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Abstract. Network Coding is a routing technique where each node may actively modify the received
packets before transmitting them. While this departure from passive networks improves throughput
and resilience to packet loss it renders transmission susceptible to pollution attacks where nodes can
misbehave and change in a malicious way the messages transmitted. Nodes cannot use standard sig-
nature schemes to authenticate the modified packets: this would require knowledge of the original
sender’s signing key. Network coding signature schemes offer a cryptographic solution to this problem.
Very roughly, such signatures allow signing vector spaces (or rather bases of such spaces). Furthermore,
these signatures are homomorphic: given signatures on a set of vectors it is possible to create signatures
for any linear combination of these vectors. Designing such schemes is a difficult task, and the few ex-
istent constructions either rely on random oracles or are rather inefficient. In this paper we introduce
two new network coding signature schemes. Both of our schemes are provably secure in the standard
model, rely on standard assumptions, and are in the same efficiency class with previous solutions based
on random oracles.

1 Introduction

Network Coding [1, 22] is an elegant and novel routing approach that is alternative to traditional
routing where each node simply stores and forwards the incoming packets. The main difference is
that in Network Coding intermediate nodes can modify data packets in transit, still allowing the
final recipients to obtain the original information.

More specifically, we consider a network setting where a source node wants to transmit a piece
of information (a file) to a set of target nodes. The source node splits the file into m network packets
and sends them to its neighboring nodes. An intermediate node who receives a set of packets from
its incoming links, modifies them and sends the resulting packets into the network through its
outgoing edges. In Linear Network Coding packets are seen as vectors in a linear space over some
field and the modifications by the intermediate nodes are linear combinations of these vectors. Such
linear combinations can be performed by using ad-hoc coefficients (e.g., fixed by the application or
defined by a central authority), or random coefficients chosen by the intermediate nodes in a suitable
domain. The latter case is referred as Random (Linear) Network Coding. In addition to offering a
more decentralized approach, random network coding has been shown to perform almost as well
as network coding with ad-hoc coefficients [11, 15, 17]. One important aspect of linear network
coding is that it enables target nodes to recover the original information with high probability if
they receive sufficiently many correct packets. Interestingly, the target nodes can do so without
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knowledge of the coefficients chosen by the intermediate nodes. We give a more detailed description
of these techniques in Section 2.2.

The original motivation for network coding was to increase throughput in decentralized networks
and indeed, the technique performs well in wireless/ad-hoc network topologies where a centralized
control may not be available. For example, it has been suggested as a good means to improve file
sharing in peer-to-peer networks [21], and digital content distribution over the Internet [14].
The main issue of (random) linear network coding is its susceptibility to pollution attacks in which
malicious nodes may inject into the network invalid packets to prevent the target nodes from re-
constructing the original information. Notice that such invalid packets could also be generated by
network failures and not necessarily by malicious nodes. If we consider the specific setting of lin-
ear network coding, then an invalid packet is a vector outside the space, i.e., not in the span of
the initial m vectors sent by the source node. The main problem here is that intermediate nodes
can later use the invalid incoming vectors in the linear combinations, thus generating more invalid
packets. This means that errors may dramatically propagate through the network, and adversaries
might easily mount a Denial of Service attack to prevent the file from being reconstructed by only
injecting a few invalid packets.
To solve this issue, two main approaches have been proposed. One is information-theoretic and
uses error-correction techniques [16, 17, 19]. Unfortunately, this introduces redundant information
that badly affects the communication efficiency. The other approach (the one considered in our
work) relies on computational assumptions and uses cryptographic techniques. Here, the main idea
to mitigate pollution attacks is to provide a way to authenticate valid vectors. However, standard
authentication techniques, such as MACs or digital signatures, do not trivially solve the problem
as we want to grant the intermediate nodes some malleability on the received vectors.
The main tool that has been proposed to achieve this goal are network coding signature schemes
[7]. In a few words, a network coding signature allows to sign a linear subspace W ⊂ FN in such a
way that a signature σ on W is verified only by those vectors w ∈ W.
These schemes can be constructed either from homomorphic hash functions, or from homomor-
phic signatures. Very briefly, a homomorphic hash function H satisfies the property that for any
vectors a, b and scalar coefficients α and β, it holds that H(αa + βb) = H(a)αH(b)β. Construc-
tions based on homomorphic hashing [21, 15, 7, 13] are less recent and their security can be based
on well-established assumptions in the standard model, such as solving discrete log or factoring.
Unfortunately, as main drawback, the public key and the authentication information that has to
be sent along with the packets are linear in the size m of the vector space and thus defeats the
purpose of increasing the throughput. Furthermore, the sender has to know the entire file before
sending the first packet (which is undesirable for example in the ubiquitous streaming applications).
On the other hand, solutions based on homomorphic signatures [7, 13, 3, 10] are more communication-
efficient, even though they are computationally a bit more expensive than those built from homo-
morphic hashing. In a nutshell, a homomorphic signature is a special type of signature scheme that
enjoys a linear homomorphic property: for any vectors a, b and scalar coefficients α and β, it holds
that Sign(αa + βb) = Sign(a)αSign(b)β. More formally, this means that the scheme is equipped
with a Combine algorithm that given µ signatures σ1, . . . , σµ on vectors w1, . . . , wµ respectively,
and scalar coefficients α1, . . . , αµ, it can compute a signature σ which is valid with respect to the
vector w =

∑µ
i=1 αi · wi. Importantly, the combination operation does not require the secret key.

The security notion for this primitive requires that an adversary who receives signatures on a set
of vectors w1, . . . , wm should be able to generate only signatures on vectors that lie in the linear
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span of (w1, . . . , wm). It should be clear at this point how this primitive can be used to secure the
network coding-based application (see Section 2.4 for a detailed description) and, more generally,
enable authenticated computation of linear functions of signed data [2].

1.1 Related Work

Since our work focuses on homomorphic network coding signatures, in this section we describe the
most significant works in this topic. The notion of homomorphic signature was first introduced by
Johnson, Molnar, Song and Wagner in a more general setting [20] and only recently adapted to
the particular application for network coding by Boneh, Freeman, Katz and Waters [7]. In their
work, Boneh et al. propose an efficient construction over bilinear groups and prove its security from
the CDH assumption in the random oracle model. One year later, Gennaro, Katz, Krawkzyk and
Rabin [13] proposed another implementation of homomorphic network coding signatures based on
RSA in the random oracle model. Moreover, as an additional contribution, they showed that even
if the homomorphic signature works over a large finite field (or over the integers), it is possible
to use small coefficients in the linear combinations, and this significantly improves the efficiency
at the intermediate nodes in the network coding application. In [9] Boneh and Freeman give the
construction of a homomorphic network coding signature based on lattices. As a new property, their
scheme allows to authenticate vectors defined over binary fields, and is based on the problem of
finding short vectors in integer lattices. The security of this construction relies on the random oracle
heuristic. In addition, the same paper shows a scheme in the standard model, but this scheme is
only k-time secure (a signing key can be used to issue only k signatures, where k is fixed in advance).
In a subsequent work [8], Boneh and Freeman proposed the notion of homomorphic signatures for
polynomial functions. While all previous works considered schemes whose homomorphic property
allows to compute only linear functions on the signed data, the scheme in [8] is capable to evaluate
multivariate polynomials. Their construction uses ideal lattices and its security is proven in the
random oracle model.

The problems associated to the use of the random oracles are well-known and significant research
effort is invested in devising implementations that do not rely on this heuristic. For network coding
such constructions proved elusive – and we are only aware of two such proposals [3, 10]4.

In [3] Attrapadung and Libert give an implementation over bilinear groups of composite order,
using the dual system techniques of Waters [23] to carry on the security proof. Unfortunately the
scheme relies on the setting of composite order groups and is thus highly inefficient. Furthermore,
even if the scheme were to be converted to gropus of prime order (as suggested, but not fully
described in [3]), the efficiency gap between the resulting construction and those in the random
oracle solutions is still significant.

