
On the Indifferentiability of the Integrated-Key Hash Functions

Saif Al-Kuwari

Department of Computer Science,
University of Bath, Bath, BA2 7AY, UK

S.Alkuwari@bath.ac.uk

Abstract

Most of today’s popular hash functions are keyless such that they accept variable-length
messages and return fixed-length fingerprints. However, recent separation results reported
on several serious inherent weaknesses in these functions, motivating the design of hash func-
tions in the keyed setting. The challenge in this case, however, is that on one hand, it is
economically undesirable to abundant the already adopted (keyless) functions in favour of
new (keyed) ones, and on the other hand, the process of converting a keyless function to a
keyed one is, evidently, non-trivial. A solution to this dilemma is to adopt the ”integrated-
key” approach that creates keyed hash functions out of ”unmodified” keyless primitives. In
this paper, we adopt several integrated-key constructions and prove that they are indifferen-
tiable from random oracle, showing in details how to develop indifferentiability proofs at the
integrated-key setting. The presented indifferentiability proof is generic and can be applied
on other hash functions constructed in this setting with sufficiently similar structures to the
constructions in this paper.

1



1 Introduction

Cryptographic hash functions are the workhorses of cryptography. A classical problem in the
hash function literature is how to formally argue about the security of a hash function without
the presence of keys [16]. This problem, along with numerous cryptanalytic results [17, 18, 19]
on some of the most popular keyless hash functions, clearly demonstrated that there are inherent
weaknesses in the keyless design approach. A simple solution to these problems is to instead shift
to keyed hash function, but adopting new hash functions neither economical nor easy to do. In
most cases, it is much more convenient (and cheaper) to somehow patch an existing keyless hash
function to adapt for a key rather than shifting to a new keyed one, but then the underlying
building blocks of the keyless hash function will need to undertake non-trivial modifications
since they do not naturally accommodate the key input. That is, a typical keyless hash function
consists of two components, a keyless compression function f : {0, 1}m × {0, 1}n → {0, 1}n, and
a construction Cf : {0, 1}∗ → {0, 1}n with access to f , which accepts a message M ∈ {0, 1}∗ of
variable-length, divides it into m-bit blocks (pads if necessary), and hashes the blocks iteratively
by repeatedly calling f . On contrast, in a typical keyed setting, the compression function f is
keyed admits an extra key input fK : {0, 1}k × {0, 1}m × {0, 1}n → {0, 1}n. Clearly, converting
f to fK , without major modifications to the underlying structure of f , is difficult, if at all
possible. In [1] a moderate solution to this problem was proposed which seamlessly transforms
keyless hash functions into keyed ones without ”touching” the underlying keyless compression
function, this new setting is called the Integrated-Key setting, which introduce a dedicated
mixing function, called the integration function, to handle the key independently outside the
compression function.

Integrated-Key Setting. A hash function constructed in the integrated-key setting Cf,g :
K × M → {0, 1}n is a family of hash functions utilizing a keyless compression function f :
{0, 1}n × {0, 1}m → {0, 1}n and a keyed integration-function g : {0, 1}k × {0, 1}b → {0, 1}b
where the latter processes the key K ∈ K independently outside f . We require g to be called
at least whenever f is called in a similar way as in the dedicated-key setting [3]. In general,
keyed hash functions are less efficient than keyless ones because in the former an extra input
(i.e. the key) needs to be processed. However, the efficiency of hash functions constructed in the
integrated-key setting highly depends on the implementation of the corresponding integration
function, which should ideally be a lightweight function. In section 2 we suggest adopting the
prepend-permute-chop paradigm [10] for the integration function, which is both efficient and
secure. We emphasize that it is not the focus of this paper to argue about the principles of
the integrated-key setting (these were discussed in length in [1]), rather we are here mainly
concerned about the indifferentiability of hash functions constructed in this setting.

Notation. The notation x $←− {0, 1}n indicates that a value chosen uniformly at random from
the set {0, 1}n is assigned to the variable x. We denote by |M | the length of the string M .
Concatenation of n blocks is denoted by M1|| . . . ||Mn, or sometimes M1 . . .Mn. We refer to all
values in the column labeled x̂ of the table TK by TK(x̂). The empty string is denoted by ⊥. We
use the subscript (underscore) to index an arbitrarily chosen row in a table. The notation XY

indicates that a component X has an oracle access to another component Y (oracle access here
means that Y is a public component that replies to any query it receives). We use calligraphic
font to denote ideal components, such as a random oracle F .

Organization. This paper is organized as follows, in section 2 we introduce the three integrated-
key constructions from [1], followed by section 3 where we recall the indifferentiability framework

2



due to Coron et al. [8]. Section 4 is the main part (and contribution) of this paper where we
provide a detailed indifferentiability proof of the constructions presented in section 2, noth-
ing, however, that we developed the proof in a generic way which makes it applicable to other
integrated-key constructions with sufficient similarities to the ones presented in this paper.

2 The iMD Constructions

Most of the popular hash functions (e.g. MD5, SHA-1) are based on the (keyless) Merkle-
Damg̊ard construction [13, 9]. Thus, in this work we adopt integrated-key variants of Merkle-
Damg̊ard [1] and prove that they are indifferentiable from RO. Although both the compression
and integration functions can be visualized as a single entity, to improve the accuracy of the
indifferentiability bounds in the proof, we make an explicit distinction between the two and show
how indifferentiability proofs are carried out in the integrated-key setting. Figure 1 defines the
x-iMD, y-iMD and c-iMD constructions1[1], where Pads(.) is a suffix-free padding.

x-iMDfx,gx(K,M) :
M1...M` ← Pads(M)
y0 = IV
for i = 1 to ` do
yi = fx(gx(K,Mi), yi−1)

return y = gx(K, 0m−n||y`)

y-iMDfy ,gy(K,M) :
M1...M` ← Pads(M)
y0 = IV
for i = 1 to ` do
yi = fy(Mi, gy(K, yi−1))

return y = gy(K, y`)

c-iMDfy ,gc(K,M) :
M1...M` ← Pads(M)
y0 = IV
for i = 1 to ` do
yi = gc(K, fy(Mi, yi−1))

return y = gc(K, y`)

Figure 1: Pseudocode for the x-iMD, y-iMD, c-iMD constructions

Formally, x-iMDfx,gx , y-iMDfy ,gy , c-iMDfc,gc : {0, 1}k × {0, 1}∗ → {0, 1}n, where fx, fy, fc :
{0, 1}m × {0, 1}n → {0, 1}n, gx : {0, 1}k × {0, 1}m → {0, 1}m, gy, gc : {0, 1}k × {0, 1}n → {0, 1}n.
The integration function can be any sufficiently mixing function, but for the sake of completeness,
we suggest adopting the prepend-permute-chop (PPC) paradigm, which was proven indifferen-
tiable from RO in [10]. Formally, g(K, c) = [π(K||c)]n, where π is a random permutation, and
the notation [X]n extracts the n most significant bits of the string X.

3 The Indifferentiability Framework

Proofs in the standard model (where adversarial resources are limited) can become extremely
difficult for sufficiently complex cryptosystem. This fact motivated Bellare and Rogaway [4]
to propose a formalism of the well known Random Oracle Model (ROM) which assumes the
presence of a publicly accessible ideal primitive that when given an input, returns a random
output. However, recent separation results [6, 14, 2, 7, 12, 11] questioned the soundness of this
model since, in practice, ROs are being instantiated by hash functions, which may not always
behave like ROs. Consequently, based on the notion of indifferentiability by Maurer et al. [12],
in [8] Coron et al. introduced their hash function indifferentiability framework where a hash
function is proven indifferentiable from RO and thus is expected to behave like one. In this
framework, a distinguisher D (which plays the role of an adversary) is given oracle access to
two (separate) systems, we call the first system the real system, consisting of a compression
function and the construction under consideration (which needs to be proven indifferentiable
from RO), and we call the second system the ideal system, consisting of a RO and a simulator

1Instead of giving x-iMD a dedicated function to handle the last finalizing call, we use its own integration
function gx and pads its input with m-n 0 bits. This shouldn’t affect its security arguments, but will simplify the
indifferentiability proof. We don’t have this issue with y-iMD and c-iMD.

3



(where the latter simulates the behaviour of the compression function of the real system at the
ideal system). Indifferentiability proofs can be conducted in either the Random Oracle Model
(ROM) or the Ideal Cipher Model (ICM). The difference between these two approaches is that
in the ROM, the ideal compression function at the real system is modelled as a RO, while it
is modelled as an ideal block-cipher in the ICM. In the latter case, the ideal block-cipher can
receive both forward and inverse queries (because block-ciphers are invertible). Regardless of
the adopted model, proofs in the indifferentiability framework proceed in two steps: first, we
propose the simulator (simulating a compression function or an ideal cipher), and then we prove
that D’s view is similar when it interacts with the real system as it is when it interacts with
the ideal system (D cannot distinguish between the two systems). The formal definition of the
indifferentiability framework is as follows [8] (where the constructions under consideration is
referred to as a Turing machine C, the ideal compression function as H and the random oracle
as F):

Definition 3.1 (Indifferentiability from RO). A Turing machine C with oracle access to an
ideal primitive H is said to be (tD, tS , q, ε)-indifferentiable from an ideal primitive F if there
exists a simulator S such that for any distinguisher D it holds that:

|Pr[DC,H = 1]− Pr[DF ,S = 1]| < ε

The simulator S has oracle access to F and runs in time at most tS. The distinguisher runs in
time at most tD and makes at most q queries to C,H,F or S. C is said to be (computationally)
indifferentiable from F if ε is a negligible function of the security parameter.

4 Indifferentiability of the iMD Constructions

In this section, we prove that the x-iMDfx,gx , y-iMDfy ,gy , c-iMDfc,gc constructions are indiffer-
entiable from RO in the Ideal Cipher Model (ICM), when the compression functions fx, fy, fc
and the integration functions gx, gy, gc are modelled as ideal block-ciphers Hx,Hy,Hc,Gx,Gy,Gc,
respectively. We adopt the ICM because most of the popular hash functions are (explicitly or im-
plicitly) based on block-ciphers. The constructions x-iMDHx,Gx , x-iMDHy ,Gy , x-iMDHc,Gc treat
Hx,Hy,Hc and Gx,Gy,Gc as black-boxes such that upon receiving a message M , they partition
it into equally sized blocks x1, . . . , x` and process each block in turn through Hx,Hy,Hc and
Gx,Gy,Gc. Formally, in c-iMD, Hc receives a message block xi ∈ {0, 1}m and a chaining variable
(or IV ) yi ∈ {0, 1}n, and returns a temporary variable ci ∈ {0, 1}n, which is immediately given
to Gc along with the key K ∈ {0, 1}k to finally return zi ∈ {0, 1}n (note that for a sequence
of consecutive blocks, yi+1 = zi). In x-iMD, on the other hand, the integration function Gx is
called before Hx to process K and xi which will return ci that, along with yi, will be given to
Hx to return zi. y-iMD is similar to x-iMD, except in this case Gy processes K with yi instead
of xi, where the latter is given to Hy along with ci (the output of Gy) to produce zi.

In the ideal system, we introduce two simulators, the compression function and the inte-
gration function simulators SF , RF , both with oracle access to the random oracle F . Figure
2 depicts the indifferentiability games for the x-iMD, y-iMD, c-iMD constructions, showing
how the distinguisher D accesses each system (where x-iMD, y-iMD, c-iMD are by Ĉx, Ĉy, Ĉc,
respectively).

4.1 The Distinguisher

The distinguisherD is an adversary with oracle access to two systems (the real and ideal systems)
and whose aim is to prove that these systems can be distinguished from each other (but not

4



necessarily finding out which system is which, rather all D aims for is to show that the two
systems behave differently). Precisely, D is given a blind oracle access to the systems, meaning
that there is an imaginary barrier between D and the systems preventing D from seeing the
systems, as depicted in figure 2. Trying to fool the systems, D carries out a set of tests on
one system by repeatedly (and strategically) querying that system’s different components and
observes the responses, D sets the success conditions and outputs 1 if these tests succeed, 0
otherwise2. Simultaneously, D carries out the same set of tests on the other system, observes
the responses and similarly outputs 1 or 0. D fails if both systems behaved consistently and
then the two systems are said to be indifferentiable from each other. D may send either forward
or inverse queries but format them differently depending on which component they are sent
to; thus, D indeed knows what type of components it is interacting with (e.g. compression
function, integration function etc.) but it does not know to which system they belong. In
some cases, D can choose to exclusively interact with a particular system for a period of time,
but it will not be able to choose which system that would be. Forward queries may be sent
to any component in any system, but inverse queries may only be sent to Hi,Gi, SFi , RFi , i ∈
{x, y, c}; these components can receive inverse queries because we model the compression and the
integration functions as ideal block-ciphers where these are clearly invertible. When D sends an
inverse query to a particular component, it interacts with an inverse variant of that component
A−1, where A ∈ {Hi,Gi, SFi , RFi }. D communicates with the systems through three query
channels, Ch1, Ch2, Ch3, which are connected to three interfaces, if1, if2, if3, at the barrier
separating D from the real and ideal systems.

