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Abstract: Server-aided verification(SAV) signature is useful for power-constrained devices 

since a powerful server can assist in performing costly operations such as pairing operations. 

Wu et al. [13] defined three security notions for SAV protocol to prevent a server from 

convincing a verifier that an invalid signature is valid. Security against strong collusion attack 

provides the strongest security guarantee among these notions. They [13] constructed SAV 

protocols that meet the requirement of these notions respectively. But they did not provide 

concrete running time to show that the running time of a verifier in their SAV protocol is 

strictly less than that of a verifier in the original verification protocol. In addition, a problem 

left open by their work is to design SAV signature which is unforgeable without random 

oracles as well as sound against strong collusion attack. To address the above issues, we first 

choose to design a SAV protocol called SAV-Hofheinz for a short signature proposed by 

Hofheinz unforgeable in the standard model. Then we implement SAV-Hofheinz by the PBC 

library and shows that the running time of a verifier in SAV-Hofheinz is strictly less than that 

of a verifier in the verification protocol of Hofheinz short signature. 

Keywords: Server-aided verification; Short signature; Pairing; Power-constrained devices; 

The PBC library 

 

1. Introduction 

With the development of power-constrained devices such as smart cards and mobile 

terminals, it is desirable to design cryptographic protocols with computational cost suitable 

for such kind of devices. Due to its elegant algebraic properties, bilinear pairings have been 

used to construct various cryptographic schemes. For example, BLS signature scheme [2] that 

uses bilinear pairings has the shortest signature size among provable secure signature schemes. 
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Generally speaking, pairing-based signature schemes allow a signer to compute a signature in 

a relatively fast way by computing some multiplication or exponentiation operations over 

groups. However, a verifier has to compute several pairing operations to verify a signature. 

Currently, as pairing requires much more computational cost than exponentiation, it is a 

challenging task to speed up verification steps in pairing-based signature schemes when 

applied to power-constrained devices.  

A solution to this problem is referred to as “server-aided verification”. Informally 

speaking, a server-aided verification signature scheme SAV-∑ consists of a standard 

signature scheme ∑ and a server-aided verification protocol. In a client-server environment, 

a power-constrained device (client) is connected to a powerful server who can assist the client 

to perform costly operations involved in the original verification algorithm of ∑. As the 

server may be untrusted, we must prevent a malicious server from convincing a verifier with a 

limited computational power that an invalid signature is valid. 

Server-aided verification protocol was introduced first by Quisquater and De Soete to 

speed up RSA verification with a small exponent [3]. Then Lim and Lee gave server-aided 

computation protocols based on the ”randomization” of the verification equation [8]. 

However, the verifier must perform heavy pre-computation before carrying out the 

server-aided protocol. Girault and Quisquater [5] presented an approach for server-aided 

verification protocols which does not require pre-computation or randomization and is 

computationally secure based on the hardness of a sub-problem of the underlying complexity 

problem in the original signature scheme.  

Hohenberger and Lysyanskaya addressed the situation in which the server is made of 

two untrusted softwares, which are assumed not to communicate with each other [7]. This 

assumption is strong but it allows a very light public computation task. Girault and Lefrance 

[4] provided a security model for server-aided verification protocols without this strong 

assumption. They proposed a generic method for designing SAV versions of schemes based 

on bilinear maps, which can be applied to the Boneh-Boyen signature schemes [1] and the 

Zhang-Safavi-Naini-Susilo [14] signature scheme.  

Recently, Wu et al. [12,13] defined three security notions for server-aided verification 

signatures, i.e., existential unforgeability, security against collusion attack and security 
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against strong collusion attack to extend the security model for SAV signature defined in [4]. 

Their definition of existential unforgeability for SAV signature combines standard existential 

unforgeability with soundness notion in server-aided verification protocol, which requires a 

computationally bounded malicious server, who is unable to corrupt the original signer, is not 

able to convince a verifier that an invalid signature is valid. Security against collusion attack 

allows collusion between a malicious server and the original signer, but the server has no 

control over the choice of invalid signature for the challenge message. Security against strong 

collusion attack provides the strongest security guarantee by allowing a malicious server to 

choose a invalid signature for the challenge message.  

