applica-
tions. Accordingly, they have received growing interested from researchers in the
past years and been analyzed with respect to efficiency on various platforms
[4–8]. Furthermore, a growing number of works has investigated the side channel
security of code-based cryptosystems [9–14].

Side channel security is a very important implementation aspect of any cryp-
tographic algorithm. A side channel is given when a physical observable quantity
that is measured during the operation of a cryptographic device, allows an at-
tacker to gain information about a secret that is involved in the cryptographic
operation. The usual observables used in this respect are the duration of the
operation (timing attacks [15]), or the power consumption as a function over the
time (power analysis attacks[16]).

So far, timing attacks against the decryption operation of the McEliece PKC
targeting the plaintext have been developed [12, 10, 14]. In [11], a timing attack
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is proposed that targets the secret support that is part of the private key in code-
based cryptosystems. From the time taken by the solving of the key equation the
attacker learns linear equations about the support in this attack. But that work
suffers from two major limitations: Neither is the information that is gained in
itself sufficient for a practical attack, nor was the attack actually implemented.

This work extends on the analysis given in [11] in multiple ways: first of all,
we find that a control flow ambiguity causing leakage in terms of the linear equa-
tions is manifest already in the syndrome inversion preceding the solving of the
key equation in the decryption operation, and consequently the countermeasure
proposed in that work is insufficient. We also show that there exists a timing
side channel vulnerability in the syndrome inversion that allows the attacker
to gain knowledge of the zero-element of the secret support. As an extension
resp. generalization of the attack yielding linear equations, we derive a practical
timing attack that lets the attacker gain cubic equations.

We then describe how to efficiently use these three vulnerabilities to build a
practical attack that recovers the private key entirely. Lastly, we give results for
practical executions of the timing attack on a personal computer.

2 Preliminaries

In this work, we give a brief description of the McEliece PKC, and stress those
features of the decryption algorithm, that are necessary to understand the tim-
ing attack presented in this paper. A more detailed description and security
considerations can be found e.g. in [17].

Goppa Codes. Goppa codes [18] are a class of linear error correcting codes. The
McEliece PKC makes use of irreducible binary Goppa codes, so we will restrict
ourselves to this subclass and to code lengths that are powers of two.

Definition 1. Let the polynomial g(Y ) =
∑t
i=0 giY

i ∈ F2m [Y ] be monic and
irreducible over F2m [Y ], and let m, t be positive integers. Then g(Y ) is called a
Goppa polynomial (for an irreducible binary Goppa code).

Then an irreducible binary Goppa code is defined as C(g(Y )) = {c ∈ Fn2 |Sc(Y ) :=∑n−1
i=0

ci
Y−αi

= 0 mod g(Y )}, where n = 2m, Sc(Y ) is the syndrome of c,
Γ = {αi|i = 0, . . . , n − 1}, the support of the code, where the αi are pairwise
distinct elements of F2m , and ci are the entries of the vector c.

The code defined in such way has length n, dimension k > n−mt – however
we restrict us to k = n−mt in this work – and can correct up to t errors.

As for any linear error correcting code, for a Goppa code there exists a
generator matrix G ∈ Fk×n2 and a parity check matrix H ∈ Fmt×n2 [19]. Given
these matrices, a message m ∈ Fk2 can be encoded into a codeword c of the code
by computing c = mG, and the syndrome s ∈ Fmt2 of a (potentially distorted)
codeword can be computed as s = cHT . Here, we do not give the formulas for the
computation of these matrices as they are of no importance for the understanding
of the attack developed in this work. The interested reader, however, is referred
to [19].



Overview of the McEliece PKC. In this section we give a brief overview of the
McEliece PKC. The McEliece secret key consists of the Goppa polynomial g(Y )
of degree t and the support Γ = (α0, α1, . . . , αn−1), i.e. a permutation of F2m ,
together they define the secret code C. The public key is given by the public n×k
generator matrix Gp = SG over F2, where G is a generator matrix of the secret
code C and S is a non-singular k × k matrix over F2, the purpose of which is to
bring Gp into reduced row echelon form, i.e. Gp = [I|G2], which results in a more
compact public key [4]. The encryption operation allows messages m ∈ Fk2 . A
random vector e ∈ Fn2 with hamming weight wt (e) = t has to be created. Then
the ciphertext is computed as z = mGp + e.

