
Towards Unconditional Soundness: Computationally
Complete Symbolic Attacker

Gergei Bana1 and Hubert Comon-Lundh2

1 NTT Communication Science Laboratories, Atsugi, Kanagawa, Japan,
gergei.bana@lab.ntt.co.jp

2 CNRS, INRIA project SecSi and LSV, ENS Cachan, France,
comon@lsv.ens-cachan.fr

Abstract. We consider the question of the adequacy of symbolic models versus
computational models for the verification of security protocols. We neither try to
include properties in the symbolic model that reflect the properties of the com-
putational primitives nor add computational requirements that enforce the sound-
ness of the symbolic model. We propose in this paper a different approach: ev-
erything is possible in the symbolic model, unless it contradicts a computational
assumption. In this way, we obtain unconditional soundness almost by construc-
tion. And we do not need to assume the absence of dynamic corruption or the
absence of key-cycles, which are examples of hypotheses that are always used in
related works. We set the basic framework, for arbitrary cryptographic primitives
and arbitrary protocols, however for trace security properties only.

The main points of this work have been published in the proceedings of POST’12
[8]. This paper largely agrees with that publication, but in Section 2.6 we present an im-
proved computational semantics. This improvement allows us to state our main theorem
for any first order formula, while in the POST publication, the possible formulas were
somewhat restricted. Moreover, we introduced here Section 4, which explains the con-
nection between our results and an earlier result of Fitting about embedding (first-order)
classical logic into (first-order) S4.

1 Introduction

The automatic analysis of security protocols has been quite successful since 1990, yield-
ing several tools [11, 18, 25]. However, when the outcome of one of these provers is “the
protocol is secure”, it must be understood as “secure in our model”. Nothing guaran-
tees that the necessary abstractions are relevant to actual implementations. For instance,
consider the Needham-Schroder-Lowe protocol [22]. It has been proved secure by all
the above-mentioned provers. However, there are several attacks, for instance when the
encryption scheme does not guarantee the ciphertext integrity [28] or when the pairing
is associative [23] or when some random number could be confused with some pairings
[9].

For this reason, it is important to investigate what exactly the assumptions are, on
the cryptographic primitives’ implementations, that guarantee the faithfulness of the
abstraction. (It is called soundness in the literature).

1

There are a lot of works providing some soundness results, typically the works
initiated by Backes et al [5, 3, 6] and Abadi et al [1, 16, 14]. They essentially prove that
a given symbolic model is fully abstract with respect to a computational one, assuming
some properties of the security primitives. This guarantees that the security proofs that
have been completed in the abstract model are also valid in a computational model.

However, these works require a very large set of assumptions, that are not always
emphasized. For instance in [7] the complete list of assumptions for public-keys is
listed; it is a long list of strong hypotheses, that are not fullfilled by most actual pro-
tocols. [14] make even less realistic assumptions, in order to get a stronger soundness
result (which includes more security properties). All these results typically assume that
no key cycles can ever be created, that bitstrings can be parsed in deterministic poly-
nomial time into terms, that there is no dynamic corruption, that keys are certified, etc.
These assumptions, as well as reasons why they are not realistic enough is discussed in
[15]. Furthermore, each primitive requires a new soundness proof and each combination
of primitives also requires a new soundness proof, unless much stronger properties are
assumed [13]. Currently, it seems more realistic to use CRYPTOVERIF [12], complet-
ing the proofs directly in the computational model, than using a soundness result [2].
Is it really impossible to avoid manipulating computation times, probabilities, bitstring
lengths... ?

In this paper, we advocate a new way of performing proofs in a symbolic, abstract,
model, while keeping strong, computational guarantees establishing a general sound-
ness result, but without establishing many specific soundness results for specific prop-
erties of primitives. Such properties can later be proven and added.

The idea is to design a symbolic setting, in which any adversarial action is possi-
ble, unless it contradicts some axiom expressing a property that must be satisfied under
standard computational assumptions. In other words, computational properties, such as
IND-CCA, can be (symbolically) axiomatized and added to the system in order to limit
the possible adversarial moves. We do not require the axiomatization to be complete.
The idea is to only list properties that we know for certain about the implementation,
and allow any symbolic move consistent with those properties. In this way, either we
find an attack, in which case there is at least one possible set of primitives satisfying the
assumed properties and for which the security goal is violated, or the axioms were suffi-
cient to ensure the security of the protocol, in which case any implementation fulfilling
these axioms will ensure the security.

This approach has several advantages:

1. Though the proofs are performed in a symbolic setting, they are computationally
valid.

2. Thanks to our result (Theorem 2), adding a new cryptographic primitive only re-
quires to design an axiomatization of this primitive and prove it sound due to the
cryptographic assumptions: the additional soundness proof is short and modular; it
focuses on designated properties instead of considering whole execution models.

3. We may be able prove the security of protocols with weaker assumptions on the
primitives. For instance, if we prove the security using only axioms that are sound
for IND-CPA encryption, then IND-CPA will be a sufficient hypothesis for security.

2

4. In each security proof, all assumptions are clearly and formally stated as axioms.
5. In case an attack is found, it may be sufficient to add an axiom (expressing stronger

hypotheses on the computational implementation of the primtives) ruling out the
attack, then try proving again.

6. We may consider any cryptographic primitive, including XOR for instance (for
which there are strong limitations of the computational soundness approach [4,
27]). Dynamic corruption, key cycles, etc. are not a priori discarded.

Related works. The most closely related works are probably those that consider a proof
system that is sound w.r.t. the computational semantics, such as [17, 9]. Though these
works are related, as far as the computational semantics of the logic is concerned, the
overal strategy is completely different. We do not try to design a proof system working
directly in the computational model: we only use first-order logic and standard inference
rules in the symbolic model. Our approach is more inspired by circumscription [21],
however circumscribing what is not possible. In other words, we do not design inference
rules, we modify the transition system instead. This is similar in spirit to [26], in which
any property of the hash function, that is not explicitly forbidden by some axiom, is
considered as valid.

Contents of the paper. In this paper, we only state the framework of the method, prove
a general soundness theorem in the case of trace properties, and prove soundness of an
example axiom expressing secrecy of an IND-CCA encryption.

More precisely, protocols are identified to a formal transition system in the same
spirit as CoSP [7]: we do not commit to a very particular way of specifying such a tran-
sition system. The possible transitions are, roughly, defined by a formula, that guards
the transition by constraining the input message, a state move and a message that is sent
out when the guard is satisfied. Such transitions can be interpreted in different models:
symbolic models, in which the messages are terms and the guards are interpreted in
a Herbrand model, or computational models, in which messages are bitstrings. In the
symbolic models, we constrain the input messages to be deducible from the previous
outputs and the public information. Such a deducibility condition is formalised using a
deducibility predicate, whose interpretation is not fixed. This is a main difference with
classical protocol verification: the attacker capabilities are not fixed, but rather they
parametrize the model. Actually, we consider any attacker capability, that does not con-
tradict the (computationally sound) axioms. On the computational side, the attacker is
any probabilistic polynomial time Turing machine: the deduction capabilities are given
by any such machine. These models are explained in the sections 2.2, 2.3, 2.5.

Next, we need to speficy the axioms and the (trace) security properties. We con-
sider any first-order formula, that is built on the predicate symbols, that are used in the
guards, as well as the deducibility predicate symbol. We need such general formulas,
since we need to constrain the symbolic models of the deducibility relations, i.e., the
symbolic attacker capabilities, according to the computational assumptions on the prim-
itives. Typically, we may consider an axiom of the form: “if a plaintext can be deduced
(resp. computed) from a ciphertext and a set of messages φ, then the decryption key has
been sent out or else the plaintext can be deduced (resp. computed) from φ”, that reflects

3

some property of the encryption scheme. The meanings of these axioms/security prop-
erties become clear when we define a computational interpretation of such formulas,
which we provide in the section 2.6.

The Section 3 is devoted to the main result, which states a general trace-mapping
soundness property: independently of the primitives and their specific characteristics, if
there is a computational attack, then there is a symbolic attack. Once more, the symbolic
attacker has any capability, that is consistent with the axioms. So, this result, though
subtle and not at all trivial to prove, is not surprising. The whole system was actually
carefully designed with this aim in mind.

We also show in the Section 5 some axiom examples, that are proven sound under
some standard cryptographic properties. We do not aim however at covering a large set
of axioms. Further axioms will be added to a library each time they are required for the
proof of a case study.

This paper aims at opening a new research direction: it seems very appealing and
promising. We need however to investigate several case studies. As a “proof of con-
cept”, we have designed a complete set of axioms (included in the Appendix) and
proved the NSL protocol in our framework (available from the first-author’s web page
or upon request). This sufficient set of axioms shows also that some hypotheses of ear-
lier works are not necessary (at least for weak secrecy and authentication).

2 Symbolic and Computational models

2.1 Terms and frames

Terms are built out of a set of function symbols F that contains an unbounded set of
names N and an unbounded set of handles H. Let X be an unbounded set of vari-
ables. Names and handles are zero arity function symbols. We will use names to denote
items honestly generated by agents, while handles will denote inputs of the adversary.
A ground term is a term without variables. Frames are sequences of terms together with
name binders: a frame φ can be written (νn).p1 7→ t1, . . . , pn 7→ tn where p1, . . . pn
are place holders that do not occur in t1, . . . , tn and n is a sequence of names. fn(φ),
the free names of φ are names occurring in some ti and not in n. The variables of φ are
the variables of t1, . . . , tn.

