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Abstract Bent functions, which are maximally nonlinear Boolean functions
with even numbers of variables and whose Hamming distance to the set of
all affine functions equals 2n−1 ± 2

n
2−1, were introduced by Rothaus in 1976

when he considered problems in combinatorics. Bent functions have been ex-
tensively studied due to their applications in cryptography, such as S-box,
block cipher and stream cipher. Further, they have been applied to coding
theory, spread spectrum and combinatorial design. Hyper-bent functions, as a
special class of bent functions, were introduced by Youssef and Gong in 2001,
which have stronger properties and rarer elements. Many research focus on
the construction of bent and hyper-bent functions. In this paper, we consider

functions defined over F2n by f
(r)
a,b := Trn1 (axr(2

m−1)) + Tr41(bx
2n−1

5 ), where
n = 2m, m ≡ 2 (mod 4), a ∈ F2m and b ∈ F16. When r ≡ 0 (mod 5), we

characterize the hyper-bentness of f
(r)
a,b . When r 6≡ 0 (mod 5), a ∈ F2m and

(b+ 1)(b4 + b+ 1) = 0, with the help of Kloosterman sums and the factoriza-

tion of x5 + x+ a−1, we present a characterization of hyper-bentness of f
(r)
a,b .

Further, we give all the hyper-bent functions of f
(r)
a,b in the case a ∈ F

2
m
2

.
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1 Introduction

Bent functions are maximally nonlinear Boolean functions with even numbers
of variables whose Hamming distance to the set of all affine functions equals
2n−1±2

n
2−1. These functions introduced by Rothaus [30] as interesting combi-

natorial objects have been extensively studied for their applications not only
in cryptography, but also in coding theory [4,27] and combinatorial design.
Some basic knowledge and recent results on bent functions can be found in
[3,12,27]. A bent function can be considered as a Boolean function defined
over Fn2 , F2m × F2m (n = 2m) or F2n . Thanks to the different structures
of the vector space Fn2 and the Galois field F2n , bent functions can be well
studied. Although some algebraic properties of bent functions are well known,
the general structure of bent functions on F2n is not clear yet. As a result,
much research on bent functions on F2n can be found in [2,7,8,10,11,13,14,
21,22,25–29,32]. Youssef and Gong [31] introduced a class of bent functions
called hyper-bent functions, which achieve the maximal minimum distance to
all the coordinate functions of all bijective monomials (i.e., functions of the
form Trn1 (axi) + ε, gcd(i, 2n − 1) = 1). However, the definition of hyper-bent
functions was given by Gong and Golomb [15] by a property of the extend
Hadamard transform of Boolean functions. Hyper-bent functions as special
bent functions with strong properties are hard to characterize and many re-
lated problems are open. Much research give the precise characterization of
hyper-bent functions in certain forms.

The complete classification of bent and hyper-bent functions is not yet
achieved. The monomial bent functions in the form Trn1 (axs) are considered in
[2,21]. Leander [21] described the necessary conditions for s such that Trn1 (axs)
is a bent function. In particular, when s = r(2m − 1) and (r, 2m + 1) = 1,
the monomial functions Trn1 (axs) (i.e., the Dillon functions) were extensively
studied in [7,10,21]. A class of quadratic functions over F2n in polynomial form
n
2−1∑
i=1

aiTrn1 (x1+2i)+an
2

Tr
n
2
1 (x

n
2 +1) (ai ∈ F2) was described and studied in [9,17–

19,23,32]. Dobbertin et al. [13] constructed a class of binomial bent functions
of the form Trn1 (a1x

s1 + a2x
s2), (a1, a2) ∈ (F∗2n)2 with Niho power functions.

Garlet and Mesanager [6] studied the duals of the Niho bent functions in
[13]. In [25,26,29], Mesnager considered the binomial functions of the form

Trn1 (axr(2
m−1)) + Tr21(bx

2n−1
3 ), where a ∈ F∗2n and b ∈ F∗4. Then he gave

the link between the bentness property of such functions and Kloosterman
sums. Leander and Kholosha [22] generalized one of the constructions provided
by Dobbertin et al. [13] and presented a new primary construction of bent
functions consisting of a linear combination of 2r Niho exponents. Carlet et
al. [5] computed the dual of the Niho bent function with 2r exponents found
by Leander and Kholosha [22] and showed that this new bent function is



A generalization of the class of hyper-bent Boolean functions in binomial forms 3

not of the Niho type. Charpin and Gong [7] presented a characterization of
bentness of Boolean functions over F2n of the form

∑
r∈R

Trn1 (arx
r(2m−1)), where

R is a subset of the set of representatives of the cyclotomic cosets modulo
2m + 1 of maximal size n. These functions include the well-known monomial
functions with the Dillon exponent as a special case. Then they described the
bentness of these functions with the Dickson polynomials. Mesnager et al. [27,
28] generalized the results of Charpin and Gong [7] and considered the bentness

of Boolean functions over F2n of the form
∑
r∈R

Trn1 (arx
r(2m−1)) + Tr21(bx

2n−1
3 ),

where n = 2m, ar ∈ F2m and b ∈ F4. Further, they presented the link between
the bentness of such functions and some exponential sums (involving Dickson
polynomials).

