
Authenticated Key Exchange under Bad Randomness?

Guomin Yang1, Shanshan Duan2, Duncan S. Wong3, Chik How Tan1, and Huaxiong Wang4

1 National University of Singapore
{tslyg,tsltch}@nus.edu.sg

2 University of California San Diego
shduan@cs.ucsd.edu

3 City University of Hong Kong
duncan@cityu.edu.hk

4 Nanyang Technological University
hxwang@ntu.edu.sg

Abstract. We initiate the formal study on authenticated key exchange (AKE) under bad randomness.
This could happen when (1) an adversary compromises the randomness source and hence directly
controls the randomness of each AKE session; and (2) the randomness repeats in different AKE sessions
due to reset attacks. We construct two formal security models, Reset-1 and Reset-2, to capture these two
bad randomness situations respectively, and investigate the security of some widely used AKE protocols
in these models by showing that they become insecure when the adversary is able to manipulate the
randomness. On the positive side, we propose simple but generic methods to make AKE protocols
secure in Reset-1 and Reset-2 models. The methods work in a modular way: first, we strengthen a
widely used AKE protocol to achieve Reset-2 security, then we show how to transform any Reset-2
secure AKE protocol to a new one which also satisfies Reset-1 security.

Keywords: Authenticated Key Exchange, Resettable Cryptography, Bad Randomness

1 Introduction

An Authenticated Key Exchange (AKE) protocol consists of a tuple of randomized algorithms
that enable two parties communicating over an insecure network to establish a common session
key. These algorithms consume random coins which are typically generated by pseudo-random
number generators (PRNGs). Practical PRNGs, such as ANSI X9.17 PRNG and FIPS 186 PRNG,
can generate bit-strings which are computationally indistinguishable from truly random strings
provided that the seeds of the PRNGs are fresh and truly random [17]. In practice (e.g. OpenSSL),
seeds are formed by collecting random data from an entropy pool, which can be created from a
hardware source (e.g., sound/video input, disk drives, etc.) and/or a non-hardware source (e.g., the
timing and content of events such as mouse movement, keystroke, network traffic, etc.) [20, 31].

In some practical situations however, the entropy pool could be controlled by an adversary and
the seeds may no longer be fresh or truly random. For example, if an adversary has physical access
to a hardware source and/or can control the events of a non-hardware source [20], the adversary
may be able to manipulate the data in the entropy pool. Also, in some operating systems such as
Linux, random data from the entropy pool may be pre-generated and stored in a buffer for later
use. If the buffer is not well-protected, an adversary may be able to modify these pre-generated
random data.

Adversarial reset of machines could make an AKE protocol reuse the same random coins in
different sessions. It has been known as a real threat to some computing devices such as smart
cards [13, 7]. Recently, Ristenpart and Yilek [35] showed that the adversarial reset is also a serious
security threat to Virtual Machines (VMs). Generally, a system administrator can take snapshots
? A preliminary version of this paper appears in Financial Cryptography and Data Security 2011. This is the full

version.

of the current system state of a VM from time to time as regular backups. The VM can later be
reverted back to a previous state using the snapshots. To perform an adversarial reset, an adversary
can first make a system on a VM crash, e.g., via a Denial of Service (DoS) attack. Then when the
system administrator reverts the VM back to a “good state”, some random coins that have occurred
before the machine being reset would be reused after the VM is reverted [35].

We categorize the threats above into “Reset-1” and “Reset-2” attacks, respectively. In Reset-
1 attack, the adversary controls the random coins used by the AKE algorithms, while in Reset-2
attack, the adversary can reset a device to make algorithms reuse some random coins. The practical
interests of these attacks bring a natural question: would the existing AKE protocols, especially
those widely used ones, be still secure under these attacks?

In this paper, we conduct the first formal study on AKE under Reset-1 and Reset-2 attacks.
Below are the three aspects to which we contribute.

Security Models. We propose two formal security models for Reset-1 and Reset-2 attacks respec-
tively. We build our models based on the existing Bellare-Rogaway (BR) [8] and Canetti-Krawczyk
(CK) [14] security models by providing the adversary additional capabilities. In the Reset-1 model,
the adversary directly picks random coins for the AKE participants, while in the Reset-2 model, the
adversary does not pick random coins directly but can reset a participant so that the same random
coins will be used in multiple AKE sessions. In addition, to capture Kaliski’s online Unknown Key
Share (UKS) attacks [12], our models allow the adversary to register malicious users with public
keys of its own choice.

In the Reset-1 model, since the adversary already controls the randomness, if the adversary also
learns the long-lived key of either participant, it can trivially compute the session key. Hence the
model cannot allow the adversary to corrupt the long-lived key of either participant, and Forward
Secrecy (FS) cannot be captured. On the other side, the Reset-2 model does not have this restriction.
This also indicates that the two models are incomparable and explains the reason why we need two
models.

Security of Existing Protocols. Based on the two new models we defined, we show that some
well-known AKE protocols (e.g. ISO [24, 14], SIGMA5 [15, 27], JFK [2], SKEME [28], HMQV [26]),
which are proven secure in their original security models will become insecure when the adversary
is allowed to manipulate the randomness in the way defined in Reset-1 and/or Reset-2.

Designing New Protocols. We then present techniques to build AKE protocols that are secure
in both Reset-1 and Reset-2 models. We present a generic way to efficiently transform a Reset-2
secure AKE protocol to a new one which is secure in both Reset-1 and Reset-2 models. Our idea is to
generate good “internal” randomness within the protocol, we do this by applying a pseudo-random
function (PRF) to the “raw” randomness at the very beginning of a protocol so that after this
treatment, computationally “good” randomness are used in the remaining steps of the protocol.
And we prove that this simple (but useful) idea indeed works. However, we remark that some
additional requirement on the PRF is needed in order to make the transformed protocol still be
Reset-2 secure.

Our transformation provides a “modular approach” to the construction of Reset-1 and Reset-2
secure AKE protocols: (1) we first build a Reset-2 secure AKE protocol Π; (2) then we apply the
transformation to Π and get a new protocol Π ′ which maintains Reset-2 security and in addition to
this, it also satisfies Reset-1 security. We illustrate this modular approach by proposing a new SIG-
DH based AKE protocol which is transformed from the ISO protocol. The modifications we made
are simple and efficient, and can be deployed easily to existing implementations of the protocol.

5 SIGMA serves as the basis of the signature-based mode of IKE [23] and IKEv2 [25].

2

Paper Outline. The rest of the paper is organized as follows. In Sec. 2, we review some related
work on AKE and resettable cryptography. In Sec. 3, we formalize Reset-1 and Rest-2 security for
AKE protocols. In Sec. 4, we show that a collection of widely-used AKE protocols do not satisfy
Reset-1 or Reset-2 security. In Sec. 5, we propose a method to generically transform a Reset-2
secure AKE protocol to a new one which is also Reset-1 secure. This is followed by the description
of two new AKE protocols that are secure in both Reset-1 and Reset-2 security models. Both of
them are derived from some widely-used AKE protocols. The paper is concluded in Sec. 7.

2 Related Work

Authenticated key exchange (AKE) protocols have been extensively studied within the crypto-
graphic community. The first complexity-theoretic treatment of the security notion of AKE is due
to Bellare and Rogaway [8]. Their model (referred to as the BR model) and its variants (e.g., [9, 10,
14]) then became the de facto standard for analyzing AKE protocols. In [14], Canetti and Krawczyk
combined previous work and presented a new security model (referred to as the CK model). They
showed that AKE protocols secure in their model can be composed with symmetric key encryption
and authentication functions to provide provably secure communication channels. The CK model
was used to demonstrate the security of many popular AKE protocols such as the ISO protocol [24,
14], the SIGMA protocol [15, 27], the HMQV protocol [26] and many more. Recently, LaMacchia
et al. [29] extended the CK model to a new model (referred to as eCK model). In their model,
the adversary is allowed to compromise either the long-live keys or the ephemeral keys (the latter
are related to the randomness) of the participants of a protocol session. There have been many
discussions on the strength of the two (CK and eCK) models [29, 33, 11]. In [11], Boyd et al. sug-
gested that these two models are incomparable. In this paper, we follow the definitional approach
of Canetti and Krawczyk, and we will see later that in fact our Reset-2 model can be considered
as Resettable CK model.