Example 1. We typically use a randomized public-key encryption symbol: {m}reKQ
is intended to represent the encryption of the plaintext m with the public-key of the
principal Q, with a random seed r. More generally, we consider the example when
there is a set of constructors Fc = {{ } , 〈 , 〉, e , d ,K }, and a set of destructors
Fd = {dec(,), π1 () , π2 ()}, and F = Fc ∪ Fd ∪N ∪H.

2.2 Formulas

Let P be a set of predicate symbols over tems. P is assumed to contain the equality
= (which is interpreted as a congruence), used as t1 = t2, and a predicate `, which
takes as arguments an n-tuple of terms on its left and a term on its right (and which is

4

intended to model the computation capabilities), that is, written as t1, ..., tn ` t. (More
precisely, it is an infinite sequence of predicates, with arguments n+ 1.)

We are not interested in any specific symbolic interpretation of these predicate sym-
bols. We wish to consider any possible symbolic interpretation, that satisfies some re-
quirements; the aim is to allow anything that is not forbidden by explicit assumptions.

Example 2. ∀x, ∀y.({x}seKQ = {y}s′eKQ → x = y) is such a formula, the validity of
which follows from the uniqueness of decryption.

Let M denote then any first-order structure that interprets the function and predicate
symbols of the logic. We only assume that = is interpreted inM as the equality in the
underlying domain DM. The relation in M (that is, a relation for elements in DM),
interpreting the deducibility predicate ` is denoted as `M.

Given an assigment σ of elements in DM to the free variables of term t, we write
[[t]]σM for the interpretation of t inM ([[]]σM is the unique extension of σ into a homo-
morphism of F-algebras).

For any first order structure M over the functions F and predicates P , given a
first order formula θ and an assignment σ of elements in the domain ofM to the free
variables of θ, the satisfaction relationM, σ |= θ is defined as usual in first-order logic.

Example 3. Consider the public-key encryption setting of example 1. We may use
unary predicate symbols to restrict sets of data. Assume for instance that W is sup-
posed to represent the set of agent names, and M is supposed to represent well formed
terms (that are equal to a term built with symbols in Fc).

W (π1(dec(h, db))) ∧M(π2(dec(h, db)))

is a formula, that expresses that the handle h can be decrypted and projected into two
components, one of which is an agent name.

2.3 Protocols

We do not stick to any particular syntax for the definition of protocols. We only assume
that it defines a transition system as follows. Q is a set of control states, together with a
finite set of free variables.

Definition 1. A protocol is a recursive (actually PTIME) set of tuples

(q(n), q′(n · n′), 〈x1, . . . , xk〉 , x, ψ, s)

where q, q′ ∈ Q, x1, . . . , xk, x are variables n, n′ are finite sequences of names, ψ is a
first order formula over the set of predicate symbols P and function symbols F and the
names n ∪ n′, whose free variables are in {x1, . . . , xn, x} and s is a term whose free
variables are in {x1, . . . , xn, x}.

For example, ψ can be a formula such as dec(x, k) = n, that checks that the current
input is a ciphertext whose plaintext is a previously generated nonce n: ψ guards the
transition. s is the output message, when the transition succeeds. The intended meaning

5

of these rules is that a transition from the sate q to the state q′ is possible, given the
previous inputs x1, . . . , xn and the new input x, if the formula ψ is satisfied. In such a
case, the names n′ are generated and the message s is sent.

Such a formalism is quite general; we only assume here (for simplicity) a single,
public, communication channel. Typically, applied π-calculus processes can be trans-
lated into such transition rules, that are similar to the CoSP framework of [7].

Example 4. Consider a single session of the NSL protocol. The states consist of pairs of
the local states of each of the processes for A and B. Instead of listing the transitions as
tuples, we write ψ : q(n)

s−→ q′(n) and they are diplayed in the figure 1. In this version
of the protocol, the responder is willing to communicate with anybody, hence only
checks W (π1(dec(y, dKB))); the intended meaning of W is a set of agent names. If

> : qA0 (n, r, r
′′)

{〈A,n〉}reKB−−−−−−−−→ qA1 (n, r, r
′′)

π1(dec(x, dKA)) = B
∧ π1(π2(dec(x, dKA))) = n

}
: qA1 (n, r, r

′′)
{π2(π2(dec(x,dKA)))}r

′′
eKB−−−−−−−−−−−−−−−−−→ qA2 (n, r, r

′′)

W (π1(dec(y, dKB)))
∧M(π2(dec(y, dKB)))

}
: qB0 (n′, r′)

{〈B,〈π2(dec(y,dKB)),n′〉〉}r
′
eKπ1(dec(y,dKB))−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ qB1 (n′, r′)

dec(z, dKB)) = n′ : qB1 (n′, r′) −→ qB2 (n′, r′)

Fig. 1. The 3 transitions of 1 session of NSL

we wish to describe an unbounded number of sessions, we need to record in the control
state the states of every (opened) A-session and (opened) B-session. This yields an
infinite, yet recursive, set of transition rules.

Definition 2. A symbolic state of the network consists of:

– a control state q ∈ Q together with a sequence of names (that have been generated
so far) n1, . . . , nk

– a sequence constants called handles h1, . . . , hn (recording the attacker’s inputs)
– a ground frame φ (the agents outputs)
– a set of formulas Θ (the conditions that have to be satisfied in order to reach the

state).

A symbolic transition sequence of a protocol Π is a sequence

(q0(n0), ∅, φ0, ∅)→ . . .→ (qm(nm), 〈h1, . . . , hm〉 , φm, Θm)

if, for every m− 1 ≥ i ≥ 0, there is a transition rule

(qi(αi), qi+1(αi+1), 〈x1, . . . , xi〉 , x, ψ, s)

6

such that n = αi+1 \αi, φi+1 = (νn).(φi ·p 7→ sρiσi+1), ni+1 = ni]n,Θi+1 = Θi∪
{φi ` hi+1, ψρiσi+1} where σi = {x1 7→ h1, . . . , xi 7→ hi} and ρi is a renaming of
the sequence αi into the sequence ni. We assume a renaming that ensures the freshness
of the names n: n ∩ ni = ∅.

Definition 3. Given an interpretationM, a transition sequence of Π

(q0(n0), ∅, φ0, ∅)→ . . .→ (qm(nm), 〈h1, . . . , hm〉 , φm, Θm)

is valid w.r.t.M if, for every m− 1 ≥ i ≥ 0,

M |= Θi+1

Example 5. We show the beginning of a possible branch in the symbolic execution of
NSL.

(q0, ∅, φ0, ∅) (q1, H1, φ1, Θ1) (q2, H2, φ2, Θ2) (q3, H3, φ3, Θ3) (q4, H4, φ4, Θ4)
• • • • •- - - -

– φ0 = νKAKBAB(p0 7→ (A,B, eKA, eKB)),
Θ0 = ∅

– H1 = 〈h1〉,
φ1 extends φ0 with p1 7→ {〈A,n〉}reKB ,
Θ1 = {φ0 ` h1}

– H2 = 〈h1, h2〉,
φ2 extends φ1 with p2 7→ {〈B, 〈π2 (dec(h2, dKB)) , n

′〉〉}r′eKπ1(dec(h2,dKB))
,

Θ2 = Θ1 ∪ {φ1 ` h2,M(π2 (dec(h2, dKB))),W (π1 (dec(h2, dKB)))}
– H3 = 〈h1, h2, h3〉,
φ3 extends φ2 with p3 7→ {π2 (π2 (dec(h3, dKA)))}r

′′

eKB
,

Θ3 = Θ2 ∪ {φ2 ` h3, π1 (π2 (dec(h3, dKA))) = n, π1 (dec(h3, dKA)) = B},
– H4 = 〈h1, h2, h3, h4〉, φ4 = φ3,
Θ4 = Θ3 ∪ {φ3 ` h4, dec(h4, dKB)) = n′}

LetM be a model in which π1 (dec(h2, dKB)) = A and

h2 =M {〈A,n〉}reKB , h3 =M {〈B, 〈n, n′〉〉}r
′

eKA , h4 =M {n′}r
′′

eKB ,

and `M is simply the classical Dolev-Yao deduction relation. Then the execution se-
quence is valid w.r.t. M, and this corresponds to the correct execution of the NSL
protocol between A and B.

There are however other models in which this transition sequence is valid. For in-
stance letM′ be such that h2 =M′ n and φ1 `M′ n and n =M′ {〈A,n〉}reKB , (and
h3, h4 as above). We get again a valid transition sequence w.r.t.M′. Though, in what
follows, we will discard such sequences, thanks to some axioms.

7

Example 6. Consider again the transitions of the example 5. Now consider a modelM
in which n0, {B,n, n′}reKA `M {B,n0, n

′}reKA for an honestly generated nonce n0
that can be chosen by the attacker: the transition sequence of the previous example is
also valid w.r.t. this model. This will yield an attack, using a malleability property of the
encryption scheme, as in [28]. Discarding such attacks requires some properties of the
encryption scheme (for instance IND-CCA). It can be ruled out by a non-malleability
axiom like the one appearing in the Appendix.

From these examples, we see that unexpected attacks can be found when some assump-
tion is not explicitly stated as an axiom to limit adversarial capabilities.

2.4 Axioms and security properties

For simplicity, we only consider reachability security properties. The extension to any
trace property should not be very difficult: it suffices to record some values along the
trace. Security properties (and, later, axioms) are first-order formulas that may contain
state-dependent predicates and/or predicates that get fixed interpretation. As in the pre-
vious sections,M is an arbitrary first-order structure and σ is an assignment of the free
variables to elements of DM.

