
A server-aided verification signature scheme without

random oracles
Bin Wang and Qing Zhao

Information Engineering College of Yangzhou University

No.196 West HuaYang Road, Yangzhou City, Jiangsu Province, P.R.China

E-mail: jxbin76@yahoo.cn

Abstract: Server-aided verification(SAV) signature is useful for power-constrained devices

since a powerful server can assist in performing costly operations such as pairing operations.

Wu et al. [13] defined three security notions for SAV protocol to prevent a server from

convincing a verifier that an invalid signature is valid. Security against strong collusion attack

provides the strongest security guarantee among these notions. They [13] constructed SAV

protocols that meet the requirement of these notions respectively. But they did not provide

concrete running time to show that the running time of a verifier in their SAV protocol is

strictly less than that of a verifier in the original verification protocol. In addition, a problem

left open by their work is to design SAV signature which is unforgeable without random

oracles as well as sound against strong collusion attack. To address the above issues, we first

choose to design a SAV protocol called SAV-Hofheinz for a short signature proposed by

Hofheinz unforgeable in the standard model. Then we implement SAV-Hofheinz by the PBC

library and shows that the running time of a verifier in SAV-Hofheinz is strictly less than that

of a verifier in the verification protocol of Hofheinz short signature.

Keywords: Server-aided verification; Short signature; Pairing; Power-constrained devices;

The PBC library

1. Introduction

With the development of power-constrained devices such as smart cards and mobile

terminals, it is desirable to design cryptographic protocols with computational cost suitable

for such kind of devices. Due to its elegant algebraic properties, bilinear pairings have been

used to construct various cryptographic schemes. For example, BLS signature scheme [2] that

uses bilinear pairings has the shortest signature size among provable secure signature schemes.

1

mailto:jxbin76@yahoo.cn

Generally speaking, pairing-based signature schemes allow a signer to compute a signature in

a relatively fast way by computing some multiplication or exponentiation operations over

groups. However, a verifier has to compute several pairing operations to verify a signature.

Currently, as pairing requires much more computational cost than exponentiation, it is a

challenging task to speed up verification steps in pairing-based signature schemes when

applied to power-constrained devices.

A solution to this problem is referred to as “server-aided verification”. Informally

speaking, a server-aided verification signature scheme SAV-∑ consists of a standard

signature scheme ∑ and a server-aided verification protocol. In a client-server environment,

a power-constrained device (client) is connected to a powerful server who can assist the client

to perform costly operations involved in the original verification algorithm of ∑. As the

server may be untrusted, we must prevent a malicious server from convincing a verifier with a

limited computational power that an invalid signature is valid.

Server-aided verification protocol was introduced first by Quisquater and De Soete to

speed up RSA verification with a small exponent [3]. Then Lim and Lee gave server-aided

computation protocols based on the ”randomization” of the verification equation [8].

However, the verifier must perform heavy pre-computation before carrying out the

server-aided protocol. Girault and Quisquater [5] presented an approach for server-aided

verification protocols which does not require pre-computation or randomization and is

computationally secure based on the hardness of a sub-problem of the underlying complexity

problem in the original signature scheme.

Hohenberger and Lysyanskaya addressed the situation in which the server is made of

two untrusted softwares, which are assumed not to communicate with each other [7]. This

assumption is strong but it allows a very light public computation task. Girault and Lefrance

[4] provided a security model for server-aided verification protocols without this strong

assumption. They proposed a generic method for designing SAV versions of schemes based

on bilinear maps, which can be applied to the Boneh-Boyen signature schemes [1] and the

Zhang-Safavi-Naini-Susilo [14] signature scheme.

Recently, Wu et al. [12,13] defined three security notions for server-aided verification

signatures, i.e., existential unforgeability, security against collusion attack and security

2

against strong collusion attack to extend the security model for SAV signature defined in [4].

Their definition of existential unforgeability for SAV signature combines standard existential

unforgeability with soundness notion in server-aided verification protocol, which requires a

computationally bounded malicious server, who is unable to corrupt the original signer, is not

able to convince a verifier that an invalid signature is valid. Security against collusion attack

allows collusion between a malicious server and the original signer, but the server has no

control over the choice of invalid signature for the challenge message. Security against strong

collusion attack provides the strongest security guarantee by allowing a malicious server to

choose a invalid signature for the challenge message.

