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Abstract. We consider ciphertext-only attack on symmetric block ci-
phers based on the Feistel network with secret S-boxes installed as an
additional parameter, like in Soviet GOST 28147-89. In case when S-
boxes are generated by authorized agency and cannot be verified by
end-user of the cipher (e.g., in case of special equipment for encryption),
application of non-bijective S-boxes allows significantly decrease deci-
phering complexity for authorized agency preserving high-level strength
for other cryptanalysts. We show that it is necessary to have non-bijective
S-boxes which outputs form non-trivial subgroup and give an example
for deciphering complexity with known and secret non-bijective S-boxes
for GOST.

1 Introduction

Symmetric block encryption algorithms are among of the most widely used cryp-
tographic primitives [1]. In addition to providing confidentiality via encryption,
they are often used as basic primitives in construction of hash functions, gener-
ation of pseudorandom sequences [2], etc.

One of the most common approaches in the high-level design of symmetric
block ciphers is the Feistel network [3], which allows to get properties of pseu-
dorandom permutation (block cipher) by iterative application of pseudorandom
function (round transformation) [4]. This approach is used by DES [5], Camel-
lia [6], Lucifer [7], and Soviet GOST 28147 [8]. Special feature of the Feistel
network is the following: round function processing half of the block may be
implemented as non-bijective transformation; encryption remains revertible, so
correct decryption is possible for any type of the round function.

Non-linear transformation in modern block ciphers is usually implemented
by substitution tables, or S-boxes. In some algorithms like Rijndael/AES [9],
Camellia and other, developers declared the possibility of application of different
S-boxes with the same properties, but in GOST 28147 S-boxes are additional
secret parameters.

S-boxes properties are extremely important for cipher’s strength to differ-
ential [10], linear [11], algebraic [12] and other types of cryptanalysis. Collision
among output values of S-boxes may significantly decrease the strength of the
cipher to differential cryptanalysis [13].
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Complexity of ciphertext-only cryptanalysis for Feistel network based block
ciphers with non-bijective S-boxes is not researched very well. For some ciphers,
like Camellia and GOST, there are used “n-to-n” S-boxes (assumed to be bi-
jective by design), for other ciphers, like DES and Blowfish [14], S-boxes are
“m-to-n”, where m is not equal to n. We propose a method for estimation of
ciphertext-only cryptanalysis for block ciphers with currently installed S-boxes
that have prohibited output values, and, therefore, non-bijective.

2 Model of Symmetric Block Cipher Based on the Feistel
Network

Let’s consider n-round (n = 2m) block cipher with 2l bit block size based on the
Feistel network without initial and final permutation or whitening. Encryption
transformation of such algorithm can be presented as

FK = ϕn,kn ◦ ϕn−1,kn−1
◦ · · · ◦ ϕ1,k1 ,

ϕi,ki
(
xLi , x

R
i

)
=
(
xRi , f

(
xRi , ki

)
⊕ xLi

)
,

(1)

where K = (k1, k2, · · · , kn) is the sequence of round keys after the key schedule;
xLi and xRi are the values of the left and right halves of the block (each of l

bits) on the input to the i-th round.
Round function f (xi, ki) consists of initial linear transformation (for most

modern ciphers it is identity), addition with the round key, S-boxes and following
linear transformation:

f(xi, ki) = s(xi · E + ki) · L , (2)

where E is a matrix of l× q size over GF (2), for description of the initial linear
transformation;

s(x) is S-box layer, which performs substitution of input value of q bits to
output value of l bits (application of S-boxes);

L is a matrix of l × l size over GF (2), for description of the round function
linear transformation.

For almost all modern block ciphers initial linear transformation is absent
(the matrix E is the identity matrix of l× l size). DES is only one exception for
widespread ciphers, it has E as a bit selection table, extending 32 bits to 48, so
this matrix has 32× 48 size.