First, we add atomic formulas φ̂, s1, . . . , sn ` t, where φ̂ is just part of the syntax of
this predicate (not an input of the predicate), which aims at ranging over frames (when
interpretating the predicate) and is evaluated in every state. For t1, ..., tm closed terms,
M, σ, 〈t1, . . . , tm〉 , n |= φ̂, s1, . . . , sn ` t iff M, σ |= s1, . . . , sn, t1, . . . , tm ` t

In addition, we consider the following atomic formulas, whose evaluation only de-
pends on the state, independently of the first-order structureM.

– RandGen(s) (s is a ground term) expresses that s has been randomly generated:
M, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk) |= RandGen(s) iff s ∈ {n1, . . . , nk}

– t v φ̂ (t is a ground term) expresses that t is a subterm of the messages sent so far:
M, σ, 〈t1, . . . , tm〉 , n |= t v φ̂ iff t is a subterm of some ti.

– We also may use the derived predicate (as an abbreviation):

fresh(x, φ̂) = RandGen(x) ∧ x 6v φ̂

v and RandGen() are interpreted predicates since their interpretation does not de-
pend on M. Bound variables that appear within an interpreted predicate are called
constrained variables. As in other works on constrained logics (see for instance [20]),
such variables are used to schematize several first-order formulas and are replaced with
ground terms built on F . Therefore, the interpretation of axioms and security properties
that may involve interpreted predicates, is modified, only in case of a quantification on
a constrained variable x, in which case x is replaced by any (or some, for existential
quantification) ground term:

If x is a constrained variable (that is, θ has an interpreted predicate and x appears in
it), then,

M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= ∀x.θ

8

iff, for every ground term t,

M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= θ{x 7→ t}

We have a similar definition for existential quantifications of such variables. All other
cases follow the classical definition of the first-order satisfaction relation.3 This yields
a satisfaction relationM, σ, 〈t1, . . . , tm〉 , n |= θ, and thus ofM, σ, φ, n |= θ with φ
having the terms 〈t1, . . . , tm〉. When θ has no free variable, we may omit σ. Similarly,
if θ does not contain atomic formulas that depend on φ (resp. n), we may omit these
components: we get back to the satisfaction relation of section 2.2.

We define now the satisfaction relation in a state:

M, (q, 〈h1, . . . , hm〉 , n, φm, Θ) |= θ iff M, φm, n |= θ.

Definition 4. A symbolic interpretation and a protocol satisfy the security property θ,
written as

M, Π |= θ,

if for any sequence of transitions that is executable in M and that yields the state
(qm, 〈h1, . . . , hm〉 , nm, φm, Θm),

M, (qm, 〈h1, . . . , hm〉 , nm, φm, Θm) |= θ.

Example 7. Concerning security properties, consider the NSL protocol. We may state
the confidentiality of n:

¬φ̂ ` n
Consider now an authenticity property. We modify slightly the states of the transition
system, including a commitment on the nonce on which the parties are supposed to
agree. We let ci be a special function symbol, that takes as argumentsA,B, n1, n2: who
commits, for who and the corresponding nonces. ci(A,B, n1, π2(π2(dec(x, dKB))))
is sent at the end by the initiator. For the responder, there is a similar commitment:
at the end of the protocol, B emits cr(π1(dec(x, dKB)), B, π2(dec(y, dKB), n2)). We
state as axioms that ci, cr cannot help the attacker and cannot be forged. For instance:
∀x, y, z, w.φ̂, ci(x, y, z, w) 6` z, w and ∀x, y, z, w.φ̂ ` ci(x, y, z, w)→ ci(x, y, z, w) v
φ̂. The agreement property (on n) may then be stated (for instance) as:

∀x, y, z, w.cr(x, y, z, w)) v φ̂→ ∃x′z′w′(ci(x
′, y, z′, w′) v φ̂ ∧ x = x′ ∧ z = z′ ∧w = w′)

That is: x’s view of z, w is the same as y’s view of z, w.

With such a definition, for any security property and any protocol there will (almost)
always be an interpretation for which the property is violated. Hence we restrict the
class of symbolic interpretations, ruling out the interpretation whose all computational

3 It would in fact be possible to avoid the notion of constrained variables if we defined DM to
be a freeF-algebra, and = a congruence relation on it (as opposed to the equality ofDM), and
later parts of the paper could be adjusted accordingly. However, since constrained variables are
more convenient for automatic verification, the authors decided to present the theory utilizing
them.

9

counterparts would violate some security assumption on the primitives. More precisely,
we consider a set of axioms A, which is a set of first-order formulas in the same for-
mat as the security properties. We restrict our attention to symbolic interpretations that
satisfy A.

Example 8. – For instance we could include in A a formula

fresh(k, φ̂)→ ¬(φ̂ ` k)

that states that an attacker cannot guess (except with negligible probability) a ran-
domly generated name. Adding such an axiom in A rules out symbolic interpreta-
tions in which this deduction is possible.

– If the computational implementation is such (e.g. they are tagged), we may include,

∀x, y, z, A, r.〈x, y〉 6= {z}rKA

stating that pairs and ciphertexts cannot be confused.

We will see more examples in Section 5.
We may assume w.l.o.g that the axioms and security properties are just (universally

quantified) clauses.

2.5 Computational interpretation

The computational interpretations are just a special case of interpretation of our formu-
las, when they do not depend on the state of the transition system. We define them again
here, since we wish to introduce some additional notions. Also, the computational exe-
cutions of the protocols rely on a concrete adversary, given by a Turing machine, while
in general, the interpretation of functions and predicates need not to be computable.

We consider a familly computational algebras, parametrized by a security parameter
η, in which each function symbol is interpreted as a polynomially computable function
on bitstrings (that may return an error message). Given then a sample τ of names (for
every name n, its interpretation is a bitstring τ(n)), every ground term t is interpreted
as a bitstring [[t]]τ in such a way that [[]]τ is a homomorphism of F-algebras. More
generally, if σ is an assignment of the variables of t to bitstrings [[t]]στ is the (unique)
extension of τ (on names) and σ (on variables) as a homomorphism of F-algebras.

Similarly, all predicate symbols are interpreted as polynomially computable func-
tions on bitstrings. The equality predicate is interpreted as a strict equality on bitsrings:
τ |=c t1 = t2 if [[t1]]τ is not an error, [[t2]]τ is not an error and [[t1]]τ = [[t2]]τ .

This interpretation is extended to arbitrary closed formulas whose atomic formulas
do not depend on the state. This yields the satisfaction relation τ |=c θ. We will define
later the computational interpretation of arbitrary formulas in a given state.

We now define computational executions.

Definition 5. Given a set of transition rules, a computational state consists of

– A symbolic state s (that is itself a tuple q(n, h, φ,Θ))
– a sequence of bitstrings 〈b1, . . . , bm〉 (the attacker’s outputs)

10

– A sequence 〈b′1, . . . , b′n〉 of bitstrings (the agents outputs)
– The configuration γ of the attacker.

Definition 6. Given a PPT interactive Turing machineM and a sample τ , a sequence
of transitions

(s0, ∅, b′0, γ0)→ . . .→ (sm, 〈b1, . . . , bm〉 , 〈b′1, . . . , b′m〉 , γm)

is (computationally) valid w.r.t.M and τ if

– s0 → · · · → sm is a transition sequence of the protocol
– for every i = 0, ...m − 1, si = (qi(ni), hi, φi, Θi), φi+1 = (νn).φi · ui, [[ui]]τ =
b′i+1

– for every i = 0, ...,m − 1, there is a configuration γ′i of the machineM such that
γi `∗M γ′i `∗M γi+1 and γ′i is in a sending state, the sending tape containing bi+1,
γi+1 is in a receiving state, the receiving tape containing b′i+1

– for every i = 0, ...,m− 1, τ, {x1 7→ b1, . . . , x 7→ bi+1} |=c Θi+1.

Intuitively, b′0 is the attacker’s initial knowledge and we simply replaced symbolic de-
ductions/symbolic models of the section 2.3 with computations/computational models.

2.6 Computational validity of security properties and axioms

We already considered the computational satisfaction of formulas, except for formulas
that depend on the states. Given a PT Turing machine A, we define then

A, τ |=c t1, . . . , tn ` t iff A([[t1]]τ , . . . , [[tn]]τ) = [[t]]τ

The difficulty now is that we do not want to define A, τ |=c φ̂ ` t1 → φ̂ ` t2 as
A, τ |= φ̂ ` t2 or A, τ 6|= φ̂ ` t1. In order to understand this, consider for instance the
formula

θ : ∀t,K,R(φ̂, {t}ReK ` t→ {t}ReK v φ̂ ∨ dK v φ̂ ∨ φ̂ ` t)

We want (intuitively) IND-CCA encryption schemes to satisfy this formula. However,
consider an instance of this axiom in which φ̂ is the pair φ = νn1n2.〈n1, n2〉, and t is
n1. Now, letA be a machine which, on input [[〈n1, n2〉]]τ , [[{n1}reK]]τ returns n1 and, on
input [[〈n1, n2〉]]τ only, returns [[n2]]τ . For every τ ,A, τ 6|=c θ. Hence, whatever security
is provided by the encryption scheme, there is an attack on the property.

This paradox comes from the deterministic interpretation of the deducibility rela-
tion: while, symbolically, it is a relation, it must be a function in the computational
setting since we cannot consider non-deterministic machines. The intended interpreta-
tion therefore involves several machines: roughly, for any machine that can compute
[[t]]τ from [[φ]]τ , [[{t}reK]]τ , either there is a machine that can compute [[t]]τ from [[φ]]τ or
else the actual frame contains either dK or {t}reK . These two machines need of course
to be independent of τ . This is the definition that we formalize now for arbitrary security
properties.

11

LetM be an interactive PPT Turing machine with a special challenge control state
qc. We may regard this machine as an attacker, who moves to the state qc when (s)he
thinks that (s)he is ready to break the security property.