The most recent proposal is by Catalano, Fiore and Warinschi who propose a homomorphic
network coding signature as an application of the notion of Adaptive Pseudo-Free groups [10]. In
particular, the concrete implementation is secure in the standard model under the Strong RSA
assumption. While from the point of view of computation the efficiency of this scheme is not far
from that of the random oracle construction of Gennaro et al. which also works in the RSA group,
the signature’s size in [10] is much worse than that in [13], as it is very affected by the large random
exponent s (that is 1346 bits long if one considers 80 bits of security).
4 We mention that the random oracle based solution given in [7] might be turned into a scheme secure in the

standard model if one is willing to give up the homomorphic property. This makes the resulting solution much less
interesting in practice as the signer would need to sign all the vectors in the given subspace at once.
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1.2 Our contribution

In this work we design two new homomorphic network coding signatures with security proofs in the
standard model. Our realizations outperform in efficiency the two currently known constructions
in the standard model [3, 10] and achieve computational and communication efficiency comparable
to those of the random oracle implementations [7, 13].

In a bit more details, our first scheme works over asymmetric bilinear groups of prime order p,
and it is proven secure under the q-Strong Diffie Hellman assumption (q-SDH for short) introduced
by Boneh and Boyen [6]. The construction adapts ideas from the signature by Hofheinz and Kiltz
[18] which in turn is based on the concept of Programmable Hash Functions. There a signature
is a random r ∈ Zp and a group element X that is a solution of Xz+r = H(M), where z is the
secret key, and H is the programmable hash function. To obtain a solution for signing vector spaces
along the same lines, we developed some non-trivial extensions which roughly speaking deal with
the fact that in our case the same random exponent has to be reused for several signatures. In our
construction, a signature on a vector w = (u, v) ∈ Fm+n

p consists of a random element s ∈ Zp and
the solution X to the following equation:

Xz+fid = hshu1
1 · · ·h

um
m gv11 · · · g

vn
n

where fid ∈ Zp represents the random file identifier and z is the secret key. We can therefore achieve
rather short signatures: one group element plus an element of Zp, that is, about 512 bits for 128
bits of security.

Our second realization works over Z∗N where N is the product of two safe primes pq. The scheme
can be seen as an optimization of the construction by Catalano-Fiore-Warinschi where the random
exponent s now can be taken as small as 2k bits (where k denotes the desired bit security). The
signature on a vector w = (u, v) ∈ Fm+n is a random integer s ∈ Ze and the solution x to the
equation

xe = gshu1
1 · · ·h

um
m gv11 · · · g

vn
n mod N

where e is a random prime representing the file identifier, and g, h1, . . . , hm, g1, . . . , gn ∈ Z∗N are in
the public key. As an additional improvement, we show how to do linear combinations (mod e),
allowing for the signature scheme to be used in networks with paths of any lengths. This was not the
case in [10] and [13] where the parameters have to be set according to a bound L on the maximum
length of a path between the source and the target nodes in the network.

A more detailed efficiency analysis of our schemes as well as comparisons with previous solutions,
are given in Section 5.

Concurrent work In a concurrent and independent work Freeman has proposed a semi-generic
transformation for building linearly-homomorphic signatures from standard signature schemes [12].
This transformation yields new linearly homomorphic signature schemes that are secure in the
standard model under a new security notion (introduced in [12]) which is slightly stronger than the
one considered in our work. Our schemes (that are different from the ones obtained in [12]) enjoy
better efficiency, and it is of future interest to check whether they can satisfy the stronger notion
of security.
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2 Background and Definitions

In what follows we will denote with k ∈ N a security parameter. We say that a function ε : N→ R+

is negligible if and only if for every positive polynomial p(k) there exists a k0 ∈ N such that for all
k > k0: ε(k) < 1/p(k). If S is a set, we denote with x

$← S the process of selecting x uniformly at
random in S. Let A be a probabilistic algorithm. We denote with x $← A(·) the process of running
A on some appropriate input and assigning its output to x.

2.1 Computational Assumptions

An integer N is called RSA modulus if it is the product of two distinct prime numbers pq. The
Strong RSA Assumption was introduced by Baric and Pfitzmann in [4]. Informally, the assumption
states that given a public RSA modulus N , and a random value z ∈ ZN , any PPT adversary cannot
compute an e-th root of z for an e 6= 1 of its choice.

Definition 1 (Strong RSA Assumption). Let N be a random RSA modulus of length k where
k ∈ N is the security parameter, and z be a random element in ZN . Then we say that the Strong
RSA assumption holds if for any PPT adversary A the probability

Pr[(y, e)←A(N, z) : ye = z mod N ∧ e 6= 1]

is negligible in k.

Let G,G′ and GT be bilinear groups of prime order p such that e : G × G′ → GT is a bilinear
map. The q-Strong Diffie-Hellman Assumption (q-SDH for short) was introduced by Boneh and
Boyen in [5] and it is defined as follows.

Definition 2 (q-SDH Assumption). Let k ∈ N be the security parameter, p > 2k be a prime,
and G,G′,GT be bilinear groups of the same order p such that g and g′ are the generators of G
and G′ respectively. Then we say that the q-SDH Assumption holds in G,G′,GT if for any PPT
algorithm A and any q = poly(k), the following probability (taken over the random choice of x and
the random coins of A) is negligible in k

Pr[A(g, gx, gx
2
, · · · , gxq , g′, (g′)x) = (c, g1/(x+c))]

2.2 Background on Linear Network Coding

In linear network coding [1, 22] a file to be transmitted is viewed as a set of n-dimensional vec-
tors (v(1), . . . , v(m)) defined over the integers or over some finite field. To transmit a file V =
(v(1), . . . , v(m)) the source node creates m augmented vectors (w(1), . . . , w(m)) where each w(i)

is obtained by prepending to v(i) a vector u(i) of length m, i.e., w(i) = (u(i), v(i)). Precisely,
(u(1), . . . , u(m)) represents the canonical basis of Zm, that is u(i) is the i-th unitary vector, with
1 in position i and 0 elsewhere. This way, the vectors w(1), . . . , w(m) form a basis of a sub-
space W ⊂ Fm+n. Vectors w(i) of the above form are called properly augmented vectors while
(w(1), . . . , w(m)) is a properly augmented basis.

In this setting, the source node sends these vectors as packets in the network. Whenever a node
in the network receives (w(1), . . . , w(µ)) on its µ incoming edges, it computes a linear combination ŵ
of the received vectors and transmits ŵ in the network through its outgoing edges. The coefficients
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used in the linear combination can be fixed by the application, established by a central authority,
or they can be randomly chosen by each node. The latter is the case considered in our work and
it is called “random network coding”. As shown in [11, 15, 17], random network coding performs
almost as well as linear network coding with ad-hoc coefficients. To recover the original file a node
must receive m (valid) vectors ŵ(1), . . . , ŵ(m) of the form described before, i.e., ŵ(i) = (û(i), v̂(i)). In
particular, in order for the file to be reconstructed, the vectors (û(1), . . . , û(m)) need to be linearly
independent. Let denote with Û the matrix whose rows are the vectors (û(1), . . . , û(m)) and with V̂
the matrix whose rows are the vectors (v̂(1), . . . , v̂(m)). Then, the original file can be retrieved by
computing

V = Û−1 · V̂.

Although the above described approach solves the problem of recovering the information in
network coding, as we mentioned in the introduction, the main issue in this approach is that it is
susceptible to pollution attacks where malicious nodes may inject invalid packets in the network so
that the reconstruction of the original file becomes impossible. This is particularly sensitive also
because a single error introduced by a (malicious) node can be propagated by honest nodes.

Before describing solutions, we observe how two trivial approaches do not solve the problem.
First, the source node cannot simply sign the transmitted packets as the receivers are likely to get
modified versions of them (by the effect of the linear combinations). Second, the source could sign
the entire file. This would prevent the receivers to accept incorrect files, but it does not provide an
efficient way for the receivers to recover the correct file as malicious nodes can still inject invalid
packets to mount a DoS attack.

To mitigate the effect of pollution attacks two main approaches have been proposed. They can
be divided into two categories: information-theoretic and computational.

Information theoretic approaches [16, 17, 19] use error-correction techniques to introduce redun-
dancy in the transmitted vectors so that it is possible to reconstruct the original file as long as the
number of compromised vectors is not too big. These methods have the advantage of not relying
on computational assumptions, but, unfortunately, they introduce a significant overhead in the
communication.

On the other hand, approaches based on computational assumptions use cryptographic tech-
niques to provide a way for honest nodes to verify that the received packets are correct. The main
tool to achieve this goal are network coding signature schemes. Roughly speaking, the basic re-
quirement of such schemes is that they allow to efficiently check if a given vector is valid, i.e., it
has been generated as linear combination of initial (valid) vectors w(1), . . . , w(m). Two classes of
network coding signatures are known: those based on homomorphic hashing [21, 15, 7], and those
using homomorphic signatures [20, 7, 13, 10].

