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Abstract. Ristenpart et al. showed that the limitation of the indifferentiability theorem of Maurer
et al. which does not cover all multi-stage security notions Sm but covers only single-stage security
notions Ss, defined reset indifferentiability, and proved the reset indifferentiability theorem, which is
an analogy of the indifferentiability theorem covers all security notions S (= Ss ∪ Sm): F1 @r F2 ⇒
∀C ∈ C, ∀S ∈ S: C(F1) ≻S C(F2) (if a hash function HU is reset indifferentiable from a random oracle
RO, C ∈ C which is a set of all cryptosystems is at least as S-secure in the U model as in the RO
model). Unfortunately, they also proved the impossibility of HU @r RO where H is a one-pass hash
construction such as ChopMD and Sponge.

In this paper, we will propose a new proof of molular approach instead of the RO methodology,
“Reset Indifferentiability from Weakened Random Oracle”, called as the WRO methodology, in order
to ensure the S-security of C with HU , salvaging ChopMD and Sponge. The concrete proof procedure
of the WRO methodology is as follows:

1. Define a new concept of WRO instead of RO,
2. Prove that HU @r WRO, (here an example of H is ChopMD and Sponge), and

3. Prove that C is S-secure in the WRO model.

As a result we can prove that C with HU is S-secure by combining the results of Steps 2, 3, and
the theorem of Ristenpart et al. Moreover, for public-key encryption (as cryptosystem C) and chosen-
distribution attack (as the game of S ∈ Sm) we will prove that C(WRO) is S-secure, which implies the
appropriateness of the new concept of the WRO model.
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1 Introduction

1.1 Indifferentiability

The Indifferentiability theorem [17] of Maurer, Renner, and Holenstein (MRH), called MRH the-
orem, ensures that for all single-stage security notions Ss the security of a cryptosystem in the
F2 model is ensured in the F1 model by proving that “F1 is indifferentiable from F2”, denoted
by F1 @ F2. In the framework with which the MRH theorem is proven, two interfaces of a sys-
tem F among adversaries and honest parities are considered, an “adversarial interface” accessed
by adversaries, denoted by F.adv, and an “honest interface” accessed by honest parties, denoted
by F.hon. The indifferentiable game of F1 @ F2 is a simulation based game where constructing
some stateful simulator S which represents some adversary in the F2 model which can obtain any
information on F1.adv in the F1 model by using information on F2.adv. The definition of F1 @ F2

is that there exists a stateful simulator S such that for any distinguisher D which interacts with
two oracles (L,R), no D can distinguish a real world (L,R) = (F1.hon, F2.adv) from an ideal world
(L,R) = (F2.hon, S

F2.adv) where S has access to F2.adv. MRH proved the following theorem:

MRH Theorem.[17] F1 @ F2 ⇒ ∀C ∈ C, ∀S ∈ Ss: C(F1) ≻S C(F2)

which means C is at least as S-secure in F1 model as in F2 model, where C is a set of all cryptosys-
tems.



1.2 RO Methodology

Coron, Dodis, Malinaud, and Puniya [12] pointed out that the MRH theorem opened a nice molular
approach of a security proof of some cryptosystem using hash fuctions, that is, since the MRH
theorem claims that HU @ RO ⇒ ∀C ∈ C, ∀S ∈ Ss: C(HU ) ≻S C(RO) assuming U is ideal,
designers of hash functions concentrate on constructions of H proving HU @ RO, and those of
cryptosystems concentrate on finding of C proving that C is S-secure in the RO model. This
approach is called as the Random Oracle (RO) methodology. In the proof of HU @ RO, the
real world is (L,R) = (HU ,U) and the ideal world is (L,R) = (RO, SRO). Hereafter, we call a
hash function HU such that HU @ RO an “IFRO (indifferentiable from a RO) hash function”
and its construction the “IFRO hash construction”. So far, many IFRO hash constructions have
been proposed such as the Chop Merkle-Damg̊ard (ChopMD) construction [12] and the Sponge
construction [6]. SHA-512/224 and SHA-512/256, which are standarized in FIPS 180-4 [20], employ
the ChopMD construction and the SHA-3 winner Keccak [19, 7] employs the Sponge construction.
Therefore, IFRO security is an important criterion of design of hash functions.

1.3 Impossibility of IFRO security in Multi-Stage Security Games

However, Ristenpart, Shacham, and Shrimpton (RSS) [21] pointed out that though indifferentia-
bility covers all single-stage security notions Ss, it does not cover all multi-stage security notions
Sm. In a multi-stage game, the size of the state shared among adversaries is restricted.

The reason why indifferentiability does not cover Sm is that the indifferentiable game deal with
a “stateful” simulator, that is the size of the sate of the simulator is not restricted, while in the
multi-stage game the size of the state shared among adversaries is restricted.

They defined a two party challenge response protocol CR and its security, called CRP-security
as a counter example against indifferentiability. They showed that CR is CRP-secure in the RO
model but insecure when using an IFRO hash function such as the ChopMD hash function and the
Sponge hash function.

Note that the RSS result does not always imply that for any S ∈ Sm, any C ∈ C which is
S-secure in the RO model is insecure when RO is replaced by HU . So we have the following
question:

“Can we prove the S-security of C with HU?”

This paper tackles how to solve this question. The candidate to solve this question is reset
indifferentiability of RSS [21].

1.4 Reset Indifferentiability

The reset indifferentiability framework is an extension of the indifferentiability framework and this
theorem, called RSS theorem, covers all security notions S (= Ss ∪Sm). The RSS theorem ensures
that for any S ∈ S and for any C, the S-security is preserved when F2 is replaced with F1 if
F1 is reset indifferentiable from F2, denoted by F1 @r F2. The reset indifferentiable game is the
same simulation based game as the indifferentiable game [17], where indifferentiability deals with
a stateful simulator, while reset indifferentiability deals with a stateless simulator. The “stateless”
setting reflects the setting of multi-stage security games where the state size among adversaries
is restricted. So the definition of F1 @r F2 is that there exists a stateless simulator S such that
for any distinguisher D which interacts with two oracles (L,R), no D can distinguish a real world
(L,R) = (F1.hon, F2.adv) from an ideal world (L,R) = (F2.hon, S

F2.adv). RSS proved the following
theorem.
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RSS Theorem. [21] F1 @r F2 ⇒ ∀C ∈ C, ∀S ∈ S: C(F1) ≻S C(F2).

Therefore, if HU @r RO, for any S ∈ S and any C ∈ C the S-security of C is preserved when RO
is replaced with HU .

Unfortunately, RSS also proved the impossibility of HU @r RO where H is a one-pass hash
construction such as the ChopMD construction and the Sponge construction. That is, it is impos-
sible to simulate information of U (= HU .adv) from that of RO (= RO.adv). Therefore, we have
to consider another solution than the RO methodology.

1.5 Our Contributions – A New Proposal of WRO Methodology –

We propose a WRO methodology which is based on “Reset Indifferentiability from Weakened
Random Oracle (WRO)” in order to ensure the S-security of C with HU . This paper deals with
the ChopMD construction and the fixed output length Sponge (FOLSponge) constructions as HU ,
because these are employed in important hash functions such as SHA-512/224, SHA-512/256, which
are in FIPS 180-4, and SHA-3 winner Keccak.

The concrete proof procedure of the WRO methodology is as follows:

1. Define a new concept of WRO instead of RO,
2. Prove that HU @r WRO assuming U is ideal, and
3. Prove that C is S-secure in the WRO model.

As a result we can prove that C with HU is S-secure by combining the results of Steps 2, 3, and the
RSS theorem. Moreover, for public-key encryption (as cryptosystem C) and Chosen Distribution
Attack [1, 2] (as game S) we will prove that C(WRO) is S-secure, which implies the appropriateness
of the new concept of the WRO model.

We define WRO so that one can construct a stateless simulator such that HU @r WRO, that
is, an adversary can simulate information of U (= HU .adv) fromWRO.adv. We defineWRO which
consists of RO and sub oracle O∗ which leaks information to simulate U . The interfaces are defined
as WRO.hon = RO and WRO.adv = (RO,O∗). If we can construct such WRO, for any S ∈ S
and any C ∈ C, the S-security is preserved when WRO is replaced with HU by the RSS theorem.

To our knowledge, our result is the first result to ensure the reducibility from a real model to
an ideal model for the important hash constructions, ChopMD and FOLSponge.

How to Define O∗. We define O∗ based on the IFRO proof of the ChopMD, ChopMDh @ RO,
where h : {0, 1}m+2n → {0, 1}2n is a random oracle compression function. The output of the
two block message M1∥M2 is calculated as ChopMDh(M1∥M2) = chopn(h(h(IV ∥M1)∥M2)) where
chopn accepts 2n bit value x′∥x∗ and returns the right n bit value x∗. In this case, the real world is
(L,R) = (ChopMDh, h). In the indifferentiable game, since distinguisher D interacts with (L,R),
helpful information for D is just query-response values from L and R. Therefore, the following two
points are required to construct a simulator S. The first point is the simulation of h. The second
point is the simulation of the relation between L and R in the real world, because L uses R in the
real world. The following explains the simulations as considering the use of the S’s state.

Simulation of h: We explain the simulation of h by using Fig. 1. This example is that D makes a
repeated query. In the real world the responses y1 and y2 satisfy the following conditions, since
R is a random oracle h,
– Condition 1: y1 is a random value and y2 = y1.
The following demonstrates that S satisfying the condition can be constructed by using the S’s
state.
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D’s Procedure 1 (Condition 1)
1. D makes a query x to R and receives the response y1.
2. D makes a query x to R and receives the response y2.

Fig. 1. Distinguisher’s Procedure 1

D’s Procedure 2 (Condition 2)
1. D makes a query IV ∥M1 to R and receives the response y1
2. D makes a query y1∥M2 to R and receives the response y2

Fig. 2. Distinguisher’s Procedure 2

– Constructing S: In Step 1 S chooses a random value as the response y1 for the query x.
Then S records the query response pair (x, y1). In Step 2 S finds y1 from the query response
pair (x, y1) for the repeated query x, y2 := y1, and responds y2.

Simulation of the L-R Relation: We explain the simulation of the relation between L and R
by using Fig. 2. In the real world, since (L,R) = (ChopMDh, h), the query response values in
Fig. 2 satisfy the following conditions.
– Condition 2: chopn(y1) = ChopMDf (M1) and chopn(y2) = ChopMDh(M1∥M2).
The following shows that S satisfying the condition can be constructed by using the S’s state.
– Constructing S: In Step 1 S defines y∗1 = RO(M1) for the query IV ∥M1, chooses a random

value y′1, defines y1 := y′1∥y∗1, and returns y1. Then S records the pair (M1, y1). In Step 2,
for the query y1∥M2, S finds M1 from the pair (M1, y1). Then S chooses a random value
y′2, defines y∗2 = RO(M1∥M2), y2 := y′2∥y∗2, and returns y2. This procedure ensures that
chopn(y1) = RO(M1) and chopn(y2) = RO(M1∥M2).

The important point of this simulation is to find M1 from both the query y1∥M2 and the recoded
pair (M1, y1).

We can construct a stateful simulator S which ensures the two points. On the other hand, no one
can construct a stateless simulator S which ensures the two points. So we compensate the stateless
setting by using sub oracle O∗.

Sub Oracle for Simulation of h: In order to ensure the condition 1, we add random oracle
RO∗ to O∗. Then we can construct a stateless simulator S which ensures the condition 1; In
Step 1 S defines y1 = RO∗(x) for query x. In Step 2 S defines y2 = RO∗(x) for the repeated
query x.