None of the existing security models for AKE considers the bad randomness scenarios that we
describe in this paper. Although for AKE protocols resilience to the leakage of ephemeral secret
key has been studied by Krawczyk [26] and by LaMacchia et al. [29], their work is different from
ours: firstly, ephemeral secret key is related but not equivalent to the randomness required by an
AKE protocol, in particular, randomness may be required in other parts of the protocol; secondly,
in the case of ephemeral secret key leakage, the adversary can only passively learn the ephemeral
secret key, but not control its value. Another piece of work that is “somehow” related to ours is
the work by Aiello et al. [2] in which the JFK (Just Fast Keying) AKE protocol was proposed and
discussions about the reuse of Diffie-Hellman (DH) exponents in multiple JFK AKE sessions were
made. However, this is different from the Reset-2 scenario we discussed earlier. The reuse of DH
exponent is initiatively implemented by a participant of the protocol for reducing the number of
costly modular exponentiation operations. But in a reset attack, all the components of the protocol
use unfresh/used randomness. To see the difference more clearly, if an AKE protocol (such as JFK)
uses a randomized digital signature scheme (such as Digital Signature Standard - DSS [1]), then
reusing the same randomness to sign different messages may allow an adversary to derive the secret
signing key. However, merely reusing the DH exponent may not cause such a serious consequence.

Resettable Cryptography. Resettable security have been considered for other cryptographic
protocols before, such as resettable Zero-Knowledge (rZK) proof [13] and resettable Identification
(rID) protocols [7]. Recently, Goyal and Sahai [22] studied the problem of resettably secure two-
party and multi-party computation for general functionalities, and in [36], Yilek studied resettably
secure public key encryption. Although AKE can be considered as a two-party computation func-

3

tion, our work is different from that of Goyal and Sahai [22]. We focus on examining and enhancing
the existing AKE protocols that have been widely used in the real practice.

Hedged Cryptography. Our paper is not the first paper to treat bad randomness for crypto-
graphic operations. The Hedged Cryptography [4, 35] preprocesses randomness together with other
inputs (messages, keys, etc.) of a cryptographic operation to provide (pseudo)randomness for the
cryptographic operation. In particular, in [35], Ristenpart and Yilek presented the hedged RSA
key transport and authenticated Diffie-Hellman key exchange protocols used in TLS without for-
mal security models. Their heading technique is different from our treatment to the randomness
presented in Sec. 5 and their hedged protocols cannot provide Reset-1 security.

3 Security Models and Definitions

3.1 AKE Protocol Descriptions

An Authenticated Key Exchange (AKE) protocol consists of two probabilistic polynomial time
algorithms: the Long-Lived Key generation algorithm SKG and a protocol execution algorithm P.
In this paper, we focus on the public key setting where the algorithm SKG returns a public key and
a private key upon each invocation.

Protocol Participants. We initialize a nonempty set U of parties. Each party U ∈ U is named
by a unique string, and that string has some fixed length. We use another set MU to denote
malicious parties who are added into the system by an adversary after the initialization phase.
Each malicious party M ∈MU is also named by a distinct and fixed-length string which has never
been used to name another party inside the system.

Long-Lived Keys. Each party U ∈ U holds a public/private key pair (pkU , skU) that is generated
according to the Long-Lived Key generation algorithm SKG. However, for each party M ∈MU , its
public key pkM can be set to any value except that pkM has never been used as the public key of
another party inside the system.

Instances. A party may run many instances concurrently. We denote instance i of party U by
Π i

U . At the time a new instance is created, a unique instance number within the party is chosen,
a sequence of random coins are tossed and feeded to that instance, and the instance enters the
“ready” state.

Protocol Execution. A protocol execution algorithm is a probabilistic algorithm taking strings
to strings. This algorithm determines how instances of the parties behave in response to signals
(messages) from their environment. Upon receiving an incoming signal (message) Min, an instance
runs the protocol P and generates

(Mout, acc, term
i
U , sidi

U , pidi
U , ssk,St i

U) ← P(1k, U,pkU , skU ,St i
U ,Min).

The first component Mout corresponds to the responding message, the second component acc de-
notes the decision the instance has made, and the third component termi

U indicates if the protocol
execution has been terminated. A session id (sidi

U), and partner id (pidi
U) may be generated during

the protocol execution. When the decision is accept, the instance holds a session key (ssk) which is
to be used by upper layer applications. For all the protocols we analyze in this paper, we assume
the state information St i

U is erased from the memory of U once termi
U becomes true.

Partnership. The partnership between two instances is defined via parter ID (pid) and session ID
(sid). The pid names the party with which the instance believes it has just exchanged a key, and
the sid is an identifier which uniquely labels the AKE session. We say two instances Π i

U and Πj
V

are partners if pidi
U = V, pidj

V = U and sidi
U = sidj

V .

4

procedure Initialize

For all U ∈ U
(pkU , skU)←$ SKG(1k, U) ; TU ← ∅

Timer ← 0 ; b←$ {0, 1} ; MU ← ∅
return {pkU}U∈U

procedure Register(U, pk)

If (U ∈ (U ∪MU) ∨ pk ∈ {pkV }V ∈U∪MU) then

return Invalid

MU ←MU ∪ {U}
return true

procedure NewInstance(U, i, N)

If (U /∈ U ∨ i ∈ TU) then return Invalid

TU ← TU ∪ {i} ; Ni
U ← N ; St i

U ← (Ni
U , ready)

acci
U ← false ; termi

U ← false

sidi
U ←⊥ ; pidi

U ←⊥ ; sski
U ←⊥

return true

procedure Send(U, i, Min)

If (U /∈ U ∨ i /∈ TU ∨ termi
U) then return Invalid

(Mout, acc, term
i
U , sidi

U , pidi
U , ssk,St i

U)

← P(1k, U, pkU , skU ,St i
U , Min)

If (acc∧ not acci
U) then

sski
U ← ssk ; acci

U ← true

return (Mout, acc, term
i
U , sidi

U , pidi
U)

procedure Reveal(U, i)

If (U /∈ U ∨ i /∈ TU) then return Invalid

Timer ← Timer + 1 ; Time[Reveal, (U, i)] ← Timer

return sski
U

procedure Corrupt(U)

If U /∈ U then return Invalid

Timer ← Timer + 1

Time[Corrupt, U] ← Timer

return skU

procedure Test(U∗, i∗)
If U∗ /∈ U then return Invalid

If (not acci∗
U∗) then return Invalid

K ←$ KeySpace

If b = 0 then return K

Else return sski∗
U∗

procedure Finalize(b′)

V ∗ ← pidi∗
U∗

If V ∗ /∈ U then return false

If (Time[Corrupt, U∗]
∨Time[Corrupt, V ∗])
return false

If (Time[Reveal, (U∗, i∗)])
return false

If (∃i, i 6= i∗ ∧Ni
U∗ = Ni∗

U∗)

return false

If (∃j∗ ∈ TV ∗ , pidj∗
V ∗ = U∗

∧sidj∗
V ∗ = sidi∗

U∗)

If (∃j, j 6= j∗ ∧Nj
V ∗ = Nj∗

V ∗)

return false

If (Time[Reveal, (V ∗, j∗)])
return false

return (b = b′)

Fig. 1. Game RAKE-1.

3.2 Security Models

We define two security models to capture the two scenarios (namely, Reset-1 and Reset-2) where
the randomness of an AKE protocol goes bad. However, we assume that the long-lived keys of all
the honest party in the set U are securely generated using fresh random coins.

Reset-1 Model. In this model, we consider the scenario where the randomness of each instance
is completely controlled by the adversary. The formal definition is given in Figure 1 where in total
six types of oracle queries are defined to capture the adversarial capabilities. In the following we
explain those oracle queries in detail.

Register(U,pkU) This oracle query allows the adversary A to register a new user U with public
key pkU . Here we only require that neither the user identity U nor the public key pkU exists in
the system. In particular, we do not require the adversary to provide a proof of knowledge on
the secret key with regard to pkU .

NewInstance(U, i,N) This oracle query allows A to initialize a new instance Π i
U within party U

with a binary string N which serves as the random tape of Π i
U .

5

Send(U, i, Min) This oracle query invokes instance i of U with message Min. The instance then runs
P(1k, U,pkU , skU ,St i

U ,Min) and sends the response back to the adversary. Should Π i
U terminate

or accept will be made available to A. The session id sidi
U and partner id pidi

U are also made
available to A once they are available.

Reveal(U, i) If oracle Π i
U has accepted and generated a session key sski

U , then sski
U is returned to

the adversary.
Corrupt(U) By making this oracle query, adversary A obtains the long-lived secret key skU of

party U .
Test(U∗, i∗) By making this oracle query, A selects a challenge instance Π i∗

U∗ . If Π i∗
U∗ has accepted,

holding a session key sski∗
U∗ , then the following happens. If the coin b, flipped in the Initialize

phase, is 1, then sski∗
U∗ is returned to the adversary. If b = 0, then a random session key is drawn

from the session key space and returned to the adversary. This query is only asked once during
the whole game.

The success of an adversary is measured by its ability to distinguish a real session key from a
random key in the session key space. However, some oracle queries will render session keys exposed.
By issuing these queries the adversary can trivially win the game. To exclude these trivial attacks,
we consider the adversary to be successful only if it specifies a fresh oracle in the Test query.

First of all, the adversary can trivially derive a session key if one of the parties involved in that
session is the adversary itself (i.e. one party is created by the adversary via a Register query).