In our work, we focus on the second class of schemes, that is homomorphic network coding
signatures. We give relevant definitions in the following section.

2.3 Network Coding Signatures

In this section we give the definition of a network coding signature scheme and its security notion,
as done by Boneh et al. in [7]. As we mentioned before, a network coding signature scheme allows
to sign a subspace W ⊂ FN so that any vector w ∈ W is accepted, whereas vectors w /∈ W are
rejected. In particular, in our work we focus on subspaces W that are described by a properly
augmented basis.
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We assume that a file is associated with a file identifier fid that is chosen by the source node
before the transmission. In general, such fid can be the filename. Though, in our systems we need
such file identifiers to be randomly chosen by the source node. Thus we think of fid as an element
of an efficiently samplable set I.

Definition 3 (Network Coding Signatures). A network coding signature is defined by a triple
of algorithms (NetKG,NetSign,NetVer) such that:

NetKG(1k,m, n) On input the security parameter k and two integers m,n, this algorithm outputs
(vk, sk) where sk is the secret signing key and vk is the public verification key. m defines the
dimension of the vector spaces while n is an upper bound to the size of the signed vectors. We as-
sume that the public key implicitly defines the field F over which vectors and linear combinations
are defined.

NetSign(sk, fid,W) The signing algorithm takes as input the secret key sk, a random file identifier
fid and a properly augmented basis of a m-dimensional subspace W ⊂ Fm+` (with 1 ≤ ` ≤ n),
and it outputs a signature σ.

NetVer(vk, fid, w, σ) Given the public key vk, a file identifier fid, a vector w ∈ Fm+` (for 1 ≤ ` ≤ n)
and a signature σ, the algorithm outputs 0 (reject) or 1 (accept).

For correctness, we require that for all honestly generated key pairs (vk, sk), all identifiers fid ∈ I,
all 1 ≤ ` ≤ n, and all W ⊂ Fm+`, if σ←Sign(sk, fid,W) then Ver(vk, fid, w, σ) = 1 ∀w ∈ W.

Security of Network Coding Signatures. The security notion of network coding signatures
is defined by the following game between a challenger and an adversary A:

Setup. The adversary chooses positive integers m,n and gives them to the challenger. The chal-
lenger runs (vk, sk) $← NetKG(1k,m, n) and gives vk to A.

Signing queries. The adversary can ask signatures on vector spaces Wi ⊂ Fm+` (with ` ≤ n) of
its choice, specified by giving to the challenger a properly augmented basis describing Wi. The
challenger chooses a random file identifier fidi, runs σi

$← NetSign(sk, fidi,Wi) and returns σi to
A.

Forgery. The adversary outputs a tuple (fid∗, w∗, σ∗).

We say that the adversary wins this game if NetVer(vk, fid∗, v∗, σ∗) = 1 and either one of the
following cases holds: (1) fid∗ 6= fidi for all i (type-I forgery); (2) fid∗ = fidi for some i, but w∗ /∈ Wi

(type-II forgery).
We define the advantage of A into breaking a network coding signature scheme, AdvNC(A), as

the probability that A wins the above security game, and we say that a network coding signature
is secure if for any PPT A, AdvNC(A) is at most negligible in the security parameter.

Finally, we give the formal definition of homomorphic network coding signature.

Definition 4 (Homomorphic Network Coding Signatures). A homomorphic network coding
signature scheme is defined by a 4-tuple of algorithms (NetKG,NetSign,NetVer,Combine) such that:

NetKG(1k,m, n) On input the security parameter k and two integers m,n ≥ 1, this algorithm
outputs (vk, sk) where sk is the secret signing key and vk is the public verification key. Here, m
defines the dimension of the vector spaces and n+m is an upper bound to the size of the signed
vectors. We assume that the public key implicitly defines the field F over which vectors and
linear combinations are defined, and that it contains the description of an efficiently samplable
distribution for fid.
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NetSign(sk, fid, w) The signing algorithm takes as input the secret key sk, a file identifier in the
support of fid and a vector w ∈ F`+m (with 1 ≤ ` ≤ n) and outputs a signature σ.

NetVer(vk, fid, w, σ) Given the public key vk, a file identifier fid, a vector w ∈ F` and a signature
σ, the algorithm outputs 0 (reject) or 1 (accept).

Combine(vk, fid, {(w(i), αi, σi)}µi=1) This algorithm takes as input the public key vk, a file identifier
fid, and a set of tuples (w(i), αi, σi) where σi is a signature, w(i) ∈ F` is a vector and αi ∈ F is
a scalar. This algorithm outputs a new signature σ such that: if each σi is a valid signature on
vector w(i), then σ is a valid signature for w obtained from the linear combination

∑µ
i=1 αi ·w(i).

For correctness, we require that for all m,n ≥ 1, all honestly generated pairs of keys (vk, sk) $←
NetKG(1k,m, n) the following hold:

– For all fid ∈ I and all w ∈ Fm+`, if σ $← NetSign(sk, fid, w), then NetVer(vk, fid, w, σ) = 1.
– For all fid ∈ I, any µ > 0, and all sets of triples {(w(i), αi, σi)}µi=1, if NetVer(vk, fid, w(i), σi) = 1

for all i, then it must be the case that

NetVer(vk, fid,
∑

αiw
(i),Combine(vk, fid, {(w(i), αi, σi)}µi=1) = 1.

As noticed by Boneh et al. [7], homomorphic network coding signatures are a special case of
network coding signatures.

2.4 An Efficient Linear Network Coding Scheme

In this section we specify the linear network coding scheme considered in our work. Basically, it
is the random network coding solution described in the previous section except that we consider
some optimizations recently proposed by Gennaro et al. in [13]. The scheme works as follows.

The application specifies four global parameters m,n,M, p′ ∈ N such that m,n ≥ 1, and p′

is a prime. In this setting, a file V to be transmitted is always encoded as a set of m vectors
(v(1), . . . , v(m)) where each v(i) takes values in F`M where M is a bound on the initial magnitude
of each coordinate and ` ≤ n. Since m is fixed in advance by the application, at the time of
the transmission, once the size of the file V is known, the total length of information in every
vector v(i) is determined. Thus, ` can be chosen accordingly as any number between 1 and n. The
freedom in choosing ` is important as different choices have different impact on the efficiency of
the scheme: a smaller ` saves bandwidth, while a larger ` saves computation (see [13] for more
details). The parameter p′ specifies the domain P = {0, . . . , p′ − 1} from which the network nodes
sample the coefficients for the linear combination. Linear combinations can then be performed
either over the integers, or modulo some large prime p (which is specified by the application or by
the signature scheme). Gennaro et al. show that taking a small p′ (e.g., p′ = 257) allows to improve
the performances of the network coding scheme as well as to keep a good decoding probability. In
particular, they show that this holds in both cases when the linear combinations are done over the
integers, or over some large prime p > M . Precisely, in the latter case, the performances remain
better (than the case when coefficients are chosen in Fp) as long as the bit-size of p′ is negligible
compared to the bit-size k of the prime p.

Global application parameters: m,n,M, p′ ∈ N as specified above.
Key Generation: Each source node generates a pair of keys (vk, sk) $← NetKG(1k,m, n) of a

homomorphic network coding signature scheme.
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File transmission: On input a file V represented by m vectors v(1), . . . , v(m) ∈ F`M (with ` ≤ n),
the source node generates augmented vectors w(1), . . . , w(m), i.e., w(i) = (u(i), v(i)) where u(i) is
the i-th unity vector. Next, it chooses a random file identifier fid

$← I (recall that I is specified
by vk), and for i = 1 to m, it generates σi

$← NetSign(sk, fid, w(i)). Finally, it sends the tuples
(fid, w(i), σi) on its outgoing edges.

Intermediate nodes: When a node receives µ vectors w(1), . . . , w(µ) and signatures σ1, . . . , σµ, all
corresponding to file fid, it proceeds as follows. First, it checks that NetVer(vk, fid, w(i), σi) = 1,
for i = 1 to µ. It discards all the vectors (and signatures) that did not pass the check. For the
remaining vectors (for simplicity, let they be w(1), . . . , w(µ)), the node chooses α1, . . . , αµ

$← P ,
and computes: w =

∑µ
i=1 αi ·w(i), σ←Combine(vk, fid, {(w(i), αi, σi)}µi=1). Finally, the node sends

(fid, w, σ) on its outgoing edges.
Target node: Once a node obtains m linearly independent vectors w(1), . . . , w(m) together with

the respective signatures and the same file identifier fid, it first checks that they are all valid,
i.e., it verifies that NetVer(vk, fid, w(i), σi) = 1, ∀i = 1, . . . ,m. Given m valid vectors, the node
can reconstruct the original file (v(1), . . . , vm) as described in Section 2.2.