Sub Oracle for Simulation of L-R Relation: In order to ensure the condition 2, we add random
oracle RO† and trace oracle T O to O∗. The definition of T O is that for query y′1 to T O, T O
returns M1 if a query M1 to RO† was made such that y′1 = RO†(M1), otherwise T O returns ⊥.
Then we can construct a stateless simulator S which ensures the condition 2; In Step 1, for query
IV ∥M1, S defines y′1 = RO†(M1) and y∗1 = RO(M1), y1 := y′1∥y∗1, and returns y1. In Step 2, for
query y1∥M2, S obtains y′1 from y1 := y′1∥y∗1 and makes a query y′1 to T O. Then M1 is returned
from T O. Finally S defines y∗2 = RO(M1∥M2) and y′2 := RO†(M1∥M2), y2 := y′2∥y∗2, and
returns y2. This procedure ensures that chopn(y1) = RO(M1) and chopn(y2) = RO(M1∥M2).

Therefore, we define O∗ := (RO∗,RO†, T O), can construct a stateless simulator which ensures the
above two conditions, and can succeed in proving of ChopMDh @r WRO (Theorem 2).

Similarly, by defining O∗ := (IC,RO†, T O), for the FOLSponge construction, we can con-
struct a stateless simulator which ensures the above two simulations and can succeed in proving of
FOLSponge @r WRO (Theorem 3) where IC = (E,D) is an ideal cipher. E is an encryption oracle
and D is a decryption oracle.

In this paper we define O∗ = (RO∗,RO†, T O, IC) in order to evaluate the ChopMD and the
FOLSponge constructions by the single WRO.1 Since we defined WRO = (RO,O∗), WRO con-

1 Similarly, one can prove that HU @r WRO when H is Merkle-Damg̊ard based hash constructions such as Prefix-
free Merkle-Damg̊ard [12], EMD [5], and MDP [15].
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sists of (RO,RO†, T O, IC), and the interfaces are defined as WRO.hon = RO and WRO.adv =
(RO,RO†, T O, IC).

Appropriateness of WRO. We succeed to bypass the impossible result in [21] by introducing
the WRO model; however, it is non-trivial if previous cryptosystems that are secure for multi-
stage games in the RO model are still secure in the WRO model. Thus, the next step is to
show that there exists a secure cryptosystem for a multi-stage game in the WRO model. We
consider public-key encryption (PKE) (as cryptosystem C) for the Chosen Distribution Attack
(CDA) game [1, 2] (as game S). Roughly, we say a PKE scheme is CDA secure if message privacy is
preserved even if an adversary can control distributions of messages and randomness in generating
the challenge ciphertext. The CDA game captures several flavors of PKE settings (e.g., deterministic
PKE (DPKE) [1, 3, 8, 14, 18], hedged PKE (HPKE) [2], and message-locked PKE [4]), and such
PKE settings are tools for many practical applications. Thus, our target is to find a CDA secure
cryptosystem in the WRO model.

First, we start with the result in [21]. They showed that any CPA secure PKE scheme in the RO
model can be (redundancy-freely) transformed to an IND-SIM secure PKE scheme in theRO model
via conversion REwH1 [2]. The IND-SIM security is a very weak property that an adversary cannot
distinguish between encryptions of chosen messages under chosen randomness and the output of
a simulator.2 We show that any IND-SIM secure [21] PKE scheme in the RO model is also CDA
secure in the WRO model (Theorem 4). The combination of our theorem and the previous result
implies that a CDA secure PKE scheme in the WRO model can be obtained from any CPA secure
PKE scheme in the RO model.3

To prove the CDA security in theWRO model, we must ensure that the sub oracle O∗ gives no
advantage to an adversary in the CDA game. The CDA game consists of two stages, where a first
stage adversary A1 sends no value to a second stage adversary A2.

4 First, the challenge ciphertext
cβ does not leak any information of messages (m0,m1) and r even with access to RO. This property
is guaranteed by the IND-SIM security. Next, if RO† and RO∗ are ideal primitives whose outputs
do not leak no information for the inputs, these oracles give no advantage to the adversary. Finally,
A1 might deliver some information about (m0,m1) or r via interfaces of IC, T O and RO†. A1

can pose (m0,m1) or r (or a related value) to RO†, E, and D, where E and D are an encryption
oracle and a decryption oracle of IC. If A2 could pose the corresponding output value of RO†, E,
or D to T O, D, or E, A2 would obtain information from A1. However, indeed, A2 cannot find the
corresponding output value except negligible probability because of following two reasons: 1) Any
meaningful information from A1 is not obtained from any of cβ, RO, RO† and RO∗ as discussed
above. 2) Outputs of RO†, E, and D are uniformly random, and then a possible action of A2 is
randomly guessing these values. Therefore, T O and IC also give no advantage to the adversary.

2 This definition is meaningless in the standard model because the encryption algorithm uses no further randomness
beyond that input.

3 From Theorem 2 and 3, the CDA security in the WRO model is preserved if WRO is replaced with the ChopMD
construction and the FOLSponge construction. Therefore, our result achieves that a CDA secure PKE scheme with
such practical hash functions can be obtained from any CPA secure PKE scheme in the RO model.

4 In the first stage, an adversary A1 outputs two messages (m0,m1) and a random value r such that the jointed
values mi∥r have sufficient min-entropy. In the second stage, an adversary A2 receives the challenge ciphertext
cβ = E(mβ ; r) from the game where β is a random value of a single bit, and outputs a bit b, where E is an
encryption function. The adversary wins if b = β.
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1.6 Related Works

There have been some independent studies [13, 16] to consider the indifferentiability framework in
multi-stage games. They independently show that for any domain extender H it is impossible to
prove HU @r RO.

Because of the impossibility result, it cannot be guaranteed to securely instantiate RO by HU

via the reset indifferentiability. Thus, they try to salvage H by relaxing limitations of S and/or D.
Conversely, we salvage H by showing instantiability from WRO.

Demay et al. [13] propose a relaxed model that is called resource-restricted indifferentiability.
This model allows simulator S to have a fixed size state while the reset indifferentiability restrict
S to be stateless. That means, adversaries in a multi-stage game can share a fixed size (denoted by
parameter s) state. They show that it is possible to securely instantiate RO by HU via the resource-
restricted indifferentiability. Specifically, they define that F1 is s-resource-restricted indifferentiable
from F2 (denoted by F1 @rr,s F2) if ∃S with the state size s bit s.t. no D distinguishes the real
world (F1.hon, F1.adv) from the ideal world (F2.hon, S

F2.adv). They prove that for any multi-stage
game security S that the size of shared state between adversaries in multi-stage is restricted to
equal or lower than s bit, F1 @rr,s F2 ⇒ ∀C ∈ C C(F1) ≻S C(F2).

They also show a necessary condition of parameter s (i.e., s = l − m − log q > 0) to prove
HU @rr,s RO for any domain extender H, where l is the maximal input length of H, m is the
input length of the ideal primitive of H (e.g., compression function) and q is the number of query
of S. Their theorem is only valid for the case s > 0; that is, their result is still restricted to specific
multi-stage games. Indeed, unfortunately, their approach cannot cover security games that shared
state between adversaries in multi-stage is restricted to zero (i.e., s = 0). Because the CDA game
is the case s = 0, they cannot salvage H for the CDA game while our result can do that.

Luykx et al. [16] propose a relaxed model that is called i-reset indifferentiability. This model
restricts distinguisher D so that D is allowed to reset the memory of simulator S only i times while
the reset indifferentiability allows D to reset any times. That means, the number of stages in multi-
stage games is equal or lower than i. They define that F1 is i-reset indifferentiable from F2 (denoted
by F1 @r,i F2) if ∃S which is stateful s.t. no D distinguishes the real world (F1.hon, F1.adv) from
the ideal world (F2.hon, S

F2.adv), where D can reset S up to i times. They prove that for any i′-stage
(1 ≤ i′ ≤ i) game security S, F1 @r,i F2 ⇒ ∀C ∈ C C(F1) ≻S C(F2).

Unfortunately, they show the impossibility that HU @r,i RO cannot be proved for any one-pass
hash construction even if i = 1. Hence, their approach cannot salvage practical H. On the other
hand, our result can salvage important and practical one-pass H such as ChopMD and FOLSponge
(Theorems 2 and 3); therefore, our methodology with WRO is more suitable in a practical sense.

2 Preliminaries

Notations. For two values x, y, x||y is the concatenated value of x and y. For some value y, x← y

means assigning y to x. When X is a non-empty finite set, we write x
$←− X to mean that a value

is sampled uniformly at random from X and assign to x. ⊕ is bitwise exclusive or. |x| is the bit

length of x. For sets A and C, C
∪←− A means assign A ∪ C to C. For l × r-bit value M , div(r,M)

divides M into r-bit values (M1, . . . ,Ml) and outputs them where M1∥ · · · ∥Ml = M . For a b-bit
value x, x[i, j] is the value from (left) i-th bit to (left) j-th bit where 1 ≤ i ≤ j ≤ b. For example,
let x = 01101001, x[3, 5] = 101. For a Boolean function F , we denote by “∃1M s.t. F (M) is true”
“there exists just a value M such that F (M) is true”. Vectors are written in boldface, e.g., x. If x
is a vector then |x| denotes its length and x[i] denotes its i-th component for 1 ≤ i ≤ |x|. bitj(x)
is the left j-th bit of x[1]∥ . . . ∥x[|x|].
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Throughout this paper, we assume that any algorithm and game is implicitly given a security
parameter as input if we do not explicitly state.

Indifferentiability Frameworks [17, 21]. The indifferentiability framework [17] ensures re-
ducibility from one system F1 to another system F2 in any single-stage game, where an adversary
uses a single state. That is, this framework ensures that the security for any single-stage game is
preserved when F2 is replaced by F1. This framework ensures the reducibility in any single-stage by
proving that information in the F1 model can be obtained in the F2 model. This framework deals
with two types for information in the Fi model for i = 1, 2; Information from an adversarial inter-
face, denoted by Fi.adv to which adversaries have access, and information from an honest interface,
denoted by Fi.hon to which honest parties have access. In this framework, the reducibility reflects
in a simulation based game, called an indifferentiable game: When considering the reducibility from
F1 to F2, the advantage of this game is defined as follows.

AdvindiffF1,F2,S(A) = |Pr[D
F1.hon,F1.adv ⇒ 1]− Pr[DF2.hon,SF2.adv ⇒ 1]|

where S is a simulator which has access to F2.adv and D is a distinguisher which has access to left
oracle L and right oracle R. The F1 case is that (L,R) = (F1.hon, F1.adv), called Real World. The
F2 case is that (L,R) = (F2.hon, S

F2.adv), called Ideal World. The reducibility from F1 to F2 is
ensured by showing that there exists a stateful simulator S such that for any D the indifferentiable
advantage is negligible in the security parameter [17].

The reset indifferentiability framework [21] is an extension of the indifferentiability framework
and covers any multi-stage game in addition to any single-stage game. A multi-stage game is that
the size of the state shared among adversaries are restricted. The restricted situation is covered by
dealing with a stateless simulator. When considering the reducibility from F1 to F2, the advantage
of this game is defined as follows.

Advr-indiffF1,F2,S(A) = |Pr[D
F1.hon,F1.adv ⇒ 1]− Pr[DF2.hon,SF2.adv ⇒ 1]|

The reducibility from F1 to F2 is ensured by showing that there exists a stateless simulator S
such that for any D the indifferentiable advantage is negligible in the security parameter [21]. If
there exists such S then F1 is reset indifferentiable from F2. More precisely, RSS gave the following
theorem.

Theorem 1 (RSS Theorem [21]). Let G be any game. Let F1 and F2 be cryptographic systems.
Let S be a stateless simulator. For any adversary A = (A1, . . . ,Am), there exist an adversary
B = (B1, . . . ,Bm) and a distinguisher D such that

Pr[A wins in F1 model in G] ≤ Pr[B wins in F2 model in G] + Advr-indiffF1,F2,S(D).