Then Wu et al. [13] designed server-aided verification protocols for waters signature

[11], BLS signature [2] respectively, which satisfy both existential unforgeability for SAV

signature and security against collusion attack. However, only a server-aided verification

protocol for BLS signature was presented to meet the requirement of security against strong

collusion attack. As the unforgeability of BLS signature is proven in the random oracle model,

the work of [13] leaves two points to be desired:

(1) As security proofs in the random oracle model rely on the idealized assumption that

cryptographic hash functions can be modeled by random functions, it is desirable to obtain a

server aided verification protocol that meets the requirement of security against strong

collusion attack for a signature scheme unforgeable without random oracles.

(2) The key idea of [13] is to use less expensive exponentiation operations to replace one

pairing operation. Computational cost is measured by the number of operations performed by

a verifier in verification protocol [13]. However, it is important to estimate the concrete

running time of a verifier in order to present convincing evidence that the computational cost

of a verifier in server-aided verification protocol is indeed strictly less than that of a verifier in

the original verification protocol when running on power-constrained devices.

To address the above two issues, we first choose to design a server-aided verification

protocol called SAV-Hofheinz for a short signature proposed by Hofheinz unforgeable in the

standard model [6] with performance almost comparable to that of BLS short signature. When

designing the server-aided verification protocol for Hofheinz short signature, we observe that the

online computation can be speeded up by doing some exponentiation operations in advance.

3

Second, we implement SAV-Hofheinz protocol with the PBC library [10]. The result shows

that the running time of a verifier in SAV-Hofheinz protocol is strictly less than that of a

verifier in the original verification protocol when running on our testbed.

The rest of this paper is organized as follows. At first, we review the syntax of

server-aided verification signature in section 3. Then we describe security against collusion

attack and security against strong collusion attack defined in [13]. In the following, we point

out that the server-aided verification protocol for waters signature which satisfies the

requirement of security against collusion attack [13] is not secure against strong collusion

attack. So we design a server-aided verification protocol for the short signature scheme [6] and

prove that our server-aided verification protocol meets the requirement of security against

strong collusion attack defined in [13]. Finally, we implement the proposed server-aided

verification protocol with the PBC library and compare the running time of a verifier in our

server-aided verification protocol with that of a verifier in the original verification protocol.

2. Bilinear pairing

Given a security parameter , an efficient algorithm outputs ,

where is a cyclic group of a prime order

k (1)kPG (, , , ,)Te G G g p

G p generated by . is a cyclic group of

the same order, and let be a efficiently computable bilinear function with

the following properties:

g TG

: Te G G G× →

1. Bilinear: for all (,) (,) ,a b abe g g e g g= , pa b Z∈ .

2. Non-degenerate: (,) 1
TGe g g ≠

3. Syntax of server-aided verification signature

A server-aided verification signature SAV-∑ consists of a standard digital signature

scheme and two additional algorithms SA-Ver-Setup, SA-Ver. (Setup,KG,Sig,Ver)∑ =

1. Setup(1): Takes as input a security parameter , outputs the public system parameters k k

4

param, which defines message space and the signature space . M _

2. KeyGen(1): Takes param as input and outputs a secret/public key pair . k (,)sk pk

3. Sig(): Takes as input a signing key and a message , then outputs a signature ,m sk sk m

σ .

4. Ver(, ,m pkσ): Takes as input a verification key pk , a message and a purported

signature

m

σ , then outputs either 1 or 0 to denote “accept” or "reject".

5. SA-Ver-Setup(param): A verifier takes param as input and computes a string VString

be used in the server aided verification protocol SA-Ver. that will

6. SA-Ver: Server(),Verifier(, , ,) (,)param m pk VString bσ〈 〉 → ⊥ is used to denote

the interactive execution between Se and , where rver Verifier param is the input of

 and Server (, , ,)m pk VStringσ is the private input of who has limited

computational ability and need check validity of the signature

Verifier

σ with the help of . The

private output of is bit . =1 denotes that accept

Server

Verifier b b Verifier σ as valid by

interacting with Server .