In what follows, S is any (polynomial time) non-negligible set of interpretations of
names, and S> is the set of all name interpretations.M, Π |=c θ iffM, Π, S> |=c θ
and Π |=c θ ifM, Π |=c θ for everyM with qc.

We introduce machines that compute witnesses for the unconstrainted quantified
variables.

– M, Π, S |=c ∃x.θ iff for any S′ ⊆ S non-negligible, there is a S′′ ⊆ S non-
negligible and a PT machine Ax such thatM, Π, S′′,Ax |=c θ

– M, Π, S,Ax1 , . . . ,Axn |=c ∀x.θ iff for any probabilistic polynomial time ma-
chine Ax,M, Π, S,Ax1 , . . . ,Axn ,Ax |=c θ

If x is a constrained variable, the interpretation of ∀x.θ is analogous to the symbolic
case: M, Π, S,Ax1

, . . . ,Axn |=c ∀x.θ if and only if for every ground term t, the
satisfactionM, Π, S,Ax1

, . . . ,Axn |=c θ{x 7→ t} holds (and similarly for existential
quantification). If σ is a sequence of machines, one for each free variable x of θ,

– M, Π, S, σ |=c θ1 ∧ θ2 iffM, Π, S, σ |=c θ1 andM, Π, S, σ |=c θ2.
– M, Π, S, σ |=c θ1 ∨ θ2 iff for any S′ ⊆ S non-negligible, there is a S′′ ⊆ S

non-negligible such that eitherM, Π, S′′, σ |=c θ1 orM, Π, S′′, σ |=c θ2.
– M, Π, S, σ |=c θ1 → θ2 iff for any S′ ⊆ S non-negligible, M, Π, S′, σ |=c θ1

impliesM, Π, S′, σ |=c θ2
– M, Π, S, σ |=c ¬θ iff for any S′, ifM, Π, S′, σ |=c θ, then S ∩ S′ is negligible
– in the case of an atomic formula P (t1, . . . , tn) where P /∈ {`, v, RandGen()},
M, Π, S, σ |=c P (t1, . . . , tn) if there is an overwhelming subset S′ of S such that
the following holds. For any τ ∈ S′, consider the unique valid computation (if there
is one) of Π with respect toM, τ that yields a configuration ofM, which is in the
control state qc with a bitstring b on the output tape. Let q(n) be the control state
reached at this point and c be the restriction of τ to n. Let bx = Ax(b, c) for every
Ax ∈ σ, and α be the sequence of assignments x 7→ bx. Then ([[t1]]

α
τ , . . . , [[tn]]

α
τ) ∈

[[P]].
– For the deducibility predicate, M, Π, S, σ |=c φ̂, t1, . . . , tn ` t if for all non-

negligible S′ ⊆ S, there is a non-negligible S′′ ⊆ S′ such that there is a PT
Turing machine AD such that, for all τ ∈ S′′, the unique valid computation (if
there is one) of Π with respect to M, τ that yields a configuration of M, which
is in the control state qc with a bitstring b on the output tape, an actual frame φm
and such that, letting bx = Ax(b, c) where c = τ(n) for the names n in the cur-
rent state, for every Ax ∈ σ, and α be the sequence of assignments x 7→ bx,
AD([[φm]]τ , [[t1]]

α
τ , . . . , [[tn]]

α
τ , b) = [[t]]ατ .

– M, Π, S, σ |=c t1, . . . , tn ` t is defined exactly as above, however removing φ.
– If P is an interpreted predicate,M, Π, S, σ |= P (t1, . . . , tn) iff there is an over-

whelming subset S′ ⊆ S such that, for any τ ∈ S′, the unique valid computation
of Π with respect toM, τ that yields a computational state (q(n, h, φ,Θ), b, b′, γ)
in the control state qc such that P (t1, . . . , tn) is true in q(n, h, φ,Θ). (Remember
that the evaluation of such predicates do not depend on the model).

12

M, Π |=nnp θ (read “M, Π satisfies θ with non negligible probability”) if there is a
non-negligible set S and a PPT machine A such that A(n1, . . . , nk, b1, . . . , bk) returns
1 iff there is a τ ∈ S such that, for all i, τ(ni) = bi andM, Π, S |=c θ.

Lemma 1. IfM, Π, S, σ |=c θ and S′ ⊆ S, then we also haveM, Π, S′, σ |=c θ

Proof. We proceed by induction on θ. SinceM, Π are fixed, we sometimes omit these
components.

– If θ is a atomic formula P (t1, . . . , tn) and P /∈ {`, fresh(),v}, then, by def-
inition, there is an overwhelming subset S1 ⊆ S such that, for any τ ∈ S1,
([[t1]]

α
τ , . . . , [[tn]]

α
τ) ∈ [[P]]. If S′ ⊆ S, we choose S′1 = S′ ∩ S1. It is an over-

whelming subset of S′ and, for any τ ∈ S′1, ([[t1]]ατ , . . . , [[tn]]
α
τ) ∈ [[P]].

– If θ is a formula φ̂, t1, . . . , tn ` t, then for any non negligible S1 ⊆ S, there is
a non-negligible S2 ⊆ S1 and there is a machine A, such that, for any τ ∈ S2,
A([[φ]]τ , [[t1]]ατ , . . . , [[tn]]ατ) = [[t]]ατ . If S′ ⊆ S is non negligible, then any non-
negligible S′1 ⊆ S′ is also a non-negligible S′1 ⊆ S, hence the result.

– Other atomic formulas with = and v are rather trivial.
– If θ = ¬θ1,M, Π, S, σ |=c θ iff for any S1 ⊆ S such thatM, Π, S1, σ |=c θ1,
S1 ∩ S is negligible. In that case, for any S′ ⊆ S, S′ ∩ S1 is also negligible, hence
the result (we do not use here the induction hypothesis).

– Let now θ = θ1 ∨ θ2, S, σ |=c θ1 ∨ θ2 and S′ ⊆ S. Take any S′′ ⊆ S′. Clearly,
S′′ ⊆ S, so by S, σ |=c θ1 ∨ θ2 there is a subset S′′′ ⊆ S′′ such that S′′′, σ |=c θ1
or S′′′, σ |=c θ2. That exactly means S′, σ |=c θ1 ∨ θ2.

– If θ = θ1∧ θ2, we simply use the induction hypothesis for θ1 and θ2, with the same
S′ ⊆ S.

– If θ = θ1 → θ2, then M, Π, S, σ |=c θ means exactly that for every S1 ⊆ S,
if M, Π, S1, σ |=c θ1 then M, Π, S1, σ |=c θ2. Clearly, the same will be true if
S1 ⊆ S′ ⊆ S. HenceM, Π, S′, σ |=c θ also holds.

– For θ = ∃x.θ1, the proof is analogous to ∨ and→.
– For θ = ∀x.θ1, the proof uses the induction hypothesis that the statement is true for
θ. Since for all x, θ is satisfied on all subsets, ∀xθ is also satisfied.

Lemma 2. With the above definitions,M, Π, S, σ |=c θ if and only if for all S′ ⊆ S
non-negligible, there is a S′′ ⊆ S non-negligible such thatM, Π, S′′, σ |=c θ

Proof. The only if part is clear from the previous lemma that satisfaction carries over
to subsets. The if proof again goes by induction.

– Suppose for all S′ ⊆ S non-negligible, there is a S′′ ⊆ S′ non-negligible such
thatM, Π, S′′, σ |=c ¬θ. That means, for all S′ ⊆ S,M, Π, S′, σ 6|=c θ, because,
by Lemma 1, M, Π, S′, σ |=c θ would imply M, Π, S′′, σ |=c θ. So, we have
M, Π, S, σ |=c ¬θ by the definition of the satisfaction of negation.

– Suppose for all S′ ⊆ S non-negligible, there is a S′′ ⊆ S′ non-negligible such that
M, Π, S′′, σ |=c θ1 ∨ θ2. Then, by the definition of satisfaction of θ1 ∨ θ2, there
is a subset S′′′ ⊆ S′′ such that either M, Π, S′′′, σ |=c θ1 or M, Π, S′′′, σ |=c
θ2. Hence each S′ has such a subset, which exactly means by our definition that
M, Π, S, σ |=c θ1 ∨ θ2.

13

– Suppose for all S′ ⊆ S non-negligible, there is a S′′ ⊆ S′ non-negligible such that
M, Π, S′′, σ |=c θ1 ∧ θ2. Then, by the definition of satisfaction of θ1 ∧ θ2, both
M, Π, S′′, σ |=c θ1 andM, Π, S′′, σ |=c θ2. So, using our induction assumption,
we get that M, Π, S, σ |=c θ1 and M, Π, S, σ |=c θ2, which exactly means that
M, Π, S, σ |=c θ1 ∧ θ2.

– Now suppose for all S′ ⊆ S non-negligible, there is a S′′ ⊆ S′ non-negligible such
thatM, Π, S′′, σ |=c θ1 → θ2. Take an arbitrary S1, and supposeM, Π, S1, σ |=c
θ1. We have to show thatM, Π, S1, σ |=c θ2. So for any S′ ⊆ S1 non-negligible,
there is a S′′ ⊆ S′ non-negligible such that M, Π, S′′, σ |=c θ1 → θ2. By the
definition of the satisfaction of entailment, this latter meansM, Π, S′′, σ |=c θ2,
because we had M, Π, S1, σ |=c θ1 and satisfaction is preserved under taking
subsets. So we have that for any S′ ⊆ S1 non-negligible, there is a S′′ ⊆ S′

non-negligible such that M, Π, S′′, σ |=c θ2. By the induction hypothesis on θ2,
M, Π, S1, σ |=c θ2.