The Decryption is given in Algorithm 1. It makes use of the error correction
algorithm, given by the Patterson Algorithm [20], shown in Algorithm 2. In Step
1 of this algorithm, the syndrome vector is computed by multiplying the cipher-
text by the parity check matrix, and then turned into the syndrome polynomial
S(Y ) by interpreting it as an Ft2m element and multiplying it with the vector of
powers of Y . The Patterson Algorithm furthermore uses an algorithm for finding
roots in polynomials over F2m (root find()), and the Extended Euclidean Algo-
rithm (EEA) for polynomials with a break condition based on the degree of the
remainder, given in Algorithm 3. The root finding can e.g. be implemented as
an exhaustive search on F2m . Please note that all polynomials appearing in the
algorithms have coefficients in F2m .

The Niederreiter PKC [2] is a cryptosystem that is slightly different from
the McEliece PKC, however there also an error vector is chosen during the
encryption and decryption features the syndrome decoding. Since these features
are, as we shall see, the preconditions for our attack, it is equally applicable to
the Niederreiter PKC.

In the following, we turn to those details, that are relevant for the side channel
issues we are going to address in Section 3. Please note that the error locator
polynomial σ(Y ), which is determined in Step 4 of Algorithm 2, has the following
form3:

σ(Y ) = σt
∏
j∈E

(Y − αj) =

t∑
i=0

σiY
i. (1)

where E is the set of those indexes i, for which ei = 1, i.e. those elements of F2m

that correspond to the error positions in the error vector. The determination of
the error vector in Step 6 of Algorithm 2 makes use of this property. Accordingly,
deg (σ(Y )) = wt (e) if wt (e) 6 t holds.

3 Usually, the error locator polynomial is defined to be monic, i.e σt = 1. But as
a matter of fact the error locator polynomial generated in Step 4 of Algorithm 2
generally is not monic.



Algorithm 1 The McEliece Decryption Operation

Require: the McEliece ciphertext z ∈ Fn
2

Ensure: the message m ∈ Fk
2

1: e← err corr(z, g(Y ))
2: m′ ← z + e
3: m←the first k bits of m′

4: return m

Algorithm 2 The McEliece error correction with the Patterson Algorithm
(err corr(z, g(Y )))

Require: the distorted code word z ∈ Fn
2 , the secret Goppa polynomial g(Y ) and

secret support Γ = {α0, α1, . . . , αn−1}
Ensure: the error vector e ∈ Fn

2

1: S(Y )← zH>
(
Y t−1, · · · , Y, 1

)>
2: τ(Y )←

√
S−1(Y ) + Y mod g(Y )

3: (a(Y ), b(Y ))← EEA (τ(Y ), g(Y ))
4: σ(Y )← a2(Y ) + Y b2(Y )
5: E = {E0, . . . , Et−1} ← rootfind(σ(Y )) // if αi is a root, then E contains i
6: e← v ∈ Fn

2 with vi = 1 if and only if i ∈ E
7: return e

3 Analysis of Timing Side Channels in the Syndrome
Inversion

We now explain three different vulnerabilities present in the syndrome decoding.
To this end, we first explore general properties of the syndrome inversion.

3.1 Properties of the Syndrome Inversion

The syndrome polynomial is defined as

S(Y ) ≡
w∑
i=1

1

Y ⊕ εi
≡ Ω(Y )

σ(Y )
mod g(Y ) (2)

Here, w is the Hamming weight of the error vector e and the {εi|i ∈ {1, . . . w}}
denote the support elements associated with the indexes of those bits in the error
vector having value one in arbitrary ordering, i.e. for instance if the bits found at
the index j and k in the error vector have value one, then ε1 = αj , ε2 = αk and so
on. The identification of the error locator polynomial σ(Y ) in the denominator
is simply a result of the form of the common denominator of all sum terms. In
the McEliece PKC Decryption, during the error correction, Algorithm 2, Step 2,
S−1(Y ) is computed by invoking the Algorithm 3 as EEA(g(Y ), S(Y ), 0). But
it is known that in case of w 6 t/2 instead it is possible to find σ(Y ) already
at this stage by invoking Algorithm 3 as EEA(g(Y ), S(Y ), (t/2) − 1), i.e. with
r−1(Y ) = g(Y ) and r0(Y ) = S(Y ) and breaking once deg (ri(Y )) 6 (t/2) − 1.