A distinct feature of is the property of computation-saving, which means that the

computational cost of a verifier in

SAV-∑

SAV-∑ should be strict less than that of a verifier in . ∑

Security of must include standard existential unforgeability of and soundness

of SA-Ver, which means a server cannot convince a honest verifier with a limited computational

power that an invalid signature is valid. As we design SA

SAV-∑ ∑

V-∑ based on some existing

unforgeable signature schemes, the major concern of this paper is the soundness of SA-Ver.

4. Soundness of SAV-∑

4.1 Soundness of against collusion and adaptive chosen message attack SAV-∑

 By allowing a server to collude with the original signer, soundness of SA against

collusion and adaptive chosen message attack is defined in experiment . In the

experiment, the adversary

V-∑

SAV-
1 ,

()k CCMA
Exp A∑

A who interacts with a challenger has access to a oracle C

5

O-SAV(,)⋅ ⋅ . W adapt our definition from those given in [13].

yGen(1kk ← , SA-Ver-Setup()VString param

e

SAV-
1 ,

()k CCMA
Exp A∑

Setup(1param ← , (, epk s)k) K) ← .

Then the challenger etsC 0d ← . s

* O-SAV (,m A pk sk←

The challenger picks *σ ← \ Q

)

m
_ , where denotes the set of valid signatures with

respe

quently, the challenger plays the role of verifier to interact with

.

* *m
Q

ct to the challenge message *m .

Subse A in SA-Ver

proto : col * * *A(),C(, , ,) (,)param m pk VString bσ〈 〉 → ⊥

 then

e formalization e oracle is defined as follows:

Oracle

* 1b = 1d ← If

O-SAV Th of th

O-SAV(,)m σ

Ru rins an algorithm who plays the role of ve fier to interact with O A in SA-Ver

proto),O(, , ,) (,)param m pk VString bσcol: A(〈 〉 → ⊥

b return

The advantage of A is SAV-
1 ,

r[1k CCM
Exp ∑P ()]

A
A = .

Definition 1: An adversary A is said to (, ,vt q)ε break soundness of in SAV-SA-Ver ∑

if A runs in tim at most t , make cae s at most lls to the oracle , and succe

d tage

vq O-SAV eds with

van εa in experime

4.2

ion and

adap e can be de follows:

nt SAV-
1 ,

()k CCMA
Exp A∑ .

SAV-Waters scheme

Wu et al. constructed SAV-Waters scheme [13] with soundness against collus

tive chosen message attack. The details of their sch me scribed as

6

1. Setup: Given the security parameter k , (1)kPG outputs (, , , ,)Te G G g p .

Messages to be signed will be represented by he commn bits. T on parameter is

para (, , , ,)Tm e G G g p= .

2. yG 1
0 1(, ,) n

n RV V VKe en: Picks a vector G +
J
= ←
G

V a" nd R px Z← . The public

key is pk = 1 2(, (,))xpk pk e= =
J

g g
G

. The secret keyV sk is x .

, t3. Sig: Given a message m he signature is generated as follows: 1{0,1} ,n
nm m m∈ = "

1 2 0
1

(,) (() ,)i

n
mx r r

i
i

g V V gσ
=
∏ R pr Z← . σ σ= = , where

4. Ver: Given t y he public ke pk = 1 2(, (,))xpk pk e g g= =
JG
V , a message and the

purported si (,

 m

gnature 2)1σ σ= , outputs 1 if 1(,)e gσ = 2 0 2
1

(,i
i

i

pk e V V
n

mσ σ
=

⋅ ∏

r-S

) .

5. SA-Ve etup(param): A verifier takes param as input an computes

takes

1 (,)K e g g= .

1ing K= .

6. SA-Ver: The verifier (resp., Server)

VStr

(, , ,)m pk VStringσ (resp., param) as input.

Then as llows:

r pars

 the SA-Ver protocol is run fo

(1) The verifie es pk = 1 2(, (,))xpk e g g= =pk
JG
V , = 1 2(,)σ σ , 1VString K= σ

and computes /
1σ = 1

dgσ ⋅ , where R pd Z← .

/
1 2, ,m σ σ Verifier Server:→

(2) The server computes 2)/
2 1(,)K e gσ= , 3 0

1

(,i

n
m

i
i

K e V V σ
=

= ∏ .

