
Digital Signatures from Challenge-Divided Σ-Protocols

Andrew C. Yao ∗ Yunlei Zhao†

Abstract

Digital signature is one of the basic primitives in cryptography. A common paradigm of obtaining
signatures, known as the Fiat-Shamir (FS) paradigm, is to collapse any Σ-protocol (which is 3-round
public-coin honest-verifier zero-knowledge) into a non-interactive scheme with hash functions that are
modeled to be random oracles (RO). The Digital Signature Standard (DSS) and Schnorr’s signature
schemes are two salient examples following the FS-paradigm.

In this work, we present a modified Fiat-Shamir paradigm, named challenge-divided Fiat-Shamir
paradigm, which is applicable to a variant of Σ-protocol with divided random challenges. This new
paradigm yields a new family of (online/offline efficient) digital signatures from challenge-divided
Σ-protocols, including in particular a variant of Schnorr’s signature scheme called challenge-divided
Schnorr signature. We then present a formal analysis of the challenge-divided Schnorr signature
in the random oracle model. Finally, we give comparisons between the challenge-divided Schnorr
signature and DSS and Schnorr’s signature, showing that the newly developed challenge-divided
Schnorr signature can enjoy better (online/offline) efficiency (besides provable security in the random
oracle model).

Of independent interest is a new forking lemma, referred to as divided forking lemma, for dealing
with multiple ordered rewinding points in the RO model, which is of independent interest and can
be applied to analyzing other cryptographic schemes in the RO model.

1 Introduction

Digital signature is fundamental to modern cryptography. A common paradigm of obtaining signatures,
known as the Fiat-Shamir (FS) paradigm [5], is to collapse any Σ-protocol [3] into a non-interactive
scheme with hash functions that are modeled to be random oracles (RO) [1]. Roughly speaking, denote
by a, e, z the first, the second and the third message of a Σ-protocol respectively, where a and z are from
the prover and e is a random challenge from the verifier. Given a message m ∈ {0, 1}∗ to be signed, the
FS-paradigm computes and outputs (e, z) as the signature, where e = h(a,m) and h is a hash function
that is modeled to be a random oracle in the security analysis. To improve the online/offline efficiency
of digital signatures instantiated via the FS-paradigm, the signer can pre-compute and store a list of
values a’s.

Two salient examples following the FS-paradigm is the Digital Signature Standard (DSS) [6] and
Schnorr’s signature [16]. The formal analysis of digital signatures via the FS-paradigm was conducted
in [15], where the core of the analysis is a forking lemma. The forking lemma given in [15] is for
analyzing cryptographic schemes with a single rewinding point in the random oracle model. But, in
some recent applications, security analysis in the random oracle model may need to deal with multiple
ordered rewinding points.

The notion of online/offline signature is introduced in [4]. The idea is to perform signature genera-
tion into two phases: the offline phase and the online phase. On-line/offline signature schemes are useful,
since in many applications the signer (e.g., a smart-card) has a very limited response time once the mes-
sage is presented (but it can carry out costly computations between consecutive signing requests). The
online phase is typically very fast, and hence can be executed even on a weak processor. On-line/offline

∗Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China.
andrewcyao@tsinghua.edu.cn

†Software School, Fudan University, Shanghai 200433, China. ylzhao@fudan.edu.cn

1

signature schemes are particularly remarkable in smart-card based applications [17]: the offline phase
can be implemented either during the card manufacturing process or as a background computation
whenever the card is connected to power. Some general transformations from any signature scheme
to secure online/offline signature scheme are know (e.g., [4, 17]), but typically are not as efficient (in
terms of both computational complexity and space complexity of the signer) as the signature schemes
resultant directly via the Fiat-Shamir paradigm.

In this work, we present a modified Fiat-Shamir paradigm, named challenge-divided Fiat-Shamir
paradigm, which is applicable to a variant of Σ-protocol with divided random challenges (referred to
as challenge-divided Σ-protocol). This yields a new family of online/offline efficient digital signatures
from challenge-divided Σ-protocols, where the signer particularly does not need to store the values a’s.
We present a formal analysis of the challenge-divided Schnorr signature in the random oracle model.
Along the way, we prove a new forking lemma, referred to as divided forking lemma, for dealing with
multiple ordered rewinding points in the random oracle model, which is of independent interest and
can be applied to analyzing other cryptographic schemes in the random oracle model. Finally, we give
comparisons between the challenge-divided Schnorr signature and DSS and Schnorr’s signature, showing
that the newly developed challenge-divided Schnorr signature can enjoy better (online/offline) efficiency
(besides provable security in the random oracle model in view that the provable security of DSS is still
unknown).