In this paper, we consider a class of Boolean functions defined over F2n

by the form: f
(r)
a,b := Trn1 (axr(2

m−1)) + Tr41(bx
2n−1

5 ), where n = 2m, m ≡ 2
(mod 4), a ∈ F2m and b ∈ F16. When r = 1, this class of Boolean functions
is studied in [1]. Generally, it is elusive to give a characterization of bentness
and hyper-bentness of Boolean functions. When r ≡ 0 (mod 5), the hyper-

bentness of f
(r)
a,b is characterized in this paper. When r 6≡ 0 (mod 5) and

(b+ 1)(b4 + b+ 1 = 0) = 0, this paper presents the hyper-bentness of f
(r)
a,b by

the factorization of x5 +x+a−1 and Kloosterman sums. For a ∈ F
2

m
2

, we give

all the hyper-bent functions f
(r)
a,b .

The rest of paper is organized as follows. In Section 2, we give some
notations and recall some basic knowledge for this paper. In Section 3, we

study the hyper-bentness of the Boolean functions f
(r)
a,b for two cases (1)

(b+ 1)(b4 + b+ 1) = 0; (2) a ∈ F
2

m
2

. Finally, Section 4 makes a conclusion.

2 Preliminaries

2.1 Boolean functions

Let n be a positive integer. Fn2 is a n-dimensional vector space defined over
finite field F2. Take two vectors x = (x1, · · · , xn) and y = (y1, · · · , xn) in Fn2 .
Their dot product is defined by

〈x, y〉 :=

n∑
i=1

xiyi.

F2n is a finite field with 2n elements and F∗2n is the multiplicative group of
F2n . Let F2k be a subfield of F2n . The trace function from F2n to F2k , denoted
by Trnk , is a map defined as

Trnk (x) := x+ x2
k

+ x2
2k

+ · · ·+ x2
n−k

.



4 Chunming Tang et al.

When k = 1, Trn1 is called the absolute trace. The trace function Trnk satisfies
the following properties.

Trnk (ax+ by) = aTrnk (x) + bTrnk (y), a, b ∈ F2k , x, y ∈ F2n .

Trnk (x2
k

) = Trnk (x), x ∈ F2n .

When F2k ⊆ F2r ⊆ F2n , the trace function Trnk satisfies the following transi-
tivity property.

Trnk (x) = Trrk(Trnr (x)), x ∈ F2n .

A Boolean function over Fn2 or F2n is an F2-valued function. The absolute trace
function is a useful tool in constructing Boolean functions over F2n . From the
absolute trace function, a dot product over F2n is defined by

〈x, y〉 := Trn1 (xy), x, y ∈ F2n .

A Boolean function over F2n is often represented by the algebraic normal form
(ANF):

f(x1, · · · , xn) =
∑

I⊆{1,··· ,n}

aI(
∏
i∈I

xi), aI ∈ F2.

When I = ∅, let
∏
i∈I

= 1. The terms
∏
i∈I

xi are called monomials. The algebraic

degree of a Boolean function f is the globe degree of its ANF, that is, deg(f) :=
max{#(I)|aI 6= 0}, where #(I) is the order of I and #(∅) = 0.

Another representation of a Boolean function is of the form

f(x) =

2n−1∑
j=0

ajx
j .

In order to make f a Boolean function, we should require a0, a2n−1 ∈ F2

and a2j = a2j , where 2j is taken modulo 2n − 1. This makes that f can be
represented by a trace expansion of the form

f(x) =
∑
j∈Γn

Tr
o(j)
1 (ajx

j) + ε(1 + x2
n−1)

called its polynomial form, where

– Γn is the set of integers obtained by choosing one element in each cyclo-
tomic class of 2 module 2n − 1 (j is often chosen as the smallest element
in its cyclotomic class, called the coset leader of the class);

– o(j) is the size of the cyclotomic coset of 2 modulo 2n − 1 containing j;
– aj ∈ F2o(j) ;
– ε = wt(f) (mod 2), where wt(f) := #{x ∈ F2n |f(x) = 1}.

Let wt2(j) be the number of 1’s in the binary expansion of j. Then

deg(f) =

{
n, ε = 1
max{wt2(j)|aj 6= 0}, ε = 0.
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2.2 Bent and hyper-bent functions

The ”sign” function of a Boolean function f is defined by

χ(f) := (−1)f .

When f is a Boolean function over Fn2 , the Walsh Hadamard transform of f
is the discrete Fourier transform of χ(f), whose value at w ∈ Fn2 is defined by

χ̂f (w) :=
∑
x∈Fn

2

(−1)f(x)+〈w,x〉.

When f is a Boolean function over F2n , the Walsh Hadamard transform of f
is defined by

χ̂f (w) :=
∑
x∈F2n

(−1)f(x)+Trn1 (wx),

where w ∈ F2n . Then we can define the bent functions.