3

) The verifier outputs 1 if

Server Verifie→ 2r: ,K K

2K = 2 3 1()dpk K K⋅ ⋅ .

ag

(3

4.3 Soundness of SA ainst strong collusion and adaptive chosen message attack V-∑

7

 Soundness of SAV rong collusion and adaptive chosen m ssage attack is

1 ,k SCCMA

-∑ against st e

defined in experiment ()Exp A∑ . In the experiment, the adversary SAV- A is allowed to

choose an invali signature for the challenge message by itself.

yGen(1kk ← , SA-Ver-Setup()VString param

*md

SAV-
1 ,

()k SCCMA
Exp A∑

Setup(1param ← , (, epk s)k) K) ← .

Then the challenger sets C 0d ← .

* * O-SAV(,) (,m A pkσ ←)sk , where *σ ← *\
m

Q_ and denotes the set of valid

signa

sequently, the challenger plays the role of verifi to interact with

*m
Q

tures with respect to *m .

 Sub er A in SA-Ver

protocol: * * *A(),C(, , ,) (,)param m pk VString bσ〈 〉 → ⊥

If * 1b = then 1d

The advantage of

←

A is SAV-
1 ,

Pr[k SCC
Exp ∑ ()] 1

MA
A = . The formalization of the oracle

 identical to that described in section 4.1.

Definition 2: An adversar

O-SAV

is

y A is said (, ,)vt q to ε stro y break soundness o in

SAV-∑ if

ngl f SA-Ver

A runs in t at most t , ma vime st calls to the oracle , and

advantage

kes at mo q O-SAV

succeeds with ε in experim nt

, we show that

t strong collu

an

e SAV-
1 ,

()k SCCMA
Exp A∑ .

 SAV-Waters scheme has been proven to be secure against collusion and adaptive chosen

message attack even for a computationally unbounded adversary. In the following

even a computationally bounded adversary can break the strong soundness of SAV-Waters

when allowed to choose the invalid signature for the challenge message by itself. So the work

of Wu et al. [13] left an open question to design a server-aided verification protocol which

meets the requirement of security agains sion attack for a signature scheme

without random oracles. The weakness of SAV-Waters c be described as follows:

8

Given sk = x , the adversary A outputs a mes e *m a chooses a random element

*σ ← *\ Q_ , where *

sag nd

m
σ is an invalid gnature of *m . Then si A (playing the role of server)

A oco interact half r

(1) t),σ σ= and (,)VString e g g

runs the S -Ver pro (on be ollows:

akes * * ,m σ

t l to with C of ve ifier) as f

C * *
1 2, (pk = as input，and computes

*
1σ = *

1
dgσ ⋅ , w Rhere pd Z← .

:C A→ *
1 2(, ,)m σ σ .

(2) At first A compu alid si nature for by*m sk : tes a v g

1λ =
*

0()i

n
mx

1

s
ig V V∏ ,

i=
2λ = sg

computes 2K = *
1 1(,)Then A e gσ λ⋅ , 3K =

* *
0 2 1

1

(,) (i

n
m

i
i

e V V e gλ σ
=

⋅∏ ,)

(3) computes C 2 3 1()dpk K Ki i = (,)xe g g i
* *

0 2 1
1

(,) (i

n
m

i
i

e V V e gλ σ
=
∏ i

=

,) (,)de g gi

2pk i
* *

0 2 1
1

(,) (,)i

n
m

i
i

e V V e gλ σ
=
∏ i = *

1 1(,)e gσ λ⋅ = 2K

5.

re [6]

who rd model by able hash functio

u ameter outputs Le

SAV-Hofheinz

We construct a SAV protocol called SAV-Hofheinz based on Hofheinz short signatu

se unforgeability was proven in the standa programm n.

1.Setup: Given the sec rity par t ,nk , (1)kPG (, , , ,)Te G G g p . η

be two polynomials in k and = .Gen, H.Eval, H. en, H.TrapEval)H be a

pro g

(H TrapG

grammable hash function er roup with inputs from . The common parameter

is

 ov G {0,1}n

p (, , , , ,)Taram e G G g p H= .

2. KeyGen Ge a hash function key through Pick *
R p: nerates H.Gen(1)kK ← . x Z←

pute and com . The public keyX = xg G∈ pk is)1 2(,pk K pk X= = . The secret key

sk is x .

9

3. Sig: Given a message , pick {0,1}nm∈ {0,1}Rs η← and compute =y
1

() x s
KH m + .