Then Wu et al. [13] designed server-aided verification protocols for waters signature 

[11], BLS signature [2] respectively, which satisfy both existential unforgeability for SAV 

signature and security against collusion attack. However, only a server-aided verification 

protocol for BLS signature was presented to meet the requirement of security against strong 

collusion attack. As the unforgeability of BLS signature is proven in the random oracle model, 

the work of [13] leaves two points to be desired: 

(1) As security proofs in the random oracle model rely on the idealized assumption that 

cryptographic hash functions can be modeled by random functions, it is desirable to obtain a 

server aided verification protocol that meets the requirement of security against strong 

collusion attack for a signature scheme unforgeable without random oracles.  

(2) The key idea of [13] is to use less expensive exponentiation operations to replace one 

pairing operation. Computational cost is measured by the number of operations performed by 

a verifier in verification protocol [13]. However, it is important to estimate the concrete 

running time of a verifier in order to present convincing evidence that the computational cost 

of a verifier in server-aided verification protocol is indeed strictly less than that of a verifier in 

the original verification protocol when running on power-constrained devices.  

To address the above two issues, we first choose to design a server-aided verification 

protocol called SAV-Hofheinz for a short signature proposed by Hofheinz unforgeable in the 

standard model [6] with performance almost comparable to that of BLS short signature. When 

designing the server-aided verification protocol for Hofheinz short signature, we observe that the 

online computation can be speeded up by doing some exponentiation operations in advance. 
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Second, we implement SAV-Hofheinz protocol with the PBC library [10]. The result shows 

that the running time of a verifier in SAV-Hofheinz protocol is strictly less than that of a 

verifier in the original verification protocol when running on our testbed. 

The rest of this paper is organized as follows. At first, we review the syntax of 

server-aided verification signature in section 3. Then we describe security against collusion 

attack and security against strong collusion attack defined in [13]. In the following, we point 

out that the server-aided verification protocol for waters signature which satisfies the 

requirement of security against collusion attack [13] is not secure against strong collusion 

attack. So we design a server-aided verification protocol for the short signature scheme [6] and 

prove that our server-aided verification protocol meets the requirement of security against 

strong collusion attack defined in [13]. Finally, we implement the proposed server-aided 

verification protocol with the PBC library and compare the running time of a verifier in our 

server-aided verification protocol with that of a verifier in the original verification protocol.  

 

2. Bilinear pairing 

Given a security parameter , an efficient algorithm  outputs , 

where  is a cyclic group of a prime order 

k (1 )kPG ( , , , , )Te G G g p

G p  generated by .  is a cyclic group of 

the same order, and let  be a efficiently computable bilinear function with 

the following properties: 

g TG

: Te G G G× →

1. Bilinear:  for all ( , ) ( , ) ,a b abe g g e g g= , pa b Z∈ . 

2. Non-degenerate:  ( , ) 1
TGe g g ≠

 

3. Syntax of server-aided verification signature 

A server-aided verification signature SAV-∑  consists of a standard digital signature 

scheme  and two additional algorithms SA-Ver-Setup, SA-Ver. (Setup,KG,Sig,Ver)∑ =

1. Setup(1 ): Takes as input a security parameter , outputs the public system parameters k k
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param, which defines message space  and the signature space .  M _

2. KeyGen(1 ): Takes param as input and outputs a secret/public key pair . k ( , )sk pk

3. Sig( ): Takes as input a signing key  and a message , then outputs a signature ,m sk sk m

σ . 

4. Ver( , ,m pkσ ): Takes as input a verification key pk , a message  and a purported 

signature 

m

σ , then outputs either 1 or 0 to denote “accept” or "reject". 