Definition 1 A Boolean function f : F2n → F2 is called a bent function, if
χ̂f (w) = ±2

n
2 (∀w ∈ F2n).

If f is a bent function, n must be even. Further, deg(f) ≤ n
2 [3]. Hyper-

bent functions are an important subclass of bent functions. The definition of
hyper-bent functions is given below.

Definition 2 A bent function f : F2n → F2 is called a hyper-bent function,
if, for any i satisfying (i, 2n − 1) = 1, f(xi) is also a bent function.

[4] and [31] proved that if f is a hyper-bent function, then deg(f) = n
2 . For a

bent function f , wt(f) is even. Then ε = 0, that is,

f(x) =
∑
j∈Γn

Tr
o(j)
1 (ajx

j).

If a Boolean function f is defined over F
2

n
2
× F

2
n
2

, then we have a class of
bent functions[10,24].

Definition 3 The Maiorana-McFarland classM is the set of all the Boolean
functions f defined on F

2
n
2
×F

2
n
2

of the form f(x, y) = 〈x, π(y)〉+g(y), where
x, y ∈ F

2
n
2

, π is a permutation of F
2

n
2

and g(x) is a Boolean function over
F
2

n
2

.

For Boolean functions over F
2

n
2
×F

2
n
2

, we have a class of hyper-bent functions
PSap [4].

Definition 4 Let n = 2m, the PSap class is the set of all the Boolean func-
tions of the form f(x, y) = g(xy ), where x, y ∈ F2m and g is a balanced Boolean

functions (i.e., wt(f) = 2m−1) and g(0) = 0. When y = 0, let x
y = xy2

n−2 = 0.

Each Boolean function f in PSap satisfies f(βz) = f(z) and f(0) = 0, where
β ∈ F∗m and z ∈ Fm×Fm. Youssef and Gong [31] studied these functions over
F2n and gave the following property.
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Proposition 1 Let n = 2m, α be a primitive element in F2n and f be a
Boolean function over F2n such that f(α2m+1x) = f(x)(∀x ∈ F2n) and f(0) =
0, then f is a hyper-bent function if and only if the weight of (f(1),f(α),
f(α2),· · · , f(α2m)) is 2m−1.

Further, [4] proved the following result.

Proposition 2 Let f be a Boolean function defined in Proposition 1. If f(1) =
0, then f is in PSap. If f(1) = 1, then there exists a Boolean function g in
PSap and δ ∈ F∗2n satisfying f(x) = g(δx).

Let PS#ap be the set of hyper-bent functions in the form of g(δx), where g(x) ∈
PSap, δ ∈ F∗2n and g(δ) = 1. Charpin and Gong expressed Proposition 2 in a
different version below.

Proposition 3 Let n = 2m, α be a primitive element of F2n and f be a
Boolean function over F2n satisfying f(α2m+1

x) = f(x) (∀x ∈ F2n) and f(0) =
0. Let ξ be a primitive 2m + 1-th root in F∗2n . Then f is a hyper-bent function
if and only if the cardinality of the set {i|f(ξi) = 1, 0 ≤ i ≤ 2m} is 2m−1.

In fact, Dillon [10] introduced the Partial Spreads class PS−, which is a bigger
class of bent functions than PSap and PS#ap.

Theorem 1 Let Ei(i = 1, 2, · · · , N) be N subspaces in F2n of dimension m
such that Ei ∩ Ej = {0} for all i, j ∈ {1, · · · , N} with i 6= j. Let f be a

Boolean function over F2n . If the support of f is given by supp(f) =
N⋃
i=1

E∗i ,

where E∗i = Ei\{0}, then f is a bent function if and only if N = 2m−1.

The set of all the functions in Theorem 1 is defined by PS−.

2.3 Kloosterman sums and Weil sums

The Kloosterman sums on F2n are:

Km(a) :=
∑
x∈F2m

χ(Trm1 (ax+
1

x
)), a ∈ F2m .

Some properties of Kloosterman sums are given by the following proposi-
tion[16,20].

Proposition 4 Let a ∈ F2m . Then Km(a) ∈ [1− 2(m+2)/2, 1 + 2(m+2)/2] and
4 | Km(a).

Quintic Weil sums on F2m are:

Qm(a) :=
∑
x∈F2m

χ(Trm1 (a(x5 + x3 + x))), a ∈ F2m .