3 A construction based on SDH

In this section we propose the construction of a network coding homomorphic signature based on
the Strong Diffie-Hellman assumption.

Recall that we are in the setting of the linear network coding application described in the
previous section. A file V is represented as a set of m vectors (v(1), . . . , v(m)) such that each v(i) ∈ F`p
where p is a (publicly known) prime specified by the key generation algorithm and ` ≤ n. Notice
that all the operations with the vectors are thus defined over the finite field Fp, i.e., mod p.
Moreover, the space for file identifiers is the set Z∗p where p is the same prime specified in the key
generation.

Below we give a precise description of the scheme’s algorithms5:

NetKG(1k, n,m): Let G,G′,GT be bilinear groups of prime order p such that e : G × G′ → GT

is a bilinear map and g ∈ G, g′ ∈ G′ are two generators. Pick a random z
$← Zp and set

Z = (g′)z. Choose random elements h, h1, . . . , hm, g1, . . . , gn
$← G. Output the public verification

key vk = (p, g, g′, Z, h, h1, . . . , hm, g1, . . . , gn) and the secret key sk = z.
NetSign(sk, fid, w): Let w = (u, v) ∈ Fm+n

p be a properly augmented vector, and let fid be randomly
chosen in Z∗p. The signing algorithm proceeds as follows.

Pick a random s
$← Zp and compute

X =

(
hs

m∏
i=1

huii

n∏
i=1

gvii

) 1
z+fid

Finally, output σ = (X, s).
NetVer(vk, fid, w, σ) Let σ = (X, s) ∈ G×Zp. This algorithm checks whether σ is a valid signature

on a vector w = (u, v) w.r.t. the file identifier fid.

5 For ease of exposition, in our description we assume that the vectors w have the maximum length m + n. In fact,
in our scheme any shorter vector with ` < n can be augmented by appending n− ` zeros.
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If the following equation holds, then output 1, otherwise output 0:

e(X,Z · (g′)fid) = e(hs
m∏
i=1

huii

n∏
i=1

gvii , g
′).

Combine(vk, fid, {w(i), αi, σi}µi=1): Recall that for all i ∈ {1, . . . , µ} w(i) = (u(i), v(i)) where u(i) ∈ Fmp
and v(i) ∈ Fnp , and that αi ∈ Fp is a randomly chosen coefficient. Moreover, recall that in our
application this algorithm is run when every σi has been verified as a valid signature on w(i)

w.r.t. fid.
The algorithm computes

X =
µ∏
i=1

(Xi)αi , s =
µ∑
i=1

αi · si mod p

and outputs σ = (X, s).

3.1 Efficiency

A signature consists of one element of G and one element of Zp. Signing costs a multi-exponentiation
in G, whereas verification needs to compute two pairings, one exponentiation in G′, i.e., (g′)fid, and
one multi-exponentiation.

3.2 Proof of security

The following theorem proves that the scheme described before is a secure homomorphic network
coding signature.

Theorem 1. If the q-SDH assumption holds in (p,G,G′,GT ) for any polynomial q, then the scheme
described above is a secure network coding signature.

As usual, the proof proceeds by contradiction. Namely, assume there exists a PPT adversary A
such that AdvNC(A) = ε is non-negligible. Then we show that such A can be used to build an
efficient algorithm B that solves the q-SDH assumption, where q is an upper bound to the number
of signatures asked by A (which is polynomial in the security parameter). More specifically, we show
that we can classify different types of adversaries according to the type of forgery they produce.
For each of these cases we will show a different simulation.

Let q be the number of queries made by A, and fid1, . . . , fidq be all the random file identifiers
generated by the Challenger during the security game. Let (fid∗, w∗, σ∗) be the forgery returned
by the adversary A such that A wins. By definition it holds NetVer(vk, fid∗, w∗, σ∗) = 1 and the
forgery is either of type-I or of type-II. Namely:

Type-I: fid∗ 6= fidi, ∀i = 1, . . . , q;
Type-II: ∃j ∈ {1, . . . , q} : fid∗ = fidj and w∗ /∈ Wj , where Wj is the vector space asked by A in

the j-th query.

Notice that at least one of these cases has to occur with probability at least 1/2. For our proof, we
will describe two different simulators B1 and B2 that work in Type-I and Type-II case respectively.
Then, we can put together the two simulations by defining our main algorithm B so that B flips a

10



coin b $← {1, 2} and runs Bb. If B1 and B2 have advantage ε1 and ε2 respectively, then the advantage
of B is ≥ min( ε12 ,

ε2
2 ).

To prove the theorem we prove the following two lemmata.

Lemma 1. If there exists a PPT adversary A such that AdvNC(A) ≥ ε and A returns a Type-I
forgery, then there exists a PPT algorithm B1 that breaks the q-SDH assumption with advantage at
least ε/2(m+ n).

Proof. Among Type-I forgeries we identify two sub-cases that are defined as follows. Let σ∗ =
(X∗, s∗) and w∗ = (u∗, v∗). Let α0, α1, . . . , αm, y1, . . . , yn ∈ Zp be such that for all i = 1 to m:
hi = hαi/α0 and for all i = 1 to n: gi = hyi/α0 . Consider the values (s∗, u∗, v∗) from the forgery
and let γ = (α0s

∗ +
∑m

k=1 αku
∗
k +

∑n
k=1 ykv

∗
k). We distinguish between the following two types of

forgeries:

Type-I.a: (fid∗, σ∗, w∗) such that γ = 0. We show that this case can be reduced to solving discrete
log (which in turn implies a solver for q-SDH).

Type-I.b: (fid∗, σ∗, w∗) such that γ 6= 0. This case can be directly reduced to the q-SDH assump-
tion.

Our algorithm B1 takes as input a tuple (g, gz, gz
2
, . . . , gz

q
, g′, (g′)z) and works as follows. First,

it flips a coin c
$← {0, 1}. If c = 0, it guesses that the adversary will produce a Type-I.a forgery.

Otherwise, if c = 1, it guesses that the adversary will return a forgery of Type-I.b. Notice that with
probability at least 1/2 the guess is correct.

Type-I.a simulation. If B1 guessed on a Type-I.a forgery, it runs a simulation that uses A to
solve the discrete logarithm problem. More precisely, given the pair (g, gz) ∈ G2 from the q-SDH
instance, B1 will use A to find z.

Recall that by definition of forgery w∗ 6= 0m+n, namely there exists an index ν ∈ {1, . . . ,m+n}
such that w∗ν 6= 0. B1 guesses such ν at the beginning of the simulation by choosing it at random in
{1, . . . ,m+ n}, and it creates the public key as follows. It chooses integers α0, α1, . . . αm+n

$← Zp,
and it sets h = gα0 . If 1 ≤ ν ≤ m, then B1 sets hi = gαi for all i = 1 to m, i 6= ν, hν = gz, and
gi = gαm+i for all i = 1 to n.

Otherwise, if m < ν ≤ m+ n, it sets gν−m = gz, hi = gαi for all i = 1 to m, and gi = gαm+i for
all i = 1 to n, i 6= ν −m. To complete the key generation, B1 chooses a random z′

$← Zp, and it
computes Z = (g′)z

′
.

Let vk = (p, g, g′, Z, h, h1, . . . , hm, g1, . . . , gn) be the public key computed as above that is re-
turned to the adversary. It is easy to see that vk is correctly distributed. Moreover, since B1 knows
z′, it can easily answer all the signing queries.

So, assume that at the end of the game the adversary produced a forgery such that γ = 0, that
is: α0s

∗+
∑m+n

k=1 αkw
∗
k = 0. If B1’s guess about the index ν such that w∗ν 6= 0 was right (this is true

with probability 1/(m+ n)), then the sum contains the element αν · w∗ν 6= 0, where αν = z. Thus,
it is straightforward to see how B1 can extract z and then use it to solve q-SDH.