5. SA-Ver-Setup( param ): A verifier takes param as input and computes a string VString  

be used in the server aided verification protocol SA-Ver. that will 

6. SA-Ver: Server( ),Verifier( , , , ) ( , )param m pk VString bσ〈 〉 → ⊥  is used to denote 

the interactive execution between Se  and , where rver Verifier param  is the input of 

 and Server ( , , , )m pk VStringσ  is the private input of who has limited 

computational ability and need check validity of the signature 

Verifier

σ  with the help of . The 

private output of is bit . =1 denotes that accept 

Server

Verifier b b Verifier σ  as valid by 

interacting with Server . 

A distinct feature of is the property of computation-saving, which means that the 

computational cost of a verifier in 

SAV-∑  

SAV-∑  should be strict less than that of a verifier in . ∑

Security of must include standard existential unforgeability of  and soundness 

of SA-Ver, which means a server cannot convince a honest verifier with a limited computational 

power that an invalid signature is valid. As we design SA

SAV-∑  ∑

V-∑  based on some existing 

unforgeable signature schemes, the major concern of this paper is the soundness of SA-Ver. 

 

4. Soundness of  SAV-∑  

4.1 Soundness of against collusion and adaptive chosen message attack SAV-∑  

    By allowing a server to collude with the original signer, soundness of SA  against 

collusion and adaptive chosen message attack is defined in experiment . In the 

experiment, the adversary 

V-∑

SAV-
1 ,

( )k CCMA
Exp A∑

A  who interacts with a challenger  has access to a oracle C
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O-SAV( , )⋅ ⋅ . W  adapt our definition from those given in [13]. 

yGen(1kk ← , SA-Ver-Setup( )VString param

e

SAV-
1 ,

( )k CCMA
Exp A∑  

Setup(1param ← , ( , epk s)k ) K ) ← . 

Then the challenger etsC   0d ← . s

* O-SAV ( ,m A pk sk←

The challenger picks *σ ← \ Q

)

m
_ , where denotes the set of valid signatures with 

respe

quently, the challenger plays the role of verifier to interact with

. 

* *m
Q  

ct to the challenge message *m .  

Subse  A  in SA-Ver 

proto : col * * *A( ),C( , , , ) ( , )param m pk VString bσ〈 〉 → ⊥  

  then

e formalization e oracle is defined as follows: 

Oracle 

* 1b =  1d ←  If

 

O-SAV  Th of th

O-SAV( , )m σ  

Ru rins an algorithm  who plays the role of ve fier to interact with  O A  in SA-Ver 

proto ),O( , , , ) ( , )param m pk VString bσcol: A(〈 〉 → ⊥  

b    return 

 

The advantage of A  is SAV-
1 ,

r[ 1k CCM
Exp ∑P ( )]

A
A = .  

Definition 1: An adversary A  is said to ( , ,vt q )ε  break soundness of  in SAV-SA-Ver ∑  

if A  runs in tim  at most t , make cae s at most lls to the oracle , and succe

d tage 

vq  O-SAV eds with 

van εa  in experime

4.2 

ion and 

adap e  can be de  follows: 

nt SAV-
1 ,

( )k CCMA
Exp A∑ . 

 

SAV-Waters scheme 

Wu et al. constructed SAV-Waters  scheme [13] with soundness against collus

tive chosen message attack. The details of their sch me scribed as
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1. Setup: Given the security parameter k , (1 )kPG  outputs ( , , , , )Te G G g p . 

Messages to be signed will be represented by he commn  bits. T on parameter is 

para ( , , , , )Tm e G G g p= . 

2. yG 1
0 1( , , ) n

n RV V VKe en: Picks a vector G +
J
= ←
G

V a"  nd R px Z← . The public 

key is pk = 1 2( , ( , ) )xpk pk e= =
J

g g
G

. The secret keyV  sk  is x .  