2 Preliminaries

If A is a probabilistic algorithm, then A(x1, x2, · · · ; r) is the result of running A on inputs x1, x2, · · ·
and coins r. We let y ← A(x1, x2, · · · ; r) denote the experiment of picking r at random and letting y
be A(x1, x2, · · · ; r). If S is a finite set then x← S, sometimes also written as x ∈R S, is the operation
of picking an element uniformly from S. If α is neither an algorithm nor a set then x ← α is a simple
assignment statement. A function f(λ) is negligible if for every c > 0 there exists a λc such that
f(λ) < 1

λc for all λ > λc.
Let G′ be a finite Abelian group of order N , G be a subgroup of prime order q in G′. Denote by g

a generator of G, by 1G the identity element, by G \ 1G = G − {1G} the set of elements of G except
1G. Throughout this paper, unless explicitly specified, for presentation simplicity we assume G′ is Z∗

p

(of order N = p − 1) where p is a large prime, and use multiplicative notation to describe the group
operation in G′. (When G′ is defined w.r.t. elliptic curves over finite fields, usually addition notation is
used for the group operation in G′.) On input of the form (p, q, g,X) such that X = gx mod p, where
p, q are primes, g is an element in Z∗

p of order q and x is taken uniformly at random from Z∗
q , the

discrete logarithm problem (DLP) is to compute x, and the DLP assumption says that no probabilistic
polynomial-time (PPT) algorithm can solve the DLP problem with non-negligible probability for all
sufficiently large q. The DLP problem and DLP assumption can also be defined on elliptic curves over
finite fields.

2.1 Σ-Protocols

Definition 2.1 (Σ-protocol [3]) A three-round public-coin protocol ⟨P, V ⟩ is said to be a Σ-protocol
for an NP-relation R if the following hold:

• Completeness. If P , V follow the protocol, the verifier always accepts.

• Special soundness. From any common input U of length n and any pair of accepting conversations
on input U , (a, e, z) and (a, e′, z′) where e ̸= e′, one can efficiently compute w such that (U,w) ∈ R
with overwhelming probability. Here a, e, z stand for the first, the second and the third message
respectively and e is assumed to be a string of length l (that is polynomially related to n) selected
uniformly at random in {0, 1}l.

2

• Perfect/statistical SHVZK (special honest verifier zero-knowledge). There exists a probabilistic
polynomial-time simulator S, which on input U (where there exists an NP-witness w such that
(U,w) ∈ R) and a random challenge string ê, outputs an accepting conversation of the form
(â, ê, ẑ), with the same probability distribution as that of the real conversation (a, e, z) between the
honest P (w), V on input U .

The first Σ-protocol (for an NP-language) in the literature can be traced back to the honest verifier
zero-knowledge (HVZK) protocol for Graph Isomorphism [7] (but the name of Σ-protocol is adopted
much later in [3]), and a large number of Σ-protocols for various languages have been developed now.
Σ-protocols have been proved to be a very powerful cryptographic tool, and are widely used in numerous
important cryptographic applications. Below, we briefly recall the Σ-protocol examples for DLP and
RSA.

Σ-Protocol for DLP [16]. The following is a Σ-protocol ⟨P, V ⟩ proposed by Schnorr [16] for
proving the knowledge of discrete logarithm, w, for a common input of the form (p, q, g, U) such that
U = gw mod p, where p, q are primes and g is an element in Z∗

p of order q. Normally, the length of q,
denoted |q|, is served as the security parameter.

• P chooses r at random in Zq and sends a = gr mod p to V .

• V chooses a challenge e at random in Z2l and sends it to P . Here, l is fixed such that 2l < q.

• P sends z = r + ew mod q to V , who checks that gz = aU e mod p, that p, q are prime and that
g, h are of order q, and accepts iff this is the case.

Σ-Protocol for RSA [9]. Let n be an RSA modulus and q be a prime. Assume we are given
some element y ∈ Z∗

n, and P knows an element w such that wq = y mod n. The following protocol is
a Σ-protocol for proving the knowledge of q-th roots modulo n.

• P chooses r at random in Z∗
n and sends a = rq mod n to V .

• V chooses a challenge e at random in Z2l and sends it to P . Here, l is fixed such that 2l < q.

• P sends z = rwe mod n to V , who checks that zq = aye mod n, that q is a prime, that gcd(a, n) =
gcd(y, n) = 1, and accepts iff this is the case.

2.2 The Fiat-Shamir Paradigm and Its Provable Security in the RO Model

Given any Σ-protocol (a, e, z) on common input U (which will be viewed as the signing public-key), the
Fiat-Shamir paradigm collapses the Σ-protocol into a signature scheme as follows: (a, e = h(a,m), z),
wherem is the message to be signed and h is a hash function. Note that, in actual signature schemes with
the Fiat-Shamir paradigm, the generated signature only consists of (e, z) as the value a can be computed
from (e, z). The provable security of the general Fiat-Shamir paradigm is shown by Pointcheval and
Stern [15] in the random oracle model (assuming h to be an idealized random function). The core of
the security arguments of Pointcheval and Stern [15] is a forking lemma.