Algorithm 3 The Extended Euclidean Algorithm (EEA(r−1(Y ), r0(Y ), d))

Require: the polynomials r−1(Y ) and r0(Y ), with deg (r0(Y )) < deg (r−1(Y ))
Ensure: two polynomials rM (Y ), bM (Y ) satisfying rM (Y ) =

bM (Y )r0(Y ) mod r−1(Y ) and deg (r0(Y )) 6 bdeg (r−1) /2c
1: b−1 ← 0
2: b0 ← 1
3: i← 0
4: while deg (ri(Y )) > d do
5: i← i+ 1
6: (qi(Y ), ri(Y )) ← ri−2(Y )/ri−1(Y ) // polynomial division with quotient qi and

remainder ri
7: bi(Y )← bi−2(Y ) + qi(Y )bi−1(Y )
8: end while
9: M ← i

10: return (rM (Y ), bM (Y ))

Then, it returns δσ(Y ) = bM (Y ) and furthermore δΩ(Y ) = rM (Y ), where δ ∈
F2m and M is the number of iterations performed by the EEA [21].

Given this form of the S(Y ), we can make a statement about the max-
imal possible number of iterations in the EEA used to compute S−1(Y ) ≡
σ(Y )/Ω(Y ) mod g(Y ). As already mentioned, the actual invocation of the syn-
drome inversion is EEA(g(Y ), S(Y ), 0). But the above explained fact that we
could stop at deg (ri(Y )) 6 (t/2) − 1 means that there is one iteration in the
EEA where ri(Y ) = δΩ(Y ) and bi(Y ) = δσ(Y ), in case of w 6 (t/2)− 1.

Corollary 1. Assume a Goppa Code defined by g(Y ) and Γ . When Alg. 3 is

invoked as EEA(g(Y ), S(Y ), 1) with S(Y ) ≡ Ω(Y )
σ(Y ) mod g(Y ), and the error

vector e corresponding to S(Y ) satisfies wt (e) 6 (deg (g(Y )) /2) − 1, then for
the number of iterations in Alg. 3 we find:

M 6Mmax = deg (Ω(Y )) + deg (σ(Y ))

Proof. Regard the iteration where rj(Y ) = δΩ(Y ) and bj(Y ) = δσ(Y ). Since
according to Algorithm 3 the degree of bj(Y ), starting from zero, increases at
least by one in each iteration, we find j 6 deg (σ(Y )). From here on, the degree
of rj(Y ) = δΩ(Y ) is decreased by at least one in each subsequent iteration
down to deg (rM (Y )) = 0, i.e. M − j 6 deg (Ω(Y )), giving M = M − j + j 6
deg (Ω(Y )) + deg (σ(Y )).

Because in the following we are only interested in the derivation of equations
of the form σi = 0 for a specific value of i, we will ignore the constant δ from
here on.

3.2 Linear Equations from w = 4 Error Vectors

We now investigate the effect of the above results for the case where ciphertexts
created with error vectors of Hamming weight four are input to the decryption
operation.



In the case of w = 4 the syndrome polynomial is of the form:

S(Y ) ≡ Ω(Y )

σ(Y )
≡

4∑
i=1

1

Y ⊕ εi
≡ σ3Y

2 ⊕ σ1
Y 4 ⊕ σ3Y 3 ⊕ σ2Y 2 ⊕ σ1Y ⊕ σ0

mod g(Y ), (3)

where εi ∈ F2m , i ∈ 1, . . . , 4 denote the four elements of the support associated
with the error positions. Furthermore, in the right hand side of Eq. (3), which
is found by bringing all four sum terms to their common denominator, we have

σ3 = ε1 ⊕ ε2 ⊕ ε3 ⊕ ε4,

σ2 = ε2ε3ε4 ⊕ ε1ε3ε4 ⊕ ε1ε2ε4 ⊕ ε1ε2ε3,

σ1 = ε1ε2 ⊕ ε1ε3 ⊕ ε1ε4 ⊕ ε2ε3 ⊕ ε2ε4 ⊕ ε3ε4,

σ0 = ε1ε2ε3ε4.