Type-I.b simulation. In this case B1 has guessed that A will return a forgery of Type-I.b, i.e.,
such that γ 6= 0. The simulator proceeds as follows.
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Key Generation: Recall that q is an upper bound for the number of signing queries asked by A.
B1 chooses fid1, . . . , fidq

$← Z∗p at random. It defines the polynomial

P (z) =
q∏
i=1

(z + fidi) =
q∑
i=0

piz
i

and computes its coefficients p0, . . . , pq. It sets Z = (g′)z, and computes S =
∏q
i=0(gz

i
)pi = gP (z).

Next, for all i = 1 to m, it picks a random αi
$← Zp and computes hi = Sαi . For all i = 1 to n,

it picks a random yi
$← Zp and computes gi = Syi . Finally, h is computed as Sα0 for a randomly

chosen α0
$← Zp. B1 gives vk = (g, g′, Z, h, h1, . . . , hm, g1, . . . , gn) to A. Notice that such vk has

the same distribution as that generated by the real key generation algorithm.
Signing queries: We describe how B1 answers all signing queries. For all j ∈ {1, . . . , q}, consider

the j-th query asking a signature for the vector space W = (w(1), . . . , w(m)). Recall that these
are properly augmented vectors where the first m components of w(i) are the i-th unity vector,
i.e., w(i) = (u(i), v(i)). B1 uses the j-th file identifier fidj , and defines the polynomial

Pj(z) =
P (z)
z + fidj

=
q∏

i=1,i 6=j
(z + fidi) =

q−1∑
i=0

δiz
i

It computes Sj =
∏q−1
i=1 (gz

i
)δi = S

1
z+fidj . Next, for all i = 1 to m, it picks a random si

$← Zp
and it computes

Xi = S
α0si+αi+

Pn
k=1 ykv

(i)
k

j =
(
Sα0si+αi+

Pn
k=1 ykv

(i)
k

) 1
z+fidj =

(
hsi · hi

n∏
k=1

g
v
(i)
k
k

) 1
z+fidj

Finally, B1 returns fidj and {σi = (Xi, si)}mi=1 to the adversary. As one can easily check, these
are valid signatures that are distributed like real ones.

Forgery: At the end of the game the adversary is supposed to output a forgery (fid∗, w∗, σ∗) such
that fid∗ 6= fidj for all j ∈ {1, . . . , q}, and γ 6= 0. Moreover, NetVer(vk, fid∗, w∗, σ∗) = 1, which
means that

e(X∗, Z · (g′)fid∗) = e(hs
∗
m∏
i=1

h
u∗i
i

n∏
i=1

g
v∗i
i , g

′)

that is

(X∗)z+fid∗ = Sα0s∗+
Pm
k=1 αku

∗
k+

Pn
k=1 ykv

∗
k = gP (z)(α0s∗+

Pm
k=1 αku

∗
k+

Pn
k=1 ykv

∗
k)

Since fid∗ 6= fidj ,∀j = 1, . . . , q, it holds (z + fid∗) - P (z). Hence, there exists a polynomial
η(z) =

∑q−1
i=0 ηiz

i and a value η′ ∈ Zp (that are efficiently computable) such that P (z) =
η(z)(z + fid∗) + η′. If we let γ = (α0s

∗ +
∑m

k=1 αku
∗
k +

∑n
k=1 ykv

∗
k), then we can write X∗ =

g(η(z)+ η′
z+fid∗ )γ . Since γ 6= 0, B1 can finally compute

g
1

z+fid∗ =

(X∗)1/γ ·

(
Q−1∏
i=1

(gz
i
)ηi
)−1

1/η′

and return (g
1

z+fid∗ , fid∗) as a solution for the q-SDH problem.
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To conclude the proof let us analyze B1’s probability of success. It is straightforward to see that
if the adversary has advantage ε into forging the signature scheme, then B1 has probability at least
ε/2(m+ n) of solving Q-SDH. ut

Lemma 2. If there exists an adversary A that returns a Type-II forgery and that has advantage ε
against the security of the above scheme, then there exists an algorithm B1 that breaks the q-SDH
assumption with advantage at least ε/qn.

Proof. By definition, if the adversary outputs a forgery (fid∗, w∗, σ∗) such that fid∗ = fidj , then it
must be w∗ /∈ W, where W is the vector subspace for which the adversary asked a signature in
the j-th query (i.e., the one to which the challenger assigned identifier fidj) and that is described
by the properly augmented basis (w(1), . . . , w(m)). For all possible coefficients η ∈ Fmp , it holds
w∗ 6=

∑m
i=1 ηi · w(i). In particular, this must hold also for the coefficients u∗ ∈ Fmp . In this case,

notice that

(w∗ −
m∑
i=1

w(i)u∗i ) = (0, . . . , 0, z1, . . . , zn) 6= 0m+n.

The first m components are 0 because w(i) contains the unity vector u(i). Thus, since it is not zero,
there must exist at least a ν ∈ {1, . . . , n} such that zν 6= 0.

Let αν be such that gν = hαν , and let s1, . . . , sm be the random exponents chosen by the
Challenger to produce the m signatures in the j-th query. If we consider the value γ = s∗ −∑m

i=1 siu
∗
i + ανzν , then we can distinguish between two distinct types of adversaries:

Type-II.a: A produces queries and a forgery such that γ = 0. If this is the case, then we show
that this can be easily reduced to solving discrete logarithm.

Type-II.b: A produces queries and a forgery such that γ 6= 0. For this case we show a reduction
to the q-SDH problem.

Notice that the value γ is determined by the material chosen by the adversary during the game
(in particular, the forgery and the j-th vector space) conditioned on the random choices of the
Challenger. At least one of these cases occurs with probability at least 1/2.

Our algorithm B2 takes as input a tuple (g, gz, gz
2
, . . . , gz

q
, g′, (g′)z) and works as follows. First,

it flips a coin c
$← {0, 1}. If c = 0, it guesses that the adversary will produce a Type-II.a forgery.

Otherwise, if c = 1, it guesses that the adversary will return a Type-II.b forgery. This guess will be
correct with probability at least 1/2.

Type-II.a simulation. If B2 guessed that the forgery will be of Type-II.a, then it takes the pair
(g, gz) ∈ G2 from the q-SDH instance, and it proceeds as follows. It first chooses a random index
ν

$← {1, . . . , n}, it picks α0
$← Zp at random, and it sets h = gα0 and gν = gz/α0 . The remaining

part of the public key is generated as in the real key generation algorithm. In particular, B2 will
choose a random z′

$← Zp and set Z = (g′)z
′
. This way, B2 can answer all the signing queries.

To conclude the simulation, assume that B2’s guesses about A returning a Type-II.a forgery,
and the index ν such that zν 6= 0 were both right. If this is the case, then for the value γ defined
above it holds γ = s∗ −

∑m
i=1 siu

∗
i + ανzν = 0. It is trivial to see how B2 can extract αν = z from

the above equation.

Type-II.b simulation. If B2 has guessed that the forgery will be of Type-II.b (i.e., such that
γ 6= 0), then it runs the following simulation. First, it picks random indices j $← {1, . . . , q} and
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ν
$← {1, . . . , n} as its guesses for the query j such that fid∗ = fidj and the index ν such that zν 6= 0

respectively. Then, it proceeds as follows.

Key Generation: B2 chooses fid1, . . . , fidq
$← Zp at random and defines the polynomials

P (z) =
q∏
i=1

(z + fidi) =
q∑
i=0

piz
i, P ∗(z) =

P (z)
z + fidj

=
q∏

i=1,i 6=j
(z + fidi) =

q−1∑
i=0

δiz
i

It sets Z = (g′)z, and it computes S = gP (z) =
∏q
i=0(gz

i
)pi and S∗ = gP

∗(z) =
∏q−1
i=0 (gz

i
)δi . Next,

it computes h = (S∗)α0 and gν = hαν for randomly chosen α0, αν
$← Zp. For all i = 1 to m, it

picks random ωi, βi
$← Zp and computes hi = Sωih−βi . For all i = 1 to n, i 6= ν, it picks a random

yi
$← Zp and computes gi = Syi . Finally, B2 outputs vk = (p, g, g′, Z, h, h1, . . . , hm, g1, . . . , gn).