Usually, non-linear transformation s(x) is implemented as parallel application
of S-boxes. Input vector is divided into several subvectors x = (xt, xt−1, · · · , x1),
each of them is substituted via S-box: s(x) = (st(xt), st−1(xt−1), · · · , s1(x1)).
Correspondingly, the number of S-boxes and their input and output size in bits
are related by |xj | = q/t and |s(xj)| = l/t.

After S-boxes output vector of l bits is processed by linear transformation.
Without dependence on specific transformation (bit permutation, MDS-matrix
multiplication, etc.), the general formula for its description is the matrix multi-
plication over GF (2).
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Widespread ciphers, like DES, Camellia, GOST, etc. can be described by (1)
and (2).

3 Ciphertext-only Cryptanalysis with Known
Non-bijective S-boxes

We consider here the main task of cryptanalyst on ciphertext-only attack is to
obtain corresponding plaintexts without recovering secret encryption key.

Ciphertext
(
cL, cR

)
=
(
xRn+1, x

L
n+1

)
can be presented via plaintext(

pL, pR
)

=
(
xL1 , x

R
1

)
with (1) and (2):

cL = pR ⊕
n/2⊕
i=1

f2i
(
xR2i, k2i

)
cR = pL ⊕

n/2⊕
i=1

f2i−1
(
xR2i−1, k2i−1

) .

(3)

Let

γL =
n/2⊕
i=1

f2i
(
xR2i, k2i

)
and

γR =
n/2⊕
i=1

f2i−1
(
xR2i−1, k2i−1

)
.

(4)

From (3) it can be obtained {
cL = pR ⊕ γL
cR = pL ⊕ γR .

(5)

Complexity of plaintext recovery from a ciphertext for a Feistel-based cipher
completely defined by the complexity of XOR sum discovering of the round
function outputs for odd and even rounds. It is obvious, that for a strong cipher∣∣{γL}∣∣ =

∣∣{γR}∣∣ = 2l.
Let’s further consider ciphers with a permutation matrix L. This matrix

describes a final linear transformation of the round function as a bit permutation
(or rotation). It is possible to take an arbitrary matrix L, but in this case it is
needed to combine the matrix with the output values of S-boxes, which gives
much less common results.

For a permutation matrix L values (4) depend on output of S-boxes only. Ap-
plication of non-bijective S-boxes allows to almost completely exclude influence
of both round function inputs xLi , xRi , so as round keys ki.

Application of non-bijective S-boxes will influence the cipher’s strength to
differential, linear cryptanalysis, etc. But such attacks are known or chosen plain-
text attacks, while we are considering ciphertext only attack with general aim
of recovering plaintext.

As an additional information on ciphertext only attack cryptanalyst should
have a simple criterion for distinguishing acceptable plaintext from a random
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sequence of symbols (e.g., knowledge of the plaintext natural language). In such
conditions there can be applied an attack for exhaustive search of all possible
values of (4) and obtaining all variants of plaintext via (5).

In general case, with bijective S-boxes and random independent round keys
it is

∣∣{γL}∣∣ =
∣∣{γR}∣∣ = 2l, and the solution is a full set of all possible plaintexts.

Ciphertexts give no additional information to cryptanalyst in this model.
Let’s consider the particular case when S-boxes are non-bijective, and the

matrix L is a permutation matrix. Now it is possible
∣∣{γL}∣∣ < 2l,

∣∣{γR}∣∣ < 2l,
and deciphering can be done with the complexity less than exhaustive search of
all possible values of (4).

For non-bijective S-boxes “ qt bits to l
t bits” from all possible 2

l
t output com-

binations some of them are suppressed, so
∣∣∣{s(xj) ∣∣∣xj ∈ GF (2

q
t

)}∣∣∣ < 2
l
t

If it is supposed, that the considered property is a hidden trapdoor allowing
reading of encrypted messages without knowledge of the key, then for decreasing
complexity of the attack the cryptanalyst will decrease cardinality of

{
γL
}

and{
γR
}

.
According to (3), it is necessary for cryptanalyst to exhaust all possible com-

binations of (4). These values are obtained as bitwise XOR of l -bit vectors on the
output of the round function. Complexity of the attack depends on the cardinal
number of the XOR results set.