With the aim of finding a timing vulnerability revealing certain coefficients
of σ(Y ) and thus information about the secret support, we now analyze the
connection between the number and of iterations and their complexity on the one
hand and the degree of Ω(Y ) on the other. Regarding Ω(Y ) for the case w = 4 we
find that the coefficient to the highest power of Y is given by σ3 = ε1⊕ε2⊕ε3⊕ε4.
If σ3 = 0, then the degree of Ω(Y ) is zero, otherwise it is two. This means that
in the case of σ3 = 0 the maximal number of iterations in the inversion is four,
in contrast to six in the general case. Table 1 gives an overview of the individual
iterations in the syndrome inversion EEA when w = 4, where it is assumed that
for each iteration deg (qi(Y )) = 1, i.e. the case where the maximal number of
iterations Mmaxis executed. In the majority of the cases Mmax iterations occur,
i.e. 6 when deg (Ω(Y )) = 2 and 4 when deg (Ω(Y )) = 0. But with probability
about 1/n in each iteration a larger degree of the quotient polynomial qi(Y )
occurs, accordingly then M < Mmax. With the aim of assessing the reliability
of the differences in running time allowing to identify the case deg (Ω(Y )) = 0,
we examine whether M < Mmax might lead to timings for deg (Ω(Y )) = 2 as
low as for deg (Ω(Y )) = 0. We immediately find that the fifth iteration, which is
only executed in the former case, features a much more complex multiplication
q4(Y )b3(Y ) than all the other iterations.

The control flow for the second EEA invocation, i.e. the solving of the key
equation, for the case w = 4 has been analyzed in [11], there it is shown that in
the case of σ3 = 0 the number of iterationsN is zero, whereas in the case σ3 6= 0 it
is one. In that work, a countermeasure is proposed that removes the possibility to
exploit the according timing differences in the second EEA invocation. However,
due the fact that, as shown in Section 3.2, timing differences reveal σ3 = 0
already in the syndrome inversion EEA, the countermeasure proposed in [11] is
insufficient.

Experimental results confirm that taken together, the timing differences
emerging in both EEA applications, i.e. the syndrome inversion and the key
equation solving, actually allow for reliable distinction of deg (Ω(Y )) being zero
or non-zero, and thus the attacker is able to learn linear equations of the form



σ3 =
∑4
i=1 εi = 0. Remember that through the choice of the error vector during

encryption, he chooses the indexes ji with i = 1, . . . , 4 of the support elements
αji = εi according to the definition of the εi notation for the support elements.

i deg (qi(Y )) deg (bi(Y )) deg (ri(Y ))

1 1 1 t-1
2 1 2 t-2
3 1 3 t-3

4 1 4 2 (or 0)

5 t - 5 t - 1 1
6 1 t 0

Table 1: Overview of the Iterations in the syndrome inversion EEA for Hamming
weight 4 error vectors. If deg (Ω(Y )) = 2, Mmax, the maximal number of iterations is
6, otherwise, if deg (Ω(Y )) = 0, we have Mmax = 4.

3.3 Cubic Equations from w = 6 Error Vectors

The vulnerability found for w = 4 error vectors can be generalized to any even
value of w. For the attack that is subject of this work, we also employ the case
w = 6. There, we find that the syndrome polynomial according to Eq. (2) is of
the form

S(Y ) ≡ Ω(Y )

σ(Y )
≡ σ5Y

4 ⊕ σ3Y 2 ⊕ σ1
Y 6 ⊕ σ5Y 5 ⊕ σ4Y 4 ⊕ σ3Y 3 ⊕ σ2Y 2 ⊕ σ1Y + σ0

mod g(Y ),

where

σ3 =

6∑
j=3

j−1∑
k=1

k−1∑
l=1

εjεkεl, (4)

σ5 =

6∑
i=1

εi. (5)

As in case of w = 4, deg (Ω(Y )) = 0 implies zero iterations in the key equation
EEA. Furthermore, it is again the most complex iteration of the syndrome in-
version EEA that is skipped in this case. The difference to w = 4 is that here
two coefficients of σ(Y ), i.e σ3 and σ5, have to be zero for this to happen.

Thus from detecting deg (Ω(Y )) = 0 the attacker can learn the equations
σ3 = 0 and σ5 = 0. However, since from the vulnerability presented in Sec. 3.2
it is already possible for the attacker to learn linear equations about the secret
support, the value of the “w = 6” vulnerability lies in the equation σ3 = 0, which
can be learned through a timing side channel analogously to the case “w = 4”.