Moreover, tBi ≤ tAi + qAitS , qBi ≤ qAiqS , tA ≤ m + tG +
∑m

i=1 qG,itAi , qA ≤ qG,0 +
∑m

i=1 qG,itAi

where tA, tB, tD are the maximum running times of A,B,D; qA, qB are the maximum number of
queries made by A and B in a single execution; and qG,0, qG,1 are the maximum number of queries
made by G to the private interface and to the adversary.

Definitions of Hash Functions. We give the description of the ChopMD construction [12]. Let h
be a compression function which maps a value of d+n+s bits to a value of n+s bits. The ChopMD
ChopMDh : {0, 1}∗ → {0, 1}n is defined in Fig. 3. padc : {0, 1}∗ → ({0, 1}d)∗ is an injective padding
function such that its inverse is efficiently computable. IV is a constant value of n+ s bits.
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ChopMDh(M)

1 M ′ ← padc(M);
2 (M1, . . . ,Mi)← div(d,M ′);
3 x← IV ;
4 for j = 1, . . . , i do x← h(x∥Mj);
5 return x[s+ 1, s+ n];

Fig. 3. Chop Merkle-Damg̊ard

Algorithm FOLSpongeP (M)

1 M ′ ← padS(M);
2 (M1, . . . ,Mi)← div(n,M ′);
3 s = IV ;
4 for i = 1, . . . , i do
5 s = P (s⊕ (Mi∥0c));
6 return s[1, n];

Fig. 4. Sponge

RO†
w(M)

1 if F†[M ] =⊥ then F†[M ]
$←− {0, 1}w;

2 return F†[M ];

T O(y)
1 if ∃1M s.t. F†[M ] = y then return M ;
2 return ⊥;

Fig. 5. RO†
w and T O where F† is a (initially everywhere ⊥) table.

We give the description of the FOLSponge construction [6]. Let P be a permutation of d
bits. The FOLSonge FOLSpongeP : {0, 1}∗ → {0, 1}n is defined in Fig. 4 such that n < d.5 Let
c = d−n. padS : {0, 1}∗ → ({0, 1}n)∗ is an injective padding function such that the last n-bit value
is not 0. IV is a constant value of d bits. IV1 = IV [1, n] and IV2 = IV [n + 1, d]. For example,
padS(M) = M∥1∥0i where i is a smallest value such that |M∥1∥0i| is a multiple of n.

3 Reset Indifferentiability from WRO

RSS [21] proved the impossibility of proving that the ChopMD and the FOLSponge are reset
indifferentiable from random oracles. To compensate the impossibility, we change the ideal world
from a random oracle to a weakened random oracle (WRO). We define WRO such that both of
the ChopMD and the FOLSponge are reset indifferentiable from WROs.

3.1 WRO

We define WRO as (ROn,RO∗
v,RO†

w, T O, ICa,b), where ROn,RO∗
v,RO†

w are arbitrary input
length random oracles whose output lengths are n bit, v bit, and w bit, respectively, T O is a
trace oracle, and ICa,b is an ideal cipher with key length a and block length b. The definition of
T O is that for query y to T O, it returns M if ∃1M such that a query M to RO†

w such that
y = RO†

w(M) was made, and otherwise it returns ⊥. Fig. 5 shows the method of implement-
ing a RO†

w and a T O. E : {0, 1}a × {0, 1}b → {0, 1}b denotes the encryption oracle of ICa,b,
and D : {0, 1}a × {0, 1}b → {0, 1}b denotes the decryption oracle. The interfaces are defined by
WRO.hon = ROn and WRO.adv = (ROn,RO∗

v,ROw, T O, ICa,b). Note that the parameters
(n, v, w, a, b) are defined in each hash function. In Appendix. A, we give a method of implementing
WRO.

For a hash function HU using an ideal primitive U , the advantage of reset indifferentiability
from WRO is defined as follows.

Advr-indiffHU ,WRO,S(D) = |Pr[D
HU ,U ⇒ 1]− Pr[DWRO.hon,SWRO.adv ⇒ 1]|.

The RSS theorem ensures that if HU is reset indifferentiable from a WRO, for any game the
security of any cryptosystem is preserved when a WRO is replaced by HU , where in the WRO
5 Note that if the output length (denoted l) is smaller than n, the output length is achieved by returning s[1, l].
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model adversaries have access to WRO.adv and the cryptosystem has access to WRO.hon, and
for the HU case, adversaries have access to U and the cryptosystem has access to HU .

3.2 Reset Indifferentiability for ChopMD

In this proof, we define the parameter ofWRO as w = s and v = n+s. Note that ICa,b is not used.
Therefore, WRO = (ROn,RO∗

n+s,RO†
s, T O).

Theorem 2. Let the compression function h be a random oracle. There exists a stateless simulator
S such that for any distinguisher D,

Advr-indiff
ChopMDh,WRO,S

(D) ≤ qR(qR − 1) + 2σ(σ + 1)

2s

where D can make queries to left oracle L = ChopMDh/ROn and right oracle R = h/S at most
qL, qR times, respectively, and l is a maximum number of blocks of a query to L. σ = lqL + qR. S
makes at most 4qR queries and runs in time O(qR). �

An intuition of the proof is shown in Subsection 1.5. The proof for the ChopMD hash function is
given in Section 4.

3.3 Reset Indifferentiability for FOLSponge

We define the parameter of WRO as w = c and b = d. We don’t care the key size a, since ICa,b can
be regarded as random permutation by fixing a key k∗. We denote E(k∗, ·) by a random permutation
P(·) of d bit and D(k∗, ·) by its inverse oracle P−1(·). Note that in this proof, RO∗

v are not used.
Therefore, WRO = (ROn,RO†

c, T O,P,P−1).

Theorem 3. Assume that the underlying permutation P is a random permutation and P−1 is its
inverse oracle. There exists a stateless simulator S = (SF , SI) such that for any distinguisher D,

Advr-indiff
FOLSpongeP ,WRO,S

(D) ≤ 2σ(σ + 1) + q(q − 1)

2c
+

σ(σ − 1) + q(q − 1)

2d+1

where D can make at most qL, qF and qI queries to left L = FOLSpongeP /ROn and right oracles
RF = P/SF , RI = P−1/SI . l is a maximum number of blocks of a query to L. σ = lqL + qF + qI
and q = qF + qI . S makes at most 4q queries and runs in time O(q). �

In the following, we outline why a stateless simulator can be constructed. To simplify the explana-
tion, we omit the padding function of FOLSpongeP . Therefore, queries to L are in ({0, 1}n)∗. Since
D interacts with (L,RF , RI), helpful information for D is obtained from these oracles. Thus, the
S’s tasks are to simulate the following two points.

– Simulation of P and P−1: Since in the real world RF = P and RI = P−1, S must simulate P
and P−1.

– Simulation of L-R relation: There is a relation based on the FOLSponge construction among
query-response values of L and of RF in the real world, since L = FOLSpongeP and RF = P .
We consider the following example.

• D makes query X1 (:= IV ⊕ (M1∥0c)) to RF and receives the response Y1.

• D makes query X2 (:= Y1 ⊕ (M2∥0c)) to RF and receives the response Y2.

In the real world, there are the relations Y1[1, n] = L(M1) and Y2[1, n] = L(M1∥M2).

9



Fig. 6. Figure of Merkle-Damg̊ard

S(x∥m) where x1 = x[1, s], x2 = x[s+ 1, n] and |m| = d

1 M ← T O(x1);
2 if x = IV then
3 z ←ROn(m);

4 w ←RO†
s(m);

5 else if M ̸=⊥ and x2 = ROn(M) then
6 z ←ROn(M∥m);

7 w ←RO†
s(M∥m);

8 else w∥z ←RO∗
n+s(x∥m);

9 return w∥z;

Fig. 7. Simulator S

Using WRO, we can construct a stateless simulator which succeeds in these simulations.

– Simulation of P and P−1: S succeeds in this simulation by using P and P−1; S returns the
response of P(x) for query x, and returns the response of P−1(y) for query y.

– Simulation of L-R relation: S succeeds in this simulation by using RO†
c and T O. For example,

we consider the above queries by D.
• For query X1 to SF , SF parses X1 = W1∥IV2, M1 = W1 ⊕ IV1, Y

∗
1 := ROn(M1), Y

′
1 :=

RO†
c(M1) and Y1 = Y ∗

1 ∥Y ′
1 .

• For query X2 SF parses X2 = W2∥Y ′
1 , M1 = T O(Y ′

1), Y
∗
1 = ROn(M1), M2 = W2 ⊕ Y ∗

1 and
Y2 := ROn(M1∥M2)∥RO†

c(M1∥M2).

These procedures ensure that the relations Y1[1, n] = L(M1) and Y2[1, n] = L(M1∥M2) are
satisfied.

As a result, we can construct a stateless simulator S which succeeds in the simulations of (P, P−1)
and of the L-R relation. Thus we can prove Theorem 3. The proof is given in Appendix B.

4 Proof of Theorem 2

First we define a graph GMD, which is initialized with a single node IV . Edges and nodes in this
graph are defined by query-response values to R, which follow the MD structure. The nodes are
chaining values and the edges are message blocks. For example, if (IV,m1, y1), (y1,m2, y2) are query
response values of R, (IV, y1, y2) are the nodes of the graph and (m1,m2) are the edges. We denote

the MD path by IV
m1−−→ y1

m2−−→ y2 or IV
m1∥m2−−−−→ y2 (Fig. 6 may help to understand the path).

In this proof, the padding function padc is removed. Thus queries to L are in ({0, 1}d)∗. Since
the ChopMD with padc is the special case of one without padc, the security of the ChopMD without
padc ensures the security of one with padc.

We define a stateless simulator S in Fig. 7. Step 8 ensures the simulation of h and Steps 2-7
ensure the simulation of the L-R relation.

4.1 Detail

In the following, for the simulator S in Fig. 7 and any distinguisher D, we evaluate the bound of
the reset indiferentiable advantage of ChopMDh from WRO. To evaluate the bound we consider
the following five games. In each game, D has access to (L,R).

– Game 1 is the ideal world, that is, (L,R) = (ROn, S).

10



– Game 2 is (L,R) = (ROn, S1), where S1 keeps all query-response pairs. For a query x∥m to S1,
if there is (x∥m,w∥z) in the query response history, then S1 returns w∥z, otherwise, S1 returns
the output of S(x∥m).

– Game 3 is (L,R) = (L1, S1), where for a query M to L1 L1 makes S1 queries corresponding
with ChopMDS1(M) and returns the response of ROn(M).

– Game 4 is (L,R) = (ChopMDS1 , S1).

– Game 5 is the real world, that is, (L,R) = (ChopMDh, h).

Let Gi be an event that D outputs 1 in Game i. We thus have that

Advr-indiff
ChopMDh,WRO,S

(D) ≤
4∑

i=1

|Pr[Gi]− Pr[Gi+1]| ≤
qR(qR − 1) + 2σ(σ + 1)

2s
.

In the following, we justify the above bound by evaluating each difference.

Game 1 ⇒ Game 2. From Game 1 to Game 2, we change R from S to S1 where S1 records query
response values, while S does not record them. The query-response history ensures that in Game 2
if a query x∥m to S1 was made and y was responded, for the repeated query x∥m to S1 the same
value y is responded, while in Game 1 there is a case that for some repeated query x∥m to S1

where y was responded, a distinct value y∗ (̸= y) is responded. The difference |Pr[G1]− Pr[G2]| is
thus bounded by the probability that in Game 1 a different value is responded. We call the event
“Diff”. Since the procedure to define an output of S is controlled by T O (See the steps 2, 5, and
8), the event Diff relies on an output of T O. Thus, if Diff occurs, for some repeated query to T O
the response is changed. More precisely, if Diff occurs, the following event occurs.