• Ch1: D uses this channel to interact with the constructions ĈHi,Gi
i , i ∈ {x, y, c} and the

random oracle F . This channel supports only forward queries of the form (K,M), where
K ∈ {0, 1}k and M ∈ {{0, 1}m}∗, and delivers back to D the response z ∈ {0, 1}n. To
simplify the proof, we assume that |M | is a multiple of m, we also ignore padding rules,
but the proof still holds with padding included.

• Ch2: D uses this channel to interact with the ideal compression functions Hx,Hy, Hc and
their simulators SFx , S

F
y , S

F
c . It supports both forward and inverse queries of the form

(→, c, y) and (←, z, c) for SFx , (→, x, c) and (←, z, x) for SFy , and (→, x, y) and (←, c, x)
for SFc , then delivers back to D the appropriate responses, namely, it returns z for queries
(→, c, y), (→, x, c), y for queries (←, z, c), (←, c, x), and c for query (←, z, x),(→, x, y).

• Ch3: D uses this channel to communicate with the ideal integration functions Gx,Gy,Gc
and their simulators RFx , R

F
y , R

F
c . Like Ch2, this channel also allows both forward and

inverse queries of the form (→, x,K) and (←, c,K) for RFx , (→, y,K) and (←, c,K) for RFy ,
and (→, c,K) and (←, z,K) for RFc , then delivers back to D the appropriate responses:
x for query (←, c,K), y for query (←, c,K), c for queries (→, x,K),(→, y,K),(←, z,K),
and z for query (→, c,K).

Each channel is split into two channels past its corresponding interface, one split for the real
system and another for the ideal system. Hence, when an interface ifx receives a query from
D, it creates two identical copies of that query and sends them off the other end through the
channel’s two splits, unless D chooses to exclusively interacts with a single system for a period of
time, in which case the interface chooses that system at random (D cannot choose which system
to interact with) and starts sending D’s queries to the components of that system until D
advises otherwise. That is, the interfaces cannot randomly switch between the systems without
an explicit request from D.

2In other words, D outputs 1 if it thinks that it is interacting with, e.g., the idea system, otherwise it outputs
0 (or vice versa depending on D’s definition).

5



x
ˆ

xC x xS xR

D
1Ch 3Ch

Real System Ideal System

(a) D’s view in the x-iMD game

y
ˆ

yC y yS yR

D
1Ch 3Ch

Real System Ideal System

(b) D’s view in the y-iMD game

c
ˆ

cC c cS cR

D
1Ch 3Ch

Real System Ideal System

(c) D’s view in the c-iMD game

Figure 2: The interaction between D and the real/ideal systems in the x-iMD, y-iMD, c-iMD
games

4.2 The Indifferentiability Proof

In this section, we adopt the Ideal Cipher Model (ICM) and prove that the constructions x-iMD,
y-iMD, c-iMD, with access to the ideal ciphers Hx,Hy,Hc,Gx,Gy,Gc are indifferentiable from a
RO, except with negligible probability.

Theorem 4.1 (Indifferentiability of x-iMD, y-iMD, c-iMD). The block-cipher based Integrated-
key constructions x-iMDHx,Gx, y-iMDHy ,Gy , c-iMDHc,Gc, with oracle access to the ideal block-
ciphers Hx,Hy,Hc : {0, 1}m × {0, 1}n → {0, 1}n, and the ideal integration functions Gx :
{0, 1}k × {0, 1}m → {0, 1}m,Gy,Gc : {0, 1}k × {0, 1}n → {0, 1}n, modelled as ideal block-ciphers,
are (tD, tS , q1, q2, q3, εx)-indifferentiable (tD, tS , q1, q2, q3, εy)-indifferentiable (tD, tS , q1, q2, q3, εc)-
indifferentiable from a random oracle F in the ideal cipher model for Hx,Hy,Hc and Gx,Gy,Gc,
any tD, tS ≤ (q1 · L/m + q2 + q3) · (m + n), any number of queries q1, q2, q3 sent by D to
x-iMDHx,Gx, y-iMDHy ,Gy , c-iMDHc,Gc, and:

εx ≤
(
2n((q1.L/m+ q2 + q3) + 2(q1.L/m)2 + q2 + q3) + (q1.L/m+ q2 + q3)

)
/2n

+
(
4(q1.L/m+ q2 + q3) + 3(q1.L/m+ q2 + q3)2

)
/2n

εy ≤
(
2m(2(q1.L/m+ q2 + q3) + 2(q1.L/m+ q2 + q3)2) + (q1.L/m+ q2 + q3)

)
/2m+n

+
(
3(q1.L/m+ q2 + q3) + 32(q1.L/m+ q2 + q3)2

)
/2n + (q1.L/m+ q2 + q3) /2m

εc ≤
(
2m(3(q1.L/m+ q2 + q3) + 2(q1.L/m+ q2 + q3)2) + (q1.L/m+ q2 + q3)

)
/2m+n

+
(
2(q1.L/m+ q2 + q3) + 3(q1.L/m+ q2 + q3)2

)
/2n

where L is the maximum length of the query q1.

Proof. We prove the indifferentiability by means of a hybrid argument. We adopt the game-
playing approach [5, 8] and prove that consecutive games are indifferentiable from each other,
stating the distinguishing probability when applicable. Each game represents a state of the
system which then evolves as the proof progresses through the games. We start with G(1),
Game 1, which represents the ideal system (consisting of the RO and simulators of the ideal
compression and integration functions) and finish with G(8) (consisting of the construction and
the ideal compression and integration functions), Game 8, which represents the real system. We
denote x-iMDHx,Gx , y-iMDHy ,Gy , c-iMDHc,Gc by ĈHx,Gx

x , Ĉ
Hy ,Gy
y , ĈHc,Gc

c , respectively, and prove
that they are indifferentiable from the random oracle F . Below we integrate the indifferentiabil-
ity proofs of the three constructions noting that the real/ideal systems of each proof may consist
of slightly different components, which we will often state explicitly.

The Simulators. We first propose the required simulators. The proof requires a total of six
simulators proposed in the ideal systems to simulate components in the real systems. Simulators

6



SFx , S
F
y , S

F
c simulate the ideal compression functions Hx,Hy,Hc and simulators RFx , R

F
y , R

F
c

simulate the ideal integration functions Gx,Gy,Gc, respectively; all simulators have oracle access
to F . The proof for ĈHx,Gx

x uses SFx , R
F
x , the proof for ĈHy ,Gy

y uses SFy , R
F
y , and the proof

for ĈHc,Gc
c uses SFc , R

F
c . Figure 4.2 graphically illustrates the input/output notation for each

construction, we will use this notation extensively throughout the proof. Each simulator pair

c

K

y

m

n

k

nnh
gc

x

h

K

m

n

k

m

gx c
h

c
n nn

gy

K
mk

zy

x
x

y

x-iMD y-iMD c-iMD

zz

Figure 3: Input/output notation of the x-iMD, y-iMD, c-iMD constructions

SFi -RFi cooperatively maintains a table T Ki , that is initially empty ⊥ but gradually grow as
D interacts with SFi -RFi , where i ∈ {x, y, c}. Since integrated-key hash functions are actually
families of hash functions, where the individual function members are indexed by different keys
K ∈ K, SFi and RFi will maintain different tables T Ki for different keys (members). Without loss
of generality, here we will assume that we are interacting with a single hash function member
and that the key K is fixed throughout the proof. As illustrated in figure 4, all tables contain
5-tuple records of the form (xsl,p

i , ysl,p
i , csl,p

i , zsl,p
i , tsl,p

i ), where xi ∈ {0, 1}m, yi ∈ {0, 1}n are the
message block and chaining variable (or IV), zi ∈ {0, 1}n is the output of the ideal ciphers
Hx,Hy (in the case of x-iMD and y-iMD) or the output of the idea integration function Gc (in
the case of c-iMD), and ci is the output of the ideal integration functions Gx,Gy (in the case of
x-iMD and y-iMD) or the output of the ideal cipher Hc (in the case of c-iMD), such that:

ci ∈

{
{0, 1}m if ci ∈ T Kx
{0, 1}n if ci ∈ T Ky ∪ T Kc

The index i ∈ {0, 1, . . . } of a record specifies the location of the tuple in tables T Kx , T Ky , T Kc , the
tag ti ∈ {⊥, 0, 1} indicates whether the tuple is part of a sequence, and if it does sl indicates to
which sequence (indexed by l ∈ {⊥, 0, 1, . . . }) this tuple belongs, and p ∈ {⊥, 0, 1, . . . } specifies
the exact location of the tuple in the sequence sl. A sequence is an ordered list of tuples such
that zsl,p−1

a = ysl,p
b , and is rooted by the j-th tuple where ysl,0

j = IV ; note that if two consecutive
tuples in a sequence do not have to be consecutive in T Kx , T Ky , T Kc (if zsl,p−1

a = ysl,p
b , then “a”

does not have to be “b − 1”, while they are still indexed in succession in the sequence sl). A
tuple belonging to a sequence is called sequenced tuple, otherwise it is singular. To keep track
of the number of sequences, T Kx , T Ky , T Kc maintain counters C̃Kx , C̃

K
y , C̃

K
c which are initially set

to 0 but are incremented every time a tuple with y = IV is encountered (recall that we use
the notation (underscore) to denote an arbitrary tuple in a table). As per the definitions of
SFi , R

F
i , i ∈ {x, y, c} below, a sequence has to be rooted by a tuple where ysl,0 = IV , otherwise

a sequence may not be formed, even if there are tuples in T Kx , T Ky , T Kc that can be connected.
Clearly, t = ⊥ implies l = p = ⊥; in fact, t here acts as a switch to activate or deactivate the
index sl (however, we may sometimes drop the sl, p index when referencing tuples if it is not
needed). Furthermore, tuples in T Kx , T Ky , T Kc are required to be complete (there are no tuples
with missing fields). Figures 5 and 6 formally define simulators SFi , R

F
i , i ∈ {x, y, c} and their

inverse variants; these simulators are based on two simple rule:

1. The c value is always generated by a RO. If it was given in a query, c is further processed
through a RO, that is F(c).

7



2. Unless given in a query, the z value is always generated by a RO.

Below we describe the simulators in more details, recall that all simulators receive both forward
and inverse queries.

.

⁞ ⁞ ⁞ ⁞ ⁞

x9 y9 c9 z9 1

x8

x0 y0 c0 z0

x1 y1 c1 z1 0

x2 y2 c2 z2

x3 y3 c3 z3 1

y4 c4 z4 1x4

y5 c5 z5x5

y6 c6 z6 0

┴

┴

┴

x6

y7 c7 z7 1x7

y8 c8 z8 1

0

1

2

3

.

.

⁞ ⁞ ⁞ ⁞ ⁞

x9 y9 c9 z9 1

x8

x0 y0 c0 z0 0

x1 y1 c1 z1 1

x2 y2 c2 z2 1

x3 y3 c3 z3 1

y4 c4 z4x4

y5 c5 z5x5

y6 c6 z6

0

┴

x6

y7 c7 z7x7

y8 c8 z8 1

0

1

2

3

.

.

┴

1

⁞ ⁞ ⁞ ⁞ ⁞

x9 y9 c9 z9

x8

x0 y0 c0 z0

x1 y1 c1 z1

x2 y2 c2 z2

x3 y3 c3 z3

y4 c4 z4x4

y5 c5 z5x5

y6 c6 z6

0

┴

x6

y7 c7 z7x7

y8 c8 z8 1

0

1

2

3

. ┴

1

┴

┴

┴

0

1

x̂ ŷ ẑĉ t̂ x̂ ŷ ẑĉ t̂ x̂ ŷ ẑĉ t̂

Figure 4: Samples of tables T Kx , T Ky , T Kc illustrating how tuples and sequences are organised
and linked

Simulators SFx and (SFx )−1

1. On forward query (→, c, y), SFx searches T Kx for a tuple (xi, yi, ci, zi, ti) such that ci = c
and yi = y, if found, it returns zi. Otherwise, SFx generates a new value for x uniformly

at random x
$←− {0, 1}m\{T Kx (x̂)}, then SFx proceeds to generate z as follows:

1(a). If y = IV , then SFx makes the query F(F(c), y) to the random oracle F to obtain z,
and sets t = 0, l = C̃K + 1, p = 0.

1(b). If there is a tuple (xsl,p
i , ysl,p

i , csl,p
i , zsl,p

i , tsl,p
i ) in T Kx such that y = zsl,p

i , then SFx
obtains z by querying the random oracle F(F(c), y), while setting t = 1 and indexes
the new tuple by sl, p+ 1.

1(c). Otherwise, SFx obtains z by querying F(F(c), y), and sets t = ⊥, with sl deactivated.