– The case of ∀xθ is easy, because the statement holds for all θ, it also holds for ∀xθ.
– Suppose for all S′ ⊆ S non-negligible, there is a S′′ ⊆ S′ non-negligible such that
M, Π, S′′, σ |=c ∃xθ. Take an arbitrary S1 ⊆ S. We have to show that there is a
S2 ⊆ S1 and there is an Ax such thatM, Π, S2, σ,Ax |=c θ. We know that there
is a S′′ ⊆ S1 with M, Π, S′′, σ |=c ∃xθ. That implies by the semantics of ∃xθ
that there is a S2 ⊆ S′′ and there is an Ax such thatM, Π, S2, σ,Ax |=c θ. Since
S2 ⊆ S′′ ⊆ S1, this completes the proof.

Corollary 1. M, Π, S, σ |=c θ if and only if for all S′ ⊆ S,M, Π, S′, σ |=c θ holds.
M, Π, S, σ 6|=c θ if and only if there is a S′ ⊆ S such thatM, Π, S, σ |=c ¬θ.

Lemma 3. The De-Morgan identities hold for conjunction and disjunction as well as
for exist and forall. Moreover, ¬¬θ is satisfied iff θ is satisfied, ¬θ ∧ θ is satisfied only
on negligible sets, ¬θ∨θ is valid, θ1 → θ2 is satisfied iff ¬θ1∨θ2 is satisfied. Moreover,
the distributivity rules also hold: θ∧(θ1∨θ2) is satisfied iff (θ∧θ1)∨(θ∧θ2) is satisfied
and θ ∨ (θ1 ∧ θ2) is satisfied iff (θ ∨ θ1) ∧ (θ ∨ θ2) is satisfied.

Proof. The proof is based on Lemma 2. The following points are sufficient to prove.

– M, Π, S, σ |=c ¬¬θ holds by the semantics of negation iff for all S′ ⊆ S, we have
M, Π, S′, σ 6|=c ¬θ. That again by the semantics of negation is equivalent with
saying that iff for all S′ ⊆ S there is a S′′ ⊆ S′ such thatM, Π, S′′, σ |=c θ. That
in turn is equivalent withM, Π, S, σ |=c θ by Lemma 2.

– It is clear that M, Π, S, σ |=c ¬θ ∧ θ never holds, because M, Π, S, σ |=c ¬θ1
impliesM, Π, S, σ 6|=c θ, a contradiction. We only allowed contradictions on neg-
ligible sets.

– M, Π, S, σ |=c ¬(θ1∧θ2) holds iff for all S′ ⊆ S, we haveM, Π, S′, σ 6|=c θ1∧θ2,
which means that for all S′ ⊆ S, eitherM, Π, S′, σ 6|=c θ1 orM, Π, S′, σ 6|=c θ2.
By Lemma 2, this is equivalent with that for all S′ ⊆ S, there is a S′′ ⊆ S′

such that either for all S′′′ ⊆ S′′, M, Π, S′′′, σ 6|=c θ1, or for all S′′′ ⊆ S′′,
M, Π, S′′′, σ 6|=c θ2. This means exactly that for all S′ ⊆ S, there is a S′′ ⊆ S′

such that eitherM, Π, S′′, σ |=c ¬θ1, orM, Π, S′′, σ |=c ¬θ2, which is the same
asM, Π, S, σ |=c ¬θ1 ∨ ¬θ2.

14

– For the equivalence of θ1 → θ2 and ¬θ1 ∨ θ2 we do the two directions separately.
• Let now M, Π, S, σ |=c θ1 → θ2 hold. This implies that for all S′ ⊆ S, if
M, Π, S′, σ |=c θ1 holds, then M, Π, S′, σ |=c θ2 also holds. That is, ei-
therM, Π, S′, σ 6|=c θ1, orM, Π, S′, σ |=c θ2. By Lemma 2, it follows that
for all S′ ⊆ S, either there is a S′′ ⊆ S′ with M, Π, S′′, σ |=c ¬θ1, or
M, Π, S′, σ |=c θ2. This latter condition is equivalent with saying that for all
S′′ ⊆ S′,M, Π, S′′, σ |=c θ2, which clearly implies that there is a S′′ ⊆ S′

withM, Π, S′′, σ |=c θ2. Putting these together, we have that for all S′ ⊆ S,
there is a S′′ ⊆ S′ with eitherM, Π, S′′, σ |=c ¬θ1 orM, Π, S′′, σ |=c θ2

• In the other direction, supposeM, Π, S, σ |=c ¬θ1 ∨ θ2 holds. To show that
M, Π, S, σ |=c θ1 → θ2 also holds, take an arbitrary S′ ⊆ S, and suppose
M, Π, S′, σ |=c θ1. Now take an arbitrary S′′ ⊆ S′. By Lemma 2, for all
S′′′ ⊆ S′′,M, Π, S′′′, σ |=c θ1. But,M, Π, S, σ |=c ¬θ1 ∨ θ2 implies, that
there is a S′′′ ⊆ S′′ such that eitherM, Π, S′′′, σ |=c ¬θ1 orM, Π, S′′′, σ |=c
¬θ2. So, by the foregoing, the latter must be the case. Since we showed that
there is such a S′′′ for any S′′, we have by Lemma 2 thatM, Π, S′, σ |=c ¬θ2.

– SupposeM, Π, S, σ |=c ¬∀xθ, which is equivalent with saying that for all S′ ⊆ S,
M, Π, S′, σ 6|=c ∀xθ, which in turn is equivalent with saying that for all S′ ⊆ S,
there is an Ax such that M, Π, S′, σ,Ax 6|=c θ. This, by Lemma 2 is equivalent
with that for all S′ ⊆ S, there is an Ax and an S′′ such thatM, Π, S′′, σ,Ax |=c
¬θ. This is by the definition of the semantics of the existential quantification, equiv-
alent withM, Π, S, σ |=c ∃x¬θ.

– For the equivalence ofM, Π, S, σ |=c θ∧ (θ1 ∨ θ2) andM, Π, S, σ |=c (θ∧ θ1)∨
(θ ∧ θ2) we again do the two directions separately.
• M, Π, S, σ |=c θ∧(θ1∨θ2) implies thatM, Π, S, σ |=c θ andM, Π, S, σ |=c
θ1 ∨ θ2 hold, which in turn means by the semantics of the disjunction that
M, Π, S, σ |=c θ and for every S′ ⊆ S, there is a S′′ ⊆ S′ such that ei-
therM, Π, S′′, σ |=c θ1 orM, Π, S′′, σ |=c θ2. By Corollary 1, we have that
M, Π, S′′, σ |=c θ, so we have that eitherM, Π, S′′, σ |=c θ andM, Π, S′′, σ |=c
θ1, orM, Π, S′′, σ |=c θ andM, Π, S′′, σ |=c θ2, which in turn is equivalent
withM, Π, S, σ |=c (θ ∧ θ1) ∨ (θ ∧ θ2).

• For the other direction, assume now that M, Π, S, σ |=c (θ ∧ θ1) ∨ (θ ∧
θ2). This means that for every S′ ⊆ S there is a S′′ ⊆ S′ such that ei-
ther M, Π, S′′, σ |=c θ and M, Π, S′′, σ |=c θ1, or M, Π, S′′, σ |=c θ
and M, Π, S′′, σ |=c θ2. Since M, Π, S′′, σ |=c θ holds in both cases, this,
on one hand implies that for every S′ ⊆ S there is a S′′ ⊆ S′ such that
M, Π, S′′, σ |=c θ, which by Lemma 2 means thatM, Π, S, σ |=c θ. On the
other hand, we also have that for every S′ ⊆ S there is a S′′ ⊆ S′ such that
eitherM, Π, S′′, σ |=c θ1, orM, Π, S′′, σ |=c θ2, implyingM, Π, S′′, σ |=c
θ1 ∨ θ2. Hence, we arrive atM, Π, S, σ |=c θ ∧ (θ1 ∨ θ2).

– Finally, for the equivalence ofM, Π, S, σ |=c θ ∨ (θ1 ∧ θ2) andM, Π, S, σ |=c
(θ ∨ θ1) ∧ (θ ∨ θ2) we again do the two directions separately.
• If M, Π, S, σ |=c θ ∨ (θ1 ∧ θ2) holds, then for every S′ ⊆ S, there is a
S′′ ⊆ S′ such that eitherM, Π, S′′, σ |=c θ orM, Π, S′′, σ |=c θ1 ∧ θ2. But
this is equivalent with saying that for every S′ ⊆ S, there is a S′′ ⊆ S′ such
that eitherM, Π, S′′, σ |=c θ, orM, Π, S′′, σ |=c θ1 andM, Π, S′′, σ |=c θ2.

15

That in turn is equivalent with that for every S′ ⊆ S, there is a S′′ ⊆ S′

such that both either M, Π, S′′, σ |=c θ or M, Π, S′′, σ |=c θ1, and either
M, Π, S′′, σ |=c θ or M, Π, S′′, σ |=c θ2. This implies that on one hand
for every S′ ⊆ S, there is a S′′ ⊆ S′ such that either M, Π, S′′, σ |=c θ
or M, Π, S′′, σ |=c θ1, and, on the other hand, for every S′ ⊆ S, there is a
S′′ ⊆ S′ such that either M, Π, S′′, σ |=c θ or M, Π, S′′, σ |=c θ2. This is
equivalent withM, Π, S, σ |=c (θ ∨ θ1) ∧ (θ ∨ θ2).