Schnorr’s signature scheme. The signature scheme obtained by applying the Fiat-Shamir
paradigm on the above Schnorr’s Σ-protocol for DLP is referred to as Schnorr’s signature scheme. Note
that, for Schnorr’s signature scheme, the signer can pre-compute and store a list of values (a = gr, r).
Then, to sign a message m, it simply computes e = h(a,m) and z. That is, the signer only needs to
perform z = r + h(m, a)w online, where a = gr and r are offline pre-computed and stored.

2.3 The Digital Signature Standard (DSS)

The general structure of DSS is as follows:

• Public-key: U = gw ∈ G′, where w ∈ Z∗
q . Typically, w is a 160-bit prime.

3

• Secret-key: w.

• Signature generation: Let m ∈ {0, 1}∗ be the message to be signed.

1. Compute a = gr mod p, where r is taken randomly from Zq. Compute d = f(a), where
f : G′ → Z∗

q is a conversion function.1

2. Compute s from the equation h(m) = sr − dw mod q, as follows:

– Compute r̂ = r−1.

– Compute s = (h(m) + dw)r̂, or s = h(m)r̂ + dwr̂ with offline pre-computed dwr̂, where
h is a hash function.

3. Output (d, s) as the signature.

• Signature verification: Given (e = h(m), d, s) where d, s ∈ Z∗
q , the verifier verifies the signature as

follows:

– Compute ŝ = s−1.

– Verify f(geŝUdŝ) = d, where e = h(m).

Recall that in the DSS scheme, the signature is generated as: (d, s = er−1+dwr−1), where e = h(m),
d = f(a) and a = gr, w is the secret-key. In general, the conversion f : G′ → Z∗

q also can be viewed as
RO. Observe that the value m (i.e., the message to be signed) and the value a = gr are not put into
the input of a single RO in the DSS scheme, contrary to signature schemes via the Fiat-Shamir scheme
where (m, a) is put into the single RO h. The separation of m and a in the inputs of random oracles and
the way of signature generation of DSS bring the following advantages to DSS over Schnorr’s signature
scheme.

Specifically, the signer can pre-compute a list of values a’s (just as in signature schemes via the Fiat-
Shamir paradigm), but contrary to signature schemes via the Fiat-Shamir paradigm, the signer of DSS
does not need to store these pre-computed values. Specifically, for each pre-computed value a = gr,
the DSS signer can offline compute d = f(a), r−1 and dwr−1, and only stores (d, r−1, dwr−1) (note
that it is unreasonable to assume the message to be signed is always known beforehand). Actually, for
smart-card based applications, the values (d, r−1, dwr−1)’s can be stored during the card manufacturing
process. Note that d, r−1, dwr−1 ∈ Zq, while a ∈ Z∗

p . As p is typically of 1024 bits while q is of 160
bits, and assuming the signer pre-computes k values of a’s, then in comparison with Schnorr’s signature
scheme the space complexity (of storing pre-computed values) is reduced from (|p|+ |q|)k to 3|q|k.

DSS vs. Schnorr’s Signature The DSS scheme [6] is a variant of Schnorr’s signature [16] via the
Fiat-Shamir paradigm. The DSS scheme was proposed (1) to add online/offline efficiency by avoiding
storing the value a’s (and some more useful properties, see e.g., [14]), and (2) to bypass the patent
issues related to Schnorr’s signature scheme, but at the price of losing provable security.

In a sense, the challenge-divided Schnorr signature (instantiated by our challenge-divided Fiat-
Shamir paradigm to be described in Section 3) can also be viewed as another way to avoid storing
the values a’s, but enjoys much further better (online/offline) efficiency than DSS and enjoys provable
security in the RO model as well.

2.4 Existential Unforgeability Under Chosen Message Attack for Digital Signature
Scheme

Formally, a digital signature scheme consists of three algorithms (KeyGen, Sign, V erify). KeyGen is
the key generation algorithm, which on input a security parameter n outputs a pair of public-key and
secret-key (PK,SK). Sign is the signing algorithm, which takes the secret-key SK and a message
m ∈ {0, 1}∗ and outputs a signature σ. V erify is the signature verification algorithm, which on input

1Typically, f can simply be the “mod q” operation for implementations over Z∗
p , or the operation of just taking the

x-coordinate for implementations over elliptic curves over finite fields.

4

the public-key PK, a message m and a proposed signature σ outputs 1 (indicating verification success)
or 0 (indicating verification failure).

Existential unforgeability under chosen message attacks for a signature scheme (KeyGen, Sign, V erify)
[8] is defined using the following game between a challenger and an adversary A.

Setup. On a security parameter n, the challenger runs KeyGen(1n) to obtain a pair of public-key and
secret-key (PK,SK). The public-key PK is given to adversary A (while the secret-key keeps
private).

Adaptive queries. A adaptively requests signatures w.r.t. PK on at most R messages of its choice
M1, · · · ,MR ∈ {0, 1}∗, where R is a polynomial in n. The challenger responds to each query with
a signature σi = Sign(SK,Mi).

Output. Finally, A outputs a pair (M,σ), and wins the game if (1) M ̸∈ {M1, · · · ,MR}, and (2)
V erify(PK,M, σ) = 1.