The adversary will learn a party’s long lived key by making a Corrupt query. Since in the
Reset-1 model, randomness is completely controlled by the adversary, once a party is corrupted,
the adversary is able to derive all state information and session keys ever generated by the party.
So there is no security guarantee on session keys of any corrupted party. In other words, we don’t
consider the notion of forward secrecy in the Reset-1 model.

The adversary can certainly learn the value of a session key via a Reveal query. In the reset
setting, the adversary can also derive a session key by mounting the reset-and-reply attack. Specif-
ically, the adversary first activates a protocol execution between instance Π i

U with random tape
NU , and instance Πj

V with random tape NV . Then it activates another instance Π i′
U with the same

random tape NU . By replaying messages from Πj
V , the adversary makes sski′

U = sski
U . In this case,

revealing sski
U (or using it in a upper layer application) will automatically render sski′

U insecure,
and vice versa. This type of attacks imply that as long as the random tape of one instance Π i

U is
used by another instance Π i′

U , there is no security guarantee on the session keys generated by these
two instances. So when defining the freshness of an instance, we require that its random tape is
never used by another instance. Our goal is to design AKE protocols such that reset attacks would
not affect the security of session keys generated by those un-reset instances.

Definition 1. Let AKE be an AKE protocol. Let A be a Reset-1 adversary against AKE and k a
security parameter. The advantage of A is defined as

Advrake-1
AKE,A(k) = Pr [RAKE-1AKE,A(k) ⇒ true]− 1/2 .

We say AKE is secure in the Reset-1 model if

1. in the presence of a benign adversary who faithfully conveys messages, then two partnering
instances output the same session key; and

2. for any PPT adversary A, Advrake-1
AKE,A(k) is negligible.

Reset-2 Model. In this model, we consider the scenario where the adversary is able to perform
reset attacks, but unable to directly set the value of the random coins. The game RAKE-2, described

6

procedure Initialize

The same as in Game RAKE-1

procedure Register(U, pk)

The same as in Game RAKE-1

procedure NewInstance(U, i, j)

If (U /∈ U ∨ i ∈ TU) then return Invalid

If j 6= ⊥ ∧ j /∈ TU then return Invalid

If j = ⊥ then Ri
U ←$ RandomCoins

Else Ri
U ← Rj

U

TU ← TU ∪ {i} ; St i
U ← (Ri

U , ready)

acci
U ← false ; termi

U ← false

sidi
U ←⊥ ; pidi

U ←⊥ ; sski
U ←⊥

return true

procedure Send(U, i, Min)

The same as in Game RAKE-1

procedure Reveal(U, i)

The same as in Game RAKE-1

procedure Corrupt(U)

The same as in Game RAKE-1

procedure Test(U∗, i∗)
The same as in Game RAKE-1

procedure Finalize(b′)

V ∗ ← pidi∗
U∗

If V ∗ /∈ U then return false

If (∃i, i 6= i∗ ∧ Ri
U∗ = Ri∗

U∗)

return false

If (Time[Reveal, (U∗, i∗)])
return false

If (∃j∗ ∈ TV ∗ , pidj∗
V ∗ = U∗

∧sidj∗
V ∗ = sidi∗

U∗)

If (∃j, j 6= j∗ ∧ Rj
V ∗ = Rj∗

V ∗)

return false

If (Time[Reveal, (V ∗, j∗)])
return false

Else

If (Time[Corrupt, V ∗])
return false

return (b = b′)

Fig. 2. Game RAKE-2.

in Figure 2, is used to define the security of AKE protocols in the Reset-2 setting. The definitions
of oracle queries Register, Send, Reveal, Corrupt and Test are the same as those in game
RAKE-1. But differently, when initializing a new user instance Π i

U via a NewInstance query, the
adversary does not set the random coins directly. Instead, it can specify another instance Πj

U that
has already been initialized, and instance Π i

U would use the same random coins that Πj
U has used.

The adversary can also let Π i
U use fresh random coins by setting j = ⊥.

This adversarial model enables us to define forward secrecy. Recall that forward secrecy requires
that compromising two users’ long-lived secret keys should not allow the adversary to compromise
any already established session key. We say an instance Π i

U (U ∈ U) is fs-unfresh in the Reset-2
model if any of the following conditions is true:

1. pidi
U is created by the adversary via a Register query.

2. A reveals the session key of Π i
U .

3. There exists another instance of U whose random tape is the same as that of Π i
U (i.e. a reset

attack against Π i
U has occured).

4. Condition 2 is true regarding the partner-oracle of Π i
U (if it exists).

5. Condition 3 is true regarding the partner-oracle of Π i
U (if it exists).

6. Π i
U has no partner instance, and A corrupts pidi

U .

Otherwise, we say Π i
U is fs-fresh.

Definition 2. Let AKE be an AKE protocol. Let A be a Reset-2 adversary against AKE and k a
security parameter. The advantage of A is defined as

Advrake-2
AKE,A(k) = Pr [RAKE-2AKE,A(k) ⇒ true]− 1/2 .

We say AKE is secure in the Reset-2 model if

7

1. in the presence of a benign adversary who faithfully conveys messages, then two partnering
instances output the same session key; and

2. for any PPT adversary A, Advrake-2
AKE,A(k) is negligible.

Strong Corruption. So far we only consider the so called “weak corruption model”. To define
strong corruption in our models, we follow the approach of Canetti and Krawczyk [14] and introduce
a new query called RevealState query.

procedure RevealState(U, i)
If (U /∈ U ∨ i /∈ TU) then return Invalid
Timer ← Timer + 1 ; Time[RevealState, (U, i)] ← Timer
return St i

U

Now an additional restriction to the adversary A is that A cannot ask the RevealState query
to the instance Π i∗

U∗ or its partner Πj∗
V ∗ (if the latter exists).

procedure Finalize(b′)
· · ·
If (Time[Reveal, (U∗, i∗)]∨Time[RevealState, (U∗, i∗)])

return false

· · ·
If (Time[Reveal, (V ∗, j∗)]∨Time[RevealState, (V ∗, j∗)])

return false

· · ·
It is also worth noting that by adding the RevealState query, our Reset-2 model can be considered
as Resettable Canneti-Krawczyk model.

4 Security Analysis of Existing Protocols

In this section, we show that several widely used AKE protocols are insecure in our security models.
Firstly, it is obvious to see that AKE protocols such as ISO [24], SIGMA [27, 15], JFK [2] and
SKEME [28] are insecure in the Reset-1 model since for these protocols, the secrecy of the session
key solely relies on the secrecy of the ephemeral secrets. Below we focus on analyzing AKE protocols
in the Reset-2 model.

SIG-DH Protocols. A popular approach to design authenticated key exchange protocols is to use
the signature-based Diffie-Hellman paradigm. Many popular AKE protocols adopt this approach,
such as the ISO protocol (Fig. 3) [24], the SIGMA (“SIGn-and-MAc”) protocol [27, 15] and JFK
(“Just Fast Keying”) [2]. These protocols are all proven secure in the CK model.

The Digital Signature Standard (DSS) [1] is one of the most used options in the real practice
(e.g., DSS is recommended in IKEv2 [25]). It is known that for DSS (or any scheme that follows
the Fiat-Shamir paradigm [21]), if the same randomness is used to sign two difference messages,
then the secret signing key can be recovered with an overwhelming probability.

In either Reset-1 or Reset-2 model, the adversary is able to let an honest party U sign two
different messages using the same randomness. The adversary can simply let U and another honest
user V perform two AKE sessions, but let U use the same random coins in these two sessions. Since
V performs the protocol honestly, with overwhelming probability, the messages signed by U would
be different. Then the adversary can retrieve U ’s signing key.

8

A B

(pkA, skA)←$DS.SKG(1k) (pkB , skB)←$DS.SKG(1k)

x←$ Zq, α ← gx

A, α
-

y ←$ Zq, β ← gy

σB ← DS.Sign(skB , α, β, A)B, β, σB¾

σA ← DS.Sign(skA, β, α, B) A, σA -ssk ← gxy ssk ← gxy

Fig. 3. The ISO Protocol.

HMQV. The HMQV protocol (Fig. 4) is proposed by Krawczyk in [26]. It aims to solve several
weaknesses in its predecessor - the MQV protocol [30]. Besides achieving proven security and high
efficiency, the HMQV protocol has several extra features, such as resilience to leakage of the DH
exponents.

A B

(pkA, skA) = (ga, a) (pkB , skB) = (gb, b)

x←$ Zq, X ← gx A, B, X
-

y ←$ Zq, Y ← gy
B, A, Y

¾
d ← H(X, B), e ← H(Y, A)

σA ← (Y pke
B)x+da

ssk ← H ′(σA)

d ← H(X, B), e ← H(Y, A)

σB ← (Xpkd
A)y+eb

ssk ← H ′(σB)

Fig. 4. The HMQV Protocol.