• For the other direction, suppose now that we haveM, Π, S, σ |=c (θ∨θ1)∧(θ∨
θ2), which is equivalent with that on one hand for every S′ ⊆ S, there is a S′′ ⊆
S′ such that eitherM, Π, S′′, σ |=c θ orM, Π, S′′, σ |=c θ1, and, on the other
hand, for every S′ ⊆ S, there is a S′′ ⊆ S′ such that eitherM, Π, S′′, σ |=c θ
or M, Π, S′′, σ |=c θ2. Fix an arbitrary S′ ⊆ S. By the foregoing, there is
a S′′′ ⊆ S′ such that either M, Π, S′′′, σ |=c θ or M, Π, S′′′, σ |=c θ1. If
M, Π, S′′′, σ |=c θ, then set S′′ = S′. If M, Π, S′′′, σ 6|=c θ, then we have
M, Π, S′′′, σ |=c θ1, and by the foregoing, there is a S′′ ⊆ S′′′ such that
M, Π, S′′, σ |=c θ2. For Lemma 1,M, Π, S′′, σ |=c θ1, soM, Π, S′′, σ |=c
θ1∧θ2. Hence, in either case, we have an S′′ ⊆ S′ such thatM, Π, S′′, σ 6|=c θ
orM, Π, S′′, σ |=c θ1∧θ2. Then, by the semantics of the disjunction, we have
M, Π, S, σ |=c θ ∨ (θ1 ∧ θ2).

3 Computational soundness

Definition 7 (Almost Covering Family of Decreasing Chains of Polynomial-Time
Non-Negligible Sets of Coins). For a set of coins S, we say that a family C of chains
of the form S1 ⊇ S2 ⊇ ..., each non-negligible, PT computable subsets of S, almost
covers S, if for any S′ ⊆ S, for all i, there is a {Sj}∞j=1 ∈ C such that the intersection
of Si and S′ is non-negligible.

Let C1 and C2 be two such decreasing families, taking all elements {S1
i }∞i=1 ∈ C1

and all elements {S2
i }∞i=1 ∈ C2, the set of non-negligible decreasing chains of the

form {S1
i ∩ S2

i }∞i=1 is also an almost covering family. It is indeed decreasing, because
S1
i ∩ S2

i ⊆ S1
i ⊆ S1

i−1 and S1
i ∩ S2

i ⊆ S2
i ⊆ S2

i−1, so S1
i ∩ S2

i ⊆ S1
i ⊆ S1

i−1 ∩ S2
i−1.

Computability is preserved by intersection. For the almost covering property, consider
any non-negligible subset S′ ⊆ S. Since C1 is almost covering, for all i there is an
{S1

j }∞j=1 ∈ C1 such that S′ ∩ S1
i is non-negligible. Then, since C2 is almost covering,

there is an {S2
j }∞j=1 ∈ C2 such that S′ ∩ S1

i ∩ S2
i is non-negligible.

Definition 8 (Conjunction of Almost Covering Family of Chains). We call the family
of chains C created from two families of chains C1 and C2 via intersections in the above
manner, the conjunction of C1 and C2.

Definition 9 (Subchain). For two decreasing chains of PT computable, non-negligible
sets of coins, S1 ⊇ S2 ⊇ ..., and S′1 ⊇ S′2 ⊇ ..., we say that {Si}∞i=1 is a subchain of
{S′i}∞i=1 if for all i, S′i ⊇ Si.

Theorem 1. Let Π be a protocol, s1 → . . . → sm be a symbolic transition sequence
ofΠ andM be a probabilistic polynomial time interactive Turing machine. If there is a

16

non-negligible set of coins S such that, for any τ ∈ S, there is a sequence of transitions
(s0, b0, b

′
0, γ0) → · · · → (sm, bm, b

′
m, γm) that is computationally valid w.r.t.M, τ

and γm is in the challenge state qc, then for any formula θ,M, Π, S |=c θ implies there
is a symbolic model S such that s0 → · · · → sm is a valid symbolic execution w.r.t. S
and S |= θ.

Proof. We assume in this proof that there are only two predicate symbols: = and `.
The extension to other predicate symbols is straightforward.

For any term t with free variables x1, . . . , xn and machines Ax1 , ...,Axn , and any
sample τ ∈ S, let [[t]]τ,σ be the computational interpetation of t, in which each vari-
able xi is interepreted according to σ(τ)(xi) = Axi(bτ , τ(n)) if bτ is the bitstring
on the output tape of γm, and n is the set of names in the state sm, for the execution
corresponding to τ .

Given a decreasing chain of non-negligible sets of coins S ⊇ S1 ⊇ S2 ⊇ ..., we
define a first-order structureMS1⊇S2⊇... as follows. The domain ofMS1⊇S2⊇... is the
set of terms built on the function symbols, the names and the additional constants A
for any PT machine A. The interpretation of the predicate symbols is given, for any
assignment σ of the variables x1, . . . , xn to machines Ax1

, . . . ,Axn by:

– MS1⊇S2⊇..., σ |= t = u iff there is an i such that ∀τ ∈ Si, [[t]]τ,σ(τ) = [[u]]τ,σ(τ)
– MS1⊇S2⊇..., σ |= t1, ..., tn ` t iff there is a PT algorithmA, an i such that ∀τ ∈ Si,
A([[t1]]τ,σ(τ), ..., [[tn]]τ,σ(τ)) = [[t]]τ,σ(τ).

Let
MS =MS⊇S⊇...

Remark 1. Notice, that the definition is such that for S1 ⊇ S2 ⊇ ... and S′1 ⊇ S′2 ⊇ ...,
if for some m ∈ N, S′i = Si for all i > m, then MS1⊇S2⊇..., σ |= θ if and only if
MS′

1⊇S′
2⊇..., σ |= θ. This is rather trivially true for θ atomic formula, and hence true

for any formula.

Let θ be a formula with free variables x1, . . . , xn such that only atomic formulas
are negated. We prove, by induction on θ that, if on a non-negligible set of coins S,
M, Π, S, σ |=c θ, then there is an almost covering family of chains C such that for any
decreasing chain of non-negligible subsets S ⊇ S1 ⊇ S2 ⊇ that is a subchain of
some chain in C, there is a decreasing chain of non-negligible subsets S′1 ⊇ S′2 ⊇
such that S′i ⊆ Si for all i = 1, 2, ..., and for any decreasing chain of non-negligible
subsets S′′1 ⊇ S′′2 ⊇ with S′′i ⊆ S′i for all i = 1, 2, ...,MS′′

1 ⊇S′′
2 ⊇...., σ |= θ.

– Suppose θ ≡ t = u. We know from Lemma 1 that M, Π, S, σ |=c θ implies
M, Π, S′, σ |=c θ for any subset S′ ⊆ S. Hence, given any decreasing chain of
non-negligible subsets S ⊇ S1 ⊇ S2 ⊇, it suffices to choose S′i = Si for every
i , and C can be defined to have a single element, {S}∞i=1.

– If θ ≡ t 6= u and S ⊇ S1 ⊇ S2 ⊇ is any decreasing sequence of non-negligible
sets, let S′i = Si for every i , and let C have a single element, {S}∞i=1. For any
decreasing sequence of non-negligible sets S′′i ⊆ S′i, for all i, since S′′i , σ |=c t 6= u
by lemma 1, {τ ∈ S′′i : [[t]]τ,σ = [[u]]τ,σ is negligible. Hence there is at least one
τ ∈ S′′i such that [[t]]τ,σ 6= [[u]]τ,σ . HenceMS′′

1 ⊇S′′
2 ⊇...., σ 6|= t = u.

17

– For θ ≡ t1, ..., tn ` t, again given any decreasing chain of non-negligible subsets
S ⊇ S1 ⊇ S2 ⊇, it suffices to choose S′i = Si , and C can be defined to have a
single element, {S}∞i=1.

– If θ ≡ φ̂, u1, . . . , uk ` t, we may replace φ̂with the frame φm of the symbolic state
sm (this is because for any τ ∈ S, we reach the same symbolic state sm), hence we
are back to the previous case.

– If θ ≡ t1, ..., tn 6` t, given any decreasing chain of non-negligible subsets S ⊇
S1 ⊇ S2 ⊇, it suffices to choose S′i = Si , and C to have a single element,
{S}∞i=1, asM, Π, S′, σ |=c t1, ..., tn ` t is not true on any non-negligible S′.

– If θ ≡ φ̂, t1, . . . , tn 6` t, as before, we may replace φ̂ with the frame in sm and we
are back to the previous case.

– If θ ≡ θ1 ∨ θ2, then consider the family of sets S that consists of all sets S′′ ⊆ S
such that either S′′, σ |=c θ1, or S′′, σ |=c θ2. Note, that S, σ |=c θ1 ∨ θ2 means by
definition that any S′ has a subset in S. We define C the following way. For a S′′ in
S, since either θ1 or θ2 is satisfied on it, the induction hypothesis gives a family of
chains CS

′′
that almost covers S′′. Take C =

⋃
S′′∈S CS

′′
. The family we receive

this way is almost covering S, because taking any non-negligible, PT computable
set S′ ⊆ S, there is an S′′ ∈ S with S′′ ⊆ S′ non-negligible, and the chains of
CS

′′
all run in S′′, and hence in S′, so their intersections with S′ are non-negligible.