We define AdvSigA to be the probability that A wins in the above game, taken over the coin tosses
of KeyGen and of A. Then, we say the signature scheme is existentially unforgeable under adaptive
chosen-message attacks if for all sufficiently large n and any probabilistic polynomial-time adversary A,
it holds that AdvSigA is negligible (in n).

3 Challenge-Divided Σ-Protocols, and Challenge-Divided Fiat-Shamir
Paradigm

In this section, we show a modified Fiat-Shamir paradigm, named challenge-divided Fiat-Shamir paradig-
m, that is applicable to a variant of Σ-protocol with divided random challenges (that is referred to as
challenge-divided Σ-protocol). Below, we first describe the challenge-divided Σ-protocols for DLP and
RSA.

Challenge-divided Σ-Protocol for DLP. The common input is the same as that of Schnorr’s
protocol for DLP: (p, q, g, U) such that U = gw mod p.

• P chooses r at random in Zq and sends a = gr mod p to V .

• V chooses a pair of challenges d, e at random in Z2l × Z2l and sends (d, e) to P . Here, l is fixed
such that 2l < q.

• P sends z = er + dw mod q (resp., z = dr + ew) to V , who checks that gz = aeUd mod p (resp.,
gz = adU e mod p), that p, q are prime and that g, h are of order q, and accepts iff this is the case.

Challenge-divided Σ-Protocol for RSA. Let n be an RSA modulus and q be a prime. The
common input is (n, q, y), and the private input is w such that y = wq mod n.

• P chooses r at random in Z∗
n and sends a = rq mod n to V .

• V chooses a pair of challenges d, e at random in Z2l × Z2l and sends (d, e) to P . Here, l is fixed
such that 2l < q.

• P sends z = rdwe mod n (resp., z = rewd mod n) to V , who checks that zq = adye mod n
(resp., zq = adye mod n), that q is a prime, that gcd(a, n) = gcd(y, n) = 1, and accepts iff this is
the case.

The challenge-divided Fiat-Shamir paradigm for challenge-divided Σ-protocols. Let F
be a one-way function (OWF) admitting challenge-divided Σ-protocols, i.e., the range of the OWF has
a challenge-divided Σ-protocol for proving the knowledge of the corresponding preimage w.r.t. the NP-
relation {(U,w)|U = F (w)}. Let the random challenge be of length Len. Denote by d, e the (divided)

5

random challenges, and let U = F (w) be signer’s public-key and w the secret-key. To sign a message
m, the signer computes a, d = f̃(a), e = h̃(m), and z, and then outputs (d, z) as the signature on m,
where h̃ and f̃ are conversion functions from {0, 1}∗ to {0, 1}Len. In security analysis in the RO model,
we assume both h̃ and f̃ are random oracles.

4 Challenge-Divided Schnorr Signature Scheme, and Its Provable
Security in the RO Model

With the above challenge-divided Schnorr’s Σ-protocol for DLP as an illustrative instance, the trans-
formed signature via the above challenge-divided Fiat-Shamir paradigm is called challenge-divided
Schnorr signature. Note that for signatures from the above challenge-divided Schnorr’s Σ-protocol
for DLP, we have that f̃ = f and h̃ = h are conversion functions from {0, 1}∗ to Z∗

q .
2 In the following,

we directly describe the online/offline version of challenge-divided Schnorr signature.

• Public-key: U = g−w ∈ G′, where w ∈ Z∗
q .

• Secret-key: w.

• Message to be signed: m ∈ {0, 1}∗.

• Offline pre-computation: the signer pre-computes and stores (r, d, dw) (resp., (d, rd)), where r is
taken randomly by the signer from Z∗

q , a = gr, d = f(a). The signature verifier can pre-compute
e = h(m) and ê = e−1, in case it knows m before receiving the signature.

• Online signature generation: After receiving the message m to be signed, the signer computes
e = h(m), retrieves the pre-stored value (r, d, dw) (resp., (d, dr)), and computes z = er + dw
(resp., z = dr + ew). The signer outputs (d, z) as the signature on m.

• Signature verification: given a signature (e = h(m), d, z) where d, z ∈ Z∗
q , check that d, z ∈ Z∗

q

and f(gzêUdê) = d (resp., f(gzd̂U ed̂) = d), where ê = e−1 (resp., d̂ = d−1). Note that ê = e−1

can be offline pre-computed by the verifier, in case it knows the message m before receiving the
signature.

Theorem 4.1 Assuming h, f : {0, 1}∗ → {0, 1}l/{0} ⊆ Z∗
q are random oracles where l is the security

parameter, the challenge-divided Schnorr signature scheme is existentially unforgeable against adaptive
chosen message attacks under the DLP assumption.

Proof. We mainly provide the proof for challenge-divided Schnorr with z = er + dw, the proof for the
variant of z = dr + ew is similar.