Algorithm 4 Polynomial Division poly div(n(Y ), d(Y ))

Require: the polynomials n(Y ), d(Y )) with deg (n(Y )) > deg (d(Y ))
Ensure: two polynomials s(Y ), q(Y ) with q(Y )d(Y ) + s(Y ) = n(Y ) and deg (s(Y )) <

deg (d(Y ))
1: s−1(Y )← n(Y )
2: s0(Y )← d(Y )
3: q0(Y )← 0
4: i← 0
5: while deg (si(Y )) > deg (d(Y )) do
6: i← i+ 1
7: ai ← si−2,deg(si−2(Y ))/si−1,deg(si−1(Y ))
8: fi ← deg (si−2(Y ))− deg (si−1(Y ))
9: qi(Y ) = qi−1 + aiY

fi

10: si ← si−2(Y )− aisr−1(Y )Y fi

11: end while
12: return (qi(Y ), si(Y ))

3.4 The Zero Element of the Support from w = 1 Error Vectors

For w = 1 the whole control flow in Patterson’s Algorithm is very simple and
unambiguous on a high level:

S(Y ) ≡ 1

Y ⊕ ε1
mod g(Y ),

S−1(Y ) = Y ⊕ ε1,
τ(Y ) =

√
ε1

a(Y ) = τ(Y )

b(Y ) = 1

σ(Y ) = Y ⊕ ε1
The polynomial inversion is, according to Cor. 1, performed in exactly one it-
eration. But there is an ambiguous control flow within the polynomial division
given in Alg. 4, that is executed within this EEA iteration: We find q1(Y ) = Y
because there is no alternative to deg (S(Y )) = t− 1. In Alg. 4, si,j denotes the
coefficient to Y j in si(Y ).

If ε1 = 0, then the division has to stop at this point. Otherwise, a second
iteration is performed giving q2(Y ) = Y ⊕ ε1. Thus, if the timing difference
resulting from the different number of iterations in the division is detectable,
the index of z of the secret support element αz = 0 can be found.

4 Combining the “w = 1”, “w = 4”, and “w = 6”
Vulnerabilities to a practical Attack

In this section we explain the construction of a practical attack based on the
vulnerabilities shown in Sections 3.2, 3.3 and 3.4.



4.1 Description of the Attack Procedure

Step 1 By performing the respective queries on the decryption device with
“w = 4” error vectors, a rank n −m − 1 linear equation system is build. The
experimental results from [11] already showed that this is the maximal rank that
can be achieved from the linear equations. Afterwards, the index of the zero el-
ement, αz is determined through the “w = 1” vulnerability. In the majority of
the cases, this information increases the rank of the equation system to n−m.
In the rare cases when the rank remains at n−m− 1, the attack’s on-line and
off-line complexity is increased by a factor of n.

In the following, we assume that we have an equation system of rank n −
m. This is the highest possible rank for a homogeneous linear equation system
describing a permutation of F2m , since there must be m linearly independent
basis elements. Accordingly, by bringing the linear equation system into reduced
row echelon form, we find the elements associated with the m rightmost columns
must be a basis {βi}:

α0 α1 . . . αi . . . αn−m−3 αn−m−2 β0 . . . βm−1
1 0 . . . 0 . . . 0 0 X . . . X
...
0 0 . . . 1 . . . 0 0 X . . . X
...
0 0 . . . 0 . . . 0 1 X . . . X

Step 2 At this point for each element αi we know the corresponding Bi with
αi =

∑
j∈Bj

βi, i.e. its representation in the chosen basis. If the values of all
basis elements βi were known, then the values of all αi would be set as well and
the support was recovered. Accordingly, the next step in the attack is to collect
cubic equations according to Eq. (4) in a way that allows for efficient guessing
resp. solving for the values of the βi. To this end, the first set C1 of “w = 6”
equations is created by the employment of error vectors involving error positions
corresponding to εi, i = 1, . . . , 6, where the following conditions hold:

1. εi ∈ span({βs1 , βg1 , βg2 , βg3}). These are four arbitrarily chosen basis ele-
ments, where βs1 denotes the one to be solved for in the resulting equation
according to Eq. (4). The reason for this initial set of basis elements having
cardinality four is that this is the lowest cardinality allowing to satisfy all
the conditions in the following items.