Take now any decreasing chain of non-negligible subsets S ⊇ S1 ⊇ S2 ⊇ that
is a subchain of some chain in C. By construction, there is an S′′ such that {Si}∞i=1

is a subchain of some chain in CS
′′

. But CS
′′

was given by the induction hypothesis
for the satisfaction of either θ1 or θ2 on S′′. Suppose the first, θ1. Then again by
the induction hypothesis for θ1, there is a chain S ⊇ S′ ⊇ S′1 ⊇ S′2 ⊇ ... such
that S′i ⊆ Si and for any non-negligible decreasing chain S′′1 ⊇ S′′2 ⊇ ... with
S′′i ⊆ S′i, MS′′

1 ⊇S′′
2 ⊇..., σ |= θ1. Then MS′′

1 ⊇S′′
2 ⊇..., σ |= θ. That is, there is a

chain S ⊇ S′ ⊇ S′1 ⊇ S′2 ⊇ ... such that S′i ⊆ Si and for any non-negligible
decreasing chain S′′1 ⊇ S′′2 ⊇ ... with S′′i ⊆ S′i,MS′′

1 ⊇S′′
2 ⊇..., σ |= θ. The same

procedure holds when on S2, θ2 is satisfied.
– If θ ≡ θ1 ∧ θ2, by definition, S, σ |=c θ1 and S, σ |=c θ2. Denoting by C1 and
C2 the almost covering families given by the induction hypothesis for θ1 and θ2
respectively, take C to be the conjunction of them. This is also an almost covering
family as we discussed earlier. Given any decreasing chain of non-negligible sub-
sets S ⊇ S1 ⊇ S2 ⊇ that is a subchain of some chain in C, it is also a subchain
of some chain in C1 because all chains in C are subchains of chains in C1 by con-
struction. By the induction hypothesis for θ1, there is a chain S ⊇ S′11 ⊇ S′12 ⊇ ...
with S′1i ⊆ Si, such that, for any non-negligible decreasing chain S′′1 ⊇ S′′2 ⊇ ...
with S′′i ⊆ S′1i for all i, MS′′

1 ⊇S′′
2 ⊇..., σ |= θ1. By induction hypothesis for θ2,

since {S′1i}∞i=1 is a subchain of a chain in C2, there is a chain S ⊇ S′21 ⊇ S′22 ⊇ ...
with S′2i ⊆ S′1i such that, for any non-negligible decreasing chain S′′1 ⊇ S′′2 ⊇ ...
with S′′i ⊆ S′2i for all i,MS′′

1 ⊇S′′
2 ⊇..., σ |= θ2. Since S′2i ⊆ S′1i, by the choice of

S′1i, we also have that for any non-negligible decreasing chain S′′1 ⊇ S′′2 ⊇ ... with
S′′i ⊆ S′2i for all i,MS′′

1 ⊇S′′
2 ⊇..., σ |= θ1. Hence, for any non-negligible decreasing

chain S′′1 ⊇ S′′2 ⊇ ... with S′′i ⊆ S′2i for all i,MS′′
1 ⊇S′′

2 ⊇..., σ |= θ1 ∧ θ2. Thus,
taking S′i = S′2i works.

18

– If θ ≡ ∃x.θ1, then consider the family of sets S that consists of all sets S′′ ⊆ S
such that there is an Ax, with S′′,Ax1

, ...,Axk ,Ax |=c θ. Since S, σ |=c ∃xθ1,
by definition of the semantics, any S′ has a subset in S. We define C the following
way. For an S′′ in S, since θ1 is satisfied on it by someAx, the induction hypothesis
gives an almost covering family CS

′′
. Take C =

⋃
S′′∈S CS

′′
. The family we receive

this way is an almost covering family, for the same reason as in the θ1 ∨ θ2 case
before. Take now any decreasing chain of non-negligible subsets S ⊇ S1 ⊇ S2 ⊇
.... that is a subchain of some chain in C. By construction, there is an S′′ such that
{Si}∞i=1 is a subchain of some chain in CS

′′
. But CS

′′
was given by the induction

hypothesis for the satisfaction of θ1 on S′′. Then again by the induction hypothesis
for θ1, there is a chain S ⊇ S′ ⊇ S′1 ⊇ S′2 ⊇ ... such that S′i ⊆ Si and for any non-
negligible decreasing chain S′′1 ⊇ S′′2 ⊇ ... with S′′i ⊆ S′i,MS′′

1 ⊇S′′
2 ⊇..., σ, x 7→

Ax |= θ1. But then this impliesMS′′
1 ⊇S′′

2 ⊇..., σ |= ∃x.θ1. So the same S′1 ⊇ S′2 ⊇
... works.

– If θ ≡ ∀xθ1, then for all Ax, S,Ax1
, ...,AxkAx |=c θ1. Enumerate all possible

algorithms for Ax: A1, A2,... First consider that for A1, S,Ax1
, ...,AxkA1 |=c θ1

holds. By induction hypothesis, there is an almost covering family of chains C1

such that for all S ⊇ S1 ⊇ S2 ⊇ ... that is a subchain of some chain in C1, there
is a chain S′11 ⊇ S′12 ⊇ S′13 ⊇ ... with S′1i ⊆ Si, such that, for any non-negligible
S′′1 ⊇ S′′2 ⊇ ..., if S′′i ⊆ S′1i for all i, thenMS′′

1 ⊇S′′
2 ⊇..., σ, x 7→ A1 |= θ1. Take

now A2. Then S,Ax1
, ...,AxkA2 |=c θ1 holds. By the induction hypothesis, there

is an almost covering family of chains C2 with the usual properties. And so on,
for all Aj , we have Cj . We construct C the following way. We take all decreasing
chains of the form

S1
1 ⊇ S1

2 ∩ S2
2 ⊇ S1

3 ∩ S2
3 ∩ S3

3 ⊇ ... ⊇
i⋂

j=1

Sji ⊇ ...

where for each j, {Sji }∞i=1 ∈ Cj . That is,

C :=

 x
∣∣∣ x = {

i⋂
j=1

Sji }
∞
i=1, {S

j
i }
∞
i=1 ∈ Cj


Let’s now fix S1 ⊇ S2 ⊇ ... such that it is a subchain of a chain in C. Buy con-
struction, it is also a subchain of a chain in C1. Let {

⋂i
j=1 S

j
i }∞i=1 denote that

chain. By the induction hypothesis for θ1, since S,Ax1
, ...,AxkA1 |=c θ1, there is

a chain S′11 ⊇ S′12 ⊇ S′13 ⊇ ... with S′1i ⊆ Si, such that, for any non-negligible
S′′1 ⊇ S′′2 ⊇ ..., if S′′i ⊆ S′1i for all i, thenMS′′

1 ⊇S′′
2 ⊇..., σ, x 7→ A1 |= θ1. Note

now that the chain S′11 ∩ S2
1 ⊇ S′12 ⊇ S′13 ⊇ ... is in C2. Here, S′11 ∩ S2

1 ⊇ S′12
follows from that S2

2 ⊇ S2 ⊇ S′12 by the choice of S2. By the induction hy-
pothesis, since S,Ax1 , ...,AxkA2 |=c θ1, there is a chain S′21 ⊇ S′22 ⊇ ... with
S′21 ⊆ S′11 ∩ S2

1 and S′2i ⊆ S′1i for i > 1, such that, for any non-negligible chain
S′′1 ⊇ S′′2 ⊇ ... such that S′′i ⊆ S′2i for all i,MS′′

1 ⊇S′′
2 ⊇..., σ, x 7→ A2 |= θ1. But,

because of Remark 1, it is also true that for the chain S′11 ⊇ S′22 ⊇ S′23 ⊇ ..., for
any non-negligible S′′1 ⊇ S′′2 ⊇ ..., with S′′1 ⊆ S′11, and S′′i ⊆ S′2i for i = 2, 3...,

19

MS′′
1 ⊇S′′

2 ⊇..., σ, x 7→ A2 |= θ1, as it does not matter what the first set is. Further-
more, since S′2i ⊆ S′1i holds, we also haveMS′′

1 ⊇S′′
2 ⊇..., σ, x 7→ A1 |= θ1. Contin-

uing in this manner, we get a chain S′11 ⊇ S′22 ⊇ S′33 ⊇ Then, take any chain
S′′1 ⊇ S′′2 ⊇ ..., with S′′i ⊆ S′ii. Clearly, because of the construction, S′′i ⊆ S′1i
also holds (as S′ii ⊆ S′1i). Hence we haveMS′′

1 ⊇S′′
2 ⊇..., σ, x 7→ A1 |= θ1. Further,

since S′′i ⊆ S′2i for i = 2, 3..., and S′′1 ⊆ S′11, we also haveMS′′
1 ⊇S′′

2 ⊇..., σ, x 7→
A2 |= θ1. And so on, we have for all j,MS′′

1 ⊇S′′
2 ⊇..., σ, x 7→ Aj |= θ1. Now, if

v is any term in the domain of our models,MS′′
1 ⊇S′′

2 ⊇..., σ, x 7→ v |= θ1. Indeed,
let v′ be the term v, in which any Ai occurring in v is replaced with a variable xi
and σ′ be xi 7→ Ai. The algorithm, that computes, for every τ ∈ S, [[v′]]τ,σ′ can
be constructed from the Ai and is PT. Hence there is an index n such that, for any
τ ∈ S, An outputs [[v′]]τ,σ′ . Therefore, we also haveMS′′

1 ⊇S′′
2 ⊇..., σ |= ∀xθ1, and

that is what we wanted to prove. 2

The above result can be applied to a formula θ that is the conjunction of

– the intermediate conditions (that are part of the symbolic states) Θ
– finitely many computationally valid axioms A
– a formula that expresses the existence of an attack. NotSec

Then it can be read as follows: if there is a computational attack, corresponding to a
symbolic trace s1 → · · · → sm, then this symbolic trace is valid in a model, which is
also a model of A and NotSec.

Consider then a symbolic procedure, that discards only symbolic states, in which
Θ ∧ A is inconsistent. Then the symbolic procedure will not miss any attack. More
precisely, we get:

Theorem 2. For a bounded number of sessions, if there is a computational attack, there
is also a symbolic attack.