Given a polynomial-time and successful forger F , i.e., F successfully outputs (after polynomially
many adaptively chosen queries to the signing oracle and random oracles), with non-negligible proba-
bility in polynomial-time, a valid signature on a new message that is different from those queried to the
signing oracle, we build an efficient solver C for the DLP problem, namely, C gets as input a random
element U = g−w in G and outputs the corresponding discrete logarithm w also with non-negligible
probability. For presentation simplicity, we assume the random oracles h, f are identical, namely we
use the unique RO h to handle all RO queries e = h(m) and d = h(a). The algorithm C is presented in
Figure 1.

For the description of C in Figure 1, suppose F makes Q RO queries and R signing oracle queries
(where Q and R are some polynomials in the security parameter l), we have the following proposition:

Proposition 4.1 With probability at most (RQ+R2/2)/(q− 1), C fails in one of Step S3 of signature
simulations. C fails at Step F3 with probability at most Q+2

2l−1
.

2As with DSS, in practice, f can simply be the “mod q” operation for implementations over Z∗
p , or the operation of

just taking the x-coordinate for implementations over elliptic curves over finite fields.

6

Building the DLP solver C from the challenge-divided Schnorr forger F

Setup: The input to C is a random element U = g−w in G, and its goal is to compute w. To this end, C
provides F with a random tape, and runs the forger F as the challenge-divided Schnorr signer of public-key
U .
RO queries: C provides random answers to queries to the random oracle h, under the limitation that if
the same h query is presented more than once, C answers it with the same response as in the first time.
Signature query simulation: Each time F queries the signing oracle for a challenge-divided Schnorr
signature on message mi, 1 ≤ i ≤ R, chosen by F adaptively, where mi denotes the message in the i-th
query, C answers the query as follows (note that C does not know the secret-key w corresponding to the
public-key U = gw):

S1. Chooses zi ∈R Z∗
q and di ∈R {0, 1}l ⊆ Z∗

q where l is the output length of the RO h. If h(m) has been

defined by previous query to h, then sets ei = h(m), otherwise chooses ei ∈R {0, 1}l \{0} and defines
h(m) = ei.

S2. Computes ai = gzie
−1
i Udie

−1
i .

S3. If h(ai) has been previously defined, C aborts its run and outputs “fail”. Otherwise, sets h(ai) = di.
Recall that, for presentation simplicity, we have assumed f = h.

S4. C responds to F ’s signing query mi with the simulated signature (di, zi).

When F halts, C checks whether the following conditions hold:

F1. F outputs (m, d, z) such that (d, z) is a valid signature on m. That is, d, z are in Z∗
q , e = h(m)

a = gze
−1

Ude−1

, and d = h(a).

F2. m was not queried by F to the signing oracle previously, i.e., m ̸= mi for all i, 1 ≤ i ≤ R.

F3. The values h(m) and h(a) were queried from the RO h.

If these three conditions hold, C proceeds to the “repeat experiments” below; in all other cases C halts and
outputs “fail”.
The repeat experiments. C runs F again for a second time, under the same public-key U and using the
same coins for F . There are two cases according to the order of the RO queries of h(m) and h(a):

C1. h(m) posterior to h(a): C rewinds F to the point of making the RO query h(m), responds back a
new independent value e′ ∈R {0, 1}l \ {0}. All subsequent actions of C (including random answers to
subsequent RO queries) are independent of the first run. If in this repeated run F outputs a valid

signature (d, z′) for the message m, i.e., e′ = h(m), d = h(a) and a = gz
′e′−1

Ude′−1

, C computes
w = (z′e′−1 − ze−1)/(de′−1 − de−1) mod q.

C2. h(a) posterior to h(m): C rewinds F to the point of making the RO query h(a), responds back a new
independent value d′ ∈R {0, 1}l \ {0}. All subsequent actions of C (including random answers to
subsequent RO queries) are independent of the first run. If in this repeated run F outputs a valid

signature (d′, z′) for the message m, i.e., e = h(m), d′ = h(a) and a = gz
′e−1

Ud′e−1

, C computes
w = (z′ − z)/(d′ − d) mod q.

Figure 1: Reduction from DLP to challenge-divided Schnorr signature forgeries

7

Proof (of Proposition of 4.1). It is easy to check that suppose C never fails at Step S3, the signature
simulations by C are of identical distribution with that of real signatures by using the secret-key w.

Next, we limit the upper-bound of Step S3 failure. Note that for each ai generated by C at Step S2,
it is distributed uniformly in G \ 1G. In the RO model, there are two cases for C fails at Step S3:

• For some i, 1 ≤ i ≤ R, F ever successfully guessed the value ai in one of its Q random oracle
queries. Thus, the probability that C fails in Case 1 is at most RQ/(q − 1).

• For some i, 1 ≤ i ≤ R, the value ai has ever been generated in dealing with the j-th signing oracle
query, j < i. The probability that C fails in Case 2 is at most C2

R/(q− 1) ≤ (R2/2)/(q− 1), where
C2
R is the combination number of selecting two elements from a set of R elements.