– For a query y to T O, w was responded, and then for the repeated query a different value w∗ is
responded. From the definition of T O, there are two cases for (w,w∗).

• Diff1: w =⊥ and w∗ ̸=⊥.
• Diff2: w ̸=⊥ and w∗ =⊥.

We thus have that

|Pr[G1]− Pr[G2]| ≤ Pr[Diff1] + Pr[Diff2] ≤
qR(qR − 1)

2s
.

We justify the bound as follows.

First we bound the probability of Pr[Diff1]. Since the response w of the first query is ⊥, when
the first query is made, the query w∗ to RO†

s such that y = RO†
s(w

∗) was not made. Since the
response w∗ of the repeated query is not ⊥, when the repeated query is made, the query w∗ to RO†

s

was made such that y = RO†
s(w

∗). Therefore, first y is defined. Second, the output of RO†
s(w

∗) is
defined. Thus, Pr[Diff1] is bounded by the probability that the response of RO†

s(w
∗), which is an

s-bit random value, hits the value y. Since the numbers of queries to RO†
s and T O are at most qR

times,

Pr[Diff1] ≤
qR∑
i=1

i− 1

2s
≤ qR(qR − 1)

2s+1
.

Next we bound the probability of Pr[Diff2]. Since the response w of the first query is not ⊥,
when the first query is made, the query w to RO†

s was made such that y = RO†
s(w). Since the

response w∗ of the repeated query is ⊥, when the repeated query is made, a query w′ to RO†
s was

11



made such that w ̸= w′ and RO†
s(w) = RO†

s(w
′). Therefore, Pr[Diff2] is bounded by the collision

probability of RO†
s. We thus have that

Pr[Diff2] ≤
qR∑
i=1

i− 1

2s
≤ qR(qR − 1)

2s+1
.

Game 2 ⇒ Game 3. From Game 2 to Game 3, we change L from ROn to L1 where in Game
3 L makes additional queries to R corresponding with the calculation of ChopMDS1(M). Note
that D cannot directly observe the additional query response values but can observe those by
making the queries to R. So we have to show that in Game 3 the additional queries by L don’t

affect D’s behavior. We ensure this by Lemma 1 where in Game j, for any MD path IV
M−→ z,

z = RO†
s(M)∥ROn(M) unless Badj occurs. By Lemma 1, in both games, unless the bad event

occurs, all responses to R are defined by the same queries to RO†
s and to ROn. Namely, in Game 3,

the responses of the additional queries to R which D observes are chosen from the same distribution
as in Game 2 unless the bad event occurs. Thus, the difference |Pr[G2]−Pr[G3]| is bounded by the
probability of occurring the bad event.

First we define the bad event. Let Ti be a list which records (xt[1, s], yt[1, s]) for t = 1, . . . , i− 1
where (xt∥mt, yt) is a t-th query response pair of S where yt = S(xt∥mt).

– Badj is that in Game j for some i-th query xi∥mi to S, the response yi is such that yi[1, s]
collides with some value in Ti ∪ {xi[1, s]} ∪ {IV [1, s]}.

Note that since all outputs of S1 are defined by using S, we deal with S instead of S1.

Next we give Lemma 1 as follows. Note that Lemma 1 is also used when evaluating the difference
between Game 3 and Game 4.

Lemma 1. In Game j, unless Badj occurs, for any MD path IV
M−→ y y = RO†

s(M)∥ROn(M).
�

Proof of Lemma 1. Assume that Badj does not occur. We show that for any MD path IV
M−→

y, y = RO†
s(M)∥ROn(M). Let (x1∥m1, y1), . . . , (xt∥mt, yt) be query response pairs to S which

correspond with the MD path where x1 = IV , xi = yi−1 (i = 2, . . . , t), yt = y, andM = m1∥ . . . ∥mt.

When t = 1, y = RO†
s(M)∥ROn(M) (see Steps 2-4).

We consider the case that t ≥ 2.

Since Badj does not occur, the following case does not occur; for some i ∈ {1, . . . , t − 1},
(xi∥mi, yi) is defined after (xi+1∥mi+1, yi+1) was defined. So (x1∥m1, y1), . . . , (xt∥mt, yt) are defined
by this order.

Since Badj does not occur, no collision of outputs of RO†
s occurs. Therefore, when the query

S1(xt∥mt) is made, the pair (m1∥ . . . ∥mj−1, yt−1) has been recorded in the table F† of RO†
s, that

is, F†[m1∥ . . . ∥mt−1] = yt−1 = xt.

Since Badj does not occur, no collision of outputs of RO†
s occurs. Therefore, there is no value

M∗ such that M∗ ̸= m1∥ . . . ∥mt−1 and F†[M∗] = xt.

Thus, for the query xt∥mt to S, S makes the query xt[1, s] to T O, receives m1∥ . . . ∥mt−1 (Step
1), and returns the response yt such that yt = RO†

s(M)∥ROn(M) (Step 6).

⊓⊔
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By Lemma 1, we can bound the difference |Pr[G2]− Pr[G3]| as follows.

|Pr[G2]− Pr[G3]| ≤|Pr[G2|Bad2]Pr[Bad2] + Pr[G2|¬Bad2]Pr[¬Bad2]

− (Pr[G3|Bad3]Pr[Bad3] + Pr[G3|¬Bad3]Pr[¬Bad3])|
≤|Pr[G2|¬Bad2](Pr[Bad3]− Pr[Bad2])

+ (Pr[G2|Bad2]Pr[Bad2]− Pr[G3|Bad3]Pr[Bad3])|

≤max{Pr[Bad2],Pr[Bad3]} ≤
σ(σ + 1)

2s

where Pr[G2|¬Bad2] = Pr[G3|¬Bad3] from Lemma 1. Finally we justify the bound. The left s-bit
values of all outputs of S1 are uniformly chosen at random from {0, 1}s. The probability of occurring
the bad event is that for some i-th query to S the left s-bit value of the response, which is a random
value, hits some of Ti ∪ {xi[1, s]} ∪ {IV [1, s]}. We thus have that

Pr[Bad2] ≤
qR∑
i=1

2(i− 1) + 2

2s
=

qR(qR + 1)

2s
, Pr[Bad3] ≤

σ∑
i=1

2(i− 1) + 2

2s
=

σ(σ + 1)

2s

where S1 is called at most qR times in Game 2 and σ times in Game 3.

Game 3 ⇒ Game 4. From Game 3 to Game 4, we change L where in Game 3 L(M) = ROn(M),
while in Game 4 L(M) = ChopMDS1(M). Therefore, the modification does not change D’s behavior
iff in Game 4 ChopMDS1(M) = ROn(M). Since Lemma 1 ensures that for any MD path IV

M−→ z,
z = RO†

s(M)∥ROn(M) unless the bad event Bad4 occurs, the modification does not change D’s
behavior. Thus the difference |Pr[G3] − Pr[G4]| is bounded by the probability of occurring Bad4.
Since S1 is called at most σ times, we have that

|Pr[G3]− Pr[G4]| ≤ Pr[Bad4] ≤
σ(σ + 1)

2s
.

Game 4 ⇒ Game 5. From Game 4 to Game 5, we change R from S1 to h. Since outputs of S1

are uniformly chosen at random from {0, 1}n+s, the modification of R does not affect D’s behavior.
We thus have that Pr[G4] = Pr[G5]. ⊓⊔

5 Multi-Stage Security in the WRO Model

In this section, we show appropriateness of ourWRO methodology. We construct a (non-adaptive)
CDA secure [2] PKE scheme in the WRO model. Specifically, we show that if a PKE scheme
satisfies an weak security (i.e., IND-SIM security [21]) in the RO model, then it is also CDA secure
in the WRO model.

An IND-SIM secure PKE in theRO model is easily obtained by applying a known technique [21]
that any CPA secure PKE scheme can be converted into IND-SIM secure by using EwH [1] and
REwH1 [2] in the RO model. Therefore, our result implies that a very large class of PKE schemes
is CDA secure in the WRO model (e.g., factoring-based, Diffie-Hellman-based, lattice-based, etc.).

Furthermore, our result in Section 3 guarantees to instantiate WRO by ChopMD or FOL-
Sponge. Hence, finally, we have that any CPA secure PKE in the RO model can be converted into
CDA secure with ChopMD or FOLSponge. While the previous work [21] showed CDA secure PKE
schemes only with the specific NMAC hash function, our work achieves CDA secure PKE schemes
with large class of hash functions (i.e., ChopMD and FOLSponge).
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CDAA1,A2
AE,F

β
$←− {0, 1}

(pk, sk)
$←− Gen

(m0,m1, r)← AF.adv
1

c← EncF.hon(pk,mβ ; r)

β′ ← AF.adv
2 (pk, c)

return (β = β′)

IND-SIMB
AE,S,F

β
$←− {0, 1}

(pk, sk)
$←− Gen

β′ ← BRoS,F.adv(pk)
return (β = β′)

RoS(m, r)

If β = 1 then return EncF.hon(pk,m; r)

Otherwise return SF.hon(pk, |m|)

Fig. 8. CDA game and IND-SIM game

5.1 CDA Secure PKE in the WRO Model

Public Key Encryption (PKE). A public key encryption scheme AE = (Gen,Enc,Dec) con-
sists of three algorithms. Key generation algorithm Gen outputs public key pk and secret key sk.
Encryption algorithm Enc takes public key pk, plaintext m, and randomness r, and outputs ci-
phertext c. Decryption algorithm Dec takes secret key sk and ciphertext c, and outputs plaintext
m or distinguished symbol ⊥. For vectors m, r with |m| = |r| = l which is the size of vectors, we
denote by Enc(pk,m; r) the vector (Enc(pk,m[1]; r[1]), . . . ,Enc(pk,m[l]; r[l])). We say that AE is
deterministic if Enc is deterministic.

CDA Security. We explain the CDA security (we quote the explanation of the CDA security in
[21]). Fig. 8 illustrates the non-adaptive CDA game for a PKE scheme AE using a functionality
F . This notion captures the security of a PKE scheme when randomness r used in encryption may
not be a string of uniform bits. For the remainder of this section, fix a randomness length ρ ≥ 0
and a plaintext length ω > 0. An (µ, ν)-mmr-sourceM is a randomized algorithm that outputs a
triple of vector (m0,m1, r) such that |m0| = |m1| = |r| = ν, all components of m0 and m1 are bit
strings of length ω, all components of r are bit strings of length ρ, and (mβ[i], r[i]) ̸= (mβ[j], r[j])
for all 1 ≤ i < j ≤ ν and all β ∈ {0, 1}. Moreover, the source has min-entropy µ, meaning
Pr[(mβ[i], r[i]) = (m′, r′)|(m0,m1, r)←M] ≤ 2−µ for all β ∈ {0, 1}, all 1 ≤ i ≤ ν, and all (m′, r′).
A CDA adversary A1,A2 is a pair of procedures, the first of which is a (µ, ν)-mmr-source. The
CDA advantage for a CDA adversary A1,A2 against scheme AE using a functionality F is defined
by

AdvcdaAE,F (A1,A2) = 2 · Pr[CDAA1,A2

AE,F ⇒ true]− 1.

As noted in [2], in the RO model, mmr-sources have access to the RO. In this setting, the min-
entropy requirement is independent of the coins used by the RO, meaning the bound must hold for
any fixed choice of function as the RO. If this condition is removed, one can easily break the CDA
security (i.e., A1 and A2 can easily share the messages (m1,m2, r)) for any cryptosystem using any
indifferentiable hash function.