Notice that vk is perfectly distributed like in the real case.
Signing queries: for all k ∈ {1, . . . , q} let W = (w(1), . . . , w(m)) be the vector space asked in the

k-th query (where each w(i) is a properly augmented vector (u(i), v(i))).
For all k 6= j the signatures are simulated as follows. B2 uses the k-th file identifier fidk, and
defines the polynomials

Pk(z) =
P (z)
z + fidk

=
q∏

i=1,i 6=k
(z + fidi) =

q−1∑
i=0

θiz
i,

Pj,k(z) =
P (z)

(z + fidk)(z + fidj)
=

q∏
i=1,i 6=k,j

(z + fidi) =
q−2∑
i=0

φiz
i

It computes Sk =
∏q−1
i=0 (gz

i
)θi = S

1
z+fidk and Sj,k =

∏q−2
i=0 (gz

i
)φi = (S∗)

1
z+fidk . Next, for all i = 1

to m, it picks a random si
$← Zp and it computes

Xi = Sα0si+α0ανv
(i)
ν −α0βi

j,k S
ωi+

Pn
l=1,l 6=ν ylv

(i)
l

k =

(
hsi · hi

n∏
l=1

g
v
(i)
l
l

) 1
z+fidk

To answer the j-th query, B2 uses a different approach. For all i = 1 to m, B2 sets si =
βi − ανv(i)

ν mod p and it computes

Xi = (S∗)ωi+
Pn
l=1,l 6=ν ylv

(i)
l =

(
(S∗)α0(si+ανv

(i)
ν )−α0βi

) 1
z+fidk

Sωi n∏
l=1,l 6=ν

g
v
(i)
l
l

 1
z+fidk

It is not hard to check that this is a valid signature.
Finally, B2 returns fidk and {σi = (Xi, si)}mi=1 to the adversary.

Forgery: At the end of the game the adversary is supposed to output a forgery (fid∗, w∗, σ∗) such
that fid∗ = fidj and γ 6= 0. From the validity of σ∗ we have that

e(X∗, Z · (g′)fid∗) = e(hs
∗
m∏
i=1

h
u∗i
i

n∏
i=1

g
v∗i
i , g

′)
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Let

Ψ =
X∗∏m
i=1X

u∗i
i

=

(
hs
∗−

Pm
i=1 siu

∗
i

n∏
k=1

gzkk

) 1
z+fid∗

=
(
gP
∗(z)α0(s∗−

Pm
i=1 siu

∗
i+ανzν)

) 1
z+fid∗

gP
∗(z)(

Pn
k=1,k 6=ν ykzk)

Let γ′ = α0(s∗ −
∑m

i=1 siu
∗
i + ανzν) = α0 · γ, where γ is defined as above.

Notice that (z + fid∗) - P ∗(z). Thus, there exists a polynomial η(z) =
∑q−1

i=0 ηiz
i and a value

η′ ∈ Zp (that are efficiently computable) such that P ∗(z) = η(z)(z + fid∗) + η′. We can write:

Ψ · gP
∗(z)(−

Pn
k=1,k 6=ν ykzk) = g(η(z)+ η′

z+fid∗ )γ′

B2 can finally compute:

g
1

z+fid∗ =

(Ψ · gP ∗(z)(−Pn
k=1,k 6=ν ykzk)

)1/γ′

·

(
q−1∏
i=1

(gz
i
)ηi
)−1

1/η′

and it returns (g
1

z+fid∗ , fid∗) as a solution for the q-SDH problem.

To conclude the proof, we analyze B2’s probability of solving q-SDH. If the adversary has
advantage at least ε into forging the signature scheme (in the Type-II case), then our algorithm B2

has advantage at least ε/2qn of solving the q-SDH problem. ut

4 A (Strong) RSA based realization

In this section we describe our strong-RSA based implementation. We stress that the file to be
signed is encoded as a set of vectors (v(1), . . . , v(m)) of ` components each where ` ≤ n for some
pre-specified bound n. Before being signed and transmitted, such vectors will be prepended with m
unitary vectors u(i) (each having m components). We denote with w(i) the resulting vectors. Our
implementation uses a parameter λ to specify the space I for the file identifiers. If M is the bound
on the initial magnitude of each vector component, then 2λ > M and I is the set of prime numbers
of (exactly) λ+ 1 bits, greater than 2λ.

Finally, we notice that in this scheme the exact finite field over which are done the linear
combinations is different for each file. In particular, it will be Fe where e = fid (e is a prime
number) is the file identifier chosen by the sender. More precisely, this means that whenever a
vector space W has to be signed, a file identifier fid = e is chosen (as a sufficiently large prime) and
it is associated to W. Thus, linear combinations are done mode and w 6∈ W implies that w cannot
be written as a linear combination mod e of vectors of W.

A precise description of our network coding scheme NetPFSig = (NetKG,NetSign,NetVer,Combine)
follows.

NetKG(1k, λ,m, n) The NetKG algorithm chooses two random (safe) primes p, q of length k/2 each.
It sets N = pq and proceeds by choosing g, g1, . . . , gn, h1, . . . , hm at random (in Z∗N ). In addition
to k, here we assume an additional security parameter λ which specifies the space I of file
identifiers as described before. The public key is set as (N, g, g1, . . . , gn, h1, . . . , hm), while the
secret key is (p, q).
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NetSign(sk, fid, w) The signing algorithm proceeds as follows. Let w = (u, v) ∈ Fm+n
M and let fid

be a random file identifier, which is a prime number of the form specified before. For ease of
exposition, let e = fid. The signer chooses a random element s ∈ Ze and uses its knowledge of
p and q to solve the following equation

xe = gs
m∏
j=1

h
uj
j

n∏
j=1

g
vj
j mod N

Finally, it outputs the signature σ = (s, x).
NetVer(vk, fid, w, σ) To verify a signature σ = (s, x) on a vector w, the verification algorithm

proceeds as follows. Let e = fid.
– Check that e is an odd number of the right size (i.e. λ+ 1 bits).
– Check that all the u’s, v’s and s are in Ze.
– Check that the equation xe = gs

∏m
j=1 h

uj
j

∏n
j=1 g

vj
j mod N is satisfied by the given x.

– If all the checks above are satisfied, output 1, otherwise 0.
Combine(vk, fid, {w(i), αi, σi}µi=1 To combine signatures σi, corresponding to vectors w(i) sharing

the same fid, the algorithm proceeds as follows.
– It computes

w =
µ∑
i=1

αi ·w(i) mod e, w′ = (
µ∑
i=1

αi ·w(i) −w)/e, s =
µ∑
i=1

αisi mod e, s′ = (
µ∑
i=1

αisi − s)/e

Let w′ = (u′, v′). It outputs σ = (s, x) where x is obtained by computing:

x =
∏µ
i=1 x

αi
i

gs′
∏m
j=1 h

u′j
j

∏n
j=1 g

v′j
j

mod N

To complete the description of the scheme we show its correctness. In particular, while the
correctness of the signatures returned by the signing algorithm can be easily checked by inspection,
we pause to show that also the signatures obtained from the Combine algorithm are correct. Assume
that for i = 1 to µ, σi = (xi, si) is a valid signature on the vector w(i) = (u(i), v(i)), and let αi be
the integer coefficients of the linear combination. Let σ = (x, s) be the signature as computed by
Combine(vk, fid, {w(i), αi, σi}µi=1. We have that:

xe =
∏µ
i=1(xei )

αi

(gs′
∏m
j=1 h

u′j
j

∏n
j=1 g

v′j
j )e

(1)

=
g

Pµ
i=1 siαi

∏m
j=1 h

Pµ
i=1 u

(i)
j αi

j

∏n
j=1 g

Pµ
i=1 v

(i)
j αi

j

(gs′
∏m
j=1 h

u′j
j

∏n
j=1 g

v′j
j )e

(2)

= g(
Pµ
i=1 siαi−s

′e)
m∏
j=1

h
(
Pµ
i=1 u

(i)
j αi−u′je)

j

n∏
j=1

g
(
Pµ
i=1 v

(i)
j αi−v′je)

j (3)

= gs
m∏
j=1

h
uj
j

n∏
j=1

g
vj
j (4)

which shows correctness as desired. Above, equation (2) is justified by that each σi is valid, and
equation (4) follows from the definition of s′ and w′ = (u′, v′) as computed in the Combine algorithm.
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4.1 Efficiency

Each signature consists of an element of ZN and one integer of λ bits. Signing costs one full
exponentiation and one multi-exponentiation in ZN with λ-bits exponents, plus the sampling of
a random prime number (which is dominated by the cost of prime verification). The verification
needs an exponentiation with a (λ + 1)-bits prime, xe, and one multi-exponentiation with λ-bits
exponents.

4.2 Proof of security

Theorem 2. Under the Strong-RSA assumption, the scheme described above is a secure homo-
morphic network coding signature.