2. On inverse query (←, z, c), (SFx )−1 searches T Kx for a tuple (xi, yi, ci, zi, ti) such that zi = z
and ci = c, if found, it returns yi. Otherwise, (SFx )−1 generates y uniformly at random

y
$←− {0, 1}n\{T Kx (ŷ) ∪ T Kx (ẑ) ∪ IV }, where T Kx (ŷ) and T Kx (ẑ) extract all the y and z

values in the table T Kx which, along with IV, will be excluded from the value assigned

to y, and similarly generates x uniformly at random x
$←− {0, 1}m\{T Kx (x̂)}, while setting

t = ⊥, with sl deactivated.

Simulators RFx and (RFx )−1

8



1. On forward query (→,K, x), RFx searches T Kx for a tuple (xi, yi, ci, zi, ti) such that xi = x, if

found, it returns ci. Otherwise, RFx generates y uniformly at random y
$←− {0, 1}n\{T Kx (ŷ)∪

T Kx (ẑ)∪ IV }, then query F on x to obtain c, that is c← F(K,x), and finally query F on
y and c to obtain z, that is z ← F(y, c), while setting t = ⊥ with sl deactivated.

2. On inverse query (←,K, c), (RFx )−1 searches T Kx for a tuple (xi, yi, ci, zi, ti) such that
ci = c, if found, it returns xi. Otherwise, (RFx )−1 generates both x and y uniformly at

random: x $←− {0, 1}m\{T Kx (x̂)}, y $←− {0, 1}n\{T Kx (ŷ)∪T Kx (ẑ)∪IV }, and then generates z
by querying F that is z ← F(F(c), y). Finally, it sets t = ⊥ with the index sl deactivated.

Simulators SFy and (SFy )−1

1. On forward query (→, x, c), SFy searches T Ky for a tuple (xi, yi, ci, zi, ti) such that xi = x

and ci = c, if found, it returns zi. Otherwise, SFy generates y uniformly at random

y
$←− {0, 1}n\{T Ky (ŷ) ∪ T Ky (ẑ) ∪ IV }. Then SFy obtains z by querying F as follows:

z ← F(x,F(c)), while setting t = ⊥, with sl deactivated.

2. On inverse query (←, z, x), (SFy )−1 searches T Ky for a tuple (xi, yi, ci, zi, ti) such that zi = z

and xi = x, if found, it returns ci. Otherwise, (SFy )−1 generates y uniformly at random

y
$←− {0, 1}n\{T Ky (ŷ) ∪ T Ky (ẑ) ∪ IV }, and queries F to obtain c such that c ← F(K, y),

while setting t = ⊥, with sl deactivated.

Simulators RFy and (RFy )−1

1. On forward query (→,K, y), RFy searches T Ky for a tuple (xi, yi, ci, zi, ti) such that yi = y, if

found, it returns ci. Otherwise, RFy generates x uniformly at random x
$←− {0, 1}m\{T Kx (x̂)},

and query F to generate c ← F(K, y), then RFy proceeds to generate z as follows (recall
that z has to be generated to complete the new tuple):

1(a). If y = IV , then RFy makes the query F(x, c) to the random oracle F to obtain z, and
sets t = 0, l = C̃K + 1 (increment the counter C̃) and p = 0.

1(b). If there is a tuple (xsl,p
i , ysl,p

i , csl,p
i , zsl,p

i , tsl,p
i ) in T Kc such that y = zsl,p

i , then RFy
obtains z by querying the random oracle F(T ||x, c), where:

T = xsl,0||xsl,1|| . . . ||xsl,p−1||xsl,p

which is a chain of queries rooted by the tuple indexed by sl, 0. Once the new tuple
is created, RFy indexes it by sl, p+ 1 while setting tsl,p+1 = 1.

1(c). Otherwise, RFy obtains z by querying F(x, c), and sets t = ⊥, with sl deactivated.

2. On inverse query (←,K, c), (RFy )−1 searches T Ky for a tuple (xi, yi, ci, zi, ti) such that
ci = c, if found, it returns yi. Otherwise, (RFy )−1 generates both x and y uniformly at

random: x $←− {0, 1}m\{T Ky (x̂)}, y $←− {0, 1}n\{T Ky (ŷ) ∪ T Ky (ẑ) ∪ IV }, and then generates
z by querying F such that z ← F(x,F(c)). Finally, it sets t = ⊥ with the index sl
deactivated.

9



Simulators SFc and (SFc )−1

1. On forward query (→, x, y), SFc searches T Kc for a tuple (xi, yi, ci, zi, ti) such that xi = x
and yi = y, if found, it returns ci. Otherwise, SFc creates a new tuple by querying F for c
on input (x, y), that is c← F(x, y), then SFc proceeds to generate z as follows (recall that
z has to be generated to complete the new tuple):

1(a). If y = IV , then SFc makes the query F(K, c) to the random oracle F to obtain z,
and sets t = 0, l = C̃K + 1 (increment the counter C̃) and p = 0.

1(b). If there is a tuple (xsl,p
i , ysl,p

i , csl,p
i , zsl,p

i , tsl,p
i ) in T Kc such that y = zsl,p

i , then SFc
obtains z by querying the random oracle F(K,T ||x), where:

T = xsl,0||xsl,1|| . . . ||xsl,p−1||xsl,p

which is a chain of queries rooted by the tuple indexed by sl, 0. Once the new tuple
is created, SFc indexes it by sl, p+ 1 while setting tsl,p+1 = 1.

1(c). Otherwise, SFc obtains z by querying F(K, c), and sets t = ⊥, with sl deactivated.

2. On inverse query (←, c, x), (SFc )−1 searches T Kc for a tuple (xi, yi, ci, zi, ti) such that xi = x
and ci = c, if found, it returns yi. Otherwise, (SFc )−1 generates y uniformly at random

y
$←− {0, 1}n\{T Kc (ŷ) ∪ T Kc (ẑ) ∪ IV }, where T Kc (ŷ) and T Kc (ẑ) extract all the y and z

values in the table T Kc which, along with IV, will be excluded from the value assigned to
y, obtains z by querying F(K,F(c)), and sets t = ⊥, with sl deactivated.

Simulators RFc and (RFc )−1

1. On forward query (→,K, c), RFc searches T Kc for a tuple (xi, yi, ci, zi, ti) such that ci = c,
if found, it returns zi. Otherwise, RFc generates both x and y uniformly at random:

x
$←− {0, 1}m\{T Kc (x̂)}, y $←− {0, 1}n\{T Kc (ŷ)∪T Kc (ẑ)∪IV }, and then queries F to generate

z ← F(K,F(c)). Finally, it sets t = ⊥ with the index sl deactivated.

2. On inverse query (←,K, z), (RFc )−1 searches T Kc for a tuple (xi, yi, ci, zi, ti) such that zi =

z, if found, it returns ci. Otherwise, (RFc )−1 generates x and y uniformly at random: x $←−
{0, 1}m\{T Kc (x̂)}, y $←− {0, 1}n\{T Kc (ŷ) ∪ T Kc (ẑ) ∪ IV }, and then generates c by querying
F on input (x, y): c← F(x, y). Finally, it sets t = ⊥ with the index sl deactivated.

The Indifferentiability Proof. We now construct the games. Throughout the proof, P xi , P
y
i , P

c
i

denote the probabilities that D outputs 1 in game G(i) of the indifferentiability proofs of
ĈHx,Gx
x , Ĉ

Hy ,Gy
y , ĈHc,Gc

c , respectively. Figure 7 depicts the state of the systems in each game.

Game 1. This is the RO game where D is exclusively interacting with the ideal system. Let

P x1 = Pr[DF ,S
F
x ,R

F
x = 1];P y1 = Pr[DF ,S

F
y ,R

F
y = 1];P c1 = Pr[DF ,S

F
c ,R

F
c = 1]

Game 2. In this game we introduce dummy relay algorithms F1,x, F1,y, F1,c placed between D
and F in the ĈHx,Gx

x , Ĉ
Hy ,Gy
y , ĈHc,Gc

c proofs, respectively. These algorithms relay queries from
D to F and relay responses back from F to D. Obviously, the view of D in G(2) is not affected
by the introduction of F1,x, F1,y, F1,c, thus:

P x2 = Pr[DFF1,x,S
F
x ,R

F
x = 1] = P x1 ;P y2 = Pr[DFF1,y ,S

F
y ,R

F
y = 1] = P y1 ;P c2 = Pr[DFF1,c,S

F
c ,R

F
c = 1] = P c1

10



Simulator SFx (→, c, y)
if (ci, yi) ∈ T Kx

∧(c, y) = (ci, yi)
then return zi

else x
$←− {0, 1}m\{T Kx (x̂)}

if y = IV then
t = 0, l = C̃k + 1, p = 0
return z ← F(F(c), y)

else if y = zsl,p
i , zsl,p

i ∈ T Kx
then sett = 1, p = p+ 1
return z ← F(F(c), y)

else z ← F(F(c), y), t = ⊥

Simulator (SFx )−1(←, z, c)
if (zi, ci) ∈ T Kx
∧(z, c) = (zi, ci)

return yi

else return y
$←− {0, 1}n\

{T Kx (ŷ) ∪ T Kx (ẑ) ∪ IV }
x

$←− {0, 1}m\{T Kx (x̂)}, t = ⊥

Simulator SFy (→, x, c)
if (xi, ci) ∈ T Ky

∧(x, c) = (xi, ci)
then return zi

else y
$←− {0, 1}n\

{T Ky (ŷ) ∪ T Ky (ẑ) ∪ IV }
return
z ← F(x,F(c))
t = 0

Simulator (SFy )−1(←, z, x)
if (zi, xi) ∈ T Ky

∧(z, x) = (zi, xi)
then return ci

else

y
$←− {0, 1}n\
{T Ky (ŷ) ∪ T Ky (ẑ) ∪ IV }

return c← F(K, y)
t = ⊥

Simulator SFc (→, x, y)
if (xi, yi) ∈ T Kc
∧(x, y) = (xi, yi)

return ci
else return c← F(x, y)

if y = IV, then
t = 0, l = C̃k + 1,
p = 0, z ← F(K, c)

else if y = zsl,p
i

∧zsl,p
i ∈ T Kc , then

t = 1, p = p+ 1
T = xsl,0||xsl,1|| . . . ||xsl,p

z ← F(K,T ||x)
else z ← F(K, c), t = ⊥

Simulator (SFc )−1(← c, x)
if (ci, xi) ∈ T Kc
∧(c, x) = (ci, xi), return yi

else return y
$←− {0, 1}n\

{T Kc (ŷ) ∪ T Kc (ẑ) ∪ IV }
z ← F(K,F(c)), t = ⊥

Figure 5: Simulators SFx , (S
F
x )−1, SFy , (S

F
y )−1, SFc , (S

F
c )−1

Simulator RFx (→,K, x)
if xi ∈ T Kx ∧ x = xi
return ci

else t = ⊥
c← F(K,x)

y
$←− {0, 1}n\
{T Kx (ŷ) ∪ T Kx (ẑ) ∪ IV }

return
z ← F(y, c)

Simulator (RFx )−1(←,K, c)
if ci ∈ T Kx ∧ c = ci

return xi
else t = ⊥
x

$←− {0, 1}m\{T Kx (x̂)}
y

$←− {0, 1}n\
{T Kx (ŷ) ∪ T Kx (ẑ) ∪ IV }

return
z ← F(F(c), y)

Simulator RFy (→,K, y)
if yi ∈ T Ky ∧ y = yi, return ci
else return c← F(K, y)

x
$←− {0, 1}m\{T Ky (x̂)}
if y = IV then
t = 0, l = C̃k + 1,
p = 0, z ← F(x, c)

else if y = zsl,p
i

∧zsl,p
i ∈ T Ky then

t = 1, p = p+ 1
T = xsl,0||xsl,1|| . . . ||xsl,p

z ← F(T ||x, c)
else z ← F(x, c), t = ⊥

Simulator (RFy )−1(←,K, c)
if ci ∈ T Ky ∧ c = ci, return yi

else return y
$←− {0, 1}n\

{T Ky (ŷ) ∪ T Ky (ẑ) ∪ IV }
x

$←− {0, 1}m\{T Ky (x̂)}
z ← F(x,F(c)), t = ⊥

Simulator RFc (→,K, c)
if ci ∈ T Kc ∧ c = ci
return zi

else t = ⊥
x

$←− {0, 1}m\{T Kc (x̂)})
y

$←− {0, 1}n\
{T Kc (ŷ) ∪ T Kc (ẑ) ∪ IV }

return
z ← F(K,F(c))

Simulator (RFc )−1(←,K, z)
if zi ∈ T Kc ∧ z = zi
return ci

else t = ⊥
x

$←− {0, 1}m\{T Kc (x̂)}
y

$←− {0, 1}n\
{T Kc (ŷ) ∪ T Kc (ẑ) ∪ IV }

return
c← F(x, y)

Figure 6: Simulators RFx , (R
F
x )−1, RFy , (R

F
y )−1, RFc , (R

F
c )−1

11



D D D D

D D D D

iS iS

iS iS iS iS

iR

iR iR iR iR

iS iS

1,iF 1,iF 1,iF1,iS 1,iS 1,iR

1,iR1,iS 2,iF
2,iF2,iS 3,iS

3,iR iC i i2,iR

Game 1 Game 2 Game 3 Game 4

Game 5 Game 6 Game 7 Game 8

Figure 7: A depiction of how the system’s state evolves through the games in the indifferentia-
bility proof of ĈHx,Gx

x , Ĉ
Hy ,Gy
y , ĈHc,Gc

c

Game 3. In this game we introduce a slightly modified replicas of SFx , S
F
y , S

F
c (and their

inverse variants), still with oracle access to F . D will now interact with the modified simulators
SF1,x, S

F
1,y, S

F
1,c which, upon receiving a query, create a new tuple (x, y, c, z, t) but explicitly abort

if any of the following failure conditions is satisfied:

1. On forward queries SF1,x(→, c, y), SF1,y(→, x, c), SF1,c(→, x, y), the simulators create the new
tuple (x, y, c, z, t), but the following collisions occur:

1(a). Fixed point: either in SF1,x, S
F
1,y, S

F
1,c, it is the case that z = IV , or in SF1,x, S

F
1,c, it is

the case that z = y.