The signature (,)s yσ = .

4. Ver: Given the public key pk , a message and the signature m (,)s yσ = , outputs

1 if s is of length η and (,)se y X g⋅ = . ((),Ke H m g)

5. SA-Ver-Setup(param): A verifier takes param as input an computes .

.

1 (,)K e g g=

1VString K=

6. SA-Ver: The verifier (resp., Server) takes (, (resp., param) as

input. Then the SA-Ver protocol is run as follows:

(,), ,)m s y pk VString

Offline Phase:

(1) The verifier picks and computes , R pu v Z← uV g= , . 1()vU K=

Remark: As and are fixed parameters for a verifier and will be exponentiated

repeatedly, we can pick and compute

g 1K

,u v uV g= , in advance since these

values are independent of the received signature. So the computation time during online phase

can be reduced by performing pre-computation during offline phase. The PBC library [10]

provides a function called element_pp_pow to support fixed-base exponentiation algorithm

[9].

1()vU K=

Online Phase:

(1) The verifier computes θ = ()u
KH m V⋅ : Verifier Server:→ θ

(2) The server computes 2 (,)K e gθ= : Server Verifier:→ 2K

(3) The verifier outputs 1 if =2K (,)s ue y X g U⋅ ⋅ .

Theorem 1: Any adversary can only
1(, ,)vt q
p

 break the strong soundness of in

.

SA-Ver

SAV-Hofheinz

Proof: Having obtained (,)pk sk , the adversary A picks an invalid signature for

the challenge message .

* *(, sσ)

*m

10

Then the challenger takes as input. Subsequently, C * * * *, (,m sσ =)y A (playing the

role of server) runs the SA-Ver protocol with (on behalf of verifier) as follows: C

The challenger computes C *θ =
**()u v

KH m g
*

⋅ , where and sends * *, R pu v Z← *θ

to the adversary. From the view of a computationally unbounded adversary, we have the

following equation:

*
*

()
log

KH m
θ = *

* *
()

log mod
KH m

u v g p+ ⋅ (1)

Assume the adversary returns such that =*
2K *

2K
* * **

1(,) ()s ue y X g K⋅ ⋅ v

p

. Then

= (2) *
*
2((),)

log
Ke H m g

K
*

* *
* * *

1((),) ((),)
log (,) log mod

K K

s
e H m g e H m g

u e y X g v K⋅ ⋅ + ⋅

As , we have = and 1 (,)K e g g= * 1((),)
log

Ke H m g
K *()

log
KH m

g

* *

*

** *

**() ()

* **
2((),)((),) ()

1 log log

loglog (,) log
K K

KK K

H m H m

s
e H m ge H m g H m

g u
v Ke y X g g

θ⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥⋅ ⎣ ⎦ ⎣ ⎦⎣ ⎦
 (3)

As *σ is an invalid signature,
*

*
*

((),)
log (,) 1

K

s
e H m g

e y X g⋅ ≠ and the determinant of

the above matrix is not equal to 0. Hence * *(u n be uniquely determined from the view

of the adversary.

,)v ca

However, by the equation *θ =
**()u v

KH m g
*

⋅ , the correct value of is hidden

from the adversary’s view since there are

* *(,)u v

p possible solutions. Consequently, the adversary

returns such that =*
2K *

2K
* * *

1(,) ()s ue y X g K⋅ ⋅ v only with probability
1
p

.

6. Performance comparison

The number of operations for a verifier is listed in Table 1. We implement Hofheinz

signature and SAV-Hofheinz with the PBC library [10], which is a free C library that performs

rapid pairing operations. We take waters’ group hash function = as an

instance of programmable hash function [6], where ,

. The implementation results are recorded in Table 3. The result is

()KH m 0
1

i

n
m

i
i

V V
=
∏

1{0,1} ,n
nm m m∈ = "m

∈0 1(, , ,)nK V V V G= "

11

obtained on a computer equipped with Intel Atom N270 Processor, 1.6 GHz and 1 GB

memory, under the cygwin 1.7.9-1 platform. We use type-A symmetric pairing provided by

the PBC library to implement the above schemes. Table 2 provides concise description of

type-A pairing parameters provided by a.param and a1.param.