Finally, it is easy to check that C fails at Step F3 with probability at most Q+2
2l−1

. To see this, we first
consider the value d. There are two cases:

Case-1: The value d is undefined (specifically, d was not output by the RO h in the simulation, i.e.,
there exists no a record of the form (·, d) in the simulation of the RO h). This case implies that
F simply guesses the value d, which can succeed with probability 1

2l−1
.

Case-2: The value d is defined. We further consider two cases:

Case-2.1: F did not make the RO query h(m). In this case, the value a is also undefined, and
for any α ∈ G \ 1G, Pr[a = α] ≤ 1

2l−1
. Thus, F can succeed with probability at most Q

2l−1
in

this case.

Case-2.2: F made the RO query h(m) = e, which then determines the value a, but F did not
make the RO query h(a). In this case, F can succeed (i.e., Pr[h(a) = d]) with probability at
most 1

2l−1
.

Putting all together, we have that C can abort at Step F.3 with probability at most Q+2
2l−1

. �
Thus, suppose the forger F succeeds (i.e., outputs a valid signature (d, z) for a new message m

different from those queried) with non-negligible probability in its real attack against the signer of
public-key U , F succeeds in the first run of C in Figure 1 also with non-negligible probability (up
to a gap at most (QR + R2/2)/(q − 1)). Then, with non-negligible probability (with a gap at most
(QR + R2/2)/(q − 1) + Q+2

2l−1
to the success probability of F in its real attack), C does the repeated

second run.
For presentation simplicity, we write the signature of challenge-divided Schnorr on a message m as

(m, e = h(m), a, d = h(a), z). Note that given a pair of different signatures on the same m (and a):
{(m, e, a, d, z), (m, e′, a, d, z′)} that corresponds to Case C1 in Figure 1, or, {(m, e, a, d, z), (m, e, a, d′, z′)}
that corresponds to Case C2 in Figure 1, the value w computed by C is correct. Thus, to finish the
theorem, what left is to show that conditioned F succeeds in outputting the valid (m, e, a, d, z) in the
first run of C, with non-negligible probability F will also succeed in Case C1 or Case C2 of the repeated
second run. We note that this can be shown by an extended version of the Pointcheval-Stern forking
lemma [15] (that was originally developed to argue the security of digital signature schemes via the Fiat-
Shamir paradigm). For completeness, we reproduce the forking lemma tailored for signature schemes
via the challenge-divided Fiat-Shamir paradigm, referred to as divided forking lemma.

Suppose F produces, with probability ε′, a valid signature (m, e, a, d, z), within the time bound T
in its real attack against the signer of public-key U , then with probability at least ε = (ε′ − (QR +
R2/2)/(q−1)− Q+2

2l−1
) F outputs a valid signature (m, e, a, d, z) in the first run of C described in Figure 1

such that F made both h(m) = e and h(a) = d queries to the RO with the order of h(m) being posterior
to h(a) or the order of h(a) being posterior to h(m). Without loss of generality, we assume it is the
former case, i.e., the RO query h(m) is posterior to h(a) (the analysis of the case of h(a) being posterior
to h(m) is similar). We have the following lemma, from which the theorem is then established.

8

Lemma 4.1 (divided forking lemma) Suppose F produces, with probability ε, a valid signature
(m, e, a, d, z) within the time bound T in the first run of C such that F made both h(m) = e and h(a) = d
RO queries with the order h(m) being posterior to h(a), then within time T ′ ≤ (2/ε+(ε/4Q−2−l)−1) ·T
and with probability at least 1

9 , a replay of F outputs a valid signature (m, e′, a, d, z′) for e′ ̸= e.

Proof (of Lemma 4.1). The proof of Lemma 4.1 is essentially identical to that of Lemma 2 in [15],
which we re-produce here for completeness. We mention that, as in [15], although the divided forking
lemma is presented here w.r.t. the challenge-divided Schnorr signature (based on the challenge-divided
Schnorr’s Σ-protocol for DLP), it can be directly extended and applied to signatures derived from other
challenge-divided Σ-protocols.

Denote by ω the random tape of F , and assume F makes at most Q RO queries Q1, · · · ,QQ (for
presentation simplicity, we assume all RO queries are distinct), and denote by ρ = (ρ1, · · · , ρQ) the
Q RO answers. It is clear a random choice of the random function h (i.e., the RO) corresponds to a
random choice of ρ.