1(b). Prefix collision: in SF1,x, S
F
1,y, S

F
1,y, it is the case that z = yi for some yi ∈ T Kx (ŷ) ∪

T Ky (ŷ) ∪ T Kc (ŷ).

1(c). Internal collision: there is a tuple (xi, yi, ci, zi, ti) in T Kx , T Ky , T Kc such that:

i. when SF1,x receives (→, c, y), the following hold: z = zi ∧ (c, y) 6= (ci, yi).

ii. when SF1,y receives (→, x, c), the following hold: z = zi ∧ (x, c) 6= (xi, cii).

iii. when SF1,c receives (→, x, y), the following hold: c = ci ∧ (x, y) 6= (xi, yi), or
z = zi ∧ c 6= ci.

2. On inverse queries (SF1,x)−1(←, z, c), (SF1,y)−1(←, z, x), (SF1,c)
−1(←, c, x), the simulators cre-

ate the new tuple (x, y, c, z, t), but the following collisions occur:

2(a). Fixed point: in (SF1,c)
−1, it is the case that z = IV .

2(b). Prefix collision: in (SF1,x)−1, (SF1,y)
−1, (SF1,c)

−1, it is the case that z = yi for some
yi ∈ T Kx (ŷ) ∪ T Ky (ŷ) ∪ T Kc (ŷ).

2(c). Internal collision: there is a tuple (xi, yi, ci, zi, ti) in T Kx , T Ky , T Kc such that:

i. when (SF1,y)
−1 receives (←, z, x), the following hold: c = ci ∧ y 6= yi.

ii. when (SF1,c)
−1 receives (←, c, x), the following hold: z = zi ∧ c 6= ci.

12



2(d). Partial query collision: there is a tuple (xi, yi, ci, zi, ti) in T Kx , T Ky , T Kc such that:

i. when (SF1,x)−1 receives (←, z, c), the following hold: c 6= ci ∧ z = zi.
ii. when (SF1,y)

−1 receives (←, z, x), the following hold: x 6= xi ∧ z = zi.
iii. when (SF1,c)

−1 receives (←, c, x), the following hold: x 6= xi ∧ c = ci.

Clearly, failure conditions 1(a) and 2(a) are similar. In this case, there are two types of fixed
points, (i) when z = IV , and (ii) when z = y. Generating zi = IV may indeed happen but
with very low probability since in the case of SF1,x and SF1,y, there is only one combination of c
and y or x and c, respectively, that will cause z = IV ; similarly, in the case of SF1,c, there is one
value of c (combined with the fixed key K) that will cause z = IV . That is, unless given as
part of a query, z is always generated by a RO (according to the definitions of the simulators),
but while generating it, we cannot instruct the RO to exclude IV from the possible values it
may return for z. Similarly, the fixed point z = y (the output collides with the input) can only
happen when querying SF1,x and SF1,c. In both cases, y is given as part of the query, but we do
not know what RO query would generate the given y, and since z (in both cases) is generated
by a RO, it may be the case that the inputs used to generate z are the ones that would generate
y. Even though in SF1,x the y value is actually part of the RO input that generates z, there is
nothing stopping the RO from output y (part of its input) as this is equally random. Clearly,
none of the inverse simulators (SF1,x)−1, (SF1,y)

−1, (SF1,c)
−1 may output z = y since z is given as

part of their queries (and in the case of (SF1,c)
−1, y is generated excluding the value of z). When

calculating the probability of all these failure conditions we should account for queries sent to
both SFi and RFi since they cooperatively add tuples to T Ki whenever they are queried, where
i ∈ {x, y, c}. However, since it is possible that new queries will not create new tuples (if they
match existing tuples), the probability is upper bounded by q2 +q3/2n, where q2 are queries sent
to SF1,i, (S

F
1,i)
−1 and q3 are queries sent to RF1,i, (R

F
i,i)
−1, where i ∈ {x, y, c}. We do not account

for q1 in this probability because the q1 queries are sent to F1, F2, F3 which, at this stage, do
not contribute in updating the tables T Kx , T Ky , T Kc , respectively, and so they will not affect the
probability of finding collisions there.

Failure conditions 1(b) and 2(b) are similar. However, in this case z may collide with any yi
belonging to any tuple in T Kx , T Ky , T Kc , but since not all queries will add new tuples to the table,
this probability is upper bounded by the birthday attack [15], that is ≤ (q2 + q3)2/2n. When
creating a new tuple (x, y, c, z, t) upon receiving a query, there are two types of prefix collisions,
either y = zi or z = yj for some zi, yj ∈ T Kx , T Ky , T Kc . In the first type, if zi is sequenced (part
of a sequence) and y = zi, then the simulators connect the tuple of the newly queried y with
the tuple of the matching zi (the i-th tuple) and no collision occurs (recall that only simulators
SF1,x, S

F
1,c, R

F
1,y can create/extend sequences because they are the only simulators who receive

y as part of their queries). But what if zi is not sequenced? In this case, the simulators will
treat it as a sequenced tuple that is part of a sequence consisting of only one tuple, itself (the
i-th tuple). Connecting the newly created tuple with the i-th tuple will create an “unrooted”
sequence, one that has no route tuple with y = IV , but this will not affect the indifferentiability
proofs, as we will see later. This leaves the second type of prefix collision, z = yj , which applies
to SF1,x, S

F
1,y, S

F
1,c and their inverse variants. To see why this is the case, we discuss how such

collision may be generated in T Kx , which is maintained by SF1,x, (S
F
1,x)−1, RF1,x, (R

F
1,x)−1, similar

argument apply for T Ky and T Kc . Simulator SF1,x receives y as part of its query and then creates
a new tuple if necessary, but other simulators have no way to exclude the y value that SF1,x
received when they generate their z values as the latter is generated by a RO which may output
the value of the previously queried y with probably (q2 + q3)2/2n.

Failure conditions 1(c) and 2(c), on the other hand, allude to a more fundamental problem
when the simulators receive the c and z values from D rather then generating them. These values

13



should ideally be generated by a RO, but on queries to SF1,x, (S
F
1,x)−1, SF1,y, (S

F
1,c)
−1, (RF1,x)−1,

(RF1,y)
−1, RF1,c, the value of c is chosen by D and is given as part of the query, similarly for z

when D queries (SF1,x)−1, (SF1,y)
−1, (RF1,c)

−1. In these situations, since we cannot invert c and z
to obtain the RO inputs that generated them, we generate these inputs uniformly at random
(recall that when creating a new tuple, all fields of that tuple have to be generated, even if
they were not part of the particular query that triggered the tuple to be created), but that does
not mean that if these inputs were supplied to a RO, it will return the corresponding c and
z that were sent to the simulators by D earlier, this behaviour may lead to internal collisions.
Below we analyse all internal collision scenarios corresponding to simulators SF1,x, S

F
1,y, S

F
1,c and

their inverse variants (as outlined in failure conditions 1(c) and 2(c) above, respectively). In
all scenarios, the simulators receive queries of a particular format (depending on the receiving
simulator) from D and creates the new tuple (x, y, c, z, t).

1. SF1,x: simulator SF1,x receives c as part of its query (→, c, y), so if c exists in T Kx , no new
tuple will be created and thus no collision. However, when D sends the query (←, zi, ci) to
(SF1,x)−1, the latter has no way to know what value of yi (in combination of the given ci)
would generate the given zi, so it generates yi uniformly at random, but it is likely that
F(F(ci), yi) 6= zi. If D later sends the query (→, c, y) to SF1,x, the latter generates z by
z = F(F(c), y), a collision then occurs if z = zi while (c, y) 6= (ci, yi).

2. SF1,y: simulator SF1,y receives c as part of its query (→, x, c), so if c exists in T Ky , no new
tuple will be created and thus no collision. However, when D sends the query (←, zi, xi)
to (SF1,y)

−1, the latter has no way to know what value of ci (in combination of the given
xi) would generate the given zi, so it generates ci by ci = F(K, yi), where yi is generated
uniformly at random, but it is likely that F(F(ci), yi) 6= zi. If D later sends the query
(→, x, c) to SF1,y, the latter generates z by z = F(x,F(c)), a collision then occurs if z = zi
while (x, c) 6= (xi, ci).

3. SF1,c: When D sends the queries (←, ci, xi) and (→,K, cj) to (SF1,c)
−1 and RF1,c, respectively,

both (SF1,c)
−1 and RF1,c have no way to know what values of xi, yi and xj , yj would generate

the given ci and cj , so they generate xi, yi and xj , yj uniformly at random, but it is likely
that F(xi, yi) 6= ci and F(xj , yj) 6= cj . If D later sends the query (→, x, y) to SF1,c, the latter
generates c by c = F(x, y), then a collision occurs if c = ci or c = cj while (x, y) 6= (xi, yi)
or (x, y) 6= (xj , yj). Similarly, when D sends the query (←,K, zi) to (RF1,c)

−1, the latter
has no way to know what value of ci would generate the given zi, so it generates ci by
ci = F(xi, yi) (while generating xi, yi uniformly at random). If D later sends the query
(→, x, y) to SF1,c, the latter generates z by z = F(K, c), where c = F(x, y), a collision then
occurs if z = zi while c 6= ci.

4. (SF1,x)−1: simulator (SF1,x)−1 cannot generate any collision because it accepts queries of the
format (←, z, c) where both c and z are given, so if they exist in T Kx , no new tuple will be
generate and thus no collision.

5. (SF1,y)
−1: simulator (SF1,y)

−1 cannot generate collisions in the value of z because it receives
it as part of its query (←, z, x), so if a given z matches an existing zi in T K1,y, no new tuple
will be generate and thus no collision. However, when D sends the queries (→, xi, ci) and
(←,K, cj) to SF1,y and (RF1,y)

−1, respectively, both SF1,y and (RF1,y)
−1 have no way to know

what values of yi and yj would generate the given ci and cj , so they generate yi and yj
uniformly at random. If D later sends the query (←, z, x) to (SF1,y)

−1 , the latter first
generates y uniformly at random and then generates c by c = F(K, y), a collision then
occurs if c = ci or c = cj while y 6= yi or y 6= yj .

14



6. (SF1,c)
−1: simulator (SF1,y)

−1 cannot generate collision in the value of c because it receives
it as part of its query, so if a given c matches an existing c in T Kc , no new tuple will be
generate and thus no collision. However, when D sends the query (←,K, zi) to (RF1,c)−1,
the zi is given in the query, so there is no way for (RF1,c)−1 to know what value of ci
would generate the given zi, so it generates ci by ci = F(xi, yi), where xi, yi are generated
uniformly at random. If D later sends (←, c, x) to (SF1,c)

−1, the latter generates z by
z = F(K,F(c)), a collision then occurs if z = zi while c 6= ci.

Scenarios 1,2 and 3 above are the failure conditions 1(c).i., 1(c).ii. and 1(c).iii., respectively,
while scenarios 5 and 6 are the failure conditions 2(c).i.,2(c).ii., respectively (probability of
scenario 4 is 0, as discussed above). Failure conditions 1(c).ii. and 1(c).iii. may occur with
probability ≤ (q2 + q3)2/2m+n; in this case, we should consider the collision probability of
a combination of x ∈ {0, 1}m and c ∈ {0, 1}n (in the case of 1(c).ii.) or x ∈ {0, 1}m and
y ∈ {0, 1}n (in the case of 1(c).iii.) since it is the combination what causes the collision not
the individual instances of x, y or c, x. Following similar argument, failure condition 1(c).i.
occur with probability ≤ (q2 + q3)2/22n as the colliding strings in this case are both of length
n-bits, that is, we should consider the collision probability of a combination of c ∈ {0, 1}n and
y ∈ {0, 1}n. In all the failure conditions of 1(c), the collision occurs by two colliding strings,
each consists of two values, where the combination of these two values in each string is what
causes the collision; this is discussed above and reflected on their probabilities. On the other
hand, in failure conditions 2(c).i. and 2(c).ii., the two colliding strings consist of a single value
each (y ∈ {0, 1}n in the case of 2(c).i. and c ∈ {0, 1}n in the case of 2(c).ii.). Thus, both failure
conditions 2(c).i. and 2(c).ii. may occur with probability ≤ (q2 + q3)/22n.