Reset Attack. Below we describe a reset attack originally due to Menezes and Ustaoglu [32].
Assume that the HMQV protocol is implemented in a subgroup G of Z∗p with |G| = q such that
(p − 1)/q has several small (e.g. less than 240) pairwise relatively prime factors t1, t2, ..., tn and∏n

i=1 ti > q. The attack works as follows:

1. The adversary first corrupts a party B and obtains B’s long lived secret key b.
2. The adversary then activates a new instance of A.
3. After A sends (A,B, X = gx) to B, the adversary selects a group element Y ∈ Z∗p of order t1,

and sends (B,A, Y) to A.
4. As HMQV does not require A to check the group membership of Y , A will continue the protocol

and compute the session key as

σA = (Y pke
B)s = Y spkes

B = Y s(gs)be = Y s(Xpkd
A)be and K = H ′(σA)

5. The adversary then issues a Reveal query to get the session key K = H ′(Y s(Xpkd
A)be). After

that, the adversary iteratively computes K ′ = H ′(Y c1(Xpkd
A)be) for c1 = 0, 1, 2, ... until K ′ = K

occurs, in which case c1 = s = x + da mod t1.
6. The adversary then resets A and repeats the above process for t2, t3, ..., tn.

9

7. After the adversary obtains x + da = ci mod ti for i = 1, 2, ..., n (note that since x is the same,
d remains unchanged), she can determine z = x+da mod q by the Chinese Reminder Theorem.

8. The adversary then corrupts another party C and repeats the above attack again by letting A
use the same random coin x. This time the adversary can determine z′ = x + d′a mod q.

9. If d 6= d′, which happens with high probability, the adversary can derive A’s long lived key as
a = (z − z′)/(d− d′) mod q.

5 From Reset-2 Security to Reset-1 and Reset-2 Security

In this section, we show that though the Reset-1 and Reset-2 models are incomparable, we can do
a simple transformation on a Reset-2 secure AKE protocol to derive a new protocol that is secure
in both Reset-1 and Reset-2 models. So to construct a protocol that is secure in both models, we
only need to construct one that is secure in the Reset-2 model, and then apply the transformation.
Below we first introduce some important tools for our transformation.

Pseudo-Random Function. A family of efficiently computable functions F = {FK : D → R|K ∈
K} is called a pseudo-random function family, if for any polynomial time algorithm A,

Advprf
F,A(k) = Pr

[
AFK(·)(1k) = 1

]
− Pr

[
ARF(·)(1k) = 1

]

is negligible where K ←$ K, RF : D → R is a truly random function.

Strong Randomness Extractor [18]. A family of efficiently computable functions F = {FK :
D → R|K ∈ K} is called a strong (m, ε)-extractor, if for any random variable X over D that has
min-entropy m, if K is chosen uniformly at random from K and R is chosen uniformly at random
from R, then the statistical distance between the two distributions 〈K, FK(X)〉 and 〈K, R〉 is at
most ε. For our purpose, in fact we only require 〈K, FK(X)〉 and 〈K, R〉 to be computationally
indistinguishable.

The Transformation. Given a protocol Π = (SKG,P) that is secure in the Reset-2 model, and
a pseudo-random function family F = {FK : {0, 1}ρ(k) → {0, 1}`(k)|K ∈ {0, 1}δ(k)} where ρ(k), `(k)
and δ(k) are all polynomials of k, and `(k) denotes the maximum number of random bits needed
by a party in an execution of P, we construct a new protocol Π ′ = (SKG′,P′) as follows:

– SKG′(1k): run SKG(1k) to generate (pk, sk), select K ←$ {0, 1}δ(k). Set pk′ = pk and sk′ =
(sk,K).

– P′: get a ρ(k)-bit random string r, then compute r′ ← FK(r) and run P with random coins r′.

Theorem 1. If Π is a secure AKE protocol in the Weak-Corruption (Strong-Corruption, resp.)
Reset-2 model, and F is a secure pseudo-random function family, then Π ′ is a secure AKE protocol
in the Weak-Corruption (Strong-Corruption, resp.) Reset-1 model.

(Proof Idea) We prove the Theorem by contradiction. Given an adversary A that breaks Π ′ in
the Reset-1 model, we construct another adversary B breaking Π in the Reset-2 model. Let U∗ and
V ∗ denote the parties that A is going to attack, B simulates the Reset-1 game for A by answering
queries related to U∗ and V ∗ using its own oracles (notice that B needs to reset U∗ (or V ∗) if A feeds
two instances of U∗ (or V ∗) with the same “random” coins), and simulates other queries by himself.
Since F is a pseudo-random function family, and A doesn’t corrupt U∗ or V ∗, A wouldn’t notice
she’s in a simulated game, and if she can win the Reset-1 game with a non-negligible advantage,
she can win the simulated game (which means B wins the Reset-2 game) with a non-negligible
advantage as well.

10

Proof. The proof is by contradiction, if there exists an adversary A which can break Π ′ in the
Reset-1 model, we construct another adversary B that breaks Π in the Reset-2 model.

First, we define a restricted adversary A1 in the Reset-1 game as follows. A1 outputs two different
identities U∗ and V ∗ from the set U after the Initialize phase, and in the Test query, A1 can only
makes a Test query with input (U∗, i∗) which satisfies pidi∗

U∗ = V ∗.
Given an adversary A, we construct A1 as follows. A1 randomly chooses from the set U two

identities U∗ and V ∗ after the Initialize Phase, and simulates the Reset-1 game for A by answering
all the oracle queries using its own oracles. If A asks a Corrupt query on U∗ or V ∗, then A1 outputs
a random bit and aborts the game. Let E denote the event that A outputs an instance (I∗, j∗) in
the Test query such that (I∗, pidj∗

I∗) = (U∗, V ∗). If E does not happen, A1 outputs a random bit
and aborts its execution. Otherwise, if event E occurs, then A1 makes a Test query also with input
(I∗, j∗), and returns the response it gets to A. Finally, when A returns a bit b′ and aborts, A1 also
returns b′ and aborts.

Since U∗ and V ∗ are randomly selected in the Initialize Phase, we have

Advrake-1
Π′,A1

(k) = Pr
[
RAKE-1Π′,A1(k) ⇒ true|E]

Pr [E] + Pr
[
RAKE-1Π′,A1(k) ⇒ true|¬E

]
Pr [¬E]− 1

2

= Pr
[
RAKE-1Π′,A1(k) ⇒ true|E]

Pr [E] +
1
2
(1− Pr [E])− 1

2

= (Pr
[
RAKE-1Π′,A1(k) ⇒ true|E]− 1

2
)Pr [E]

≥ (Pr
[
RAKE-1Π′,A(k) ⇒ true

]− 1
2
)Pr [E]

=
1

n(n− 1)
Advrake-1

Π′,A (k)

Game G1. We then modify the Reset-1 game by replacing the function FKU∗ (·) with a truly random
function RF(·) where FKU∗ (·) is the pseudo-random function with key KU∗ used by the party U∗ in
the Reset-1 game. Denote this game by G1. In the following, we show that A1 has similar advantages
in the Reset-1 game and game G1. Otherwise, we can construct an adversary D which breaks the
pseudo-random function family F.

D has access to an oracle O which is either a truly random function RF(·) or a pseudo-random
function FK(·). D simulates the Reset-1 game by performing all the operations honestly except
that D simulates the pseudo-random function FKU∗ (·) of U∗ by asking its oracle O. Notice that
A1 never makes a Corrupt query on U∗. Finally, if A1 wins the game, D outputs 1 and aborts,
otherwise, D aborts without any output.

Then we have

Advprf
F,D(k) = Pr

[
DFK(·)(1k) = 1

]
− Pr

[
DRF(·)(1k) = 1

]

= Pr [A1wins the game|O = FK]− Pr [A1wins the game|O = RF]

= Pr
[
RAKE-1Π′,A1(k) ⇒ true

]− Pr
[
G1

Π′,A1(k) ⇒ true
]

= Advrake-1
Π′,A1

(k)−AdvG1

Π′,A1
(k)

and
AdvG1

Π′,A1
(k) = Advrake-1

Π′,A1
(k)−Advprf

F,D(k)

Game G2. In game G2, we modify the game G1 by replacing the function FKV ∗ (·) with a truly
random function RF′(·) where FKV ∗ (·) is the pseudo-random function with key KV ∗ used by the
party V ∗ in the game G1. Then by a similar analysis as in the previous game, we have

11

AdvG2

Π′,A1
(k) = AdvG1

Π′,A1
(k)−Advprf

F,D(k)

Now given an adversary A1 against Π ′ in game G2, we construct an adversary B against Π in
the Reset-2 game. In the Initialization phase for A1, B gives {pkU}U∈U to A1. After A1 outputs U∗

and V ∗, B corrupts all the other n− 2 parties in the set U\{U∗, V ∗} and learns the corresponding
long-lived private keys. B also chooses KJ ←$ K for all J ∈ U\{U∗, V ∗}. B then simulates the game
G2 for A1 as follows.

When A1 makes a Register query with input (I, pkI), B also makes a Register query with the
same input.