Define S to be the set of (ω, h) such that Fh(ω) outputs a valid signature (m, e, a, d, z) in the first
run of C, such that F made both h(m) and h(a) RO queries with the order of h(m) being posterior to
h(a). That is, Pr[S] = ε. Define Ind(ω, h) to be the index of the RO query h(m), i.e., m = QInd(ω,h).
Define Si to be the subset of S such that Ind(ω, h) = i for 1 ≤ i ≤ Q. That is, the set {S1, · · · ,SQ}
is a partition of S. Define I = {i|Pr[Si|S] ≥ 1/2Q}, i.e., Pr[Si|i ∈ I] ≥ ε/2Q. For each i ∈ I,
define by hi the restriction of h to queries of index strictly less than i, they by applying the Splitting
Lemma (Lemma 1, page 12 in [15]), there exists a subset Ωi (of S) such that: (1) for any (ω, h) ∈ Ωi,
Prh′ [(ω, h′) ∈ Si|h′i = hi] ≥ ε/4Q; (2) Pr[Ωi|Si] ≥ 1

2 . As all the subsets Si are disjoint, it is calculated
that Prω,h[∃i(ω, h) ∈ Ωi ∩ Si|S] ≥ 1

4 (for more details, the reader is referred to [15]).
By the Lemma 3 (page 14) in [15], we get Pr[Ind(ω, h) ∈ I|S] ≥ 1

2 . Now, run F 2/ε times with

random ω and h, with probability 1− (1− ε)2/ε ≥ 4
5 we get one successful pair (ω, h) ∈ S. Denote by

β the index Ind(ω, h) corresponding to the successful pair. We know with probability at least 1
4 , β ∈ I

and (ω, h) ∈ Sβ ∩Ωβ. Consequently, with probability at least 1
5 , the 2/ε runs have provided a successful

pair (ω, h) ∈ Sβ ∩ Ωβ where β = Ind(ω, h). As Prh′ [(ω, h′) ∈ Sβ|h′β = hβ] ≥ ε/4Q in this case, we get

Prh′ [(ω, h′) ∈ Sβ ∧ρβ ̸= ρ′β|h′β = hβ] ≥ ε/4Q−2−l, where ρβ = h(Qβ) and ρ′β = h′(Qβ). Now, we replay

F with fixed ω but randomly chose h′ such that h′β = hβ, for (ε/4Q − 2−l)−1 times, with probability

at least 3
5 , we will get another success. That is, after less than 2/ε+ (ε/4Q− 2−l)−1 repetitions of F ’s

attack, with probability at lease 1
5 ×

3
5 ≥

1
9 , we have obtained two valid signatures (m, e, a, d, z) and

(m, e′, a, d, z′) for e ̸= e′. � �
Divided forking lemma vs. standard forking lemma. The standard forking lemma proved in

[15] deals with a single rewinding point (specifically, e = h(a,m)) in the RO model for formally proving
the security of digital signatures instantiated via the standard Fiat-Shamir paradigm. This standard
forking lemma does not directly apply to the above analysis of challenge-divided Schnorr signature, as
we need to deal with multiple ordered rewinding points (specifically, h(m) and h(a)) in the RO model.
We suggest that this divided forking lemma can have independent interests, and can be applied to
analyze other cryptographic schemes in the random oracle model, where multiple ordered rewinding
points need to be dealt with in the random oracle model.

4.1 Challenge-Divided Schnorr Signature vs. DSS

We note all performance advantages of DSS are essentially preserved with the challenge-divided Schnorr
scheme. We also note the techniques proposed in [14] for improving the performance of DSS in certain
scenarios, e.g., signature batch verification and compression, etc, are also applicable to challenge-divided
Schnorr. In addition, challenge-divided Schnorr has the following advantages over DSS:

• Provable security in the random oracle model. We have shown that, assuming both h and f are
random oracles, the challenge-divided Schnorr scheme is existentially unforgeable against adaptive
chosen message attacks under the DLP assumption in the random oracle model. The provable
security of DSS is still unknown.

9

• Same or better offline space complexity than DSS. Suppose k values of a’s are pre-computed, the
offline space complexity of challenge-divided Schnorr with z = er+ dw is 3k|q| (which is the same
as that of DSS). But, for challenge-divided Schnorr with z = dr+ ew, the offline space complexity
is only 2k|q|.

• More efficient signature generation in total. To compute the value s in the DSS signature, the
DSS signer performs 1 modular inverse (i.e., r̂ = r−1) and 2 modular multiplications in total.
In comparison, to compute the value z in the challenge-divided Schnorr signature, the signer
only performs 2 modular multiplications in total (without performing the quite time-consuming
modular inverse operation). We remark that modular inverse is a relatively expensive operation
(which is typically performed by the Euclid algorithm), and is thus much preferable to dispense
with (particularly for smart-card-based deployment).

• More efficient offline pre-computation. Besides the same other pre-computations, the DSS signer
needs to perform 1 modular inverse r−1 and 2 modular multiplications for computing dwr−1, but
the signer of challenge-divided Schnorr needs to offline perform only 1 modular multiplication dw
or dr.

• More efficient online signature verification (for the case of z = er + dw). For verifying a DSS sig-
nature (d, s), the verifier has to compute ŝ = s−1 online (which is a relatively expensive operation
as clarified), as the value s is known to the verifier only when the signature comes to it. In com-
parison, for verification of challenge-divided Schnorr with z = er + dw, the verifier only needs to
compute the inverse ê = e−1 where e = h(m). In case the verifier learns the message to be signed
prior to receiving the signature from the signer (which is quite common in certain scenarios), the
values e and e−1 can both be offline pre-computed by the verifier of challenge-divided Schnorr. For
challenge-divided Schnorr with z = dr + ew, signature verification is of the same computational
complexity as that of DSS.