, t3. Sig: Given a message m he signature is generated as follows: 1{0,1} ,n
nm m m∈ = "

1 2 0
1

( , ) ( ( ) , )i

n
mx r r

i
i

g V V gσ
=
∏ R pr Z← . σ σ= = , where 

4. Ver: Given t y he public ke pk = 1 2( , ( , ) )xpk pk e g g= =
JG
V , a message  and the 

purported si ( ,

 m

gnature 2 )1σ σ= , outputs 1 if 1( , )e gσ = 2 0 2
1

( ,i
i

i

pk e V V
n

mσ σ
=

⋅ ∏

r-S

) . 

5. SA-Ve etup( param ): A verifier takes param as input an computes  

takes 

1 ( , )K e g g= .

1ing K= . 

6. SA-Ver: The verifier (resp., Server) 

VStr

( , , , )m pk VStringσ (resp., param) as input. 

Then  as llows: 

r pars

 the SA-Ver protocol is run  fo

(1) The verifie es pk = 1 2( , ( , ) )xpk e g g= =pk
JG
V , = 1 2( , )σ σ , 1VString K=  σ

and computes /
1σ = 1

dgσ ⋅ , where R pd Z← .  

/
1 2, ,m σ σ  Verifier Server:→

(2) The server computes 2 )/
2 1( , )K e gσ= , 3 0

1

( ,i

n
m

i
i

K e V V σ
=

= ∏ .  

3

) The verifier outputs 1 if 

Server Verifie→ 2r: ,K K  

2K = 2 3 1( )dpk K K⋅ ⋅ .  

ag

(3

 

4.3 Soundness of SA ainst strong collusion and adaptive chosen message attack V-∑  
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    Soundness of SAV rong collusion and adaptive chosen m ssage attack is 

1 ,k SCCMA

-∑  against st e

defined in experiment ( )Exp A∑ . In the experiment, the adversary SAV- A  is allowed to 

choose an invali signature for the challenge message  by itself. 

yGen(1kk ← , SA-Ver-Setup( )VString param

*md 

SAV-
1 ,

( )k SCCMA
Exp A∑  

Setup(1param ← , ( , epk s)k ) K ) ← . 

Then the challenger  sets C 0d ← . 

* * O-SAV( , ) ( ,m A pkσ ← )sk , where *σ ← *\
m

Q_  and  denotes the set of valid 

signa

sequently, the challenger plays the role of verifi  to interact with 

*m
Q  

tures with respect to *m . 

 Sub er A  in SA-Ver 

protocol: * * *A( ),C( , , , ) ( , )param m pk VString bσ〈 〉  → ⊥

If * 1b =  then 1d  

The advantage of 

←

A  is SAV-
1 ,

Pr[ k SCC
Exp ∑ ( )] 1

MA
A = . The formalization of the oracle 

 identical to that described in section 4.1. 

Definition 2: An adversar

O-SAV  

is

 

y A  is said ( , , )vt q to ε  stro y break soundness o  in 

SAV-∑  if 

ngl f SA-Ver

A  runs in t  at most t , ma vime st calls to the oracle , and 

advantage 

kes at mo q  O-SAV

succeeds with ε  in experim nt 

, we show that

t strong collu

an 

e SAV-
1 ,

( )k SCCMA
Exp A∑ . 

 

    SAV-Waters  scheme has been proven to be secure against collusion and adaptive chosen 

message attack even for a computationally unbounded adversary. In the following  

even a computationally bounded adversary can break the strong soundness of SAV-Waters  

when allowed to choose the invalid signature for the challenge message by itself. So the work 

of Wu et al. [13] left an open question to design a server-aided verification protocol which 

meets the requirement of security agains sion attack for a signature scheme 

without random oracles. The weakness of SAV-Waters  c be described as follows: 

8 



Given sk = x , the adversary A  outputs a mes e *m  a  chooses a random element 

*σ ← *\ Q_ , where *

sag nd  

m
σ  is an invalid gnature of *m . Then  si A ( playing the role of server) 

A oco interact  half r  

(1)  t ),σ σ=  and ( , )VString e g g

runs the S -Ver pro (on be ollows: 

akes * * ,m σ

t l to  with C  of ve ifier) as f

C * *
1 2, ( pk =  as input，and computes 

*
1σ = *

1
dgσ ⋅ , w Rhere   pd Z← .