Proof. Let A be an efficient adversary against the security of the scheme. This means that, with
non negligible probability, A is able to produce a valid forgery σ∗ = (s∗, x∗) which is valid for a
vector w∗ and a file identifier fid∗. We show how to build an efficient adversary B that ”uses” it to
break the strong RSA assumption (for the case when the challenge is a quadratic residue). Let t
be the maximum number of signatures asked by A. We denote with σj the signature produced for
vector space Wj and ej = fidj be the used file identifier. If one considers e∗ and the set {e1, . . . , et}
it is possible distinguish two types of forgeries:

Type I the adversary outputs a signature containing an e∗ such that e∗ -
∏t
i=1 ei,

Type II the adversary outputs a signature containing an e∗ such that e∗ |
∏t
i=1 ei.

At the beginning of the game we guess on the type of forgery will be provided by A in order to set
up an appropriate simulation accordingly. This guess will be right with probability at least 1/2.

Type I. B takes as input (N, τ) where N is the product of two safe primes p, q (where p = 2p′ + 1
and q = 2q′ + 1) and τ ∈ QRN . The goal here is to find an e-th root y of τ for e of B’s choice.

In the following we describe the simulator B during the three phases of the simulation.

Key Generation B chooses randomly chooses t random file identifiers e1, . . . , et of the appropriate
length and it generates the public key as follows:
– pick random α0, α1, . . . , αn, β1, . . . , βm

$← {1, . . . , N2}
– let E =

∏t
i=1 ei and set g = τEα0 , gi = gαi for all i = 1 to n and hi = gβi for all i = 1 to m.

Finally B gives vk = (N, g, h1 . . . , hm, g1, . . . , gn) to A
For all 1 ≤ i ≤ n let αi = bip

′q′+ ci where 0 ≤ ci < p′q′. Since each αi is chosen from a suitably
large interval, the distributions of each (αi mod p′q′) is statistically indistinguishable from the
uniform distribution over Zp′q′ . So g1, g2, . . . , gn are distributed like random quadratic residues
of Z∗N . Moreover the conditional distribution of bi given ci is statistically indistinguishable from
the uniform distribution over {0, . . . , bN2/p′q′c}. The same argument applies to g and all the
hi’s.

Signing queries At this stage A is allowed to adaptively query signatures on vector spaces Wj

(meeting the requirement specified above) of its own choice. In particular, each Wj is described
by a properly augmented basis and it has to be answered with m signatures, a signature for
each vector of the basis. Therefore, B has to give all these signatures to A.
For ease of exposition, let us slightly abuse notation by denoting with W, for all k ∈ {1, . . . , t},
the k-th queried vector space. By these positions each signature query is managed as follows.
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Let W = (w(1), . . . , w(m)) such that for i = 1 to m w(i) = (u(i), v(i)) where u(i) is the i-th
unitary vector. The value si is chosen at random in Zek . Next, B computes the solution of each

xeki = gsi ·
∏m
j=1 h

u
(i)
j

j ·
∏n
j=1 g

v
(i)
j

j as follows:
– let Ek =

∏t
j=1,j 6=k ej

– ∀i = 1, . . . ,m : xi = (τEk)α0si+
Pm
j=1 u

(i)
j βj+

Pn
j=1 v

(i)
j αj

Finally B gives (ek, {si, xi)}mi=1) to A. It is easy to see that all the (si, xi) are valid signatures
for the respective vectors w(i), and that they are distributed as in the real case.

Challenge Once the previous phase is over, A is supposed to output a forgery (e∗, w∗, σ∗) where
σ∗ = (s∗, x∗) is valid with respect to the vector w∗ and the identifier e∗. By definition of valid
forgery it has to be the case that

xe
∗

= gs
∗ ·

m∏
j=1

h
u∗j
j ·

n∏
j=1

g
v∗j
j = τE(α0s∗+

Pm
j=1 u

∗
jβj+

Pn
j=1 v

∗
jαj).

Let E′ = E(α0s
∗ +

∑m
j=1 u

∗
jβj +

∑n
j=1 v

∗
jαj) and d = gcd(e∗, E′). Provided that e∗ - E′, B can

use standard techniques (i.e. Shamir’s trick) to extract an (e∗/d)-th root y of τ and thus it can
output (e∗/d, y) to break Strong-RSA.

To conclude this part of the proof we are left with the task of showing that e∗ - E′ with non-
negligible probability. Since all the e exponents are primes and we are assuming a Type I forgery,
it has to be the case that e∗ - E. So, it remains to show that e∗ - (α0s

∗ +
∑m

j=1 u
∗
jβj +

∑n
j=1 v

∗
jαj)

with non-negligible probability.
As pointed out before, we set αi = bip

′q′ + ci. Since each bi is information theoretically hidden
to A, e∗ might depend only on the ci’s (the same holds for the βi’s). Moreover, as e∗ - p′q′ the prob-
ability that e∗ | (α0s

∗+
∑m

j=1 u
∗
jβj+

∑n
j=1 v

∗
jαj), or equivalently (α0s

∗+
∑m

j=1 u
∗
jβj+

∑n
j=1 v

∗
jαj) =

0 mod e∗, is close to 1/e∗. This means that e∗ - E′ with probability close to 1− 1/e∗.

Type II. This encompasses the case when A ”reuses” some previously seen exponent when pro-
ducing its forgery. This is because, being all the ei’s primes, the fact that e∗ |

∏t
i=1 ei, implies

that e∗ = ek for some k. Again, let e∗, w∗, σ∗ be the forgery provided by the adversary, where
σ∗ = (s∗, x∗) and w∗ = (u∗, v∗). Since in this case we assume that e∗ = ek, i.e., fid∗ = fidk, it has
to be the case that w∗ is not in Wk (type-II forgery).

For ease of exposition, let us abuse notation and denote with W = (w(1), . . . , w(m)) the k-
th vector space Wk asked by A. Since w∗ /∈ W, it has to be w∗ −

∑m
i=1w

(i)u∗i 6= 0m+n mod e∗.
In particular, this means that there must exist an index ν ∈ {1, . . . , n} such that zν = v∗ν −∑m

i=1 v
(i)
ν u∗i 6= 0 mod e∗. In what follows we will require the simulator to guess both such index

k and position ν. Thus, B’s guess will be correct with probability 1/tn. Now, if we consider the
forgery provided by the adversary and the values x1, . . . , xm obtained from the signatures of the
vector space Wk generated by the simulator, we distinguish two additional sub-cases:

(a) x∗ =
∏m
j=1 x

u∗j
j mod N

(b) x∗ 6=
∏m
j=1 x

u∗j
j mod N

We provide different simulations for the two cases. In particular we describe Type-II.b first.

Type-II.b We describe a simulator B that solves Strong RSA for the case of Type-II.b forgeries.
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Key Generation. B chooses e1, . . . , et at random. Next, B picks random y1, . . . , yn
$← QRN ,

αν , ω1, . . . , ωm, β1, . . . , βm
$← {1, . . . , 2N}.

Let E =
∏t
i=1 ei and Ek =

∏t
i=1,i 6=k ei. B proceeds by creating the public key as follows. g = τEk ,

gν = gαν , gi = yEi ∀i = 1, . . . , n and i 6= ν, hi = gekωi−βi ∀i = 1, . . . ,m. Finally it gives the
public key to A. It is easy to get convinced that the distribution of the so generated public key
is statistically close to that of a ”true” public key.

Signing queries B answers A’s signature queries as follows.
LetW be the i-th queried vector space. For all i ∈ {1, . . . , t}\{k} let ei be the used file identifier.
For j = 1 to m, B chooses random sj ∈ Zei and sets

xj = (τ
Q
l 6=k,i el)sj+ekωj−βj+ανv

(j)
ν

 m∏
l=1,l 6=ν

y
v
(j)
l
l

Ei

.

It is easy to verify that xj is such that xeij = gsj ·
∏m
l=1 h

u
(j)
l
l ·

∏n
l=1 g

v
(j)
l
l .

For i = k a different machinery is required. Let W = (w(1), . . . , w(m)) be the k-th queried
vector space where w(i) = (u(i), v(i)). For j = 1 to m, B sets sj = βj − ανv(j)

ν mod ei, ωj =
(βj − ανv(j)

ν − sj)/ek and computes:

xj = τEkωj ·

∏
l 6=ν

yv
(j)l

l

Ek

= ek

√√√√gsj · hj ·
n∏
l=1

g
v
(j)
l
l .