When A1 makes a NewInstance query with input (I, j, r),

– If I /∈ {U∗, V ∗}, B performs the operations in the NewInstance procedure of game G2 by
himself.

– If I ∈ {U∗, V ∗}, B first check if A1 has ever made a NewInstance query with input (I, j′, r)
where j′ 6= j. If so, B makes a NewInstance query with input (I, j, j′) in the Reset-2 game.
Otherwise, B makes a NewInstance query with input (I, j,⊥).

When A1 makes a Send query with input (I, j, Min),

– If I /∈ {U∗, V ∗}, B performs the operations in the Send procedure of game G2 by himself.
– If I ∈ {U∗, V ∗}, B makes a Send query in the Reset-2 game also with input (I, j, Min), and

returns to A1 the same response he has received.

B answers the Reveal and RevealState queries in the same way as answering Send queries.
Notice that A1 never makes a Corrupt query on U∗ or V ∗, so B answers by himself the Corrupt

queries made by A1.
Suppose A1 makes a Test query with input (I∗, j∗) (notice that (I∗, pidj∗

I∗) = (U∗, V ∗) must be
true), B makes a Test query with input (I∗, j∗) in the Reset-2 game, and returns to A1 the same
response he has received.

Finally, when A1 outputs a bit b′ and aborts, B also outputs b′ and aborts.

Probability Analysis. We can see that the game simulated by B is identical to game G2, and if
(I∗, j∗) is a fresh session according to game G2, (I∗, j∗) is also a fresh session in the Reset-2 game.
So we have

Advrake-2
Π,B (k) = Pr [RAKE-2Π,B(k) ⇒ true]− 1

2

≥ Pr
[
G2

Π′,A1
(k) ⇒ true

]− 1
2

= AdvG2

Π′,A1
(k)

Combining all the results above, we have

Advrake-2
Π,B (k) ≥ 1

n(n− 1)
Advrake-1

Π′,A (k)− 2Advprf
F,D(k)

ut

The pseudo-random function (PRF) family F is the central tool for our transformation. However,
the security of a pseudo-random function FK(·) relies on the secrecy of the key K. When the key is
known to the adversary, then we cannot assume the output of the function is still computationally

12

indistinguishable from truly random strings. So a problem arises regarding our transformation: the
resulting protocol “seems” no longer secure in the Reset-2 model. Recall in the Reset-2 model, the
adversary is allowed to corrupt the long-lived key sk′U∗ = (skU∗ ,KU∗) of the user U∗ that output
by the adversary in the Test query, then even given a truly random string r, we cannot guarantee
FKU∗ (r) is random from the viewpoint of the adversary who knows KU∗ .

Fortunately, this problem can be resolved, but we need an extra requirement on F, that is, we
require F to be a Strong Randomness Extractor (SRE) [18]. In [16], Chevassut et al. showed that
those very strong (i.e. the adversary has very small winning advantage) pseudo-random function
families are also good strong randomness extractors. For real implementation, the HMAC function
[5], which is widely used in the real practice (e.g., TLS and IKE), is a good candidate for our
purpose [3, 19, 34].

Theorem 2. If Π is a secure AKE protocol in the Weak-Corruption (Strong-Corruption, resp.)
Reset-2 model, and F is a pseudo-random function family and a strong randomness extractor, then
Π ′ is secure in the Weak-Corruption (Strong-Corruption, resp.) Reset-2 model.

Proof. The proof is also by contradiction, if there exists an adversary A which can break Π ′ (F is
assumed to be a pseudo-random function family and a strong randomness extractor) in the Reset-2
model, we construct another adversary B that breaks Π in the Reset-2 model.

We consider two cases: (1) the instance output by A in the Test query has a partner instance,
and (2) the instance output by A in the Test query has no partner instance.

Case 1: the instance (U∗, i∗) output by A in the Test query has a partner instance (V ∗, j∗).
Similar to the proof of Theorem 1, we first define a restricted adversary A1, which outputs two

numbers ` and `′ after the Initialize phase such that the Test session is between the `-th and `′-th
instances. Then similar to the proof of the Theorem 1, given an adversary A in the Reset-2 model
which makes at most qI NewInstance queries, we can build A1 such that

Advrake-2
Π′,A1

(k) ≥ 1
qI(qI − 1)

Advrake-2
Π′,A (k).

Game G̃1. We then modify the Reset-2 game for A1 to a new game G̃1 such that in the `-th
instance (or (U∗, i∗)), the output of the function FKU∗ (·) is replaced with a random string, and in
the `′-th instance (or (V ∗, j∗)), the output of FKV ∗ (·) is replaced with another random string. Then
due to that F is a strong randomness extractor, we have

AdvG̃1

Π′,A1
(k) ≥ Advrake-2

Π′,A1
(k)− 2εsre.

Now given an adversary A1 against Π ′ in game G̃1, we construct an adversary B against Π in
the Reset-2 game. B corrupts all the parties in U , selects KJ ←$ K for all J ∈ U , and simulates the
game G̃1 for A1.

B answers all the queries made by A1 except that for all the queries related to the `-th instance
(or (U∗, i∗)) and the `′-th instance (or (V ∗, j∗)), B relays these queries to its own challenger, and
returns to A1 the responses he receives. Finally, when A1 outputs a bit b′ and aborts, B outputs
the same b′ and aborts.

13

The game G̃1 simulated by B is perfect, and if A1 wins the game G̃1, B wins the Reset-2 game.
So we have

Advrake-2
Π,B (k) = Pr [RAKE-2Π,B(k) ⇒ true]− 1

2

≥ Pr
[
G̃1

Π′,A1
(k) ⇒ true

]
− 1

2

= AdvG̃1

Π′,A1
(k)

Combining all the results in Case 1, we have

Advrake-2
Π,B (k) ≥ 1

qI(qI − 1)
Advrake-2

Π′,A (k)− 2εsre.

Case 2: the instance (U∗, i∗) output by A in the Test query has no partner instance.
Similar to Case 1, we first define a restricted adversary A1 that outputs an integer ` and an

identity V ∗ after the Initialize phase such that A1 outputs the `-th instance (denoted by (U∗, i∗))
in the Test query and pidi∗

U∗ = V ∗. Then similar to the previous proofs, given an adversary A in
the Reset-2 game which makes at most qI NewInstance queries, we can build A1 such that

Advrake-2
Π′,A1

(k) ≥ 1
nqI

Advrake-2
Π′,A (k).

Game Ḡ1. In game Ḡ1, we modify the Reset-2 game for A1 such that in the `-th instance (or
(U∗, i∗)), the output of the function FKU∗ (·) is replace with a random string. Then similar to the
analysis in Case 1, we have

AdvḠ1

Π′,A1
(k) ≥ Advrake-2

Π′,A1
(k)− εsre.

Game Ḡ2. In game Ḡ2, we modify game Ḡ1 such that we replace the function FKV ∗ (·) with a truly
random function. Then following a similar analysis as in the proof of Theorem 1, we have

AdvḠ2

Π′,A1
(k) ≥ AdvḠ1

Π′,A1
(k)−Advprf

F,D(k).

Given an adversary A1 against protocol Π ′ in game Ḡ2, we construct another adversary B
against protocol Π in the Reset-2 game as follows.

B corrupts all the parties in the set U\{V ∗} and learns the corresponding long-lived private
keys. B also chooses KJ ←$ K for all J ∈ U\{V ∗}. B answers by himself all the queries made by A
except the following:

– For all the queries that are related to the `-th instance (including the Test query), B relays
these queries to its own challenger, and returns to A1 the responses he receives.

– For all the queries that are related to the party V ∗, B also relays the queries to its own challenger,
returns to A1 the responses he receives. Notice that A1 never makes a Corrupt query on V ∗.

Finally, when A1 outputs a bit b′ and aborts, B also outputs b′ and aborts. Then we have

Advrake-2
Π,B (k) = Pr [RAKE-2Π,B(k) ⇒ true]− 1

2

≥ Pr
[
Ḡ2

Π′,A1
(k) ⇒ true

]− 1
2

= AdvḠ2

Π′,A1
(k)

14

Combining all the results in Case 2, we have

Advrake-2
Π,B (k) ≥ 1

nqI
Advrake-2

Π′,A (k)− εsre −Advprf
F,D(k).

So in conclusion, if we combine the results in both Case 1 and Case 2, we have

Advrake-2
Π′,A (k) ≤ max(qI(qI − 1)(Advrake-2

Π,B (k) + 2εsre), nqI(Advrake-2
Π,B (k) + εsre + Advprf

F,D(k)))

ut

6 New SIG-DH and PKE-DH Protocols

In this section, we modify the ISO protocol and the SKEME protocol to obtain new SIG-DH and
PKE-DH protocols that are secure in both Reset-1 and Reset-2 models.