IND-SIM Security. The IND-SIM security is a special notion for PKE schemes. It captures that
an adversary cannot distinguish outputs from the encryption algorithm and from a simulator S
even if the adversary can choose plaintext and randomness. Fig. 8 shows the IND-SIM game. We
define the IND-SIM advantage of an adversary B by

Advind-simAE,S,F (B) = 2 · Pr[IND-SIMB
AE,F ⇒ true]− 1.

As noted in [21], in the standard model this security goal is not achievable because AE uses no
randomness beyond that input. In the RO model, we will use it when the adversary does not make
any RO queries. A variety of PKE schemes is shown to satisfy IND-SIM security in the RO model.
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CDA Security in the WRO Model. The following theorem shows that for any PKE scheme
the non-adaptive CDA security in the WRO model is obtained from IND-SIM security in the RO
model.

Theorem 4. Let AE be a PKE scheme. Let (A1,A2) be a CDA adversary in the WRO model
making at most qRO, qRO∗ , qRO† , qT O, qE , qD queries to ROn,RO∗

v,RO†
w, T O, ICa,b = (E,D). For

any simulator S there exists an IND-SIM adversary B such that

AdvcdaAE,WRO(A1,A2) ≤ Advind-simAE,S,ROn
(B) + qRO ·maxpkAE +

qRO + 4q2RO∗ + 4q2RO†

2µ

+max

{
4q2T O
2µ

,
4q2T O
2w

}
+max

{
4q2E + 4q2D

2µ
,
4q2E + 4q2D

2b

}
.

B makes no RO queries, makes ν RoS-queries, and runs in time that of (A1,A2) plus O(qRO +
qRO∗ + qRO† + qT O + qE + qD). maxpkAE is the maximum public key collision probability defined as

maxpkAE = max
γ∈{0,1}∗

Pr[pk = γ : (pk, sk)
$←− Gen]. �

The proof outline is as follows: First, we start with game G0 which is exactly the same game as
the CDA game in the WRO model. Secondly, we transform G0 to game G1 so that ROn returns
a random value when A1 poses a message that is posed to ROn by Enc to generate the challenge
ciphertext. In game G1, outputs of ROn does not contain any information about computations to
generate the challenge ciphertext for A1. Thirdly, we transform G1 to game G2 so that ciphertext
c is generated from a simulator S in the IND-SIM game. In game G2, ciphertext c does not contain
any information about outputs of A1. Thus, A1 cannot hand over any information to A2 with c.
Fourthly, we transform G2 to game G3 so that the table of inputs and outputs of each oracle in
WRO (except ROn) for A1 is independent of the table for A2 according to the output of A1. In
game G3, queries to sub-oracles for A2 does not contain any information about the output of A1,
and A1 cannot hand over any information to A2 with sub-oracles. Finally, we transform G3 to
game G4 so that ROn returns a random value when A2 poses a message that is posed to ROn

by Enc to generate the challenge ciphertext. In game G4, outputs of ROn does not contain any
information about computations to generate the challenge ciphertext for A2. Thus, the advantage
of A2 in G4 is nothing.

The proof of Theorem 4 is shown in Appendix C.

5.2 Another Secure Cryptosystem in the WRO Model

In addition to the PKE setting, we consider the ID-based encryption (IBE) setting. Specifically, we
show a generic construction of IBE, called IDREwH1 which is an analogy of REwH1, and is non-
adaptive ID-based CDA (ID-CDA) secure in theWRO model if underlying IBE scheme is ID-CPA
secure in the RO model. Therefore, any ID-CPA secure IBE in the RO model can be generically
converted into ID-CDA secure IBE in the WRO model.

The detail of the result on IBE is shown in Appendix D.
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ROn(M)

1 if F[M ] =⊥, F[M ]
$←− {0, 1}n;

2 return F[M ];

RO∗
v(M)

1 If F∗[M ] =⊥, F∗[M ]
$←− {0, 1}v;

2 return F∗[M ];

RO†
w(M)

1 if F†[M ] =⊥ then F†[M ]
$←− {0, 1}w;

2 return F†[M ];

T O(y)
1 if ∃1M s.t. F†[M ] = y then return M ;
2 return ⊥;

E(k, x)

1 if E[k, x] =⊥, y $←− {0, 1}b\T+[k];
2 Update(k, x, y);
3 return E[k, x];

D(y)

1 if D[k, y] =⊥, x $←− {0, 1}b\T−[k];
2 Update(k, x, y);
3 return D[k, y];

Fig. 9. Weakened Random Oracle WRO

A Implementation of WRO

Fig. 9 shows the method of implementing a WRO. ROn is shown in Fig. 5 (Left) where F is a
(initially everywhere ⊥) table. RO∗

v is shown in Fig. 5 (Left) where F∗ is a (initially everywhere ⊥)
table. RO†

w and T O are shown in Fig. 5 (Center) where F† is a (initially everywhere ⊥) table. ICa,b

can be implemented as Fig. 5 (Right) where E and D are (initially everywhere ⊥) tables where for
the query E(k, x) (resp. D(k, y)) the output is recored in E[k, x] (resp. D[k, y]). T+[k] and T−[k]
are (initially empty) tables which store all values of E[k, ·] and D[k, ·], respectively. Update(k, x, y)
is the procedure wherein the tables E,D, T+[k] and T−[k] are updated as E[k, x] ← y,D[k, y] ←
x, T+[k]

∪←− {y} and T−[k]
∪←− {x}.

B Proof of Theorem 3

We define a graph GS , which is initialized with the single node IV . Edges and nodes in this
graph are defined by query response values to RF and RI which follow the Sponge structure. The
nodes are chaining values and the edges are message blocks. For example, if (X1, Y1), (X2, Y2) are
query response values of RF or RI such that X1[n + 1, d] = IV2 and Y1[n + 1, d] = X2[n + 1, d]
then IV, Y1, Y2 are the nodes of GS and M1,M2 are the edges where M1 = IV1 ⊕ X1[1, n] and

M2 = Y1[1, n]⊕X2[1, n]. We denote the path by IV
M1−−→ Y1

M2−−→ Y2 or IV
M1||M2−−−−−→ Y2 (Fig. 10 may

help to understand the graph). We call a path following the Sponge structure “Sponge path”.

Fig. 10. Figure of Sponge

In this proof, we omit the padding function padS . Thus queries to L are in ({0, 1}n)∗. Note
that the FOLSponge with padS is the special case of one without padS . Thus the security of the
FOLSponge without padS ensures the security of one with padS .
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SF (X) where x = X[1, n], y = Y [n+ 1, d]

1 M ← T O(y);
2 if y = IV2 then

3 z ←ROn(x⊕ IV1); w ←RO†
c(x⊕ IV1);

4 else if M ̸=⊥ then
5 m← x⊕ROn(M);

6 z ←ROn(M ||m); w ← RO†
c(M ||m);

7 else z||w ← P(x||y);
8 return z||w;

SI(Y ) where z = Y [1, n], w = Y [n+ 1, d]

1 M ← T O(w);
2 if M ̸=⊥ and |M | = n then
3 x← IV1 ⊕M ; y ← IV2;
4 if M ̸=⊥ and |M | > n then
5 let M = M∗||m (|m| = n);

6 x← m⊕ROn(M); y ←RO†
c(M

∗);
7 else x||y ← P−1(z||w);
8 return x||y;

Fig. 11. Simulator SF (left) and SI (right)

P1(X)

1 if ∃(j,X, Y ) ∈ Q then return Y ;

2 Y
$←− {0, 1}d; Q ∪←− (t,X, Y ); t← t+ 1;

3 return Y ;

P−1
1 (X)

1 if ∃(j,X, Y ) ∈ Q then return X;

2 X
$←− {0, 1}d; Q ∪←− (t,X, Y ); t← t+ 1;

3 return X;

Fig. 12. Q is a (initially empty) list and initially t = 1. In the step 1 of (P1,P−1
1 ), j is a maximum value.

We define a stateless simulator S in Fig. 11. Step 7 of SF ensures the simulation of P and Step 7
of SI ensures the simulation of P−1. Steps 2-6 of SF and Steps 2-6 of SI ensure the simulation of
the L-R relation.

Detail. In the following, for the simulator S in Fig. 11 and any distinguisher D, we evaluate the
bound of the reset indiferentiable advantage of FOLSpongeP from WRO. To evaluate the bound
we consider the following six games. In each game, D has oracle access to the left oracle L and the
right oracles (RF , RI).

– Game 1 is the ideal world, that is, (L,RF , RI) = (ROn, SF , SI).

– Game 2 is that (P,P−1) are changed into (P1,P−1
1 ) shown in Fig. 12. So the simulator has

oracle access to (P1,P−1
1 ) instead of (P,P−1).

– Game 3 is (L,RF , RI) = (ROn, S1F , S1I), where S1 = (S1F , S1I) keeps all query-responses
(X,Y ) where Y = S1F (X) or X = S1I(Y ). For a query X to S1F , if there is (X,Y ) in the
query-response history, then S1F returns Y , otherwise, S1F returns the output of SF (X). For a
query Y of S1I , if there is (X,Y ) in the query-response history, then S1I returns X, otherwise,
S1I returns the output of SI(Y ).

– Game 4 is (L,RF , RI) = (L1, S1F , S1I), where for a query M to L1, first L1 makes S1F queries
corresponding with FOLSpongeS1F (M), and then returns the response of ROn(M).

– Game 5 is (L,RF , RI) = (FOLSpongeS1F , S1F , S1I).

– Game 6 is the real world, that is, (L,RF , RI) = (FOLSpongeP , P, P−1).

Let Gi be an event that D outputs 1 in Game i. We thus have that

Advr-indiff
FOLSpongeP ,WRO,S

(D) ≤
5∑

i=1

|Pr[Gi]− Pr[Gi+1]| ≤
2σ(σ + 1) + q(q − 1)

2c
+

σ(σ − 1) + q(q − 1)

2d+1
.

In the following, we justify the above bound by evaluating each difference.

Game 1 ⇒ Game 2. From Game 1 to Game 2, we change the underlying oracle of (RF , RI)
from (P,P−1) to (P1,P−1

1 ) where P is a random permutation and P−1 is its inverse oracle, while
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responses of P1 and P−1
1 are uniformly chosen at random from {0, 1}d. Thus |Pr[G1] − Pr[G2]| is

bounded by the collision probability of (P1,P−1
1 ). Since P1 and P−1

1 are called at most q times,

|Pr[G1]− Pr[G2]| ≤
q∑

i=1

i− 1

2d
=

q(q − 1)

2d+1
.

Game 2 ⇒ Game 3. From Game 2 to Game 3, we change (RF , RI) from (SF , SI) to (S1F , S1I)
where (S1F , S1I) record query-response values while (SF , SI) don’t record them. Therefore, if a
query X to RF (resp. Y to RI) was made where the response is Y (resp. X), for a repeated query X
to RF (resp. Y to RI) the same value Y (resp. X) is responded, while in Game 2 there is a case that
for some repeated query RF (X) (resp. RI(Y )) where Y (resp. X) was responded, a distinct value
Y ∗ (resp. X∗) is responded. The difference |Pr[G2] − Pr[G3]| is thus bounded by the probability
that in Game 3 the distinct value is responded. We call the event “Diff”. Since the procedures to
define outputs of SF and of SI are controlled by T O (See the steps 2, 4, and 7 of SF and the steps
2, 4, and 7 of SI), the event Diff relies on responses of T O. Therefore, if Diff occurs, for some
repeated query to T O, the response is changed. More precisely, if Diff occurs, the following event
occurs.

– For a query y to T O, w was responded. For the repeated query y to T O, a distinct value w∗ is
responded. There are two cases for (w,w∗).
• Diff1: w =⊥ and w∗ ̸=⊥.
• Diff2: w ̸=⊥ and w∗ =⊥.

We thus have that

|Pr[G2]− Pr[G3]| ≤ Pr[Diff1] + Pr[Diff2] ≤
q(q − 1)

2c
.