To determine the value of Qm(a), we should consider the factorization of
the polynomial P (x) = x5+x+a−1. We write that P (x) = (n1)r1(n2)r2 · · · (nt)rt
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to indicate that ri of the irreducible factors of P (x) have degree ni. When
P (x) = x5 + x+ a−1 is irreducible over F2m , the value of Qm(a) is related to
the parity of the quadratic form q(x) = Trm1 (x(ax4 + ax2 + a2x)). q(x) is the
quadratic form associated to the simplectic form:

< x, y >q:= Trm1 (x(ay4 + ay2 + a2y) + y(ax4 + ax2 + a2x)),

which is non-degenerate. Then there exists a normal simplectic basis e1, em1+1,
· · · , em1

, e2m1
(2m1 = m). If i 6≡ j( mod m1), < ei, ej >q= 0. For any

i (1 ≤ i ≤ m1), < ei, em1+i >q= 1. If #{i|q(ei) = q(em1+i) = 1, 1 ≤ i ≤ m1}
is even, then the quadratic form q(x) is called an even quadratic form and
Qm(a) = 2m1 . If #{i|q(ei) = q(em1+i) = 1, 1 ≤ i ≤ m1} is odd, then the
quadratic form q(x) is called a odd quadratic form and Qm(a) = −2m1 .

3 A generalization of the class of hyper-bent functions in binomial
forms

In this section, we will discuss the hyper-bentness of f
(r)
a,b (x). We introduce

some notations on character sums in [1]. Let ξ = α2m−1, then U =< ξ >. Let
V =< ξ5 >. Since 5|(2m + 1), V is the subgroup of U and #V = 2m+1

5 . Let

β = α
2n−1

5 .
For any i ∈ F2m and an integer i, we define

Si =
∑
v∈V

χ(Tr(aξi(2
m−1)v))

=
∑
v∈V

χ(Tr(aξi(2
m+1)−5i+3iv))

=
∑
v∈V

χ(Tr(aξ3iv)). (From ξ−5i ∈ V )

From the definition of Si, Si = Sj when i ≡ j (mod 5). Further, Si =
S−i(Lemma 1 [1]).

3.1 The hyper-bentness of Boolean functions f
(5)
a,b (x)

In this subsection, we consider the hyper-bentness of f
(r)
a,b (x) with r = 5 of the

form
f
(5)
a,b (x) := Trn1 (ax5(2

m−1)) + Tr41(bx
2n−1

5 ), (1)

where n = 2m, m ≡ 2 (mod 4), a ∈ F2m and b ∈ F16.
Since m ≡ 2 (mod 4), 2m + 1 ≡ 0 (mod 5). For any y ∈ F2m , y2

m−1 = 1.
Then

f
(5)
a,b (α2m+1x) = f

(5)
a,b (x), x ∈ F2n ,

where α is a primitive element of F2n . Further, f
(5)
a,b (0) = 0. Then, from Propo-

sition 3, we have the following proposition on the hyper-bentness of f
(5)
a,b (x).
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Proposition 5 Let f
(5)
a,b be the Boolean function defined by (1), where a ∈ F2m

and b ∈ F16. Define the following character sum

Λ5(a, b) :=
∑
u∈U

χ(f
(5)
a,b (u)) (2)

where U is the group of all the 2m+1-th root of unity in F2n , that is, U = {x ∈
F2n |x2

m+1 = 1}. Then f
(5)
a,b is a hyper-bent function if and only if Λ5(a, b) = 1.

Further, the hyper-bent function f
(5)
a,b lies in PSap if and only if Tr41(b) = 0.

Proof Similar to the proof of Proposition 9 in [1], this proposition follows.

Proposition 6 Let n = 2m and m ≡ ±2,±6 (mod 20), If b ∈ {0}
⋃
{βi|i =

0, 1, 2, 3, 4}, then the Boolean function f
(5)
a,b in (1) is not a hyper-bent function.

Further, if b ∈ F∗16\{βi|0 ≤ i ≤ 4}, f (5)a,b is a hyper-bent function if and only if

∑
v∈V

χ(Trn1 (av)) = 1.

Proof From (2),

Λ5(a, b) =
∑
u∈U

χ(f
(5)
a,b (u))

=
∑
u∈U

χ(Trn1 (au5(2
m−1)) + Tr41(bu

2n−1
5 ))

=
∑
u∈U

χ(Trn1 (au5(2
m−1)))χ(Tr41(bu

2n−1
5 )).

Note that U =< ξ >, V =< ξ5 > and

U = ξ0V
⋃
ξ1V

⋃
ξ2V

⋃
ξ3V

⋃
ξ4V. (3)

Then,

Λ5(a, b) =

4∑
i=0

∑
v∈V

χ(Tr41(b(ξiv)
2n−1

5 ))χ(Trn1 (a(ξiv)5(2
m−1)))

=

4∑
i=0

∑
v∈V

χ(Tr41(b(ξiv)
2n−1

5 ))χ(Trn1 (a(ξ5i)2
m−1v5(2

m−1))) (4)
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Since (ξ5i)2
m−1 ∈ V andm ≡ ±2,±6 (mod 20), (5(2m−1),#V ) = (5, 2

m+1
5 ) =

1. Then v 7−→ (ξ5i)2
m−1v5(2

m−1) is a permutation of V . Hence,

Λ5(a, b) =

4∑
i=0

∑
v∈V

χ(Tr41(b(ξiv)
2n−1

5 ))χ(Trn1 (av))

=

4∑
i=0

∑
v∈V

χ(Tr41(bξi
2n−1

5 ))χ(Trn1 (av))

=(

4∑
i=0

χ(Tr41(bξi
2n−1

5 )))(
∑
v∈V

χ(Trn1 (av))).