6.1 A New SIG-DH Protocol

In Sec. 4, we showed that the ISO protocol is insecure in either reset model. In the following we
present a slightly modified protocol (denoted by ISO-R2) and prove its Reset-2 security. Then by
applying our transformation in the previous section, we can obtain a new protocol that is secure in
both Reset-1 and Reset-2 settings.

A B

(pkA, skA)←$DS.SKG(1k) (pkB , skB)←$DS.SKG(1k)

x←$ Zq, α ← gx

A, α
-

y ←$ Zq, β ← gy, sid ← α‖β
σB ← DS.Sign(skB , α, β, A, 0)

ssk ← gxy

B, β, σB¾
sid ← α‖β

σA ← DS.Sign(skA, β, α, B, 1)

ssk ← gxy
A, σA -

Fig. 5. The ISO-R2 Protocol.

Modification 1. The ISO-R2 protocol (Fig. 5) is similar to the original ISO protocol. One difference
is that a role indicator (‘0’ for responder and ‘1’ for initiator) is added into the message signed by
each party. Our modification is to prevent the following interleaving attack when the session id is
defined as the concatenation of the random group elements sent by the initiator and the responder.

1 The adversary M corrupts A, and then activates a new session between A (Initiator) and B
(Responder).

1’ Upon receiving the message (A,α) from A, the adversary activates another session between B
(Initiator) and A (Responder)

2’ Upon receiving the message (B, β) from B, the adversary sends back (A,α,DS.Sign(skA, β, α, B))
to B.

3’ B then responses to the adversary M with a message (B,DS.Sign(skB, α, β, A)), and accepts
the session with sid = β‖α.

15

2 The adversary then sends (B, β,DS.Sign(skB, α, β, A)) to A.
3 A then responses with (A,DS.Sign(skA, β, α, B)) and accepts the session with sid′ = α‖β.

We can see that A and B would agree with the same session key, but under different ses-
sion ids. There are several ways to resolve the problem: (1) use an explicit session id (this ap-
proach was adopted by Canetti and Krawczyk in [14]) instead of defining the session id as the
concatenation of the messages exchanged between the two parties, (2) define the session id as
(self-message‖peer-message) (in this way, two matching instances generate different session ids) (3)
add a role indicator.

The first approach is simple, but it leaves the question of how to concretely define session id.
The second way doesn’t match our security models in which we assume two partners of a session
should have the same session id.

Modification 2. Also, in order to prevent the attack we have described in Sec. 4, we require the
underlying digital signature scheme DS to be deterministic.

Deterministic Digital Signature. We say a digital signature scheme DS = (DS.SKG, DS.Sign,
DS.Vf) is deterministic if the signing algorithm DS.Sign is deterministic. We can always transform
a randomized digital signature scheme to a deterministic one via the following (folklore) trick: the
signing key is expanded to include a key K ′ which is chosen uniformly at random from the key
space of a pseudo-random function family F′. To sign a message m, we first compute random coins
r = F′K′(m), and then invoke the (randomized) signing algorithm DS.Sign with random coins r.

We say DS is existentially unforgeable under adaptive chosen message attacks (uf-cma), if for
any polynomial time algorithm F ,

Advuf−cma
DS,F (k) = Pr

[
(pk, sk) ← DS.SKG(1k), (m∗, σ∗) ← FDS.Sign(sk,·)(pk) :
DS.Vf(pk, m∗, σ∗) = 1 ∧ F has never queried DS.Sign(sk, m∗)

]

is negligible.

Security Analysis. In the following, we prove that the ISO-R2 protocol is secure in the Reset-2
model under the Decisional Diffie-Hellman (DDH) assumption.

Decisional Diffie-Hellman (DDH) Assumption: The DDH assumption says for any polyno-
mial time algorithm A,

AdvDDH
A (k) = Pr

[
A(1k, g, ga, gb, Z) = 1|Z = gab

]
− Pr

[
A(1k, g, ga, gb, Z) = 1|Z = gr

]

is negligible where a, b, r are randomly selected from Zq.

Theorem 3. The ISO-R2 protocol is secure in the Strong Corruption Reset-2 model if DS is
a uf-cma secure deterministic digital signature scheme, and the DDH assumption holds in the
underlying group.

Proof. We first define a restricted adversary A1 such that in the Test query A1 outputs a instance
(U∗, i∗) which has a partner instance (V ∗, j∗).

Given an adversary A against the ISO-R2 protocol in the Reset-2 model, we build A1 as follows.
A1 answers all the queries made by A using its own oracles, if A outputs an instance (U∗, i∗) that
has no partner instance, then A1 aborts without any output. Otherwise, A1 also outputs (U∗, i∗)
in the Test query, and returns to A the response it receives. When A outputs a bit b′ and aborts,
A1 also outputs b′ and aborts.

We say a Forge event occurs if in the game, the adversary A generates a message signature pair
(m∗, σ∗) such that

16

– There exists an party I ∈ U such that true ← DS.Vf(pkI ,m
∗, σ∗), and

– Party I is not corrupted at the time A generates (m∗, σ∗), and
– The party I has never generated a signature on message m∗.

Let E denote the event that A outputs in the Test query an instance (U∗, i∗) that has no partner
instance. If E happens, then a Forge event also happens. On the other hand, if E does not happen,
then A1 and A are the same. So we have

Advrake-2
ISO−R2,A(k)−Advrake-2

ISO−R2,A1
(k) ≤ Pr [E] ≤ Pr [Forge]

In the following we prove that event Forge happens only with negligible probability. Otherwise,
we can break the uf-cma security of the deterministic digital signature scheme.

Given an adversary A in the game G1, we construct a signature forger F as follows: F is given
a public key pk where (pk, sk) ← DS.SKG(1k), and has access to a signing oracle DS.Sign(sk, ·).
F randomly selects a party U ∈ U , and assigns pkU = pk. F then generates all the long-lived keys
for all the parties in the set U\{U}.

F simulates the game G1 for A. If in the simulation, a Forge event happens and I = U , then F
outputs the forgery by A and aborts. Then we have

Advuf−cma
DS,F (k) ≥ 1

n
Pr [Forge].

So we have
Advrake-2

ISO−R2,A1
(k) ≥ Advrake-2

ISO−R2,A(k)− nAdvuf−cma
DS,F (k).

Given adversary A1 with advantage Advrake-2
ISO−R2,A1

(k), we define another restricted adversary
A2 which outputs two integers ` and `′ after the Initialize phase. A2 guesses that the Test session
output by A1 is between the `-th and `′-th instances. Then similar to the proof of Theorem 2, given
an adversary A1 as above, we can build an A2 such that

Advrake-2
ISO−R2,A2

(k) ≥ 1
qI(qI − 1)

Advrake-2
ISO−R2,A1

(k).

Game G1. We then modify the Reset-2 game to a new game G1 as follows. In game G1, the
simulator picks a random key (i.e., a random element in the underlying group), and sets it as the
session key of the `-th and the `′-th instances.

In the following, we show that A2 has similar advantages in the Reset-2 game and game G1.
Otherwise, we can construct an adversary D which breaks the DDH assumption.

D is given a tuple {g, X = ga, Y = gb, Z} and D’s goal is to guess whether Z = gab or Z is a
random group element. D honestly simulates the Reset-2 game for A2 except that D simulates the
`-th instance by setting the ephemeral public key as X, and simulates the `′-th instance by setting
the ephemeral public key as Y . D also sets Z as the session key of the `-th and the `′-th instances.
If A1 wins the game, D outputs 1 and aborts. Otherwise, D aborts without any output. Then we
have

AdvDDH
D (k) = Pr

[
A2 wins the game|Z = gab

]
− Pr [A2 wins the game|Z = gr]

= Pr [RAKE-2ISO−R2,A2(k) ⇒ true]− Pr
[
G1

ISO−R2,A2
(k) ⇒ true

]

= Advrake-2
ISO−R2,A2

(k)−AdvG1

ISO−R2,A2
(k)

17

Finally, in game G1, the adversary has no advantage in winning the game (i.e., AdvG1

ISO−R2,A2
(k) =

0). So combing all the results above, we have

Advrake-2
ISO−R2,A(k) ≤ nAdvuf−cma

DS,F (k) + qI(qI − 1)AdvDDH
D (k).

ut

A SIG-DH Protocol Secure in Both Reset Models. Given the Reset-2 secure ISO-R2 proto-
col, we can apply the transformation in Sec. 5 to obtain a new protocol (denoted by ISO-R) that
is secure in both Reset-1 and Reset-2 models.

Corollary 1. The ISO-R protocol in Fig. 6 is secure in Strong Corruption Reset-1 and Reset-2
models if DS is a uf-cma deterministic digital signature scheme, F is a pseudo-random function
family and a strong randomness extractor, and the DDH assumption holds in the underlying group.