:C A→  *
1 2( , , )m σ σ . 

(2) At first A  compu alid si nature for  by*m  sk : tes a v g

1λ =
*

0( )i

n
mx

1

s
ig V V∏  , 

i=
2λ = sg  

computes 2K = *
1 1( , )Then A  e gσ λ⋅ , 3K =

* *
0 2 1

1

( , ) (i

n
m

i
i

e V V e gλ σ
=

⋅∏  , )

(3)  computes C 2 3 1( )dpk K Ki i = ( , )xe g g i
* *

0 2 1
1

( , ) (i

n
m

i
i

e V V e gλ σ
=
∏ i

=

, ) ( , )de g gi  

2pk i
* *

0 2 1
1

( , ) ( , )i

n
m

i
i

e V V e gλ σ
=
∏ i = *

1 1( , )e gσ λ⋅ = 2K         

 

5. 

re [6] 

who rd model by able hash functio

u ameter outputs  Le

SAV-Hofheinz  

We construct a SAV protocol called SAV-Hofheinz based on Hofheinz short signatu

se unforgeability was proven in the standa  programm n. 

1.Setup: Given the sec rity par t ,nk , (1 )kPG  ( , , , , )Te G G g p . η  

be two polynomials in k  and = .Gen, H.Eval, H. en, H.TrapEval)H  be a 

pro  g

(H TrapG

grammable hash function er roup  with inputs from . The common parameter 

is 

 ov G  {0,1}n

p ( , , , , , )Taram e G G g p H= . 

2. KeyGen  Ge  a hash function key through  Pick  *
R p: nerates H.Gen(1 )kK ← . x Z←  

pute and com . The public keyX = xg G∈  pk  is )1 2( ,pk K pk X= = . The secret key 

sk  is x .  
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3. Sig: Given a message , pick {0,1}nm∈ {0,1}Rs η←  and compute =y
1

( ) x s
KH m + . 

The signature ( , )s yσ = . 

4. Ver: Given the public key pk , a message  and the signature m ( , )s yσ = , outputs 

1 if s  is of length η  and ( , )se y X g⋅ = . ( ( ),Ke H m g)

5. SA-Ver-Setup( param ): A verifier takes param as input an computes . 

. 

1 ( , )K e g g=

1VString K=

6. SA-Ver: The verifier (resp., Server) takes ( , (resp., param) as 

input. Then the SA-Ver protocol is run as follows: 

( , ), , )m s y pk VString

Offline Phase: 

(1) The verifier picks  and computes , R pu v Z← uV g= , . 1( )vU K=

Remark: As  and  are fixed parameters for a verifier and will be exponentiated 

repeatedly, we can pick  and compute 

g 1K

,u v uV g= ,  in advance since these 

values are independent of the received signature. So the computation time during online phase 

can be reduced by performing pre-computation during offline phase. The PBC library [10] 

provides a function called element_pp_pow to support fixed-base exponentiation algorithm 

[9]. 

1( )vU K=

Online Phase: 

(1) The verifier computes θ = ( )u
KH m V⋅ : Verifier Server:→ θ  

(2) The server computes 2 ( , )K e gθ= :  Server Verifier:→ 2K

(3) The verifier outputs 1 if =2K ( , )s ue y X g U⋅ ⋅ . 

 

Theorem 1: Any adversary can only 
1( , , )vt q
p

 break the strong soundness of  in 

. 

SA-Ver

SAV-Hofheinz

Proof: Having obtained ( , )pk sk , the adversary A  picks an invalid signature  for 

the challenge message . 