2.
∑6
i=1 εi = 0. This qualifies the error vector for the possibility of deg (Ω(Y )) =

N = 0 according to Eq. (5) in the sense that σ5 = 0 is already ensured. As
a result, in contrast to the case of random w = 6 error vectors that have
a probability for deg (Ω(Y )) = N = 0 in the domain of 1/n2, for these
candidates this probability is 1/n.

3. Exactly two of the εi contain βs1 . The reason for this constraint is to keep
the process of solving, the details of which we shall see shortly, as simple



as possible. Specifically, the twofold occurrence of βsi leads to a quadratic
equation for βsi .

Candidate error vectors e that meet these conditions are used to build cipher-
texts which are input to the decryption device; and from the timing of the
decryption, it is inferred whether actually deg (Ω(Y )) = N = 0 occurred. The
number of such equations to be collected for one βsi is given by ci, which is a
parameter for the attack.

After c1 equations are found for βs1 , the second set of equations is build in
the same way as the first, the only differences being that the basis element to
be solved for now is βs2 /∈ {βs1 , βg1 , βg2 , βg3}, and first condition becomes εi ∈
span({βs1 , βg1 , βg2 , βg3 , βs2}). In this manner successively sets of cubic equations
for m− 3 different βsi are collected until the equations in the last set involve all
βi.

Step 3 In this step the solving resp. guessing is performed. Let those two εi that
contain βsi according to the third condition in Step 4 always be ε1 and ε2. From
the conditions given in Step 4, and Eq. (4) we have for each βsi a quadratic
equation

aβ2
si + bβsi + c = 0, (6)

with a =
∑6
j=3 εi, b = (ε1+ε2)a, c = (ε1−βsi)(ε2−βsi)a+(ε1+ε2)

∑6
j=4

∑j−1
k=3 εjεk+∑6

j=5

∑j−1
k=4

∑k−1
l=3 εjεkεl (for clarity, in these formulas we provide “+” and “−”

even though both amount to “⊕” ). Such a quadratic equation has two solutions
for βsi .

The solving is performed as follows: enumerate the initial guesses, i.e. all the
possible combinations of the values for βg1 , βg2 , βg3 . Here, and for the subsequent
guesses, since we are looking for linearly independent F2m elements, it holds that

βgi /∈ span({βg1 , . . . , βgi−1
}), (7)

where we imply the convention βsi = βgi+3 .

For each such combination of values for βg1 , βg2 , βg3 the roots of each equation
in C1 are potential candidates for the value of βs1 . However, additionally to the
restriction from Eq. (7), those roots that are found only for a subset of C1 are
discarded. This is wherein the value of a choice ci = |Ci| > 1 lies. The larger the
ci are chosen, the higher is the on-line effort of the attack (more cubic equations
have to be collected), but the off-line effort is reduced as the number possible
solutions for each βsi is decreased.

The remaining roots are iterated over to find the possible solutions for βs2
by solving the equations in C2, which in turn are used to compute the possible
values of βs3 , etc. Whenever in such a chain of guesses a solution for all βsi is
found, a guess for the whole support Γ = (αi|αi =

∑
j∈Bi

βj) is implied, which
has to be checked by a means of key recovery, as described in [13].



4.2 Experimental Results

We conducted the attack with the following measurement setup on an Intel Core
2 Duo x86 platform: from the attack program, the decryption function was called
with the attack ciphertexts as input, and the decryption time was measured with
the CPU’s cycle counter.

Because the cycle counts measured for a deterministic operation of the du-
ration of a code-based decryption vary considerably on such CPUs, a specific
strategy has to be used to identify positives, by which we refer to ε1 = 0 for
w = 1 and deg (Ω(Y )) = 0 for w = 4 and w = 6, i.e. those cases that yield an
equation for the attacker. Specifically, an approximate model for cycle counts
on modern x86 CPUs like the Core2 Duo is a hypothetical constant cycle count
associated with the operation which is increased by a random delay on every ex-
ecution of an operation. Because in all three different attack types the positives,
from the algorithmic point of view, are executed faster than the negatives, the
following classification strategy can be used: Prior to the attack a training phase
is carried out where the maximal cycle counts for positives are determined as
well as the minimal cycle counts for negatives (using a different secret key than
during the attack). Then the border below which an operation is classified as
a positive during the attack is set as the mean of these to values. We refer to
the distance between the maximal cycle counts for positives and the minimal
cycle counts for negatives as the cycles gap. Clearly, a larger such gap increases
the probability for finding positives. Furthermore, the above approximate model
for the cycle counts on the employed CPU is lacking other effects that could be
observed in our experiments: during the execution of the attack the previously
determined maximal and minimal cycle counts for the two classes of operations
seem to be subject to an “upwards drift”, i.e. they tend to increase over time.