Let’s exclude from consideration trivial variants when number of all possible
output values of round function is less than the number of rounds (e.g., all input
values of S-box are transformed into a single constant). Then the cardinality of
this set will be not less than the cardinal number of round function outputs set:∣∣{γL}∣∣ ≥ ∣∣{f2i (xR2i, k2i)}∣∣ . (6)

Respectively, for obtaining minimally reachable complexity of the ciphertext-
only cryptanalysis it is needed a strict equation:∣∣{γL}∣∣ =

∣∣{f2i (xR2i, k2i)}∣∣ . (7)

From (7) it follows that addition (XORing) result of arbitrary output values
of cipher’s round function must give an acceptable value for a single output
of the same round function. The set

{
f2i
(
xR2i, k2i

)}
must be closed concerning

operation ⊕ (XOR).
Operation ⊕ for a set of l-bits vectors is associative, has a neutral element

(zero vector), and for each vector there exist an inverse. Therefore, sets
{
γL
}

and
{
γR
}

with operation ⊕ have all these properties. Bringing the additional

closure property
(
∀γa, γb ∈

{
γL
}
∃!γc = γa ⊕ γb, γc ∈

{
γL
})

leads to that alge-

braic systems
〈{
γL
}
, ⊕
〉

and
〈{
γR
}
, ⊕
〉

must be groups.

As long as groups
〈{
γL
}
, ⊕
〉

and
〈{
γR
}
, ⊕
〉

have the same properties and
equal, each of them will be defined as 〈{γ} , ⊕〉.

Output of the round function is formed by outputs of t non-bijective S-boxes
with the following bit permutation. In this case each encryption value γ is formed
as concatenation and bit permutation of t bit vectors, each of them independently
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calculated as a sum (XOR) of n
2 S-box output values of l

t bit length. From this
follows, that outputs of each S-box must form a group.

Let lS = l
t be a length of the binary vector in the S-box output. The full

set of lS-bit vectors has the cardinal number equal to 2lS and forms a group
GS =

〈{
γS
}
, ⊕
〉
. For decreasing the complexity of cryptanalysis it is necessary

to form a non-trivial subgroup G′ of GS , which will contain all outputs of non-
bijective S-box. Any group or subgroup contains neutral element, so among all
possible values there always be a zero vector.

From Lagrange’s theorem it is known [15] that for any finite group, the
order of every subgroup divides the order of the group. From this follows that
cardinality of G′ must be power of 2, i.e. |G′| ∈

{
2, 4, · · · , 2ls−1

}
.

Each of t binary vectors used for generation of output encryption value γ,
is independently formed. Let θS1 = |G′1|, θS2 = |G′2| , . . . , θSt = |G′t| be the car-
dinalities of subgroups, formed by outputs of each non-bijective S-boxes of the
round function with linear permutation matrix of Feistel-based block cipher.
Then the complexity of obtaining each plaintext from the ciphertext without
the encryption key is

Θ =

(
t∏
i=1

θSi

)2

. (8)

If the S-box output values set cardinality is equal (θS1 = θS2 = · · · = θSt = θS),
then from (8) it can be obtained

ΘE =
(
θS
)2t

. (9)

From (8) and (9) it follows that when θSj < 2
l
t

(
θs < 2

l
t

)
, it is Θ < 22l, so

application of non-bijective S-boxes decreases the complexity of cryptanalysis.

4 Ciphertext-only Cryptanalysis With Secret
Non-bijective S-boxes

Let’s consider additional cryptanalysis task when S-boxes are non-bijective and
kept secret as the second key element (together with the encryption key). Like
in previous case, the cryptanalyst has a simple criterion for distinguishing ac-
ceptable plaintext from a random sequence of symbols. Besides it, cryptanalyst
may know (or guess with high probability of success) the cardinality of S-box
output values set θS .