Finally, failure condition 2(d) covers collisions caused by partially matched queries. For
example, if a simulator received a 2-string query (x, y), it first searches its corresponding table
for a tuple (xi, yi, ci, zi, ti) such that (x, y) = (xi, yi), here both x and y should match xi and
yi, respectively. However, if one of these two strings (either x or y) was a match (with xi or
yi), the simulator will ignore it and proceed to generate a new tuple. This is not an issue if
the simulator received a forward query because forward queries generate either c or z, so there
will be no collision as along as one of the received strings is distinct (unless one of the other
failure conditions is satisfied). On the other hand, this becomes problematic when the simulators
receive inverse queries because in this case they will receive c or z as part of the query and this
may lead to a collision. We now consider all the inverse simulators (SF1,x)−1, (SF1,y)

−1, (SF1,c)
−1

and show how such collisions can occur:

1. (SF1,x)−1: when simulator (SF1,x)−1 receives the query (z, c), if there is tuple (xi, yi, ci, zi, ti) ∈
T Kx , then no new tuple will be created. On the other hand, if c = ci and z 6= zi, a new
tuple will be created, but this will not generate a collision since z 6= zi. However, if it is
the other way round, c 6= ci and z = zi, a new tuple will be created, but this time it will
cause a collision since (c, y) 6= (ci, yi) while z = zi.

2. (SF1,y)
−1: fFollowing the same argument, when simulator (SF1,y)

−1 receives the query (z, x),
new tuple will be created even if there is a tuple (xi, yi, ci, zi, ti) ∈ T Ky such that x 6= xi
while z = zi, this will obviously lead to a collision since (x, c) 6= (xi, ci) while z = zi.

3. (SF1,c)
−1: with simulator (SF1,c)

−1, partial query collision leads to a collision in the c value,
but this obviously results in a collision with the z value since, according to (SF1,c)

−1 defi-
nition, z ← F(K,F(c)), so as long as there is a collision in c, there will also be a collision
in z.

All the scenarios in failure condition 2(d) occur with probably bounded by the birthday attack.
In 2(d).i. the collision occurs due to c ∈ {0, 1}n, thus the probably is bound by (q2 + q3)/2n. On

15



the other hand, in failure conditions 2(d).ii. and 2(d).iii., the collisions occur due to x ∈ {0, 1}m,
so the probability is bounded by (q2 + q3)2/2m. Note that partial query collisions cannot occur
with simulators RF1,i and (RF1,i)

−1 (where i ∈ {x, y, c}) because these simulators accept a single
string (in addition to the fixed key K), so if it matches one of the existing tuple, it will be
detected immediately.

Other than the failure conditions above, we prove that collisions in T Kx , T Ky , T Kc cannot
occur. As there are two types of tuples in T Kx , T Ky , T Kc (sequenced and singular), there are
four possible collision scenarios, namely: collisions between tuples from different sequences,
collisions among tuples within the same sequence, collisions among singular tuples, and collisions
between sequenced and singular tuples; these are covered by lemmas 4.2, 4.4, 4.6 and 4.7,
respectively. These proofs apply for both the modified S simulators in this game, and the
modified R simulators in G(5); that is, in G(5) we will modify the simulators RFx , R

F
y , R

F
c (and

their inverse variants) and introduce failure conditions similar to the ones we introduced in
this game, then the distinguishing probability of G(5) will be the success probability of the
failure conditions there, other than those failure conditions, the following lemmas prove that
RF1,x, R

F
1,y, R

F
1,c (and their inverse variants) cannot generate collisions.

Lemma 4.2 (Collision freeness among sequences). For any two sequences, Seq1 and Seq2, in a
table T Ki that is maintained by the simulators SF1,i, (S

F
1,i)
−1, RF1,i, (R

F
1,i)
−1, a tuple in Seq1 cannot

collide with another in Seq2, where i ∈ {x, y, c}.

Proof. Let sh and sf index two different sequences, Seq1 and Seq2, in the table T Ki , i ∈ {x, y.c},
consisting of u and v tuples, respectively, and let Seq1 be rooted by the i-th tuple while Seq2
be rooted by the j-th tuple:

Seq1 = (xsh,0
i , ysh,0

i , csh,0
i , zsh,0

i , tsh,0
i ) . . . (xsh,u, ysh,u, csh,u, zsh,u, tsh,u)

Seq2 = (xsf ,0
j , y

sf ,0
j , c

sf ,0
j , z

sf ,0
j , t

sf ,0
j ) . . . (xsf ,v, ysf ,v, csf ,v, zsf ,v, tsf ,v)

where ysh,0
i = y

sf ,0
j = IV and h 6= f . A collision between tuple (xa, ya, ca, za, ta) in Seq1

and tuple (xb, yb, cb, zb, tb) in Seq2 occurs when za = zb while (xa, ya, ca) 6= (xb, yb, cb). Thus,
we need to show that whenever a sequenced tuple is created, it cannot collide with any other
existing sequenced tuple. Here our discussion is based on the assumption that the z value of
a tuple is being generated by the simulators, but in simulators (SF1,x)−1, (SF1,y)

−1, (RF1,c)
−1, the

z value is given to the simulators as part of the queries. These simulators, however, will only
generate singular tuples while here we are only concerned with sequenced tuples. In fact, the
only simulators that will generate sequences are SF1,x, R

F
1,y, S

F
1,c, so it suffices to investigate how

these simulators generate their z values because if there is a collision, they are the only ones
that could have cause it. The easiest way to do this is to observe the input that the simulators
use to generate their z values and prove that z will be unique as long as these inputs are unique
(generated in a collision-free manner).

Simulator SF1,x generates its z by F(F(c), y), simulator RF1,y generates its z by F(T ||x, c),
and simulator SF1,c generates its z by F(K,T ||x), where T is a sequence of x’s. We now show
that the inputs (F(c), y), (T ||x, c), (K,T ||x) are prepared in a collision-free manner (i.e., they are
unique) which will immediately imply that the z values they will generate are also collision-free
since the latter is generated by a RO.

• SF1,x(→, c, y): in this case, the z value is created by the query (F(c), y) to the random
oracle F , so we show that both c and y are unique. It is clear that the y value here cannot
collide with any existing y value because the simulator receives y as part of its query. If
there is an existing tuple (xi, yi, ci, zi, ti) ∈ T Kx such that yi = y, then SF1,x will only create

16



a new tuple if c 6= ci, otherwise if c = ci, then (c, y) = (ci, yi) and a new tuple will not be
created. This also includes the case when y = IV , where a new tuple will only be created
if c 6= ci. This mean that the SF1,x simulator guarantees a total collision freeness, which
implies that F(F(c), y) 6= F(F(ci), yi) will hold for any (ci, yi) ∈ T Kx , which immediately
implies zi 6= zj .

• RF1,y(→,K, y): this simulator creates its z value by querying F with (T ||x, c), where T is a
sequence of the x’s of the preceding tuples in the sequence to which the new query belongs.
It is easy to see that T is unique for a particular z because this sequence of x’s will only
occur for that particular query. On the other hand, c here is being generated by F(K, y),
which implies that as long as y 6= yi for some yi ∈ T Ky , then F(K, yi) 6= F(K, yj) holds,
which, in turn, implies ci 6= cj , and this will always be the case since y here is received as
part of the query and if it matches any yi ∈ T Ky , no new tuple will be created.

• SF1,c(→, x, y): in this simulator, the z value is created by querying (K,T ||x) to the random
oracle F , where K is a fixed key and T is a sequence of x’s. In this case, the collision
freeness of z solely depends on the value T , which, as discussed above, is unique for any
particular query.

Finally, it is easy to see that these results will also generalise to cases when there are multiple
sequences in T Ki where i ∈ {x, y, c}.

Corollary 4.3 (Prefix collision freeness among sequences). If any of the tables T Ki maintained
by the simulators SF1,i, (S

F
1,i)
−1, RF1,i, (R

F
1,i)
−1, where i ∈ {x, y, c}, contains two different sequences

Seq1 and Seq2, then any tuple in Seq1 cannot be a prefix of any tuple in Seq2, and vice versa.

Proof. The proof follows from lemma 4.2. A tuple (xsh,p
a , ysh,p

a , csh,p
a , zsh,p

a , tsh,p
a ) in Seq1 cannot

be a prefix of another tuple (xsf ,q
b , y

sf ,q
b , c

sf ,q
b , z

sf ,q
b , t

sf ,q
b ) in Seq2, that is zsh,p

a cannot equal to
y
sf ,q
b , because if that was the case, then this is merely a collision between zsh,p

a and zsf ,q−1 since
y
sf ,q
b = zsf ,q−1, and as shown in lemma 4.2, a collision cannot occur in this case. Clearly, the

other way round also holds; no tuple from Seq2 may be a prefix to another in Seq1. Also, a
sequence cannot be a prefix of itself. That is, given a sequence Seq3 rooted at the i-th tuple and
has a tail at the j-th tuple, then yi 6= zj holds since yi = IV . However, with probability 1/2n

(where n = |zj |), it might be the case that zj = IV , but this is covered in failure conditions 1(a)
and 2(a), which also covers prefix collisions within a single sequenced tuple.

Lemma 4.4 (Collision freeness within a single sequence). If any of the tables T Ki maintained
by the simulators SF1,i, (S

F
1,i)
−1, RF1,i, (R

F
1,i)
−1, where i ∈ {x, y, c}, contains a sequence Seqπ, then

any tuple in that sequence cannot collide with any other tuple in the same sequence.

Proof. Recall that the only simulators generating sequences are SF1,x, R
F
1,y, S

F
1,c. Let Seqπ =

(xsl,0
a , ysl,0

a = IV, csl,0
a , zsl,0

a , tsl,0
a ) . . . (xsl,n, ysl,n, csl,n, zsl,n, tsl,n) be a sequence containing n > 1

tuples and rooted by the a-th tuple. An internal collision in the sequence sl implies that there
exists zsl,i = zsl,j , where i 6= j and i, j ∈ {0, . . . , n}. In RF1,y and SF1,c, this happens if the
following equality holds:

xsl,0||xsl,1|| . . . ||xsl,i−1||xsl,i = xsl,0||xsl,1|| . . . ||xsl,j−1||xsl,j

Since z is being generated by the random oracle F , this is only possible if i = j. On the
other hand, in SF1,x, an internal collision happens between two tuples (xp, yp, cp, zp, tp) and
(xq, yq, cq, zq, tq) belonging to the same sequence if zp = zq. This can happen only if (cp, yp) =
(cq, yq), which is not possible since both c and y are given to SF1,x as part of the query and would

17



only cause a new tuple to be created if there is no existing tuple matching the queried c and
y.

Corollary 4.5 (Ancestors and descendants of sequenced tuples). In any of the tables T Kx , T Ky ,

T Kc , a single tuple cannot be part of more than one sequence. More generally, a single tuple in
T Ki , i ∈ {x, y, c} cannot have more than one descendant tuple and more than one parent tuple.

Proof. The proof follows from lemmas 4.2 and 4.4. Let the i-th tuple indexed by sl, p be the
parent of the tuple indexed by sl, p + 1 of the sequence l, that is zsl,p

i = ysl,p+1. The only
way the tuple sl, p can have another descendant sl, k is when zsl,p

i = ysi,k, which implies that
ysi,p+1 = ysi,k, but this cannot happen because collisions and prefixes cannot occur as shown in
lemmas 4.2 and 4.4. Similarly, and following the same argument, tuple sl, p with parent sl, p−1
cannot have another parent sl, k′ because this implies zsl,p−1 = zsl,k

′
= ysl,p

i , which cannot
occur.

Lemma 4.6 (Collision freeness among singular tuples). In any of the tables T Ki maintained
by the simulators SF1,i, (S

F
1,i)
−1, RF1,i, (R

F
1,i)
−1, where i ∈ {x, y, c}, collisions cannot occur between

two singular tuples within the same table.