Table 2 summarizes the results for single attack runs with different code
parameters. The rows labeled “cycles gap . . . ” indicate the above discussed gaps.
We found that gaps of a couple of hundreds cycles that are characteristic for the
w = 1 vulnerability tend to cause problems in the detection of positives, i.e. in
some runs due to the mentioned drift of the cycle counts the zero support element
could not be determined, while the considerably larger gaps for the w = 4 and
w = 6 vulnerabilities allow for reliable detection of positives.

The rows labeled “number of queries . . . ” show the number of decryption
operations that had to be executed with ciphertexts created with error vectors
of the respective weight in the course of the attack.

“number of final verifications” is the number of the guesses for the complete
support that are output by the attack. We did not implement an actual verifi-
cation, but simply compare the guess for the support with the correct support
Γ . As already mentioned, in [13] the procedure that had to be used in a real life
attack is described. It involves only some linear algebra operations on the public
key and the invocation of an EEA and would not perceptibly increase the time
for solving, given the small numbers of such final verifications occurring in the
attacks.



The time for the solving step is given in the last row. From the theory, one
expects an increase of the solving time by a factor of about eight for each increase
of m by one. The reason is that the number of initial guesses, i.e. the number
of combinations of values that can be chosen for βg1 , βg2 and βg3 is roughly
n3, and all F2m operations, including the solving of the quadratic equations [22]
(Eq. (6)), are done with the help of lookup tables, and thus execute in constant
time.

As previously mentioned, in the rare cases where the knowledge about the
zero-element of the support does not increase the rank of the equation system,
Steps 2 and 3 would have to be repeated about up to n times, for these cases
stronger hardware would be needed to keep the solving time in reasonable mar-
gins.

m = 9, t = 33 m = 10, t = 40

cycles gap w = 1 ≈ 400 ≈ 600

cycles gap w = 4 ≈ 13, 000 ≈ 19, 000

cycles gap w = 6 ≈ 17, 000 ≈ 23, 000

number of queries for w = 1 (Step 1) 3,575,494 11,782,695

number of queries for w = 4 (Step 1) 1,517,253 2,869,424

number of queries for w = 6 (Step 2) 374,927 1,837,125

number of final verifications (Step 3) ≈ 8, 000 ≈ 2, 000

running time for solving on 1 GHz x86 CPU (Step 3) 3h 28h

Table 2: Experimental results of the attack. Refer to the text for explanations.

5 Conclusion

The results of this work show that timing attacks based on control flow vulnera-
bilities in the syndrome inversion and the key equation EEA are a threat to the
confidentiality of the secret key. In the chosen measurement setup, the attack
has been proved to be practical. Apart from the recovery of the zero-element
of the support, the cycles gaps between the controls flows that have to be dis-
tinguished are rather large, and thus remote timing attacks seem feasible too.
If the zero-element remains unknown, the on-line and off-line attack complexity
can still be managed with appropriate hardware.

The question of countermeasures against this attack has not been explicitly
addressed in this work, but two possibilities seem to suggest themselves: the first
would be similar to the countermeasures given in [12], where “premature” abor-
tion of the key equation solving EEA is prevented by enforcing the “missing”
iterations. This however is a delicate undertaking, as even the smallest timing
differences have to be prohibited and thus the complexity of the individual it-
erations must be accounted for (consider for instance the “w = 1 attacks” from
Section 3.4).



The second option would be stronger in this respect: there, we alter the cryp-
tosystem’s parameter specification: during the encryption, only t− 1 errors are
added, and prior to the standard decryption operation, another “bit flip error” is
applied, the position of which should be the same for repeated decryptions of a
certain ciphertext but otherwise appear as random, and thus should be pseudo-
randomly derived from the ciphertext and a constant secret value (for instance
a hash value of the secret key). This approach would guarantee a pervasive al-
teration of the decryption operation, however it demands an increase of security
parameters to compensate for the lower error weight used during encryption.
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