This task is more complex because cryptanalyst needs to exhaustive search
of possible variants of S-box outputs. One value (zero vector) is always known,

and it is necessary to find the rest θSj −1 outputs from 2
l
t variants for each S-box

(all S-boxes may be different). So as order of S-box outputs is important, the
general number of variants for each S-box is equal to

ωSj = A
θSj −1

2
l
t−1

=

(
2

l
t − 1

)
!(

2
l
t − θSj

)
!
. (10)
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Making assumption for the cryptanalyst’s favor that for distinguishing one wrong
S-boxes set it is enough to analyze one half of the cipher’s block only (but
not only subvector corresponding to the single output for one S-box), from (8)
and (10) there can be obtained complexity for cryptanalysis for the secret non-
bijective S-boxes:

ΘS =

 t∏
j=1

ωSj

 ·( t∏
i=1

θSi

)
=

t∏
i=1

θSi
(

2
l
t − 1

)
!(

2
l
t − θSi

)
!

 . (11)

If the S-box output values set cardinality is equal (θS1 = θS2 = · · · = θSt = θS),
then from (11) it can be obtained

ΘSE =

θS
(

2
l
t − 1

)
!(

2
l
t − θS

)
!


t

. (12)

Let’s note that after successful deciphering of the first block the cryptanalyst has
all secret S-boxes at the same time. For all further blocks complexity of analysis
is equal to values obtained according to (8) or (9).

From (11) and (12) it follows that application of secret S-boxes significantly
increases the complexity of the attack, and attack becomes practically impossible
even with a small cardinality of the output values group.

5 Application to GOST

GOST 28147 was adopted in 1990 [8] and now it is still to be the most widespread
cipher in Russia, Ukraine and other ex-USSR countries. GOST is a Feistel-based
cipher with 32 rounds and extremely simple round function [1], which consist
on modulo 232 addition with a round key, eight S-boxes “4-to-4 bits” and cyclic
bits shifting.

Let’s discuss an example when S-boxes for GOST are generated by authorized
agency and delivered on special media to equipment for encryption. So, S-boxes
are secret and unknown both for end-user of this equipment, so as for external
cryptanalysts. Encryption key is generated by end-user and unknown both for
external cryptanalysts and authorized agency.

In this example n = 32 is the number of rounds, 2l = 64 is the cipher’s block
size (l = 32 is the half of the block size), q = l = 32, E is an identity matrix,
t = 8 is the number of S-boxes, |xj | = |s(xj)| = l

t = 4 is the number of bits of
S-box input and output, L is a permutation matrix.

Examples of several non-bijective S-boxes for GOST forming subgroups of
different order is given in the Table 1. Let’s mention, that equal probabilities of
the chosen values do not have an influence to the complexity of the attack. Be-
sides, it is possible that with application of such S-boxes some bits of ciphertexts
are always be equal to corresponding bits of plaintexts (especially for subgroups
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Table 1. Examples of non-bijective S -boxes for GOST

# Subgroup
order

S-box

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 15 0 0 15 15 0 15 0 0 0 15 15 0 15 0 15

2 2 0 12 12 12 0 12 12 0 0 0 0 12 0 12 12 0

3 4 9 1 9 8 8 0 0 0 1 8 1 9 9 0 1 8

4 4 6 2 0 4 6 2 0 4 0 6 4 2 0 6 2 4

5 8 13 5 0 8 4 12 1 9 0 5 13 4 1 9 8 12

6 8 10 11 3 2 1 8 0 10 0 2 1 9 3 8 11 9

of small order). Let’s assume that cardinalities of output values set for each non-
bijective S-box are equal. In addition, let’s assume that cryptanalyst’s criterion
for distinguishing of acceptable plaintext from a random sequence of symbols
requires 32 bits (4 symbols) of plaintext.