Proof. A collision in this context means there are two tuples (xi, yi, ci, zi, ti = ⊥) and (xj , yj , cj ,
zj , tj = ⊥), such that zi = zj while (xi, yi, ci) 6= (xj , yj , cj). However, since z is always being
generated by the random oracle F (unless given by D), zi = zj will only hold if the inputs given
to F to generate zi and zj are identical. In lemma 4.2 we considered how sequenced tuples are
being generated by SF1,x, S

F
1,c, R

F
1,y, in this proof, we need to consider the other simulators which

generate singular tuples (in addition to SF1,x, S
F
1,c, R

F
1,y since these can also generate singular

tuples), these are:

(SF1,x)−1, SF1,y, (S
F
1,y)
−1, (SF1,c)

−1, (RF1,y)
−1, RF1,x, (R

F
1,x)−1, RF1,c, (R

F
1,c)
−1

In all these cases, unless given by D, the value of z is generated based on c, so it only suffices
to prove that in each case, the way c is being generated is collision-free to imply that z will
be collision-free. Precisely, zi of a singular tuple can either by generated by zi = F(X, ci) or
z = F(X,F(ci)), where X ∈ {K,xi, yi}. Therefore, we now have two possible inputs to z,
making four possible collision scenarios:

• zi = F(X, ci), zj = F(X, cj): the only simulator that generates zi = F(X, ci) is RF1,x,
so we show that RF1,x cannot generate ci = cj while i 6= j. It is easy to see that this is
always the case since RF1,x uses F to generate ci = F(K,xi), cj = F(K,xj), so as long as
(K,xi) 6= (K,xj), then ci 6= cj will hold, which is always the case since RF1,x receives xi
in the query and will only use it to create a new tuple if there is no xj ∈ T Kx such that
xi = xj .

• zi = F(X,F(ci)), zj = F(X,F(cj)): apart from RF1,x, all other simulators that generate
singular tuples generate z as F(X,F(ci)), so we only need to show that F(ci) 6= F(cj)
will always hold if ci 6= cj . In all simulators generating singular tuples, ci is given in
the query, so upon receiving a query (X, ci), the simulators first check if there is a tuple
(xj , yj , cj , zj , tj) ∈ T Kx , T Ky , T Kc such that ci = cj , if it does, they do not create a new
tuple. Thus, as long as ci 6∈ T Kx , T Ky , T Kc , then F(ci) 6= F(cj) follows implying zi 6= zj .
An even simpler argument is that F(ci) 6= F(cj) trivially holds as long as ci 6= cj because
F is a random oracle.

18



• zi = F(X,F(ci)), zj = F(X, cj) or zi = F(X, ci), zj = F(X,F(cj)): here we only need
to show that F(ci) 6= cj , where i 6= j, to imply F(X,F(ci)) 6= F(X, cj). We know that
cj in F(X, cj) is being generated by F(xj , yj) or F(K,xj) or F(K, yj). Thus, we have
F(ci) = F(xj , yj) or F(ci) = F(K,xj) or F(ci) = F(K, yj), none of which can hold
since {0, 1}n 6= [{0, 1}m||{0, 1}n], {0, 1}n 6= [{0, 1}k||{0, 1}m], {0, 1}n 6= [{0, 1}k||{0, 1}n],
respectively.

It remains to discuss the case when z is given in the query, which can happen only with
(SF1,x)−1, (SF1,y)

−1, (RF1,c)
−1, but it is easy to see that (SF1,x)−1, (SF1,y)

−1, (RF1,c)
−1 will not generate

collisions because, upon a new query, they will first check T Kx , T Ky , T Kc , respectively, for any tuple
with a similar z and would only create a new tuple if no such z exists. This covers all possible
collision scenarios among singular tuples.

Lemma 4.7 (Collision freeness between singular and sequenced tuples). If any of the tables T Ki
maintained by the simulators SF1,i, (S

F
1,i)
−1, RF1,i, (R

F
1,i)
−1, where i ∈ {x, y, c}, contains a sequence

Seqπ, then no singular tuple within the same table may collide with any tuple in Seqπ.

Proof. Here we have two cases: either the newly generated tuple (xi, yi, ci, zi, ti) is singular while
colliding with an existing sequenced tuple (xj , yj , cj , zj , tj), or the other way round (collision
implies zi = zj). Either way, according to the definition of simulators SF1,k, R

F
1,k, k ∈ {x, y, c},

regardless of whether it was singular or sequenced tuple, z will always be generated by F (unless
it is given by D). Let (xi, yi, ci, zi, ti = ⊥) be a singular tuple while (xsl,p

j , ysl,p
j , csl,p

j , zsl,p
j , tsl,p

j =
1) be a sequenced tuple, with p ≥ 1. In this case, zi = F(X, ci) or zi = F(X,F(ci)), where
X ∈ {K,xi, yi}, while zj = F(K,xsl,0||xsl,1|| . . . ||xsl,p−1||xsl,p) when generated by SF1,c or zj =
F(cj , xsl,0||xsl,1|| . . . ||xsl,p−1||xsl,p) when generated by RF1,y or zj = F(cj , yj) when generated
by SF1,x. When zj is generated by SF1,c, R

F
1,y, unless ci = xsl,0||xsl,1|| . . . ||xsl,p−1||xsl,p, zi 6= zj will

always hold. Similarly, when zj is generated by SF1,x, zj 6= zi will hold as long as (cj , yi) 6= (ci, yi)
also holds, which is always the case as such collision would have been detected by SF1,x before
creating the j-th or i-th tuple (whichever queried last). It is also possible that the sequence l
contains only one tuple, that is, only the root tuple (xsl,0

j , ysl,0
j = IV, csl,0

j , zsl,0
j , tsl,0

j ), in which
case a collision occurs if zi = zsl,0

j , which is not possible as long as ci 6= csl,0
j since both zi, zj are

generated by F and c is always involved in their generation process. According to the definition
of the simulators SF1,k, R

F
1,k, k ∈ {x, y, c}, unless c is given by D, it will be generated by F . If c

is sequenced it is generated by F(x, y) or F(K, y), otherwise if c is singular it is generated by
F(K, y) or F(K,x) or F(x, y). It is easy to see that the fact that ysl,0

j = IV while yi 6= IV
always holds (otherwise yi would not be singular) implies that the following also hold (and thus
any cj 6= ci). [

F(x, y) 6= F(K, y)
]
,
[
F(x, y) 6= F(K,x)

]
,
[
F(K, y) 6= F(K,x)

]
To complete the proof, it remains to investigate cases when c is given in a query. In all
simulators generating singular tuples, when c is given by D, c is not directly used to gen-
erate z, rather, zi = F(X,F(ci)), X ∈ {xi, yi}, so a collision between a singular tuple and
a sequenced one implies F(ci) = csl,0

j should hold3, which, for the case of SF1,c, R
F
1,y, can be

rewritten as F(ci) = F(xsl,p
j ||y

sl,p
j ) and F(ci) = F(K||ysl,p

j ), but clearly ci 6= xsl,p
j ||y

sl,p
j and

ci 6= K||ysl,p
j , since {0, 1}n 6= {0, 1}m||{0, 1}n and {0, 1}n 6= {0, 1}k||{0, 1}n, respectively. For

the case when cj is generated by SF1,x, F(ci) 6= F(cj) still holds because F(ci) 6= F(F(cj), yj)

3Recall that the only simulators generating sequences are SF1,x, RF1,y, SF1,c and that RF1,y, SF1,c generate c by
F(K, y),F(x, y), respectively, while SF1,x receives c as part of its queries.

19



since {0, 1}n 6= {0, 1}n||{0, 1}n. Finally, it is trivial to see that (SF1,x)−1, (SF1,y)
−1, RF1,c)

−1 will
not generate collisions, even though they accepts z from D, because if a queried z already exists
in T Kx , T Ky , T Kc no new (colliding) tuple will be created.

Finally, the probability of this game is the sum of the probabilities of the failure conditions
of SF1,x, S

F
1,y, S

F
1,c (and their inverse variants):

P x3 = Pr[DFF1 ,SF1,x,R
F
x = 1] ≤

(
2n((q2 + q3) + (q2 + q3)2) + (q2 + q3)

)
/22n

P y3 = Pr[DFF1 ,SF1,y ,R
F
y = 1] ≤

(
(q2 + q3)(2m+1(q2 + q3) + 2m+1 + 2n(q2 + q3) + 1)

)
/2m+n

P c3 = Pr[DFF1 ,SF1,c,R
F
c = 1] ≤

(
(q2 + q3)(3 · 2m + 2m+1(q2 + q3) + 2n(q2 + q3) + 1))

)
/2m+n

Game 4. Similar to G(3), in this game we introduce slightly modified replicas of the simulators
RFx , R

F
y , R

F
c , still with oracle access to F . The distinguisher D will now interact with the mod-

ified simulators RF1,x, R
F
1,y, R

F
1,c which, upon receiving a query, create the new tuple (x, y, c, z, t)

but explicitly abort if any of the following failure conditions is satisfied:

1. On forward queries RF1,x(→,K, x), RF1,y(→,K, y), RF1,c(→,K, c), the simulators create the
new tuple (x, y, c, z, t), but the following collisions occur:

1(a). Fixed point: in RF1,x, R
F
1,y, R

F
1,c, it is the case that z = IV , and in RF1,y, it is also the

case that z = y.

1(b). Prefix collision: in RF1,x, R
F
1,y, R

F
1,c, it is the case that z = yj for some yj ∈ T Kx (ŷ) ∪

T Ky (ŷ) ∪ T Kc (ŷ).

1(c). Internal collision: there is a tuple (xi, yi, ci, zi, ti) in T Kx , T Ky , T Kc such that:

i. when RF1,x receives (→,K, x), the following hold: ci = c ∧ xi 6= x.

ii. when RF1,y receives (→,K, y), the following hold: ci = c ∧ yi 6= y.

2. On inverse queries (RF1,x)−1(←,K, c), (RF1,y)−1(←,K, c), (RF1,c)−1(←,K, z), the simulators
create the new tuple (x, y, c, z, t), but the following collisions occur:

2(a). Fixed point: in (RF1,x)−1, (RF1,y)
−1, it is the case that z = IV .

2(b). Prefix collision: in (RF1,x)−1, (RF1,y)
−1, (RF1,c)

−1, it is the case that z = yj for some
yj ∈ T Kx (ŷ) ∪ T Ky (ŷ).

2(c). Internal collision: we show that (RF1,x)−1, (RF1,y)
−1, (RF1,c)

−1 cannot generate collisions,
see below.

As illustrated in G(3), failure conditions 1(a) and 2(a) occur with probability (q2 + q3)/2n

each. Simulators RF1,x, R
F
1,y, R

F
1,c are susceptible to the first fixed point type (when z = IV ), while

only simulator RF1,y is susceptible to the second fixed point type (when z = yi), in the latter case
simulators RF1,x, R

F
1,c are not susceptible to the second fixed point type because they generate

their y value uniformly at random excluding all existing values of z and y in tables T Kx , T Kc .
Thus, failure condition 1(a) occurs for simulators RF1,x, R

F
1,c with probability (q2 + q3)/2n, while

it occurs for simulator RF1,y with probability 2(q2 + q3)2/2n. Similar analysis apply for failure
condition 2(a).

Following the same argument in G(3), both failure conditions 1(b) and 2(b) are at most the
birthday bound (q2 + q3)2/2n and are applicable to all simulators in this game. In particular,
all simulators except (RF1,c)

−1 generate their z values by querying a RO, meaning that they

20



cannot force the RO to exclude the existing y values in the tables T Kx , T Ky , T Kc from the newly
generated z value. In the case of (RF1,c)

−1, z is given as part of the query and the simulator
only checks whether there is a tuple (xi, yi, ci, zi, ti) ∈ T Kc such that z = zi before creating a
new tuple, it, however, does not check for z = yi, so this prefix collision can still happen with
probability (q2 + q3)2/2n. We now discuss in details failure conditions 1(c) and 2(c).

1. RF1,x: When D sends the query (→, c, y) to SF1,x, the latter has no way to know which x
generated the given c, so it generates x uniformly at random, but it is most likely that
F(K,x) 6= c. When D later sends the query (→,K, xi) to RF1,x, the latter generates
ci = (K,xi). A collision occurs if ci = c ∧ xi 6= x.

2. RF1,y: When D sends the query (→, x, c) to SF1,y, the latter has no way to know which y
generated the given c, so it generates y uniformly at random, but it is most likely that
F(K,x) 6= c. When D later sends the query (→,K, yi) to RF1,y, the latter generates
ci = (K,xi). A collision occurs if ci = c ∧ yi 6= y.

3. Simulators RF1,c, (RF1,x)−1, (RF1,y)
−1, (RF1,c)

−1 do not generate any collision because the
queries made to them by D contain either c or z values, which if they match any of the
existing c or z values in T Kx or T Ky or T Kc , no new tuple is generate and thus no collision.