Since ξ
2n−1

5 = (α2m−1)
(2m−1)(2m+1)

5 = β2m−1 = β2m+1−2 = β3, then

Λ5(a, b) =(

4∑
i=0

χ(Tr41(bβ3i))(
∑
v∈V

χ(Trn1 (av)))

=(

4∑
i=0

χ(Tr41(bβi))(
∑
v∈V

χ(Trn1 (av))). (5)

From (5), when b = 0, Λ5(a, 0) = 5
∑
v∈V

χ(Trn1 (av)). Hence, Λ5(a, 0) 6= 1. From

Proposition 5, f
(5)
a,0 is not a hyper-bent function.

When b 6= 0, b can be represented by b = ωβj , where ω3 = 1 and 0 ≤ j ≤ 4.
Then

4∑
i=0

χ(Tr41(bβi)) =

4∑
i=0

χ(Tr41(ωβi+j)) =

4∑
i=0

χ(Tr41(ωβi))). (6)

Since ω3 = 1 and ω4 = ω,

Tr41(ωβi) = Tr41(ω4β4i) = Tr41(ωβ4i).

In particular, we take i = 1, 2. Then

Tr41(ωβ) = Tr41(ωβ4), (7)

Tr41(ωβ2) = Tr41(ωβ3). (8)

If ω = 1,
4∑
i=0

χ(Tr41(bβi) =
4∑
i=0

χ(Tr41(βi)). Since β satisfies β4+β3+β2+β+1 =

0, Tr41(βi) = 1. Then
4∑
i=0

χ(Tr41(bβi) = −3. Therefore,

Λ5(a, b) = −3
∑
v∈V

χ(Trn1 (av)), b = βj , 0 ≤ j ≤ 4.
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From Propsition 5, f
(5)
a,βj is not a hyper-bent function. When ω 6= 1, we have

Tr41(ωβ)+Tr41(ωβ2) = Tr41(ω(β+β2)) = ω(β+β2+β3+β4)+ω2(β+β2+β3+β4) = 1.

Then χ(Tr41(ωβ)) +χ(Tr41(ωβ2)) = 0. Similarly, χ(Tr41(ωβ3)) +χ(Tr41(ωβ4)) =
0. Therefore,

Λ5(a, b) =
∑
v∈V

χ(Trn1 (av)), b = ωβj , 0 ≤ j ≤ 4, ω3 = 1, ω 6= 1.

From Proposition 5, the second part of this proposition follows.

In Proposition 6, we consider the hyper-bentness of the Boolean function

f
(5)
a,b for m ≡ ±2,±6 (mod 20). The proposition below discusses the hyper-

bentness of f
(5)
a,b for m ≡ 10 (mod 20).

Proposition 7 Let n = 2m, m ≡ 10 (mod 20), a ∈ F2m , b ∈ F16. then the

Boolean function f
(5)
a,b in (1) is not a hyper-bent function.

Proof Note that

Λ5(a, b) =

4∑
i=0

∑
v∈V

χ(Tr41(bξi
2n−1

5 ))χ(Trn1 (a(ξ5i)2
m−1v5(2

m−1))).

Since m ≡ 10 (mod 20), 25|(2m + 1) and (5(2m − 1), 2
m+1
5 ) = 5. Then v 7−→

v5(2
m−1) is 5 to 1 from V to V 5 := {v5|v ∈ V }. Therefore,

Λ5(a, b) = 5

4∑
i=0

∑
v∈V 5

χ(Tr41(bξi
2n−1

5 ))χ(Trn1 (a(ξ5i)2
m−1v)).

Hence, 5|Λ5(a, b) and Λ5(a, b) is not equal to 1, From Proposition 5, f
(5)
a,b is

not a hyper-bent function.

From Proposition 6,∑
v∈V

χ(Trn1 (av)) =
∑
v∈V

χ(Trn1 (av2
m−1)).

Note that
∑
v∈V

χ(Trn1 (av)) = S0 in [1]. From Proposition 15 in [1],

∑
v∈V

χ(Trn1 (av)) =
1

5
[1−Km(a) + 2Qm(a)]. (9)

Further, from Proposition 16 and 18 in [1], we have the following results.

Proposition 8 Let n = 2m, m ≡ ±2,±6 (mod 20), m ≥ 6 and b ∈ F∗16\{βi|0 ≤
i ≤ 4}, then f

(5)
a,b is a hyper-bent function if and only if one of the assertions

(1) and (2) holds.
(1) Qm(a) = 0, Km(a) = −4.
(2) Qm(a) = 2m1 , Km(a) = 2 · 2m1 − 4.
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From Theorem 3 in [1], we have the following theorem.