We justify the bound as follows.
First we bound the probability of Pr[Diff1]. Since the response w of the first query is ⊥, when

the first query is made, the query w∗ to RO† such that y = RO†
c(w

∗) was not made. Since the
response w∗ of the repeated query is not ⊥, when the repeated query is made, the query w∗ to RO†

c

was made such that y = RO†
c(w

∗). Therefore, first y is defined. Second the response of RO†
c(w

∗)
hits y. Thus Pr[Diff1] is bounded by the probability that the response of RO†

c(w
∗) (c-bit random

value) hits the value y. Since the numbers of queries to RO†
c and T O are at most q times,

Pr[Diff1] ≤
q∑

i=1

i− 1

2c
≤ q(q − 1)

2c+1
.

Next we bound the probability of Pr[Diff2]. Since the response w of the first query is not ⊥,
when the first query is made, the query w to RO†

c was made such that y = RO†
c(w). Since the

response w∗ of the repeated query is ⊥, when the repeated query is made, a query w′ was made such
that w ̸= w′ and RO†

c(w) = RO†
c(w

′). Therefore, Pr[Diff2] is bounded by the collision probability
of RO†

c. We thus have that

Pr[Diff2] ≤
q∑

i=1

i− 1

2c
≤ q(q − 1)

2c+1
.

Game 3 ⇒ Game 4. From Game 3 to Game 4, we change L from ROn to L1 which makes
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additional right queries corresponding with FOLSpongeS1F . Note that D cannot directly observe
the additional right query-response values but can observe those by making the queries. So we must
show that the additional right query-response values that D observes don’t affect D’s behavior. We

ensure this by Lemma 2 where for any Sponge path IV
M−→ z, z = ROn(M)∥RO†

c(M) unless Badj
occurs. By Lemma 2, in both games, unless the bad event occurs, responses of queries to RF are
defined by the same queries to RO†

c and ROn. Namely, in Game 4, the responses of the additional
queries to RF which D observes are chosen from the same distribution as in Game 3 unless the bad
event occurs. Thus, the difference |Pr[G3]−Pr[G4]| is bounded by the probability of occurring the
bad event.

First we define the bad event. Let Ti be a table which stores all values Xt[n+1, d] and Yt[n+1, d]
for t = 1, . . . , i− 1 where (Xt, Yt) is a query-response pair defined by the t-th SF or SI query.

– Badj is that in Game j, for some i-th query Xi to SF the response Yi is such that Yi[n+ 1, d]
collides with some value in Ti ∪ {Xi[n+ 1, d]} ∪ {IV2}, or
for some i-th query Yi to SI the response Xi is such that Xi[n+ 1, d] collides with some value
in Ti ∪ {Yi[n+ 1, d]} ∪ {IV2}.

Next we give Lemma 2. Lemma 2 is also used in the evaluation of the difference between Game
4 and Game 5.

Lemma 2. In Game j, unless Badj occurs, for any Sponge path IV
M−→ z z = ROn(M)∥RO†

c(M).
�

Proof of Lemma 2. Assume that Badj does not occur. Let IV
M−→ z be any sponge path

and (X1, Y1), . . . , (Xt, Yt) be the corresponding pairs where X1[n + 1, d] = IV2, Xi[n + 1, d] =
Yi−1[n + 1, d] (i = 2, . . . , t), Yt = z, and M = M1|| . . . ||Mt where M1 = IV1 ⊕ X1[1, n],M2 =
Y1[1, n]⊕X2[1, n], · · · ,Mt = Yt−1[1, n]⊕Xt[1, n]. We show that z = ROn(M)∥RO†

c(M).
Consider the case of t = 1. Since Badj does not occur, there is no pair (X,Y ) which is defined

by an RI query such that X[n + 1, d] = IV2. Thus any path IV
M−→ z is defined by an RF query.

Consequently, z = ROn(M)∥RO†
c(M) due to Steps 2 and 3 of SF .

Consider the case of t ≥ 2.
Since Badj does not occur, there is no pair (Xi, Yi) which is defined by an RI query and which

connects with another pair (Xi−1, Yi−1) which was already defined, that is, (X1, Y1), . . . , (Xt, Yt)
are defined by RF queries. Since there is no pair (Xi, Yi) which is defined by a RF query and
which connects with another pair (Xi+1, Yi+1) which was already defined, (X1, Y1), . . . , (Xt, Yt) are
defined by the ordered RF queries S1F (X1), . . . , S1F (Xt).

Since no collision for RO†
c occurs, the structure of SF ensures that when the query RF (Xt) is

made, the pair (M1|| · · · ||Mt−1, Yt−1[n+1, d]) is stored in the table F†, that is, F†[M1|| · · · ||Mt−1] =
Yt−1[n+ 1, d].

Since no collision for RO†
c occurs, for the query SF (Xt), SF makes the query T O(Xt[n+1, d]),

receives M1|| · · · ||Mt−1 from T O, and S1F returns the response of ROn(M)∥RO†
c(M). Thus Yt =

ROn(M)∥RO†
c(M).

⊓⊔
By Lemma 2, we can bound the difference |Pr[G3]− Pr[G4]| as follows.

|Pr[G3]− Pr[G4]| ≤max{Pr[Bad3],Pr[Bad4]} ≤
σ(σ + 1)

2c

where Pr[G3|¬Bad3] = Pr[G4|¬Bad4] from Lemma 2.
Finally we justify the bound. The probability of occurring the bad event is that for some

i-th query, the right c-bit value of the response of SF , which is a random value, hits some of
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Ti ∪ {Xi[n+ 1, d]} ∪ {IV2}, or the right c-bit value of the response of SI , which is a random value,
hits some of Ti ∪ {Yi[n+ 1, d]} ∪ {IV2}. We thus have

Pr[Bad3] ≤
q∑

i=1

(2(i− 1) + 2)

2c
=

q(q + 1)

2c
, Pr[Bad4] ≤

σ∑
i=1

(2(i− 1) + 2)

2c
=

σ(σ + 1)

2c

where (SF , SI) are called at most q times in Game 3 and σ times in Game 4.

Game 4 ⇒ Game 5. From Game 4 to Game 5, we change L from L1 to FOLSpongeSF . In Game
4 L(M) = ROn(M), while in Game 5 L(M) = FOLSpongeS1(M). Thus, the difference does not
change D’s behavior iff in Game 5 for any query M to L, L returns the response of ROn(M). From

Lemma 2, for any Sponge path IV
M−→ z the relation z[1, n] = ROn(M) holds unless the bad event

Bad5 occurs. Therefore, the difference |Pr[G4]−Pr[G5]| is bounded by the probability of occurring
the bad event Bad5. In Game 5 R is called at most σ times and for any query to S the response is
chosen uniformly at random from {0, 1}c. We have that

|Pr[G4]− Pr[G5]| ≤ Pr[Bad5] ≤
σ(σ + 1)

2c
.

Game 5 ⇒ Game 6. From Game 5 to Game 6, we change (RF , RI) from (S1F , S1I) to (P, P−1),
where outputs of (S1F , S1I) are chosen uniformly at random from {0, 1}d, while (P, P−1) are a ran-
dom permutation and its inverse oracle. The difference is thus bounded by the collision probability
of outputs of (S1F , S1I) in Game 5. We thus have that

|Pr[G5]− Pr[G6]| ≤
σ∑

i=1

i− 1

2d
=

σ(σ − 1)

2d+1
.

⊓⊔

C Proof of Theorem 4

Proof. We denote Adv(A,Gi) by the advantage of the adversaryA when participating in experiment
Gi. We start with game G0 which is exactly the same game as the CDA game in theWRO model.
It means Adv(A,G0) = AdvcdaAE,WRO(A1,A2).

Game G1: ROn returns a random value if the following event occurs:

– Bad1 : A1 poses a message M to ROn where M is posed to ROn by Enc to generate the
challenge ciphertext.

All other procedures are computed as the same way in G0.

Lemma 3. |Adv(A,G1)− Adv(A,G0)| ≤ qRO ·maxpkAE .

Proof. The difference between G0 and G1 only occurs in Bad1. From Difference Lemma [22], we
have that |Adv(B,G1)− Adv(B,G0)| ≤ Pr[Bad1].

We estimate Pr[Bad1]. Since pk is not given for A1 and is included in each query to ROn by
Enc, the only way to pose (pk, ∗, ∗) to ROn is choosing pk randomly qRO times. We have that
Pr[Bad1] ≤ qRO ·maxpkAE . ⊓⊔
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Game G2

β
$←− {0, 1}

(pk, sk)
$←− Gen

(m0,m1, r)← A
ROn,RO∗

v,RO†
w,T O,ICa,b

1

c← EncF.hon(pk,mβ ; r)
c′ ← SROn(pk, ω)

β′ ← AROn,RO∗
v ,RO†

w,T O,ICa,b

2 (pk, c′)
return (β = β′)

BRoS(pk)

β
$←− {0, 1}

(m0,m1, r)← ASimB
1

c← RoS(mβ , r)

β′ ← ASimB
2 (pk, c)

If β = β′ then return 1
Otherwise return 0

SimBROn(M)

If F[M ] =⊥, F[M ]
$←− {0, 1}n

If F[M ] ̸=⊥, and M is posed by Enc,

F[M ]
$←− {0, 1}n

return F[M ]

SimBRO∗
v
(M)

If F∗[M ] =⊥, F∗[M ]
$←− {0, 1}v

return F∗[M ];

SimBRO†
w
(M)

If F†[M ] =⊥ then F†[M ]
$←− {0, 1}w

return F†[M ];

SimBT O(y)

If ∃1M s.t. F†[M ] = y then return M
Otherwise return ⊥

SimBE(k, x)

If E[k, x] =⊥,
y

$←− {0, 1}b\T+[k]
E[k, x]← y,D[k, y]← x,

T+[k]
∪←− {y}, T−[k]

∪←− {x}
return E[k, x]

SimBD(k, y)

If D[k, y] =⊥,
x

$←− {0, 1}b\T−[k];
E[k, x]← y,D[k, y]← x,

T+[k]
∪←− {y}, T−[k]

∪←− {x}
return D[k, y]

Fig. 13. game G2 and simulation SimB by adversary B

Game G2: Ciphertext c← EncROn(pk,mb; r) is replaced with outputs of a simulator SROn(pk, ω)
in the IND-SIM game. All other procedures are computed as the same way in G1.

Lemma 4. |Adv(A,G2)− Adv(A,G1)| ≤ Advind-simAE,S,ROn
(B).

Proof. We show that if |Adv(A,G2)−Adv(A,G1)| is non-negligible, for any simulator S we can con-
struct an adversary B breaking IND-SIM security of AE in the RO model. Fig. 13 shows game G2,
the construction of B, and the simulation SimB = (SimBROn ,SimBRO∗

v
, SimBRO†

w
, SimBT O,SimBE , SimBD)

of WRO by B respectively. Note that B makes no RO queries, and EncF.hon(pk,mβ; r) is executed
with return value ignored. B simulates all queries to WRO for A1 and A2 with simulation SimB.
SimB is identical with the definition of WRO. Also, queries to ROn by Enc is contained both in
G1 and G2. Thus, A cannot distinguish game G1 and G2 from the simulation on the interface of
WRO. If β = 1 in IND-SIM game, it is clear that all interfaces for A is exactly same as game G1.
If β = 0 in IND-SIM game, it is clear that all interfaces for A is exactly same as game G2.

Therefore, if |Adv(A,G2) − Adv(A,G1)| is non-negligible, B also breaks IND-SIM security of
AE . ⊓⊔

Game G3: When A2 poses a query related to (m0,m1, r) (which is the output of A1) to
RO∗

v,RO†
w, T O or ICa,b = (E,D), then outputs are randomly chosen. That is, tables F∗,F†,E and

D are not preserved for A1 and A2 according to (m0,m1, r). All other procedures are computed as
the same way in G2.