Scenarios 1 and 2 are are failure conditions 1(c).i. and 2(c).ii., respectively. Failure condition
1(c).i may occur with probability ≤ (q2 + q3)/2m since the probably is taken over range size of
2m (i.e., x ∈ {0, 1}m). In this case, x is generated uniformly at random and is assumed to have
generated the c value that was sent the query (→, c, y), but when later D sends a query with xi
(i.e. (→,K, xi)) and it turned out that xi is the value that really generates the previously sent c
when given to a RO, then x and xi collide at c, this happens with probability 1/2m since there
is only one x value generating a particular c; after q2 +q3 queries, the probability is (q2 +q3)/2m.
Following similar argument, scenario 2(c).i. may occur with probability ≤ (q2 + q3)/2n since the
collision occurs between strings of size n-bit, (i.e., y ∈ {0, 1}n). Finally, failure condition 2(c)
occur with probability 0, as discussed in scenario 3 above. Thus, the final probability of G(4)
is:

P x4 = Pr[DFF1 ,SF1,x,R
F
1,x = 1] ≤

(
2(q2 + q3) + 2(q2 + q3)2

)
/2n + (q2 + q3) /2m

P y4 = Pr[DFF1 ,SF1,y ,R
F
1,y = 1] ≤

(
3(q2 + q3) + 3(q2 + q3)2

)
/2n

P c4 = Pr[DFF1 ,SF1,c,R
F
1,c = 1] ≤

(
q2 + q3 + 2(q2 + q3)2

)
/2n

Game 5. In this game, we modify the relay algorithms FF1,x, F
F
1,y, F

F
1,c to make them depen-

dant on (SF1,x, R
F
1,x), (SF1,y, R

F
1,c), (S

F
1,c, R

F
1,c) instead of F , and thus simulating the constructions

ĈHx,Gx
x , Ĉ

Hy ,Gy
y , ĈHc,Gc

c , respectively (as defined in figure 1). We prove that FF1,x, F
F
1,y, F

F
1,c and

F
S1,x,R1,x

2,x , F
S1,y ,R1,y

2,y , F
S1,c,R1,c

2,c (the modified relay algorithms) behave consistently as long as the
sequenced tuples in T Kx , T Ky , T Kc are preserved.

Lemma 4.8 (Indistinguishability of G(5)). The modified relay algorithms FS1,x,R1,x

2,x , F
S1,y ,R1,y

2,y ,

F
S1,c,R1,c

2,c , with access to the simulators (SF1,x, R
F
1,x), (SF1,y, R

F
1,c), (SF1,c, R

F
1,c), respectively, are ei-

ther indistinguishable or behave consistently with FF1,x, F
F
1,y, F

F
1,c, relay algorithms with oracle

access to a random oracle F .

Proof. Let X = x1||x2|| . . . ||xn be a message consisting of n m-bit blocks, and let K be a
fixed k-bit key. When X is given as a query, FF1,c processes it as a whole by sending it to

21



the random oracle F , that is FF1,i(K,X) = F(K||x1||x2|| . . . ||xn) and then z ∈ {0, 1}n is ob-
tained, where K ∈ {0, 1}k is a key and i ∈ {x, y, c}. First, we prove that FF1,x(K,X) is in-

distinguishable from F
S1,x,R1,x

2,x (K,X). Indistinguishability here means that the distinguisher

D cannot distinguish between responses from FF1,x and F
S1,x,R1,x

2,x (except with negligible prob-
ability), but not necessarily require the two responses to be identical for similar queries. In
fact, FF1,x(K,X) = F

S1,x,R1,x

2,x (K,X) never holds. To see why, suppose X = x1 ∈ {0, 1}m and

K ∈ {0, 1}k, now FF1,x(K,x1) = F(K||x1) = v1 while FS1,x,R1,x

2,x (K,x1) = SF1,x(Y,RF1,x(K,x1)) =
F(Y,F(K,x1)) = v2 for some Y ∈ {0, 1, }n. Clearly, v1 6= v2 always holds since[

F(K||x1) = F({0, 1}k+m)
]
6=
[
F(K||F(y1||x1)) = F({0, 1}k+n)

]
This will also apply when X = x1, x2, . . . , xn. Furthermore, in F

S1,x,R1,x

2,x , getting every input
block xi preprocessed by RF1,x thwarts other distinguishing attacks. Next, we prove FF1,c(K,X) =

F
S1,c,R1,c

2,c (K,X), the proof of FF1,y(K,X) = F
S1,y ,R1,y

2,y (K,X) is similar. Unlike FF1,c, F
S1,c,R1,c

2,c

processes an incoming query by first partitioning it into blocks and then processes each block
separately through SF1,c and RF1,c. Formally, when FS1,c,R1,c

2,c receives the query (K,X), it beings
by dividing X into x1, x2, . . . , xn and then querying SF1,c(IV, x1). Once SF1,c receives this query
it immediately creates a sequence in T Kc rooted with the tuple (xi = x1, yi = IV, ci, zi, ti = 0)
where ci and zi are obtained based on the definition of SF1,c. The simulator SF1,c will then return

ci to FS1,c,R1,c

2,c which will immediately send it to RF1,c(K, ci) and eventually gets zi. At this stage

F
S1,c,R1,c

2,c has completed processing the first block x1, so it proceeds to process the second block
SF1,c(zi, x2). Once SF1,c receives this new query, it detects it as a sequenced tuple and links the
new tuple (xj = x2, y = zi, cj , zj , tj = 1) to the root tuple (the i-th tuple). Note that zj is not
created randomly, instead SF1,c queries the random oracle F(K,x1||x2) to obtain this value. The
process continues until reaching xn which will create the tuple (x = xn, y , c , z , t = 1) where
z = F(K,x1||x2|| . . . ||xn) = FF1,c(K,X).

It follows then that this game is a syntactical rewrite of the pervious game and the view
of D will not change when it interacts with (FF1,x or FS1,x,R1,x

2,x ) and (FF1,y or FS1,y ,R1,y

2,y ) and

(FF1,c or FS1,c,R1,c

2,c ), except that we now have to account for queries q1 ∈ {{0, 1}m}∗ since these
will update the tables T Kx , T Ky , T Kc . Previously, when calculating the probabilities we only
considered queries q2 and q3 because they were the only queries that will access and interact
with the tables T Kx , T Ky , T Kc . However, accounting for q1 is slightly less straightforward than q2
and q3 since q1 have a variable length. Let L denote the maximum length of q1 (we assume that
L is divisible by m). What we are concerned about here is how many times a single q1 query
accesses and probably updates T Kx , T Ky , T Kc because this is what affects the probability, and we
obtain this number by L/m, where m is the length of a single block (recall that a query q1 will
be partitioned into several m-bit blocks which will then be processed sequentially in order by
F
S1,x,R1,x

2,x , F
S1,y ,R1,y

2,y , F
S1,c,R1,c

2,c ). Additionally, in this game FS1,x,R1,x

2,x , F
S1,y ,R1,y

2,y , F
S1,c,R1,c

2,c make
extra finalising calls to R1,x, R1,y, R1,c, and thus the probability of collisions in these calls need
to be accounted for4, which is implicit with the q1 queries. Therefore, the final probability of
this game is the sum of the failure conditions in G(3) and G(4) given the additional q1 queries.

4A subtle technical issue is when F
S1,x,R1,x

2,x calls R1,x to finalise an n-bit string (R1,x originally handles m-bit
strings). To resolve this problem, in section 2 we propose padding the n-bits by 0 m−n bits, which will not affect
the proof, and have a negligible effect on the running time.

22



P x5 = Pr[DFF2 ,SF1,x,R
F
1,x = 1]

≤
(
2n(3(q1 · L/m) + 5(q1 · L/m)2) + (q1 · L/m)

)
/22n + ((q1 · L/m)) /2m

P y5 = Pr[DFF2 ,SF1,y ,R
F
1,y = 1]

≤
(
5(q1 · L/m) + 5(q1 · L/m)2

)
/2n +

(
22(q1 · L/m)2 + (q1 · L/m)

)
/2m+n

P c5 = Pr[DFF2 ,SF1,c,R
F
1,c = 1]

≤
(
(q1 · L/m)(3 · 2m + 2m+1(q1 · L/m) + 2n(q1 · L/m) + 1))

)
/2m+n

+
(
(q1 · L/m) + 2(q1 · L/m)2

)
/2n

Game 6. In this game we modify simulators SF1,i, R
F
1,i, (S

F
1,i)
−1, (RF1,i)

−1, i ∈ {x, y, c} to remove
their dependency on F making them self-dependant (they now generate all their responses in-
dependently and uniformly at random); the new simulators S2,x, R2,x, S

−1
2,x, R

−1
2,x, S2,y, R2,y, S

−1
2,y ,

R−1
2,y, S2,c, R2,c, S

−1
2,c , R

−1
2,c are defined in figures 8 and 9. Unlike G(3) and G(4), where we mod-

ified the S and R simulators separately in different games, we had to modify both simulators
simultaneously in this game because they are accessing the same shared table T Kx , T Ky , T Kc
and a single simulator is no longer generating a full tuple for every query it receives. That
is, if we only modify one of them, the table will suffer from inconsistencies since then one of
the simulators will interact with it differently than the other. Although the new simulators
S2,i, R2,i, S

−1
2,i , R

−1
2,i , i ∈ {x, y, c} still access the tables T Kx , T Ky , T Kc , respectively, they no longer

check for any failure condition, and they do not need to because they guarantee collision-freeness
as we prove below. Also, as stated above, they are not required to generate complete tuples
every time they are queried, that is, a query to S2,x or S−1

2,x will create the c, y, z fields of a tuple
(setting x = ⊥), a query to S2,y or S−1

2,y will create x, c, z (setting y = ⊥), and a query to S2,c

or S−1
2,c will create x, y, c (setting z = ⊥), while a query to R2,x or R−1

2,x will create x, c (setting
y = z = ⊥), a query to R2,y or R−1

2,y will create y, c (setting x = z = ⊥), and finally a query
to R2,c or R−1

2,c will create c, z (setting x = y = ⊥). Thus, unlike SF1,i, R
F
1,i, (S

F
1,i)
−1, (RF1,i)

−1,
with S2,i, R

−1
2,i , S

−1
2,i , R

−1
2,i , i ∈ {x, y, c} at least two queries are now required in order to create

a new complete tuple in T Kx , T Ky , T Kc . Since we do not need to check for sequenced and sin-
gular queries, as queries from FS2,R2

2 will now already be in sequence, and direct queries to
S2,i, R

−1
2,i , S

−1
2,i , R

−1
2,i , i ∈ {x, y, c} will automatically be singular (as per their definitions in figures

8 and 9), simulators S2,i, R
−1
2,i , S

−1
2,i , R

−1
2,i will now drop the field t from T Kx , T Ky , T Kc . The easiest

way to calculate the distinguishing probability of this game is to observe the differences between
the simulators S2,i, R2,i, S

−1
2,i , R

−1
2,i and SF1,i, R

F
1,i, (S

F
1,i)
−1, (RF1,i)

−1, i ∈ {x, y, c}, and demonstrate
how changes in the new simulators may affect D’s view from G(5) to G(6).

Basically, there are two main differences between the new simulators S2,i, R2,i, S
−1
2,i , R

−1
2,i and

the old ones SF1,i, R
F
1,i, (S

F
1,i)
−1, (RF1,i)

−1, i ∈ {x, y, c}:

1. A new single query to the new simulators does not result in creating a full tuple.

2. The c and z values are no longer being generated by a RO, instead they are always being
generated uniformly at random.

However, even these changes do not affect D’s view in this game because they will not cause
collisions. Below, we prove that this game, with the modifications introduced to the simulators,
is collision-free.

Lemma 4.9 (Collision freeness of G(6)). Simulators S2,i, S
−1
2,i , R2,i, R

−1
2,i accessed by F

S2,i,R2,i

2,i ,
where i ∈ {x, y, c}, guarantee collision, prefix and fixed-point freeness.