Deciphering complexity of ciphertext into plaintext without knowledge of en-
cryption key is given in the Table 2, for the authorized agency with the knowledge
of S-boxes (ΘE) and for an external cryptanalysts without knowledge of S-boxes
(ΘSE) for different order of subgroup of S-boxes output. Therefore, if an end-user

Table 2. Ciphertext-only deciphering complexity for GOST with non-bijective S-boxes

S-box sub-
group order

Complexity for autho-
rized agency

Complexity for an ex-
ternal cryptanalysts

Note

1 1 1 No encryption

2 216 239,3

4 232 >264

8 248 >264

16 264 >264 Normal mode with bi-
jective S-boxes

of encryption equipment is forced to use secret non-bijective S-boxes, authorized
agency can rather easily decipher ciphertexts by generation of S-boxes with out-
put values set cardinality equal to 4 or higher. External cryptanalysts practically
cannot decipher such ciphertexts.

6 Conclusions

Our results give the lower bound of ciphertext-only cryptanalysis complexity
for symmetric block ciphers based on the Feistel network with the non-bijective
S-boxes in the round function.

In condition that output values of each non-bijective S-box form non-trivial
subgroup with the following application of a permutation matrix in the round
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function, complexity of deciphering without knowledge of the encryption key is
lower than the exhaustive search.

Decreasing of cryptanalysis complexity is also possible for non-permutation
matrices, but in this case it is necessary to take into account internal structure
of S-boxes.

Besides Feistel network, this attack may also be applied to Lai-Massey scheme
as a high-level structure of block ciphers (IDEA NXT/FOX) with selection of
non-bijective S-boxes.

Complexity of described attack does not depend on the number of rounds in
symmetric block ciphers.

References

1. Schneier, F.: Applied Cryptography. New York: Wiley, 1996.
2. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.

Boca Raton, StateFL: CRC Press, 1997.
3. Fiestel, H.: ”Cryptography and Computer Privacy”. Scientific American, v. 228,

n. 5, May 73, pp. 15-23.
4. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudo-

random functions. SIAM J. Comput, 1988.
5. FIPS PUB 46-3. Federal Information Processing Standards Publication. U.S. De-

partment Of Commerce/National Institute of Standards and Technology. Data En-
cryption Standard (DES). National Technical Information Service, Springfield Stat-
eVA, 1999. – 51p.

6. Aoki K., Ichikawa T., Kanda M., et al: Camellia: A 128-Bit Block Cipher Suitable
for Multiple Platforms. Nessie. September 26, 2000. http://www.cryptonessie.org.

7. Ben-Aroya, E., Biham, E.: Differential cryptanalysis of Lucifer. Advances in Cryp-
tology — EUROCRYPT’93, Springer-Verlag, Berlin, 1993, pp. 187-199.

8. GOST 28147-89. Information processing systems. Cryptographic security. Algorithm
of cryptographic transformation. Moscow, State Standard of the USSR, 1990.

9. Daemen, J., Rijmen, V.: AES Proposal: Rijndael. National Institute for Standards
and Technology (NIST). “AES: A Crypto Algorithm for the Twenty-First Century”.
http://www.nist.gov/aes

10. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer-Verlag, StateNew York, 1993. – 312p.

11. Matsui, M.: Linear Cryptanalysis Method for the DES Cipher. Lecture Notes in
Computer Science, Advances in Cryptology, proceedings of Eurocrypt ’93, 1993.
pp. 27-41.

12. Courtis, N. T.: Cryptanalysis of Block Cipher with Overdefined Sys-
tem of Equations / N. T. Courtois, J. Pieprzyk. // Asiacrypt 2002:
http://eprint.iacr.org/2002/044.pdf

13. Vaudenay, S.: On the Weak Keys in Blowfish, Fast Software Encryption, Third
International Workshop Proceedings, Springer-Verlag, 1996, pp. 27-32.

14. Schneier, B.: “The Blowfish Encryption Algorithm,” Dr. Dobb’s Journal, v. 19,
n. 4, April 1994, pp. 38-40.

15. Lidl, R., Niederreiter, H.: “Finite Fields,” Encyclopedia of Mathematics and its
Applications 20, 2nd Ed. Cambridge University Press, 1997.