Lemma 5. |Adv(A,G3)−Adv(A,G2)| ≤
4q2RO∗+4q2

RO†
2µ +max

{
4q2T O
2µ ,

4q2T O
2w

}
+max

{
4q2E+4q2D

2µ ,
4q2E+4q2D

2b

}
.

Proof. The difference between G2 and G3 only occurs when A1 and A2 poses a same query related
to (m0,m1, r) to RO∗

v,RO†
w, T O or ICa,b = (E,D). We denote the event that a common query

related to (m0,m1, r) is posed toRO∗
v byA1 andA2 as BadRO∗ . Similarly, we define events BadRO† ,
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BadT O, BadE , and BadD. From Difference Lemma [22], we have that |Adv(B,G3)− Adv(B,G2)| ≤
Pr[BadRO∗∨BadRO†∨BadT O∨BadE∨BadD] ≤ Pr[BadRO∗ ]+Pr[BadRO† ]+Pr[BadT O]+Pr[BadE ]+
Pr[BadD].

In game G2 and G3, ciphertext c does not give any information about (m0,m1, r) and queries
to WRO by A1 to A2. On queries to ROn, interfaces of A2 in G2 and G3 are identical. Thus, the
only way to pose such a query is guessing under min-entropy µ, or the output length w of ROT and
the output length b of (E,D). According to the birthday paradox, for oracles RO∗ and RO† the
probability of collisions in guessing is at most (2qRO∗)2/2µ, and (2qRO†)2/2µ, respectively. Also,
for oracle T O the probability of collision in guessing is at most (2qT O)

2/2µ if µ < w, (2qT O)
2/2w

otherwise, and for oracles E and D the probability of collisions in guessing is at most (2qE)
2/2µ and

(2qD)
2/2µ if µ < b, (2qE)

2/2b and (2qD)
2/2b otherwise. Therefore, |Adv(A,G3) − Adv(A,G2)| ≤

(4q2RO∗ + 4q2RO†)/2
µ +max

{
4q2T O/2

µ, 4q2T O/2
w
}
+max

{
(4q2E + 4q2D)/2

µ, (4q2E + 4q2D)/2
b
}
.

⊓⊔

Game G4: ROn returns a random value if the following event occurs:

– Bad2 : A2 poses a message M to ROn where M is posed to ROn by Enc to generate the
challenge ciphertext.

All other procedures are computed as the same way in G3.

Lemma 6. |Adv(A,G4)− Adv(A,G3)| ≤ qRO
2µ .

Proof. The difference between G3 and G4 only occurs in Bad2. From Difference Lemma [22], we
have that |Adv(B,G4)− Adv(B,G3)| ≤ Pr[Bad2].

We estimate Pr[Bad2]. Because ROn is a truly random function, ciphertext c is replaced, and
A1 does not pose related queries to M to sub-oracles, A2 cannot obtain more information of r than
min-entropy µ. Thus, the only way to pose M to ROn is guessing M under min-entropy µ qRO
times. We have that Pr[Bad2] ≤ qRO

2µ . ⊓⊔

We estimate Adv(A,G4). Ciphertext c does not give any information about (m0,m1, r). Also,
outputs of WRO is independent of (m0,m1, r) for A2. Thus, the only way to win in game G4 is
randomly guessing β. Therefore, Adv(A,G4) = 0.

To conclude, we have AdvcdaAE,WRO(A1,A2) ≤ Advind-simAE,S,ROn
(B)+qRO ·maxpkAE +(qRO+4q2RO∗ +

4q2RO†)/2
µ +max

{
4q2T O/2

µ, 4q2T O/2
w
}
+max

{
(4q2E + 4q2D)/2

µ, (4q2E + 4q2D)/2
b
}
.

⊓⊔

D ID-CDA Secure IBE in the WRO Model

ID-based Encryption (IBE). An ID-based encryption scheme IBE = (IBE.Setup, IBE.Gen, IBE.Enc,
IBEDec) consists of four algorithms. Setup algorithm IBE.Setup outputs public parameter params
and master secret key msk. Key generation algorithm IBE.Gen takes public parameter params,
master secrete key msk and ID id, and outputs secret key sk for id. Encryption algorithm IBE.Enc
takes public parameter params, ID id, plaintext m, and randomness r, and outputs ciphertext c.
Decryption algorithm IBEDec takes public parameter params, secret key sk, and ciphertext c, and
outputs plaintext m or distinguished symbol ⊥. For vectors m, r with |m| = |r| = l which is the
size of vectors, we denote by IBE.Enc(params, id,m; r) the vector (IBE.Enc(params, id,m[1]; r[1]),
. . . , IBE.Enc(params, id, m[l]; r[l])). We say that IBE is deterministic if IBE.Enc is deterministic.
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ID-CPAB
IBE,F

β
$←− {0, 1}

If selective-ID setting

id∗ ← BF.adv,IBE.Gen(·)

(params,msk)
$←− IBE.Setup

If selective-ID setting

(m0,m1)← BF.adv,IBE.Gen(·)(params)
If full-ID setting

(m0,m1, id
∗)← BF.adv,IBE.Gen(·)(params)

r
$←− ({0, 1}ρ)l

c← IBE.EncF.hon(params, id∗,mβ ; r)

β′ ← BF.adv,IBE.Gen(·)(c)
return (β = β′)

ID-CDAA1,A2
IBE,F

β
$←− {0, 1}

id∗ ← AF.adv,IBE.Gen(·)
2

(params,msk)
$←− IBE.Setup

(m0,m1, r)← AF.adv,IBE.Gen(·)
1

c← IBE.EncF.hon(params, id∗,mβ ; r)

β′ ← AF.adv,IBE.Gen(·)
2 (params, c)

return (β = β′)

Fig. 14. ID-CPA and ID-CDA game

ID-based CPA and CDA Security. We define the ID-CPA and the (non-adaptive) ID-CDA
security. The ID-CPA security is a standard one [9–11] except that an adversary can pose multiple
challenge plaintext pairs. It is known that the CPA game with multiple challenge is polynomial-
time reducible to the game with single challenge. Let CH be the challenger of the ID-CPA game.
The ID-CDA security is based on the CDA security. Fig. 14 illustrates the ID-CPA game and the
non-adaptive ID-CDA game in the CPA case for IBE using a functionality F . In both games, B
and A are not allowed to pose id∗ to IBE.Gen(·). As the CDA security, the ID-CDA adversary A1

is a (µ, ν)-mmr-source. (1) The advantage for an ID-CPA adversary B against scheme IBE using
a functionality F and (2) the advantage for an ID-CDA adversary (A1,A2) against scheme IBE
using a functionality F are defined by

(1) Advid-cpaIBE,F (B) = 2 · Pr[ID-CPAB
IBE,F ⇒ true]− 1.

(2) Advid-cdaIBE,F (A1,A2) = 2 · Pr[ID-CDAA1,A2

IBE,F ⇒ true]− 1.

Hedged ID-based Encryption IDREwH1. We show an example of ID-CDA secure hedged IBE,
IDREwH1. The proposed scheme is a simple extension of REwH1 [2].

Let IBEr = (IBE.Setupr, IBE.Genr, IBE.Encr, IBEDecr) be an IBE scheme with plaintext length λ
and randomness length ρ.ROn has range size ρ = n bits. IDREwH1 = (IBE.Setupr, IBE.Genr, IBE.Enc,
IBEDecr) uses same algorithms as IBEr except IBE.Enc which is defined as

IBE.EncROn(params, id,m; r) = IBE.Encr(params, id,m;ROn(params, id,m, r)).

If |ρ| = 0, we can obtain an ID-based version of a deterministic encryption scheme, Encrypt-
with-Hash. Our theorems about IDREwH1 also work for deterministic encryption.

ID-CPA Security of IDREwH1 in the WRO Model. We can prove the ID-CPA security of
IDREwH1; that is, we show that IDREwH1 is selective (resp. full) ID-CPA secure in theWRO model
if IBEr is selective (resp. full) ID-CPA secure in the RO model,

Theorem 5. Let IBEr be an IBE scheme. Let B be a selective (resp. full) CPA adversary for
IDREwH1 in theWRO model, which makes at most qRO, qRO∗ , qRO† , qT O, qE , qD queries to ROn,RO∗

v,
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RO†
w, T O, ICa,b = (E,D). Then, there exists a selective (resp. full) CPA adversary C for IBEr such

that

Advid-cpaIDREwH1,WRO(B) ≤ Advid-cpaIBEr,RO(C) +
qRO
2ρ

.

C runs in time that of B plus O(qRO + qRO∗ + qRO† + qT O + qE + qD). �

The proof outline is as follows: First, we start with game G0 which is exactly the same game
as the ID-CPA game in the WRO model. Next, we transform G0 to game G1 so that challenge
ciphertext c is generated from fresh randomness instead of the output of ROn. In game G1, c is
generated by the exactly same manner as the ID-CPA game for IBEr. Also, oracle queries toWRO
except ROn is perfectly simulated because IBE.Enc algorithm never use RO∗

v,RO†
w, T O, E,D.

Thus, B can be constructed with C.

Proof. We denote Adv(B,Gi) by the advantage of adversary B when participating in experiment
Gi. We start with game G0 which is exactly the same game as the ID-CPA game in the WRO
model. It means Adv(B,G0) = Advid-cpaIDREwH1,WRO(B).

Game G1: Challenge ciphertext c ← IBE.Encr(params, id∗,mβ;RO(params, id∗,mβ; r)) is re-
placed with c ← IBE.Encr(params, id∗,mβ; r

′) for randomly chosen r′. All other procedures are
computed as the same way in G0.

Lemma 7. |Adv(B,G1)− Adv(B,G0)| ≤ qRO
2ρ .

Proof. The difference between G0 and G1 only occurs when adversary B poses (params, id∗,mβ, r)
to ROn where mβ ∈ mβ, r ∈ r, and r is the randomness vector used to generate challenge
ciphertext c. We denote this event as Bad. From Difference Lemma [22], we have that |Adv(B,G1)−
Adv(B,G0)| ≤ Pr[Bad].

We estimate Pr[Bad]. Since ROn is a truly random function, B cannot know r (which is used to
generate challenge ciphertext c) from challenge ciphertext even if B could obtain some information
about ROn(params, id∗,mβ; r) from c. Thus, the only way to pose (params, id∗,mβ, r) to ROn is
choosing r randomly qRO times. We have that Pr[Bad] ≤ qRO

2ρ . ⊓⊔

We estimate Adv(B,G1). We assume that there exists B with Adv(B,G1). Then, we construct
adversary C against IBEr with the same advantage as Adv(B,G1). The simulation SimC by C is
given in Fig. 15.

Since the generation of the challenge ciphertext is exactly same between G0 and the ID-CPA
game for IBEr, C just forwards the challenge ciphertext to B. The simulation of WRO is perfect
because the challenger CH never uses all components ofWRO with the honest interface. Therefore,
Adv(B,G1) = Advid-cpaIBEr,RO(C).

To conclude, we have Advid-cpaIDREwH1,WRO(B) ≤ Advid-cpaIBEr,RO(C) +
qRO
2ρ . ⊓⊔

ID-CDA Security of IDREwH1 in the WRO Model. We prove the ID-CDA security of
IDREwH1; that is, we show that IDREwH1 is ID-CDA secure in theWRO model if IBEr is selective
ID-CPA secure in the RO model.