Theorem 2 Let n = 2m, m ≡ ±2,±6 (mod 20), m ≥ 6 and b ∈ F∗16\{βi|0 ≤
i ≤ 4}, then f

(5)
a,b is a hyper-bent function if and only if one of the following

assertions (1) and (2) holds.
(1) p(x) = x5 + x+ a−1 over F2m is (1)(2)2 and Km(a) = −4.
(2) p(x) = x5 +x+a−1 is irreducible over F2m . The quadratic form q(x) =

Trm1 (x(ax4 + ax2 + a2x)) over F2m is even. Km(a) = 2 · 2m1 − 4.

3.2 The hyper-bentness of f
(r)
a,b (x)

In the rest of the paper, we consider the Boolean function

f
(r)
a,b (x) := Trn1 (axr(2

m−1)) + Tr41(bx
2n−1

5 ), (10)

where n = 2m, m ≡ 2 (mod 4), a ∈ F2m and b ∈ F16. Then we define the
character sum

Λr(a, b) :=
∑
u∈U

χ(f
(r)
a,b (u)). (11)

Similarly, f
(r)
a,b (x) is a hyper-bent function if and only if Λr(a, b) = 1.

Theorem 3 Let n = 2m, m ≡ 2 (mod 4), a ∈ F2m and b ∈ F16. If (r, 2
m+1
5 ) >

1, then f
(r)
a,b is not a hyper-bent function. Further, if (r, 2

m+1
5 ) = 1, then

(1) If r ≡ 0 (mod 5), then f
(r)
a,b and f

(5)
a,b have the same hyper-bentness.

(2) If r ≡ ±1 (mod 5), then f
(r)
a,b and f

(1)
a,b have the same hyper-bentness.

(3) If r ≡ ±2 (mod 5), then f
(r)
a,b and f

(2)
a,b have the same hyper-bentness.

Proof Note that

Λr(a, b) =

4∑
i=0

∑
v∈V

χ(Tr41(b(ξiv)
2n−1

5 ))χ(Trn1 (a(ξiv)r(2
m−1)))

=

4∑
i=0

∑
v∈V

χ(Tr41(bξi
2n−1

5 ))χ(Trn1 (aξri(2
m−1)vr(2

m−1))).

Let d := (r(2m − 1),#V ) = (r, 2
m+1
5 ), then

Λr(a, b) = d

4∑
i=0

χ(Tr41(bξi
2n−1

5 ))
∑
v∈V d

χ(Trn1 (aξri(2
m−1)vr(2

m−1))), (12)

where V d := {vd|v ∈ V }. If d = (r, 2
m+1
5 ) > 1, d|Λr(a, b) and Λr(a, b) 6= 1.

Hence, f
(r)
a,b is not a hyper-bent function.
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When d = (r, 2
m+1
5 ) = 1,

Λr(a, b) =

4∑
i=0

χ(Tr41(bξi
2n−1

5 ))
∑
v∈V

χ(Trn1 (aξri(2
m−1)v)). (13)

If r ≡ 0 (mod 5), from ξ
2n−1

5 = β3, we have

Λr(a, b) =

4∑
i=0

χ(Tr41(bβ3i))
∑
v∈V

χ(Trn1 (aξri(2
m−1)v))

=

4∑
i=0

χ(Tr41(bβ3i))
∑
v∈V

χ(Trn1 (av))

=

4∑
i=0

χ(Tr41(bβi))
∑
v∈V

χ(Trn1 (av)).

Then Λr(a, b) = Λ5(a, b). Therefore, f
(r)
a,b and f

(5)
a,b have the same hyper-

bentness.
If r ≡ 1 (mod 5), then

Λr(a, b) =

4∑
i=0

χ(Tr41(bξi
2n−1

5 ))
∑
v∈V

χ(Trn1 (aξi(2
m−1)v)).

From Proposition 10 in [1], Λr(a, b) = Λ1(a, b). Hence, f
(r)
a,b and f

(1)
a,b have the

same hyper-bentness.
If r ≡ 2 (mod 5), then

Λr(a, b) =

4∑
i=0

χ(Tr41(bξi
2n−1

5 ))
∑
v∈V

χ(Trn1 (aξ2i(2
m−1)v))

=

4∑
i=0

χ(Tr41(bβ3i))S2i

=

4∑
i=0

χ(Tr41(bβ9i))S6i

=

4∑
i=0

χ(Tr41(bβ4i))Si.

From Lemma 1 in [1], then

Λr(a, b) =χ(Tr41(b))S0 + (χ(Tr41(bβ)) + χ(Tr41(bβ4)))S1 + (χ(Tr41(bβ2)) + χ(Tr41(bβ3)))S2.
(14)

Hence, Λr(a, b) = Λ2(a, b). f
(r)
a,b and f

(2)
a,b have the same hyper-bentness.
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If r ≡ 3 (mod 5),

Λr(a, b) =

4∑
i=0

χ(Tr41(bξi
2n−1

5 ))
∑
v∈V

χ(Trn1 (aξ3i(2
m−1)v))

=

4∑
i=0

χ(Tr41(bβ3i))S3i

=

4∑
i=0

χ(Tr41(bβi))Si.