A B

a←$ {0, 1}δ(k)

(pk, sk)←$DS.SKG(1k)
pkA ← pk, skA ← (sk, a)

b←$ {0, 1}δ(k)

(pk′, sk′)←$DS.SKG(1k)
pkB ← pk′, skB ← (sk′, b)

x̃←$ {0, 1}ρ(k)

x ← Fa(x̃)
X ← gx A, X

-
ỹ ←$ {0, 1}ρ(k)

y ← Fb(ỹ)
Y ← gy

sid ← X‖Y
σB ← DS.Sign(sk′, X, Y, A, 0)

ssk ← gxy

B, Y, σB¾
sid ← X‖Y

σA ← DS.Sign(sk, Y, X, B, 1)

ssk ← gxy

σA -

Fig. 6. The ISO-R Protocol.

6.2 A New PKE-DH Protocol

SKEME. The SKEME protocol, proposed by Krawczyk in [28], is a typical PKE-DH protocol.
SKEME serves as the basis of the public-key encryption mode of IKE [23]. The SKEME protocol,
which uses public key encryption together with message authentication code, is described in Fig. 7.

Public Key Encryption. A public key encryption scheme PKE consists of three algorithms.
The key generation algorithm PKE .SKG(1k) takes a security parameter as input and outputs a
public/private key pair (pk, sk). The encryption algorithm PKE .Enc(pk,m) takes the public key
and a message as input, and outputs a ciphertext c. The decryption algorithm PKE .Dec(sk, c) takes
the private key and a ciphertext as input, and outputs m or ⊥ (which indicates decryption failure).

A public key encryption scheme PKE is secure under adaptive chosen ciphertext attacks if for
any PPT adversary A = (A1, A2),

Advcca
PKE,A(k) def= Pr

[
(pk, sk) ← PKE .SKG(1k), (x0, x1, δ) ← A

PKE.Dec(sk,·)
1 (pk), b←$ {0, 1},

y ← PKE .Enc(pk, xb), b′ ← A
PKE.Dec(sk,·)
2 (pk, x0, x1, δ, y) : b′ = b

]
−1

2

is negligible, where |x0| = |x1|, and A2 is not allowed to make a decryption query with input y.

18

Message Authentication Code. A message authentication code scheme MAC with key space
K consists of two algorithms: a message authentication algorithm MAC(K, m) which takes a key
K ∈ K and a message m as input and returns an authentication tag τ ; and a verification algorithm
MAV(K,m, τ) which takes a key K ∈ K, a message m, and an authentication tag τ as input, and
returns either 1 or 0.

A message authentication code scheme MAC is secure under adaptive chosen message attacks,
if for any polynomial time algorithm F ,

Advcma
MAC,F (k) = Pr

[
K ←$K, (m∗, τ∗) ← FMAC(K,·)(1k) :
MAV(K, m∗, τ∗) = 1 ∧ F has never queried MAC(K, m∗)

]

is negligible.

A B

(pkA, skA)←$ PKE .SKG(1k) (pkB , skB)←$ PKE .SKG(1k)

x←$ Zq, α ← gx

KA ←$ {0, 1}k

cA ← PKE .Enc(pkB , A, KA)

cA, α
- y ←$ Zq, β ← gy

KB ←$ {0, 1}k

cB ← PKE .Enc(pkA, B, KB)
K0 ← H(KA, KB)

τB ← MACK0(α, β, B, A)

cB , β, τB¾

K0 ← H(KA, KB)
τA ← MACK0(β, α, A, B)

τA -
ssk ← H(gxy) ssk ← H(gxy)

Fig. 7. The SKEME Protocol.

It is worth noticing that the SKEME protocol is insecure in the Strong Corruption model where
the adversary can make RevealState queries, as shown below.

– The adversary first activates user A to start a new session with user B.
– The adversary relays the message cA, α from A to B.
– Upon receiving the message cB, β, τB from B, the adversary makes a RevealState query to B

and obtains the key K0.
– The adversary generates β′ ← gy′ where y′ is chosen by the adversary, τ ′B ← MACK0(α, β′, B, A),

and sends a message (cB, β′, τ ′B) to user A.
– Since the authentication tag τ ′B is generated using the correct key K0, user A would accept the

session and output the session key H(gxy′).

SKEME Variant. We present a modified version of the SKEME protocol and show its security
in the Weak Corruption Reset-2 model. Then by applying the transformation in Sec. 5, we obtain
a new protocol which is also secure in the Weak Corruption Reset-1 model.

Theorem 4. The PKEDH-R2 protocol is secure in the Weak Corruption Reset-2 model if PKE
is secure under adaptive chosen ciphertext attacks, MAC is secure under adaptive chosen message
attacks, and the DDH assumption holds in the underlying group.

Proof (Sketch.). Similar to the proof of Theorem 3, we show that when an adversary outputs an
instance (U∗, i∗) in the Test query, then (U∗, i∗) must have a partner instance (V ∗, j∗), otherwise
we can break the public key encryption scheme PKE or the message authentication code MAC.

19

A B

(pkA, skA)←$ PKE .SKG(1k) (pkB , skB)←$ PKE .SKG(1k)

x←$ Zq, α ← gx

KA ←$ {0, 1}k

cA ← PKE .Enc(pkB , A, KA) cA, α
-

y ←$ Zq, β ← gy

sid ← α‖β
KB ←$ {0, 1}k

cB ← PKE .Enc(pkA, B, KB)
τB ← MACKA(α, β, B, A, 0)

ssk ← gxy

cB , β, τB¾

sid ← α‖β
τA ← MACKB (β, α, A, B, 1)

ssk ← gxy

τA -

Fig. 8. The PKEDH-R2 Protocol.

The proof follows the lines in [6]. We first define an Encryption Aided Forger F as follows. Let
(pk, sk) ← PKE .SKG(1k), and c∗ ← PKE .Enc(pk, S,N∗) where S is a string chosen by F , and
N∗ is randomly selected from the key space of MAC and unknown to F . F is given pk, c∗, and
has access to two oracles: a decryption oracle Osk(·) which decrypts ciphertexts different from c∗,
and an ON∗(·) oracle which on input m returns MACN∗(m). F ’s goal is to output m∗,MACN∗(m∗)
where F has never queried the oracle ON∗(·) on message m∗.

In the Reset-2 game, if the instance (U∗, i∗) output by the adversary A in the Test query has
no partner instance (denote this event by E), then we can construct an Encryption Aided Forger
F .

F first randomly selects two parties U∗, V ∗ from U , and generates all the long-lived keys for
other parties in the set U\{V ∗}. Let qI denotes the maximum number of NewInstance queries made
by A. F also selects an integer `←$ [1, qI]. F then asks its challenger with input U∗, and gets back
the challenge pk, c∗ = PKE .Enc(pk, U∗, N∗). F then sets pkV ∗ = pk, and simulates the Reset-2
game for A honestly except that

– If the adversary does not make a Test query with an instance of U∗, F aborts without any
output,

– If pidi∗
U∗ 6= V ∗, then F aborts without any output,

– If (U∗, i∗) is not the `-th instance, then F aborts without any output,
– If the adversary makes a Corrupt query with input V ∗, F aborts without any output,
– In the `-th instance, F sets (cU∗ = c∗), generates the ephemeral DH public and private key pair

for (U∗, i∗), uses skU∗ to get N ← PKE .Dec(skU∗ , cV ∗), and then generates the tag τU∗ honestly
using N .

– If the adversary sends a message (c, ...) to V ∗ where c 6= c∗, F makes a query to its decryption
oracle Osk(·) on input c, and proceeds as usual after getting back the response from Osk(·).

– If the adversary sends a message (c∗, ...) to V ∗, F queries its oracle ON∗(·) to generate the
response tag.

– When A sends the MAC tag to the `-th instance, F outputs the MAC tag and the corresponding
message as his forgery and aborts.

Then we have
Pr [F succeeds] ≥ 1

n(n− 1)qI
Pr [E]

Let ε = Pr [F succeeds]. Now given an Encryption Aided Forger F , we construct another
adversary D against the public key encryption scheme PKE in the IND-CCA game. D is given

20

a public key pk and has access to a decryption oracle. D runs F as follows. When F asks for a
challenge with input S, D randomly selects two numbers N0 and N1, and asks its challenger with
input S‖N0 and S‖N1. After getting back the challenge c∗, D sets pk, c∗ as F ’s challenge. When F
makes a decryption query with a ciphertext c 6= c∗, D makes a decryption query also with input c.
When F makes an MAC query on message m, D returns MACN0(m) to F . Finally, if F successfully
makes a forgery MACN0(m

∗), then D outputs 0, indicating c∗ is an encryption of S‖N0. Otherwise,
if F fails to produce a forgery, then D outputs 1, indicating c∗ is an encryption of S‖N1. Then we
have

Advcca
PKE,D(k) = Pr [D outputs 0|b = 0]Pr [b = 0] + Pr [D outputs 1|b = 1]Pr [b = 1]− 1

2

=
1
2
Pr [F succeeds |b = 0] +

1
2
(1− Pr [F succeeds |b = 1])− 1

2

=
1
2
(Pr [F succeeds |b = 0]− Pr [F succeeds |b = 1])

=
1
2
(ε−Advcma

MAC,F (k))

The last equality comes from the fact that when b = 0, then F is in the Encryption Aided
Forger game, and when b = 1, then c∗ is independent of N0, and F is in the normal chosen message
attack game. Combining all the results, we have

Pr [E] ≤ n(n− 1)qI(2Advcca
PKE,D(k) + Advcma

MAC,F (k)).