* *( , sσ )

*m
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Then the challenger  takes  as input. Subsequently, C * * * *, ( ,m sσ = )y A ( playing the 

role of server) runs the SA-Ver protocol with (on behalf of verifier) as follows: C

The challenger  computes C *θ =
**( )u v

KH m g
*

⋅ , where  and sends * *, R pu v Z← *θ  

to the adversary. From the view of a computationally unbounded adversary, we have the 

following equation: 

*
*

( )
log

KH m
θ = *

* *
( )

log mod
KH m

u v g p+ ⋅  (1) 

Assume the adversary returns  such that =*
2K *

2K
* * **

1( , ) ( )s ue y X g K⋅ ⋅ v

p

. Then 

=  (2) *
*
2( ( ), )

log
Ke H m g

K
*

* *
* * *

1( ( ), ) ( ( ), )
log ( , ) log mod

K K

s
e H m g e H m g

u e y X g v K⋅ ⋅ + ⋅

As , we have =  and  1 ( , )K e g g= * 1( ( ), )
log

Ke H m g
K *( )

log
KH m

g

* *

*

** *

**( ) ( )

* **
2( ( ), )( ( ), ) ( )

1 log log

loglog ( , ) log
K K

KK K

H m H m

s
e H m ge H m g H m

g u
v Ke y X g g

θ⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥⋅ ⎣ ⎦ ⎣ ⎦⎣ ⎦
   (3) 

As *σ  is an invalid signature, 
*

*
*

( ( ), )
log ( , ) 1

K

s
e H m g

e y X g⋅ ≠  and the determinant of 

the above matrix is not equal to 0. Hence * *(u n be uniquely determined from the view 

of the adversary. 

, )v  ca

However, by the equation *θ =
**( )u v

KH m g
*

⋅ , the correct value of   is hidden 

from the adversary’s view since there are 

* *( , )u v

p  possible solutions.  Consequently, the adversary 

returns  such that =*
2K *

2K
* * *

1( , ) ( )s ue y X g K⋅ ⋅ v  only with probability 
1
p

. 

 

6. Performance comparison 

The number of operations for a verifier is listed in Table 1. We implement Hofheinz 

signature and SAV-Hofheinz with the PBC library [10], which is a free C library that performs 

rapid pairing operations. We take waters’ group hash function =  as an 

instance of programmable hash function [6], where , 

. The implementation results are recorded in Table 3. The result is 

( )KH m 0
1

i

n
m

i
i

V V
=
∏

1{0,1} ,n
nm m m∈ = "m

∈0 1( , , , )nK V V V G= "
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obtained on a computer equipped with Intel Atom N270 Processor, 1.6 GHz and 1 GB 

memory, under the cygwin 1.7.9-1 platform. We use type-A symmetric pairing provided by 

the PBC library to implement the above schemes. Table 2 provides concise description of 

type-A pairing parameters provided by a.param and a1.param.  

Table 1  The number of operations for a verifier 

Verification cost of the verifier  
Scheme 

Pairing Exponentiation Multiplication 

Hofheinz 2 1 (G) 3(G) 
Online 1 2 (G) +1 (GT) 3(G) SAV- 

Hofheinz Offline 0 1(G) +1 (GT) 0 

 

Table 2  PBC Parameter description 

 

Representation size(in bits) PBC Parameter 

type 

embedding 

degree 

logp(in bits) 

G GT

a.param 2 160 512 1024 

a1.param 2 160 1024 2048 

 

Table 3  Running time of verification 

 
Running time of verification  

Scheme Implemented with a.param Implemented with a1.param 
Hofheinz 75.6ms 1867.8ms 

Offline 3.1ms 61.3ms SAV- 
Hofheinz Online 67.7ms 1375.5ms 

 

7. Conclusion 

In this paper, we design a server-aided verification signature SAV-Hofheinz based on a 

short signature proposed by Hofheinz [6]. The online computation in SAV-Hofheinz can be 

speeded up by pre-computing some exponentiation operations during the offline phase. In the 

following, we prove that our server-aided verification protocol meets the requirement of 

security against strong collusion attack defined in [13]. Finally we implement Hofheinz short 
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signature and SAV-Hofheinz by the PBC library [10] and show that the running time of a 

verifier in SAV-Hofheinz is strictly less than that of a verifier in the verification protocol of 

Hofheinz signature. 
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