From Lemma 1 in [1],

Λr(a, b) =χ(Tr41(b))S0 + (χ(Tr41(bβ)) + χ(Tr41(bβ4)))S1 + (χ(Tr41(bβ2)) + χ(Tr41(bβ3)))S2.
(15)

Hence, Λr(a, b) = Λ3(a, b). From (14) and (15),

Λ2(a, b) = Λ3(a, b).

f
(r)
a,b and f

(2)
a,b have the same hyper-bentness.

Similarly, if r ≡ 4 (mod 5),

Λr(a, b) = Λ4(a, b) = Λ1(a, b).

f
(r)
a,b and f

(1)
a,b have the same hyper-bentness.

Above all, this theorem follows.

From Theorem 3, to characterize the hyper-bentness of f
(r)
a,b , we just con-

sider the hyper-bentness of f
(1)
a,b , f

(2)
a,b and f

(5)
a,b . The hyper-bentness of f

(1)
a,b is

considered in [1]. And the hyper-bentness of f
(5)
a,b is discussed before. Next, we

just study the hyper-bentness of f
(2)
a,b .

When b = 0, the hyper-bentness of f
(2)
a,0 is given in [2]. Then we just consider

the case b 6= 0. We first give properties of Λ2(a, b) in the following proposition.

Proposition 9 Let a ∈ F2m and b ∈ F∗16, then
(1) If b = 1, then Λ2(a, b) = S0 − 2(S1 + S2) = 2S0 − Λ2(a, 0).
(2) If b ∈ {β+β2, β+β3, β2 +β4, β3 +β4}, that is, b is a primitive element

satisfying Tr41(b) = 0, then Λ2(a, b) = S0.
(3) If b = β or β4, then Λ2(a, b) = −S0 − 2S2.
(4) If b = β2 or β3, then Λ2(a, b) = −S0 − 2S1.
(5) If b = 1 + β or 1 + β4, then Λ2(a, b) = −S0 + 2S2.
(6) If b = 1 + β2 or 1 + β3, then Λ2(a, b) = −S0 + 2S1.
(7) If b = β + β4, then Λ2(a, b) = S0 + 2S2 − 2S1.
(8) If b = β2 + β3, then Λ2(a, b) = S0 − 2S2 + 2S1.

Proof From (14) and the similar proof of Proposition 13 in [1], this proposition
follows.
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Corollary 1 Let a ∈ F2m and b ∈ F∗16, then

(1) f
(2)
a,b and f

(1)
a,b2 have the same hyper-bentness.

(2) If b satisfies (b+ 1)(b4 + b+ 1) = 0, then f
(2)
a,b and f

(1)
a,b have the same

hyper-bentness.

Proof (1) From Proposition 13 in [1] and Proposition 9,

Λ2(a, b2) = Λ1(a, b).

Hence, f
(2)
a,b and f

(1)
a,b2 have the same hyper-bentness.

(2) Similarly, if b satisfies (b+ 1)(b4 + b+ 1) = 0,

Λ2(a, b) = Λ1(a, b).

Hence, f
(2)
a,b and f

(1)
a,b have the same hyper-bentness.

From the above discussion, we have the following result on f
(r)
a,b .

Proposition 10 Let a ∈ F2m and (r, 2
m+1
5 ) = 1, then

(1) If 1
5 [1−Km(a) + 2Qm(a)] = 1, then the following Boolean functions

(a) f
(r)
a,b , b ∈ F∗16\{βi|i = 0, 1, 2, 3, 4}, r ≡ 0 (mod 5).

(b) f
(r)
a,b , r 6≡ 0 (mod 5), b4 + b+ 1 = 0.

are hyper-bent functions.

(2) If − 1
5 [3(1−Km(a))−4Qm(a)] = 1, then the Boolean function f

(r)
a,1 (r 6≡ 0

(mod 5)) is a hyper-bent function.
In fact, the converse proposition still holds.

Proof From Proposition 16 in [1] and Theorem 3, (9) and Proposition 6, this
proposition follows.

We generalize Theorem 3 in [1] and get the following theorem.

Theorem 4 Let n = 2m, m = 2m1, m1 ≡ 1 (mod 2), m1 ≥ 3 and (r, 2
m+1
5 ) =

1, If one of two assertions (1) and (2) holds,
(1) p(x) = x5 + x+ a−1 over F2m is (1)(2)2 and Km(a) = −4.
(2) p(x) = x5 +x+a−1 is irreducible over F2m . The quadratic form q(x) =

Trm1 (x(ax4 + ax2 + a2x)) over F2m is even. Km(a) = 2 · 2m1 − 4.
Then the Boolean functions

(a) f
(r)
a,b , b ∈ F∗16\{βi|i = 0, 1, 2, 3, 4}, r ≡ 0 (mod 5).

(b) f
(r)
a,b , r 6≡ 0 (mod 5), b4 + b+ 1 = 0.

are hyper-bent functions
In fact, the converse theorem still holds.