We omit the remaining of the proof, since it is the same as that of Theorem 3. ut

A B

a←$ {0, 1}δ(k)

(pk, sk)←$ PKE .SKG(1k)
pkA ← pk, skA ← (sk, a)

b←$ {0, 1}δ(k)

(pk′, sk′)←$ PKE .SKG(1k)
pkB ← pk′, skB ← (sk′, b)

x̃←$ {0, 1}ρ(k)

x, KA, r ← Fa(x̃)
X ← gx

cA ← PKE .Enc(pkB , A, KA; r) cA, X
-

ỹ ←$ {0, 1}ρ(k)

y, KB , r′ ← Fb(ỹ)
Y ← gy

sid ← X‖Y
cB ← PKE .Enc(pkA, B, KB ; r′)

τB ← MACKA(X, Y, B, A, 0)

ssk ← gxy

cB , Y, τB¾

sid ← X‖Y
τA ← MACKB (Y, X, A, B, 1)

ssk ← gxy

τA -

Fig. 9. The PKEDH-R Protocol.
PKE .Enc(pk, m; r) means the encryption of message m under public key pk and randomness r.

A PKE-DH Protocol Secure in Both Reset Models. Given the Reset-2 secure PKEDH-
R2 protocol, we can apply the transformation in Sec. 5 to obtain a new protocol (denoted by
PKEDH-R) that is secure in both Weak Corruption Reset models.

Corollary 2. The PKEDH-R protocol in Fig. 9 is secure in (Weak Corruption) Reset-1 and Reset-
2 models if PKE is a public key encryption scheme secure under adaptive chosen ciphertext attacks,

21

MAC is a message authentication code scheme secure under adaptive chosen message attacks, F
is a pseudo-random function family and a strong randomness extractor, and the DDH assumption
holds in the underlying group.

7 Conclusions and Future Work

In this paper, we initiate the formal study on Authenticated Key Exchange (AKE) under bad
randomness. We studied two possible situations where the randomness of an AKE protocol goes bad,
and proposed two formal security models, Reset-1 and Reset-2, to capture these two bad randomness
situations, respectively. We investigated the security of some widely used AKE protocols in our
models, and showed that they become insecure when they use bad randomness. We then presented
a way to efficiently transform a Reset-2 secure AKE protocol to a new protocol which is both
Reset-1 and Reset-2 secure. Our transformation gives a modular approach to design Reset-1 and
Reset-2 secure AKE protocols. We illustrated the modular approach by proposing two new AKE
protocols which are strengthened versions of two widely used protocols in practice.

One of our future work is to enhance the HMQV protocol. The reset attack against HMQV
given by Menezes and Ustaoglu works only when the group testings on ephemeral public keys are
not performed. An interesting question is: will HMQV become secure against reset attacks if group
membership testing is compulsory?

Acknowledgements

We thank Mihir Bellare for his invaluable suggestions on the modeling part of this work. We also
thank the anonymous reviewers of FC 2011 for their helpful comments and suggestions. The work
of H. Wang is supported in part by the Singapore National Research Foundation under Research
Grant NRF-CRP2-2007-03.

References

1. Digital singature standard. National Institute of Standards and Technology, NIST FIPS PUB 186, May 1994.
2. W. Aiello, S. M. Bellovin, M. Blaze, R. Canetti, J. Ioannidis, A. D. Keromytis, and O. Reingold. Just fast keying:

Key agreement in a hostile Internet. ACM Trans. Inf. Syst. Secur., 7(2):242–273, 2004.
3. M. Bellare. New proofs for NMAC and HMAC: Security without collision-resistance. In CRYPTO 2006, pages

602–619, 2006.
4. M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H. Shacham, and S. Yilek. Hedged public-key

encryption: How to protect against bad randomness. In ASIACRYPT 2009, pages 232–249.
5. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication. In CRYPTO’96,

pages 1–15, 1996.
6. M. Bellare, R. Canetti, and H. Krawczyk. Modular approach to the design and analysis of key exchange protocols.

In 30th ACM STOC, pages 419–428, 1998.
7. M. Bellare, M. Fischlin, S. Goldwasser, and S. Micali. Identification protocols secure against reset attacks. In

EUROCRYPT 2001, pages 495–511.
8. M. Bellare and P. Rogaway. Entity authentication and key distribution. In CRYPTO’93, pages 232–249.
9. M. Bellare and P. Rogaway. Provably secure session key distribution — the three party case. In 28th ACM

STOC, pages 57–66.
10. S. Blake-Wilson and A. Menezes. Entity authentication and authenticated key transport protocols employing

asymmetric techniques. In Security Protocols Workshop, pages 137–158, 1997.
11. C. Boyd, Y. Cliff, J. M. G. Nieto, and K. G. Paterson. Efficient one-round key exchange in the standard model.

In ACISP 2008, pages 69–83. Full version available at http://eprint.iacr.org/2008/007.
12. Burton S. Kaliski Jr. An unknown key-share attack on the MQV key agreement protocol. ACM Trans. Inf. Syst.

Secur., 4(3):275–288, 2001.
13. R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable zero-knowledge. In 32nd ACM STOC, pages

235–244.

22

14. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building secure channels. In
EUROCRYPT 2001, pages 453–474. http://eprint.iacr.org/2001/040/.

15. R. Canetti and H. Krawczyk. Security analysis of IKE’s signature-based key-exchange protocol. In CRYPTO 2002,
pages 143–161. http://eprint.iacr.org/2002/120/.

16. O. Chevassut, P.-A. Fouque, P. Gaudry, and D. Pointcheval. Key derivation and randomness extraction. Cryp-
tology ePrint Archive, Report 2005/061, 2005. http://eprint.iacr.org/.

17. A. Desai, A. Hevia, and Y. L. Yin. A practice-oriented treatment of pseudorandom number generators. In
EUROCRYPT 2002, pages 368–383.

18. Y. Dodis. Exposure-resilient cryptography. PhD Thesis, MIT, 2000.
19. Y. Dodis, R. Gennaro, J. H̊astad, H. Krawczyk, and T. Rabin. Randomness extraction and key derivation using

the CBC, cascade and HMAC modes. In CRYPTO 2004, pages 494–510.
20. D. Eastlake, S. Crocker, and J. Schiller. IETF RFC 1750: Randomness Recommendations for Security, 1994.
21. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems. In

CRYPTO’86, pages 186–194.
22. V. Goyal and A. Sahai. Resettably secure computation. In EUROCRYPT 2009, pages 54–71.
23. D. Harkins and D. Carrel. The Internet Key Exchange (IKE). RFC 2409, 1998.
24. Entity authentication mechanisms - Part 3: Entity authentication using asymmetric techniques. ISO/IEC IS

9798-3, 1993.
25. C. Kaufman. Internet Key Exchange (IKEv2) Protocol. RFC 4306, 2005.
26. H. Krawczyk. HMQV: A High-Performance Secure Diffie-Hellman Protocol. In CRYPTO 2005, pages 546–566.
27. H. Krawczyk. SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated Diffie-Hellman and Its Use in the IKE

Protocols. In CRYPTO 2003, pages 400–425.
28. H. Krawczyk. SKEME: A versatile secure key exchange mechanism for Internet. In NDSS, pages 114–127, 1996.
29. B. A. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated key exchange. In Provable

Security, pages 1–16, 2007.
30. L. Law, A. Menezes, M. Qu, J. A. Solinas, and S. A. Vanstone. An efficient protocol for authenticated key

agreement. Des. Codes Cryptography, 28(2):119–134, 2003.
31. T. Matthews. Suggestions for random number generation in software. RSA Laboratories Bulletin # 1, Jan. 1996.
32. A. Menezes and B. Ustaoglu. On reusing ephemeral keys in Diffie-Hellman key agreement protocols. IJACT,

2(2):154–158, 2010.
33. T. Okamoto. Authenticated key exchange and key encapsulation in the standard model. In Advances in Cryptology

- ASIACRYPT 2007, pages 474–484. Full paper available at http://eprint.iacr.org/2007/473.
34. Pierre-Alain Fouque and David Pointcheval and Sébastien Zimmer. HMAC is a randomness extractor and

applications to TLS. In ASIACCS, pages 21–32, 2008.
35. T. Ristenpart and S. Yilek. When good randomness goes bad: Virtual machine reset vulnerabilities and hedging

deployed cryptography. In Network and Distributed System Security Symposium (NDSS), 2010.
36. S. Yilek. Resettable public-key encryption: How to encrypt on a virtual machine. In Topics in Cryptology -

CT-RSA, pages 41–56, 2010.

23