23



Simulator S2,x : (→, c, y)
if (ci, yi, zi) ∈ T Kx ∧ (c, y) = (ci, yi)

return zi
else return

z
$←− {1, 0}n\{T Kx (ẑ) ∪ T Kx (ŷ) ∪ IV }

Simulator S2,y : (→, x, c)
if (xi, ci, zi) ∈ T Ky ∧ (x, c) = (xi, ci)

return zi
else return

z
$←− {1, 0}n\{T Ky (ẑ) ∪ T Ky (ŷ) ∪ IV }

Simulator S2,c : (→, x, y)
if (xi, yi, ci) ∈ T Kc ∧ (xi, yi) = (x, y)

return ci
else return

c
$←− {1, 0}n\{T Kc (ĉ)}

Simulator S−1
2,x : (←, c, z)

if (ci, yi, zi) ∈ T Kx ∧ (c, z) = (ci, zi)
return yi

else return

y
$←− {1, 0}n\{T Kx (ẑ) ∪ T Kx (ŷ) ∪ IV }

Simulator S−1
2,y : (←, x, z)

if (xi, ci, zi) ∈ T Ky ∧ (x, z) = (xi, zi)
return ci

else return

c
$←− {1, 0}n\{T Ky (ĉ)}

Simulator S−1
2,c : (←, x, c)

if (xi, yi, ci) ∈ T Kc ∧ (xi, ci) = (x, c),
return yi

else return

y
$←− {1, 0}n\{T Kc (ẑ) ∪ T Kc (ŷ) ∪ IV }

Figure 8: Simulators S2,x, S
−1
2,x, S2,y, S

−1
2,y , S2,c, S

−1
2,c

Simulator R2,x:(→,K, x)
if (xi, ci) ∈ T Kx ∧ xi = x

return ci

else return c
$←− {1, 0}n\{T Kx (ĉ)}

Simulator R2,y:(→,K, y)
if (yi, ci) ∈ T Ky ∧ yi = y

return ci

else return c
$←− {1, 0}n\{T Ky (ĉ)}

Simulator R2,c : (→,K, c)
if (ci, zi) ∈ T Kc ∧ ci = c

return zi
else return

z
$←− {1, 0}n\{T Kc (ẑ) ∪ T Kc (ŷ) ∪ IV }

Simulator R−1
2,x : (←,K, c)

if (xi, ci) ∈ T Kx ∧ ci = c, return xi

else return x
$←− {1, 0}n\{T Kx (x̂)}

Simulator R−1
2,y : (←,K, c)

if (yi, ci) ∈ T Ky ∧ ci = c

return yi
else return

y
$←− {1, 0}n\{T Ky (ẑ) ∪ T Ky (ŷ) ∪ IV }

Simulator R−1
2,c : (←,K, z)

if (ci, zi) ∈ T Kc ∧ zi = z
return ci

else return c
$←− {1, 0}n\{T Kc (ĉ)}

Figure 9: Simulators R2,x, R
−1
2,x, R2,y, R

−1
2,y, R2,c, R

−1
2,c

Proof. Collisions between two tuples (xp, yp, cp, zp), (xq, yq, cq, zq), p 6= q, occur if yp = zq or
zp = zq or yp = yq, while fixed points occur if yi = zi or zi = IV , where i ∈ {p, q}. We show
that as long as FS2,i,R2,i

2,i use S2,i, S
−1
2,i , R2,i, R

−1
2,i , where i ∈ {x, y, c}, to process any query they

receive, the collision and fixed point scenarios above are impossible. The proof follows from
the definitions of S2,i, S

−1
2,i , R2,i, R

−1
2,i . Any yp of any tuple may not collide with any yq of any

other tuple or any zp of the same tuple, or any zq of any other tuple because yp is always begin

generated uniformly at random as follows: yp
$←− {1, 0}n\{T Ki (ŷ)∪T Ki (ẑ)∪ IV }, which excludes

values of all the y and z fields of the tuples already exist in T Ki , i ∈ {x, y, c}. Similarly, a new zi

value is generated as follows: z $←− {1, 0}n\{TK(ẑ) ∪ TK(ŷ) ∪ IV }, which again excludes all the

24



values of the y and z fields of the tuples already exist in T Ki , i ∈ {x, y, c} and thus thwarts any
possible collision with them. Therefore, collisions between any y and any z in T Kx , T Ky , T Kc are
impossible. This also immediately implies that prefix collisions (where y = z) are impossible too.
Fixed-point-freeness follows since both y and z are generated excluding IV and other existing
values of y and z in T Kx , T Ky , T Kc .

Consequently, since the view of D will only change if collisions were found in the previous
game, the probability inG(6) is the probability that the simulators SF1,i, R

F
1,i, (S

F
1,i)
−1, (RF1,i)

−1, i ∈
{x, y, c} in G(5) will output collisions while the modified simulators S2,i, S

−1
2,i , R2,i, R

−1
2,i in G(6)

will not, which is 0. Thus,

P x6 = Pr[DF
S2,x,R2,x
2,x ,S2,x,R2,x ] = P x5

P y6 = Pr[DF
S2,y,R2,y
2,y ,S2,y ,R2,y ] = P y5

P c6 = Pr[DF
S2,c,R2,c
2,c ,S2,c,R2,c ] = P c5

Game 7. In this game we remove the shared tables T Kx , T Ky , T Kc and modify the simula-
tors S2,i, S

−1
2,i , R2,i, R

−1
2,i , i ∈ {x.y, c} to maintain their own separate private tables. The new

simulators S3,i, S
−1
3,i , R3,i, R

−1
3,i maintain the new tables T Ki,S (maintained by S2,i, S

−1
2,i ), and T Ki,R

(maintained by R2,i, R
−1
2,i ), where i ∈ {x, y, c}. These new tables contain tuples of the format

(c, y, z) for T Kx,S , (x, c) for T Kx,R, (x, c, z) for T Ky,S , (y, c) for T Ky,R, (x, y, c) for T Kc,S , (c, z) for T Kc,R. The
definitions of the new simulators S3,i, S

−1
3,i , R3,i, R

−1
3,i are similar to the definitions of the simula-

tors S2,i, S
−1
2,i , R2,i, R

−1
2,i in figures 8 and 9, except that the new simulators now update and refer

to their values from their own (unshared) tables. Since the new simulators S3,i have no access
to T Ki,R and R3,i have no access to T Ki,S , one may be inclined to think that cp ∈ T Ki,S , cq ∈ T Ki,R
such that cp = cq implies a collision. However, this is not the case, the field c here acts as a
connecting variable to link the two tables. In fact, FS3,i,R3,i

2 will always create this linking c
among T Ki,S and T Ki,R to process its queries.

Lemma 4.10 (Collision freeness within query tables). Tables T Ki,S and T Ki,R, maintained sepa-
rately by simulators S3,i and R3,i, respectively, where i ∈ {x, y, c}, may not exhibit collisions in
the common field c.

Proof. A genuine collision in the c field means either T Ki,S has cp = cq while p 6= q or T Ki,R has
ca = cb while a 6= b; but, this cannot happen because both S3,i and R3,i generate c excluding all

the other c values of the existing tuples in their respective tables, that is, c $←− {1, 0}n\{T Ki,S(ĉ)},

c
$←− {1, 0}n\{T Ki,R(ĉ)}. Thus, there may at most be one value of c in a table, but that value

may exist in both tables which does not imply a collision, rather it acts as a connecting point
between the two tables.

Even though collisions of c may not be encountered, prefix collisions and fixed points are
still possible. For example, when S3,y generates z, it has no way to exclude the values of y
(to prevent a prefix collision) because there is no y field in T Ky,S and it has no access to T Ky,R.
Similar arguments apply for other simulators (i.e., there is no single table that contains both y
and z fields). Also, a fixed point, where y = z, cannot be prevented for the same reason. To
simulate practical configurations of the ideal cipher and integration function, we also cannot
exclude the IV when generating z or y, making a fixed point such as y = IV or z = IV possible.
Therefore, the probability in this game is the probability that the simulators will output either

25



prefix collision, or fixed points. Since the occurrence probability of a prefix collision can be
upper bounded by the birthday attack, the overall probability of this game is:

P x7 = Pr[DF
S3,x,R3,x
2,x ,S3,x,R3,x ] ≤

(
(q1 · L/m+ q2 + q3)2 + 2(q1 · L/m+ q2 + q3)

)
/2n

P y7 = Pr[DF
S3,y,R3,y
2,y ,S3,y ,R3,y ] ≤

(
(q1 · L/m+ q2 + q3)2 + 2(q1 · L/m+ q2 + q3)

)
/2n

P c7 = Pr[DF
S3,c,R3,c
2,c ,S3,c,R3,c ] ≤

(
(q1 · L/m+ q2 + q3)2 + 2(q1 · L/m+ q2 + q3)

)
/2n

where the 2 instances of (q1 ·L/m+q2 +q3)/2n signify the 2 possible fixed points, namely y = IV
or z = IV .

Game 8. We can now replace FS3,x,R3,x

2,x ,FS3,y ,R3,y

2,y ,FS3,c,R3,c

2,c by ĈHx,Gx
x , Ĉ

Hy ,Gy
y , ĈHc,Gc

c and
S3,x, S3,y, S3,c by Hx,Hy,Hc, and R3,x, R3,y, R3,c by Gx,Gy,Gc. Clearly, the distinguishing prob-
ability of this game is similar to the previous one as the view of D does not change by the
replacements as detailed above:

P x8 = Pr[DĈHx,Gx
x ,Hx,Gx = 1] = P x7

P y8 = Pr[DĈ
Hy,Gy
y ,Hy ,Gy = 1] = P y7

P c8 = Pr[DĈHc,Gc
c ,Hc,Gc = 1] = P c7

Finally, we add the distinguishing probabilities calculated throughout the proof and obtain
the full distinguishing bound for each construction. The running time of the simulator is (number
of queries) × (largest query), that is tS ≤ (q1 · L/m + q2 + q3) · (m + n) and is similar in all
games. This completes the proof.

References

[1] Saif Al-Kuwari. Integrated-key Hash Functions: How to Constructing Keyed Hash Functions
from Keyless Ones, 2011. (manuscript under review). 2, 3

[2] Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. An Uninstantiable Random-
Oracle-Model Scheme for a Hybrid-Encryption Problem. In Eurocrypt ’04, volume 3027 of
LNCS, pages 171–188. Springer-Verlag, 2004. 3

[3] Mihir Bellare and Thomas Ristenpart. Hash Functions in the Dedicated-Key Setting: De-
sign Choices and MPP Transforms. In ICALP ’07, volume 4596 of LNCS, pages 399–410.
Springer-Verlag, 2007. 2

[4] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: a Paradigm for Design-
ing Efficient Protocols. In CCS ’93, pages 62–73, 1993. 3

[5] Mihir Bellare and Phillip Rogaway. Code-Based Game-Playing Proofs and the Security of
Triple Encryption, 2004. (eprint.iacr.org/2004/331). 6

[6] Ran Canetti, Oded Goldreich, and Shai Halevi. The Random Oracle Methodology, Revis-
ited. Journal of the ACM, 51(4):557–594, 1998. 3

[7] Ran Canetti, Oded Goldreich, and Shai Halevi. On the Random-Oracle Methodology as
Applied to Length-Restricted Signature Schemes. In TCC ’ 04, volume 2951 of LNCS,
pages 40–57. Springer-Verlag, 2004. 3

26

eprint.iacr.org/2004/331


[8] Jean-Sebastien Coron, Yevgeniy Dodis, Cecile Malinaud, and Prshant Puniya. Merkle-
Damg̊ard Revisited: How to Construct a Hash Function. In Crypto ’05, volume 3621 of
LNCS, pages 430–448. Springer-Verlag, 2005. 3, 4, 6

[9] Ivan Damg̊ard. A Design Principle for Hash Functions. In Crypto ’89, volume 435 of LNCS,
pages 416–427. Springer-Verlag, 1989. 3

[10] Yevgeniy Dodis, Leo Reyzin, Ronald Rivest, and Emily Shen. Indifferentiability of
Permutation-Based Compression Functions and Tree-Based Modes of Operation, with Ap-
plications to MD6. In FSE ’09, volume 5665 of LNCS, pages 104–121. Springer-Verlag,
2009. 2, 3

[11] Daëtan Leurent and Phong Nguyen. How Risky is the Random-Oracle Model? In Crypto
’09, volume 5677 of LNCS, pages 445–464. Springer-Verlag, 2009. 3

[12] Ueli Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, Impossibility
Results on Reductions, and Applications to the Random Oracle Methodology. In TCC ’04,
volume 2951 of LNCS, pages 21–39. Springer-Verlag, 2004. 3

[13] Ralph Merkle. One Way Hash Functions and DES. In Crypto ’89, volume 435 of LNCS,
pages 428–446. Springer-Verlag, 1989. 3

[14] Jesper Nielsen. Separating Random Oracle Proofs from Complexity Theoretic Proofs: The
Non-Committing Encryption Case. In Crypto ’02, volume 2442 of LNCS, pages 111–126.
Springer-Verlag, 2002. 3

[15] Michael Rabin. Foundations of Secure Computations, chapter Digitalized Signatures, pages
155–166. Academic Press, 1978. 13

[16] Phillip Rogaway. Formalizing Human Ignorance: Collision-Resistant Hashing Without the
Keys. In Vietcrypt ’06, volume 4341 of LNCS, pages 211–228. Springer-Verlag, 2006. 2

[17] X. Wang, D. Feng, X. Lai, and H. Yu. Collisions for hash functions MD4, MD5, HAVAL-
128 and RIPEMD, 2004. (eprint.iacr.org/2004/199). 2

[18] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-1. In
Crypto ’05, volume 3621 of LNCS, pages 17–36. Springer-Verlag, 2005. 2

[19] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In Eurocrypt
’05, volume 3494 of LNCS, pages 19–35. Springer-Verlag, 2005. 2

27

eprint.iacr.org/2004/199

	Introduction
	The iMD Constructions
	The Indifferentiability Framework
	The Indifferentiability proof
	The Distinguisher
	The Indifferentiability Proof