4.2 Challenge-Divided Schnorr Signature vs. Schnorr’s Signature

For implementation of Schnorr’ signature over (the subgroup of order q of) Z∗
p , where typically p is of

1024 bits and q 160 bits, and supposing the signer pre-computes k values of a, the space complexity (of
storing k pre-computed a’s) of Schnorr’s signature is (|p|+ |q|)k, which is significantly larger than that
of challenge-divided Schnorr signature (that is 2|q|k for the case of z = dr + ew).

For implementations of Schnorr’s signature and challenge-divided Schnorr signature on certain el-
liptic curves over finite field Fq, the value a is an elliptic curve point that is typically represented by a
pair of coordinates (x, y) ∈ F 2

q . In this case, the space complexity (for storing k pre-computed a’s) of
Schnorr’s signature is 3|q|k that is still much larger than the complexity of 2|q|k of challenge-divided
Schnorr signature. We also note that the presentation of an elliptic curve point can be made more
concise, e.g., by just using the x-coordinate [2]. But, with such a condensed presentation of elliptic
curve point, the signer needs to recover the y-coordinate when generating signatures (i.e, the value
e = h(a,m)) in the online phase, which can incur much additional online computational complexity
and may violate the spirit of online/offline signatures. In this sense, challenge-divided Schnorr signa-
ture still enjoys better online/offline efficiency than Schnorr’s signature even implemented over elliptic
curves (besides significant online/offline efficiency advantage for implementations over Z∗

p).

References

[1] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols. InACM Conference on Computer and Communications Security, pages 62-73, 1993.

[2] D. Boneh, B. Lynn and H. Shacham. Short Signatures from the Weil Pairing. In AsiaCrypt 2001,
pages 514-532, LNCS 2248, Springer-Verlag, 2001.

[3] R. Cramer. Modular Design of Secure, yet Practical Cryptographic Protocols, PhD Thesis, Uni-
versity of Amsterdam, 1996.

10

[4] S. Even, O. Goldreich and S. Micali. On-line/Off-line Digital Sigantures. In Crypto’89, pages
263-277.

[5] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature
Problems. In A. Odlyzko (Ed.): Advances in Cryptology-Proceedings of CRYPTO’86, LNCS 263,
pages 186-194. Springer-Verlag, 1986.

[6] FIPS Pub 186-2, Digital Signature Standard (DSS), Federal Information Processing Standards
Publication 186-2, US Department of Commerce/National Institute of Standard and Technology,
Githersburg, Maryland, USA, January 27, 2000. (Change notice is made on October 5 2001.)

[7] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But Their Validity or All
languages in NP Have Zero-Knowledge Proof Systems. Journal of the Association for Computing
Machinery, 38(1): 691-729, 1991.

[8] S. Goldwasser, S. Micali and C. Rackoff. A Digital Signature Scheme Secure Against Adaptive
Chosen-Message Attacks. SIMA Journal on Computing, 17(2): 281-308, 1988.

[9] L. Guillou and J. J. Quisquater. A Practical Zero-Knowledge Protocol Fitted to Security Mi-
croprocessor Minimizing both Transmission and Memory. In C. G. Gnther (Ed.): Advances in
Cryptology-Proceedings of EUROCRYPT 1988, LNCS 330 , pages 123-128, Springer-Verlag, 1988.

[10] H. Krawczyk. HMQV: A High-Performance Secure Diffie-Hellman Protocol. In V. Shoup (Ed.): Ad-
vances in Cryptology-Proceedings of CRYPTO 2005, LNCS 3621, pages 546-566. Springer-Verlag,
2005.

[11] L. Law, A. Menezes, M. Qu, J. Solinas and S. Vanstone. An Efficient Protocol for Authenticated
Key Agreement. Designs, Codes and Cryptography, 28: 119-134, 2003.

[12] A. Menezes, M. Qu, and S. Vanstone. Some New Key Agreement Protocols Providing Mutual
Implicit Authentication. Second Workshop on Selected Areas in Cryptography (SAC’95), 1995.

[13] A. Menezes and B. Ustaoglu. On the Importance of Public-Key Validation in the MQV and HMQV
Key Agreement Protocols. INDOCRYPT 2006: 133-147.

[14] D. Naccache, D. M’Raihi, S. Vaudenay and D. Raphaeli. Can D.S.A be Improved? Complexity
Trade-Offs with the Digital Signature Standard. In Advances in Cryptology-Proceedings of EURO-
CRYPT 1994, LNCS 950, pages 77-85, Springer-Verlag, 1994.

[15] D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind Signatures.
Journal of Cryptology, 13: 361-396, 2000.

[16] C. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptology, 4(3): 161-174,
1991.

[17] A. Shamir and Y. Tauman. Improved Online/Offline Signature Schemes. In In Advances in
Cryptology-Proceedings of CRYPTO 2001, LNCS 2139, pages 355-367, Springer-Verlag, 1996.

11