Theorem 6. Let IBEr be an IBE scheme. Let (A1,A2) be a CDA adversary for IDREwH1 in the
WRO model, which makes at most qRO, qRO∗ , qRO† , qT O, qE , qD queries to ROn,RO∗

v, RO†
w, T O, ICa,b =
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SimCmain

If selective-ID setting
receive id∗ from B
send id∗ to CH

receive params from CH
send params to B
If selective-ID setting

(m0,m1)← B
send (m0,m1) to CH

If full-ID setting
(m0,m1, id

∗)← B
send (m0,m1, id

∗) to CH
receive c from CH
send c to B
receive β′ from B
return β′

SimCIBE.Gen(id)

send id to IBE.Gen oracle
receive skid from IBE.Gen oracle
return skid

SimCROn(M)

send M to RO
receive F[M ] from RO
return F[M ]

SimCRO∗
v
(M)

If F∗[M ] =⊥, F∗[M ]
$←− {0, 1}v

return F∗[M ];

SimCRO†
w
(M)

If F†[M ] =⊥ then F†[M ]
$←− {0, 1}w

return F†[M ];

SimCT O(y)

If ∃1M s.t. F†[M ] = y then return M
Otherwise return ⊥

SimCE(k, x)

If E[k, x] =⊥,
y

$←− {0, 1}b\T+[k]
E[k, x]← y,D[k, y]← x,

T+[k]
∪←− {y}, T−[k]

∪←− {x}
return E[k, x]

SimCD(k, y)

If D[k, y] =⊥,
x

$←− {0, 1}b\T−[k];
E[k, x]← y,D[k, y]← x,

T+[k]
∪←− {y}, T−[k]

∪←− {x}
return D[k, y]

Fig. 15. Simulation SimC by adversary C

(E,D). Then, there exists a selective CPA adversary C for IBEr such that

Advid-cdaIDREwH1,WRO(A1,A2) ≤ 2Advid-cpaIBEr,RO(C) + qRO ·maxparamsIBEr
+

qRO + 4q2RO∗ + 4q2RO†

2µ

+max

{
4q2T O
2µ

,
4q2T O
2w

}
+max

{
4q2E + 4q2D

2µ
,
4q2E + 4q2D

2b

}
.

C runs in time that of (A1,A2) plus O(qRO + qRO∗ + qRO† + qT O + qE + qD). maxparamsIBEr
is the

maximum public-parameter collision probability defined as maxparamsIBEr
= max

γ∈{0,1}∗
Pr[params =

γ : (params,msk)
$←− IBE.Setup]. �

The proof outline is as follows: First, we start with game G0 which is exactly the same game as
the ID-CDA game in theWRO model. Secondly, we transform G0 to game G1 so that ROn returns
a random value when A1 poses a message that is posed to ROn by Enc to generate the challenge
ciphertext. In game G1, outputs of ROn does not contain any information about computations to
generate the challenge ciphertext for A1. Thirdly, we transform G1 to game G2 so that ciphertext
c is generated from all zero messages instead of given messages from A1. In game G2, ciphertext c
does not contain any information about outputs of A1. Thus, A1 cannot hand over any information
to A2 with c. Fourthly, we transform G2 to game G3 so that the table of inputs and outputs of each
oracle in WRO (except ROn) for A1 is independent of the table for A2 according to the output of
A1. In game G3, queries to sub-oracles for A2 does not contain any information about the output
of A1, and A1 cannot hand over any information to A2 with sub-oracles. Finally, we transform G3

to game G4 so that ROn returns a random value when A2 poses a message that is posed to ROn

by Enc to generate the challenge ciphertext. In game G4, outputs of ROn does not contain any
information about computations to generate the challenge ciphertext for A2. Thus, the advantage
of A2 in G4 is nothing.

Proof. We denote Adv(A,Gi) by the advantage of adversary (A1,A2) when participating in exper-
iment Gi. We start with game G0 which is exactly the same game as the ID-CDA game in the
WRO model. It means Adv(A,G0) = Advid-cdaIDREwH1,WRO(A1,A2).
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SimC′
main

β′′ $←− {0, 1}
receive id∗ from A2

send id∗ to CH
receive params from CH
(m0,m1, r)← A1

send (m′′
β ,0) to CH

receive c from CH
send (params, c) to A2

receive β′ from A2

return 0 if β′ = β′′

1 otherwise

SimC′
IBE.Gen(id)

send id to IBE.Gen oracle
receive skid from IBE.Gen oracle
return skid

SimC′
ROn

(M)

send M to RO
receive F[M ] from RO
return F[M ]

SimC′
RO∗

v
(M)

If F∗[M ] =⊥, F∗[M ]
$←− {0, 1}v

return F∗[M ];

SimC′
RO†

w
(M)

If F†[M ] =⊥ then F†[M ]
$←− {0, 1}w

return F†[M ];

SimC′
T O(y)

If ∃1M s.t. F†[M ] = y then return M
Otherwise return ⊥

SimC′
E(k, x)

If E[k, x] =⊥,
y

$←− {0, 1}b\T+[k]
E[k, x]← y,D[k, y]← x,

T+[k]
∪←− {y}, T−[k]

∪←− {x}
return E[k, x]

SimC′
D(k, y)

If D[k, y] =⊥,
x

$←− {0, 1}b\T−[k];
E[k, x]← y,D[k, y]← x,

T+[k]
∪←− {y}, T−[k]

∪←− {x}
return D[k, y]

Fig. 16. Simulation SimC′ by adversary C

Game G1: ROn returns a random value if the following event occurs:

– Bad1 : A1 poses (params, id∗,mβ, r) to ROn where (params, id∗,mβ, r) is posed to ROn by
Enc to generate the challenge ciphertext.

All other procedures are computed as the same way in G0.

Lemma 8. |Adv(A,G1)− Adv(A,G0)| ≤ qRO ·maxparamsIBEr
.

Proof. The difference between G0 and G1 only occurs in Bad1. From Difference Lemma [22], we
have that |Adv(B,G1)− Adv(B,G0)| ≤ Pr[Bad1].

We estimate Pr[Bad1]. Since params is not given for A1 and is included in each query to ROn

by Enc, the only way to pose (params, id∗,mβ, r) to ROn is choosing params randomly qRO times.
We have that Pr[Bad1] ≤ qRO ·maxparamsIBEr

. ⊓⊔

Game G2: Challenge ciphertext c ← IBE.Encr(params, id∗,mβ;ROn(params, id∗,mβ, r)) is re-
placed with c ← IBE.Encr(params, id∗,0;ROn(params, id∗,0, r)) where 0 is a vector of l zero
strings of length λ. All other procedures are computed as the same way in G1.

Lemma 9. |Adv(A,G2)− Adv(A,G1)| ≤ 2Advid-cpaIBEr,RO(C).

Proof. We show that if |Adv(A,G2)−Adv(A,G1)| is non-negligible, we can construct an adversary
C breaking ID-CPA security of IBEr in the RO model. Fig. 16 shows simulation SimC′ = (SimC′

main,
SimC′

IBE.Gen, SimC′
RO, SimC′

RO∗ , SimC′
RO† , SimC′

T O, SimC′
E , SimC′

D) by C respectively.
C simulates all queries to WRO for A1 and A2 with simulation SimC′. SimC′ is identical with

the definition of WRO. Thus, A cannot distinguish game G1 and G2 from the simulation on the
interface ofWRO. If β = 1 in ID-CPA game for IBEr, it is clear that all interfaces for A is exactly
same as game G2. If β = 0 in ID-CPA game for IBEr, it is clear that all interfaces for A is exactly
same as game G1 if β = β′′.
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Therefore, if |Adv(A,G1)−Adv(A,G0)| is non-negligible, C also breaks ID-CPA security of IBEr
if β = β′′ (i.e., with probability 1/2). We have that |Adv(A,G2)− Adv(A,G1)| ≤ 2Advid-cpaIBEr,RO(C).

⊓⊔

Game G3: When A2 poses a query related to (m0,m1, r) (which is the output of A1) to
RO∗

v,RO†
w, T O or ICa,b = (E,D), then outputs are randomly chosen. That is, tables F∗,F†,E and

D are not preserved for A1 and A2 according to (m0,m1, r). All other procedures are computed as
the same way in G2.

Lemma 10. |Adv(A,G3)−Adv(A,G2)| ≤
4q2RO∗+4q2

RO†
2µ +max

{
4q2T O
2µ ,

4q2T O
2w

}
+max

{
4q2E+4q2D

2µ ,
4q2E+4q2D

2b

}
.

Proof. The difference between G2 and G3 only occurs when A1 and A2 poses a same query related
to (m0,m1, r) to RO∗

v,RO†
w, T O or ICa,b = (E,D). We denote the event that a common query

related to (m0,m1, r) is posed toRO∗
v byA1 andA2 as BadRO∗ . Similarly, we define events BadRO† ,

BadT O, BadE , and BadD. From Difference Lemma [22], we have that |Adv(B,G3)− Adv(B,G2)| ≤
Pr[BadRO∗∨BadRO†∨BadT O∨BadE∨BadD] ≤ Pr[BadRO∗ ]+Pr[BadRO† ]+Pr[BadT O]+Pr[BadE ]+
Pr[BadD].

In game G2 and G3, ciphertext c does not give any information about (m0,m1, r) and queries
to WRO by A1 to A2. On queries to ROn, interfaces of A2 in G2 and G3 are identical. Thus, the
only way to pose such a query is guessing under min-entropy µ, or the output length w of ROT and
the output length b of (E,D). According to the birthday paradox, for oracles RO∗ and RO† the
probability of collisions in guessing is at most (2qRO∗)2/2µ, and (2qRO†)2/2µ, respectively. Also,
for oracle T O the probability of collision in guessing is at most (2qT O)

2/2µ if µ < w, (2qT O)
2/2w

otherwise, and for oracles E and D the probability of collisions in guessing is at most (2qE)
2/2µ and

(2qD)
2/2µ if µ < b, (2qE)

2/2b and (2qD)
2/2b otherwise. Therefore, |Adv(A,G3) − Adv(A,G2)| ≤

(4q2RO∗ + 4q2RO†)/2
µ +max

{
4q2T O/2

µ, 4q2T O/2
w
}
+max

{
(4q2E + 4q2D)/2

µ, (4q2E + 4q2D)/2
b
}
.

⊓⊔
Game G4: ROn returns a random value if the following event occurs:

– Bad2 : A2 poses (params, id∗,mβ, r) to ROn where (params, id∗,mβ, r) is posed to ROn by
Enc to generate the challenge ciphertext.

All other procedures are computed as the same way in G3.

Lemma 11. |Adv(A,G4)− Adv(A,G3)| ≤ qRO
2µ .

Proof. The difference between G3 and G4 only occurs in Bad2. From Difference Lemma [22], we
have that |Adv(B,G4)− Adv(B,G3)| ≤ Pr[Bad2].

We estimate Pr[Bad2]. Because ROn is a truly random function, ciphertext c is replaced, and
A1 does not pose related queries to (mβ, r) to sub-oracles, A2 cannot obtain more information of
(mβ, r) than min-entropy µ. Thus, the only way to pose (params, id∗,mβ, r) to ROn is guessing
(mβ, r) under min-entropy µ qRO times. We have that Pr[Bad2] ≤ qRO

2µ . ⊓⊔

We estimate Adv(A,G4). Ciphertext c does not give any information about (m0,m1, r). Also,
outputs of WRO is independent of (m0,m1, r) for A2. Thus, the only way to win in game G4 is
randomly guessing β. Therefore, Adv(A,G4) = 0.

To conclude, we have Advid-cdaIDREwH1,WRO(A1,A2) ≤ 2Advid-cpaIBEr,RO(C) + qRO · maxparamsIBEr
+

(qRO +4q2RO∗ +4q2RO†)/2
µ +max

{
4q2T O/2

µ, 4q2T O/2
w
}
+max

{
(4q2E + 4q2D)/2

µ, (4q2E + 4q2D)/2
b
}
.
⊓⊔
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