Finally B provides all the m signatures (sj , xj) generated above toA. Notice that such signatures
follows a distribution which is statistically close with respect to that that would have been
produced by a genuine signer.

Challenge In this phase A will output a type-II forgery (defined by (e∗, w∗, s∗, x∗)). We show that
B can extract an e∗-th root of τ as follows.
First, let

xek1 = gs1
m∏
j=1

h
u
(1)
j

j

n∏
j=1

g
v
(1)
j

j

...

xekm = gsm
m∏
j=1

h
u
(m)
j

j

n∏
j=1

g
v
(m)
j

j

(5)

denote the verification equations arising from B’s signatures on vector space W = Wk. Com-
bining them with the received forgery one gets:(

x∗Qm
j=1 x

u∗
j
j

)e∗
= g(s∗−

Pm
l=1 u

∗
l sl)
∏m
j=1 h

(u∗j−
Pm
l=1 u

∗
l u

(l)
j )

j

∏n
j=1 g

(v∗j−
Pm
l=1 u

∗
l v

(l)
j )

j

= (τEk)(s
∗−

Pm
l=1 u

∗
l sl)+ανzν

(∏n
j=1,j 6=ν y

zj
j

)E
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where the second equality comes from the fact that, for simplicity, we set zj = v∗j−
∑m

l=1 u
∗
l v

(l)
j mod

e∗, and
∏m
j=1 h

(u∗j−
Pm
l=1 u

∗
l u

(l)
j )

j = 1. Thus we can rewrite the equation above as
 x∗∏m

j=1 x
u∗j
j

 n∏
j=1,j 6=ν

y
−zj
j

Ek

e∗

= τEk(s
∗−

Pm
l=1 u

∗
l sl+ανzν).

Let E′ = Ek(s∗−
∑m

l=1 u
∗
l sl+ανzν). In order to extract a root of τ we have to show that e∗ - E′

with non-negligible probability. Observe that e∗ - Ek and that αν = bp′q′ + c where b ∈ {0, 1}
(with probability close to 1) and b is information theoretically hidden to the adversary. We
show that Pr[e∗ - (s∗ −

∑m
l=1 u

∗
l sl + ανzν)] is at least 1/2. To see this, assume by contradiction

that Pr[e∗ | (s∗ −
∑m

l=1 u
∗
l sl + ανzν)] is non-negligibly higher than 1/2. Then it must be that

e∗ | (s∗−
∑m

l=1 u
∗
l sl+czν) and e∗|(s∗−

∑m
l=1 u

∗
l sl+(φ(N)+c)zν), which implies that e∗|zνφ(N).

Since zν ∈ Ze∗ and e∗ is prime, e∗ must be a non trivial factor of φ(N).
Therefore, e∗ - E′ with probability at least 1/2 and in this case B can use standard techniques
(i.e., Shamir’s trick) to extract an (e∗/d)-th root y of τ where d = gcd(e∗, E′).

Type-II.a For the case of Type-II.a forgeries the simulator performs basically the same Setup and
Signing queries phases as in the Type-I simulation. The only difference here is that in the setup we
set gν = τE . Once a forgery is provided (e∗, w∗, s∗, x∗) being it a Type-II.a one, we have that

gs
∗
m∏
j=1

h
u∗j
j

n∏
j=1

g
v∗j
j = g

Pm
l=1 slu

∗
l

m∏
j=1

h
Pm
l=1 u

(l)
j u∗l

j

n∏
j=1

g
Pm
l=1 v

(l)
j u∗l

j

This leads to the following

τE(α0(s∗−
Pm
j=1 sju

∗
j )+

Pn
j=1,j 6=ν αjzj+zν) = 1 mod N

where, again, zi is v∗i −
∑m

j=1 v
(j)
i u∗j mod e∗. Let γ = (α0(s∗ −

∑m
j=1 sju

∗
j ) +

∑n
j=1,j 6=ν αjzj + zν).

Notice that each αj = bjp
′q′+ cj where bj is information theoretically hidden to the adversary and

that zν 6= 0 mod e∗ (this is the simulator’s guess). Therefore, with non-negligible probability we
have an integer Eγ 6= 0 such that Eγ = 0 mod φ(N), that allows to factor and thus to trivially
solve the Strong RSA problem. ut

5 Efficiency and Comparisons

In this section we discuss the efficiency of our two constructions compared to that of other known
homomorphic network coding signatures. As we already mentioned, there are no that many schemes
in the literature realizing this primitive: a few constructions [7, 13, 9, 8] rely on random oracles, and
a couple of more recent schemes [3, 10, 12] are proven secure in the standard model. We should
also mention that there are other schemes in the standard model based on homomorphic hashing.
However these are less appealing in practice mainly because the basis vectors have to be signed
all at once, which means that in the network coding application the source node must know the
entire file before sending the first packet, which is not desirable in several applications (think of a
source node which is a sensor collecting data in some time interval). Moreover, the authentication
information to be sent along with the packets is quite long.
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Therefore, we compare our constructions with the schemes in the standard model, and later in
this section we will briefly discuss a comparison with the random oracle based ones.

In the scheme by Attrapadung and Libert [3] a signature consists of three group elements
where the bilinear groups have composite order N , with N product of three primes. To compute a
signature, the scheme needs to perform two multi-exponentiations and one exponentiation, whereas
the verification time is dominated by the computation of four pairings in such composite order
groups. Even if one applies standard techniques to convert the scheme in prime order groups (as
suggested in [3]), the overhead would still remain significant.

In [12] Freeman proposes a general framework, that can be seen as a generalization of the
Attrapadung and Libert methodology, for converting signature schemes with certain properties
into linearly homomorphic ones. The main appeal of Freeman’s construction are two. First, his
model allows for a stronger adversary than that considered here. Moreover, the proposed approach
is general enough to work with several currently known signature schemes. However all the resulting
(linearly homomorphic) signatures are less efficient than those given in this paper.

In the scheme by Catalano, Fiore and Warinschi [10] each signature consists of an element of Z∗N
and an integer s of λs = 3k+|N | bits, where k is the security parameter and |N | is the bit size of the
RSA modulus N (which is related to k). Signing and verifying both need one multi-exponentiation
(where all exponents have size λ, except one of size λs) and one exponentiation. Since in this scheme
the linear combinations are done over the integers, it can support only a limited number of linear
combinations, that in the network coding application translates to supporting only networks with
paths of predetermined bounded length. Technically, the reason of such bound is that the vector
coordinates cannot be let grow more than the size of the prime e.

In this scenario, our solution based on q-SDH seems the most efficient one both in terms of
bandwidth and computation. In fact, recall that in our case a signature is one group element plus
one element of Zp: 512 bits in total, if one considers k = 128 bits of security and asymmetric
pairings. The operations for signing and verifying are similar in all the schemes, but our SDH
construction has the advantage that such operations can be performed over prime order groups.
Our RSA realization, can be seen as a significant optimization of the Catalano-Fiore-Warinschi’s
scheme [10]. The improvements are mainly two. First, our scheme allows for a much smaller exponent
s. In fact, in our case s can be of λ bits, that is even more than 10 times shorter than in [10], if
one considers 128 bits of security. Intuitively, the reason of using a large s in [10] is that in the real
scheme s is truly random, while in the simulation it is used to hide some information of 2k + |N |
bits, which decreases its entropy down to k bits. So, there s is taken sufficiently large so as to keep
it within negligible statistical distance from a uniform value of λs bits. In our case, s is in Ze, and
we take advantage of modular reduction to obtain a uniformly distributed s also in the simulation.
Notice that having such a short s saves in both bandwidth and computation. Second, our idea of
computing all the linear combinations (mod e) avoids the problem that the vector coordinates
may grow beyond e. In this way we can support networks with paths of any lengths, which was not
the case in the previous RSA-based schemes [10] and [13].

Finally, we consider the schemes in the random oracle model that work over similar algebraic
settings, i.e., bilinear groups [7] and RSA [13]. Compared to them, our solutions are (not surpris-
ingly) slightly worse. The main difference is the size of the public key that in our case is linear in
m + n, whereas in [7, 13] it is constant (because O(m + m) group elements are generated on-the-
fly using the random oracle). On the other hand, the size of a signature and the time needed to
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sign and verify are somewhat comparable. In this sense, we believe that our solutions offer a good
compromise if one does not want to rely on the random oracle heuristic.
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