Proof From Proposition 16 and Theorem 3 in [1] and Proposition 10, this
theorem follows.

Similar to Theorem 2 in [1], we have the following result.
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Theorem 5 Let n = 2m, m = 2m1, m1 ≡ 1 (mod 2), m1 ≥ 3, (r, 2
m+1
5 ) =

1 and r 6≡ 0 (mod 5), then f
(r)
a,1 is a hyper-bent function if and only if the

following assertions holds.
(1) p(x) = x5 + x+ a−1 is irreducible over F2m .
(2) The quadratic form q(x) = Trm1 (x(ax4 + ax2 + a2x)) over F2m is even.
(3) Km(a) = 4

3 (2− 2m1).
In fact, the converse theorem still holds.

Proof From Proposition 16 and Theorem 2 in [1] and Proposition 10, this
theorem follows.

If a ∈ F
2

m
2

, we have the hyper-bentness of f
(r)
a,b in the theorem below.

Theorem 6 Let n = 2m, m = 2m1, m1 ≡ 1 (mod 2) and m1 ≥ 3. If n 6=
12, 28, any Boolean function in

{f (r)a,b |a ∈ F
2

m
2
, b ∈ F16} (16)

is not a hyper-bent function. Further, if n = 12, all the hyper-bent functions
in (16) are

Tr121 (axr(2
6−1)) + Tr41(bx

212−1
5 ),

where r 6≡ 0 (mod 5), (r, 2
m+1
5 ) = 1, (a+ 1)(a3 + a2 + 1) = 0 and b = βi, i =

1, 2, 3, 4. If n = 28, all the hyper-bent functions in (16) are

Tr281 (axr(2
14−1)) + Tr41(bx

228−1
5 ),

where r 6≡ 0 (mod 5), (r, 2
m+1
5 ) = 1, (a+1)(a7 +a6 +a5 +a4 +a3 +a2 +1) = 0

and b = βi, i = 1, 2, 3, 4.

Proof Note that a ∈ F
2

m
2

. From Theorem 3, if f
(r)
a,b is a hyper-bent function,

(r, 2
m+1
5 ) = 1.

Suppose (r, 2
m+1
5 ) = 1. we first prove that f

(r)
a,0 is not a hyper-bent function

when r ≡ 0 (mod 5). From Theorem 3, f
(r)
a,b is a hyper-bent function if and

only if f
(5)
a,b is a hyper-bent function. If b = 0,

Λ5(a, 0) =
∑
u∈U

χ(Trn1 (au5(2
m−1))) = 5

∑
v∈V

χ(Trn1 (av2
m−1)).

Hence, 5|Λ5(a, 0) and Λ5(a, 0) 6= 1. Therefore, f
(5)
a,0 is not a hyper-bent func-

tion. Then f
(r)
a,0 is not a hyper-bent function.

When b 6= 0, from Theorem 4, f
(r)
a,b is a hyper-bent function if and only

if f
(1)
a,b′ (b′4 + b′ + 1 = 0) is a hyper-bent function. From Theorem 5 in [1],

f
(1)
a,b′ (b′4 + b′ + 1 = 0) is not a hyper-bent function. Hence, f

(r)
a,b is not a

hyper-bent function when r ≡ 0 (mod 5).



16 Chunming Tang et al.

Then we discuss the case r ≡ ±1 (mod 5) and (r, 2
m+1
5 ) = 1. From Theo-

rem 3, f
(r)
a,b is a hyper-bent function if and only if f

(1)
a,b is a hyper-bent function.

From Theorem 5 in [1], there are only two cases. The first case is n = 12, where
a and b satisfy

(a+ 1)(a3 + a2 + 1) = 0, b = βi, i = 1, 2, 3, 4.

The second case is n = 28, where a and b satisfy

(a+ 1)(a7 + a6 + a5 + a4 + a3 + a2 + 1) = 0, b = βi, i = 1, 2, 3, 4.

When r ≡ ±2 (mod 5) and (r, 2
m+1
5 ) = 1, we have similar results.

Above all, this theorem follows.

4 Conclusion

This paper considers the hyper-bentness of the Boolean functions f
(r)
a,b of the

form f
(r)
a,b := Trn1 (axr(2

m−1)) + Tr41(bx
2n−1

5 ), where n = 2m, m = 2 (mod 4),
a ∈ F2m and b ∈ F16. When r ≡ 0 (mod 5), we give the characterization of

hyper-bentness of f
(r)
a,b . If r 6≡ 0 (mod 5) and b = 1 or b is a primitive element

in F16 such that Tr41(b) = 0, the hyper-bentness of f
(r)
a,b can be characterized

by Kloosterman sums and the factorization of x5 + x+ a−1. If a ∈ F
2

m
2

, with

the results of [1], we prove that f
(r)
a,b is not a hyper-bent function unless n = 12

or n = 28. Further, we give all the hyper-bent functions for n = 12 or n = 28.
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