Table 1 The number of operations for a verifier

Verification cost of the verifier
Scheme

Pairing Exponentiation Multiplication

Hofheinz 2 1 (G) 3(G)
Online 1 2 (G) +1 (GT) 3(G) SAV-

Hofheinz Offline 0 1(G) +1 (GT) 0

Table 2 PBC Parameter description

Representation size(in bits) PBC Parameter

type

embedding

degree

logp(in bits)

G GT

a.param 2 160 512 1024

a1.param 2 160 1024 2048

Table 3 Running time of verification

Running time of verification

Scheme Implemented with a.param Implemented with a1.param
Hofheinz 75.6ms 1867.8ms

Offline 3.1ms 61.3ms SAV-
Hofheinz Online 67.7ms 1375.5ms

7. Conclusion

In this paper, we design a server-aided verification signature SAV-Hofheinz based on a

short signature proposed by Hofheinz [6]. The online computation in SAV-Hofheinz can be

speeded up by pre-computing some exponentiation operations during the offline phase. In the

following, we prove that our server-aided verification protocol meets the requirement of

security against strong collusion attack defined in [13]. Finally we implement Hofheinz short

12

signature and SAV-Hofheinz by the PBC library [10] and show that the running time of a

verifier in SAV-Hofheinz is strictly less than that of a verifier in the verification protocol of

Hofheinz signature.

Acknowledgement

 This work is supported by Natural Science Foundation of Higher Education Institutions,

in Jiangsu Province office of education, P.R. China (Grant No. 10KJD520005), National

Natural Science Foundation of China(Grant No. 60803122), Innovative Foundation of

Yangzhou University (Grant No. 2011CXJ022, 2011CXJ023).

References

[1] D. Boneh and X. Boyen, “Short Signatures without Random Oracles”, Eurocrypt ’04,

volume 3027 of Lecture Notes in Computer Science, pages 382–400. Springer-Verlag, 2004

[2] D. Boneh, G. Lynn, H. Shacham, “Short Signature from The Weil Pairing”, Journal of

Cryptology, 17(2004), pp. 297–319

[3] M. De Soete and J. J. Quisquater, “Speeding Up Smart Card RSA Computations with

Insecure Coprocessors”, Smart Card 2000, pp. 191–197, 1989

[4] M. Girault, D. Lefranc, “Server-aided verification: theory and practice”, ASIACRYPT’05,

Lecture Notes in Computer Science, vol. 3788, pp. 605–623, 2005

[5] M. Girault and J. J. Quisquater, “GQ + GPS = new ideas + new protocols”, Eurocrypt ’02

- Rump Session, 2002

[6] D. Hofheinz, E. Kiltz, ”Programmable Hash Functions and Their Applications”, Journal of

Cryptology, to be published

[7] S. Hohenberger and A. Lysyanskaya, “How to Securely Outsource Cryptographic

Computations”, TCC 2005, LNCS 3378, pp. 264-282, 2005

[8] C. H. Lim and P. J. Lee, “Server (prover/signer)-Aided Verification of Identity Proofs and

Signatures”, Eurocrypt ’95, volume 921 of Lecture Notes in Computer Science, pp. 64–78,

1995

[9] A.J. Menezes, P.C.van Oorschot and S.A. Vanstone, “Handbook of Applied Cryptography”,

CRC Press, 1997

13

[10] PBC library, http://crypto.stanford.edu/pbc/

[11] B. Waters, “Efficient identity-based encryption without random oracles”, in: In

EUROCRYPT 2005, in: Lecture Notes in Computer Science, vol. 3494, pp. 114–127, 2005

[12] W. Wu, Y. Mu, W. Susilo, X. Huang, “Server-Aided Verification Signatures: Definitions

and New Constructions”, in: ProvSec 2008, Lecture Notes in Computer Science, vol. 5324,

Springer-Verlag, pp. 141–155, 2008

[13] Wei Wu, Yi Mu, Willy Susilo, Xinyi Huang, “Provably secure server-aided verification

signatures”, Computers and Mathematics with Applications, Vol.61, pp.1705–1723, 2011

[14] F. Zhang, R. Safavi-Naini, and W. Susilo, “An Efficient Signature Scheme from Bilinear

Pairing and its Applications”, Public Key Cryptography, volume 2947 of Lecture Notes in

Computer Science, pp. 277–290, 2004.

14

http://crypto.stanford.edu/pbc/