In other words, if the protocol is symbolically secure, then it is also computationally
secure.

It might be true for an undbounded number of sessions as well, but we need the
boundedness assumption if we wish to derive the theorem from the theorem 1: The
trick is, that in the bounded case, if there is a computational attack, there is also a com-
putational attack corresponding to a fixed sequence of symbolic states. This is simply
because the bounded number of sessions ensures that there are only finitely many possi-
ble sequences, and if there is a computational attack, that is, the property expressing the
attack is satisfied on some non-negligible set, then it must be satisfied non-negligibly
on one of the possible sequences.

4 The S4 Connection

Soon after we have completed the proofs of our Lemmas and the main Theorem, we
realized that it is possible to give a purely logical presentation of our definitions and
propositions. Observe first that if we think of non-negligible sets as possible worlds,
and the subset relation as accessibility, then our computational semantics resembles to

20

Kripke semantics of modal logic. For any first-order formula θ, consider the transfor-
mation θ → θ∗, where θ∗ is a formula of first-order S4, and is defined recursively as
follows:

– For any atomic formula θ, let θ∗ ≡ 23θ.
– (¬θ)∗ ≡ 2¬θ∗
– (θ1 → θ2)

∗ ≡ 2(θ∗1 → θ∗2)
– (θ1 ∧ θ2)∗ ≡ (θ∗1 ∧ θ∗2)
– (θ1 ∨ θ2)∗ ≡ 23(θ∗1 ∨ θ∗2)
– (∀xθ)∗ ≡ ∀xθ∗
– (∃xθ)∗ ≡ 23∃xθ∗

With these definitions, considering only S4 with the Barcan formula (∀x2θ → 2∀xθ),
Lemma 1 shows that for any θ, θ∗ → 2θ∗. Lemma 2 shows that θ∗ ↔ 23θ∗. Lemma
3 shows that our definitions are consistent with tautologies. Finally, once the proof
of Theorem 1 is reduced to a purely logical one, the meaning of it becomes that any
formula θ is derivable in first-order logic if and only if θ∗ is derivable in first order
S4 with the Barcan formula. Indeed, after some search of logic literature, we found a
publication of Fitting [19] with exactly this result, using forcing techniques introduced
by Cohen. If we don’t want to use the Barcan formula, then the above is still all true,
but (∀xθ)∗ has to be defined as 23∀xθ∗.

5 Examples of axioms

5.1 Examples of axioms that are computationally valid

– Increasing capabilities: φ̂ ` y → φ̂, x ` y
– Function of derivable items: φ̂ ` t1 ∧ φ̂ ` t2 ∧ ... ∧ φ̂ ` tn → φ̂ ` f(t1, t2, ..., tn)
– Self derivability: φ̂, t ` t

The validity of these axioms is straightforward. We also include the following:

No telepathy: fresh(x, φ̂)→ φ̂ 6` x

whose computational soundness follows from the polynomial bound on the machines
that interpret the deducibility relation on the one hand and the exponential number of
interpretations of any names, on the other hand.

5.2 Secrecy Axiom

The intuitive meaning of the following axiom is that the adversary cannot derive the
plaintext of a freshly generated encryption, unless its decryption key has been sent out,
or the plaintext could be derived earlier.

Proposition 1. If the encryption scheme is IND-CCA2, then the following axiom

θ = ∀tKR
(

RandGen(K) ∧ fresh(R, φ̂) ∧ φ̂, {t}ReK ` t −→ dK v φ̂ ∨ φ̂ ` t
)

is computationally valid.

21

Proof. Suppose that it is not computationally valid. That is, there is a computational
structure (M, Π, S), withM, Π, S 6|= θ. There are PPT machines A = (At,AK ,AR)
such that M, Π, S,A 6|= fresh(R, φ̂) ∧ φ̂, {t}ReK ` t −→ dK v φ̂ ∨ φ̂ ` t.
Therefore, there is a S1 ⊆ S non-negligible such thatM, Π, S1,A |= fresh(R, φ̂) ∧
φ̂, {t}ReK ` t andM, Π, S1,A 6|= dK v φ̂ ∨ φ̂ ` t. We claim that the second implies
that there is a non-negligible subset S2 of S1 such thatM, Π, S2,A |= ¬(dK v φ̂)

andM, Π, S2,A 6|= φ̂ ` t. To see this, consider the following:

– Take S2 = S1\{τ | the computation of A on τ yields a state q such that q |= dK v
φ̂}. Clearly,M, Π, S2,A |= ¬(dK v φ̂), andM, Π, S1 \ S2,A |= dK v φ̂

– Since M, Π, S1 \ S2,A |= dK v φ̂, we have M, Π, S2,A 6|= φ̂ ` t, because
otherwise we would have M, Π, S1,A |= dK v φ̂ ∨ φ̂ ` t contradicting
M, Π, S1,A 6|= dK v φ̂ ∨ φ̂ ` t.

Since M, Π, S2,A 6|= φ̂ ` t, by the definition of the computational semantics of the
derivability predicate, there is a subset S4 of S2 such that on all subsets of S4, there
is no PT algorithm that computes the interpretation of t from the computational frame.
Then it is straightforward to check thatM, Π, S4,A |= ¬(φ̂ ` t):

– Suppose it is not true, that is,M, Π, S4,A 6|= ¬(φ̂ ` t).
– Then there is an S5 ⊆ S4 such thatM, Π, S4,A |= φ̂ ` t.
– That implies that S5 has a subset on which there is an algorithm that computes the

interpretation t from the computational frame, a contradiction.

Since S4 ⊆ S2, we also have thatM, Π, S4,A |= ¬(dK v φ̂), and since S4 ⊆ S1,
we also have M, Π, S4,A |= fresh(R, φ̂) ∧ φ̂, {t}ReK ` t. That is, M, Π, S4,A |=
φ̂, {t}ReK ` t andM, Π, S4,A |= fresh(R, φ̂) andM, Π, S4,A |= ¬(dK v φ̂) and
M, Π, S4,A |= ¬(φ̂ ` t). We have to create an adversary ACCA2 that wins the CCA2
game. Let x = {t}ReK .

Since M, Π, S4,A |= φ̂, {t}ReK ` t holds, there is an S5 ⊆ S4 and an algo-
rithm C that computes the interpretation of t from the interpretation of φ̂ and {t}ReK
on S5. Clearly, M, Π, S5,A |= fresh(R, φ̂) and M, Π, S5,A |= ¬(dK v φ̂) and
M, Π, S5,A |= ¬(φ̂ ` t). It may be the case that the S5 we have chosen depends
on evaluations of τ that are determined afterM reaches the challenge state qc. How-
ever, clearly, if we include all possible future evaluations, the set that we receive this
way, S′ will still be such that there is an algorithm C that computes the interpreta-
tion of t from the frame at the challenge state qc and {t}ReK on S′. Moreover, it is
easy to see that M, Π, S′,A |= fresh(R, φ̂) and M, Π, S′,A |= ¬(dK v φ̂) and
M, Π, S′,A |= ¬(φ̂ ` t) because these are properties that depend only on conditions
in the challenge stated, and not later ones.

SinceM, Π, S′,A |= dK 6v φ̂, the decryption key has never been sent.
We show that we can construct an algorithm ACCA2 that breaks CCA2 security.
Let AΠ mean the protocol adversary.

– ACCA2 generates computational keys thatAΠ uses, except for the one correspond-
ing to K.

22

– The encryption oracle generates a random bit b.
– The encryption oracle generates a computational key and publishes its public part.
ACCA2 encrypts with this key for encryptions with K, except for t.

– ACCA2 simulates both the agents andAΠ : It computes all messages that the agents
output according to their algorithm, and computes all messages that AΠ outputs
according to its algorithm. This way it builds up φ and the bit strings corresponding
to them as well as the equations.

– Whenever a decryption with dK has to be computed, there are two possibilities:
• If the ciphertext was created by ACCA2 using the encryption algorithm, then it

knows the plaintext, so it can use it without decryption.
• If the ciphertext was created in some other way, the decryption oracle is used.

This can be freely done until x occurs.
– When A reaches the challenge state qc, using At, ACCA2 computes the bit string

for t, and submits it to the encryption oracle as well as a random bit string that has
the same length as the plaintext.

– According to our definition of satisfaction the computation by C is based on the
frame at the challenge state. We had M, Π, S′,A |= fresh(R, φ̂), which means
that R is independent of the items in φ. Further, since we included all future ran-
dom choices in S′, R is also independent of S′. Hence having it encrypted by the
encryption oracle will not lose any information as long as the oracle encrypts the
correct bit.

– The encryption oracle encrypts the interpretation of t if b = 0, and encrypts the
random bit string if b = 1. It gives the result c back to ACCA2.

– Run C on the bit string c returned by the oracle and on the bit strings of φn.
– If
• ACCA2 receives the value for t back using c and if the execution is in S′, then
ACCA2 returns bACCA2

= 0.
• Otherwise ACCA2 throws a fair coin and stores bACCA2 = 0 or bACCA2 = 1

with probability 1/2.
– We have Prob{bACCA2

= b | S′ ∧ b = 0} (the conditional probability of bACCA2
=

b given S′ and b = 0) is negligibly different from 1 because in this case the oracle
encrypts the correct string, and C’s computations are employed on the correct bit
string, and so it gives the interpretation of t. Note, we also use here that S′ and the
interpretation of R do not correlate.

– On the other hand, observe that Prob{bACCA2
= b | S′ ∧ b = 1} − 1/2 is neg-

ligible. The reason is that when b = 1, the encryption oracle computes something
that has nothing to do with the protocol and t. So the probability of computing t
with or without the encryption in this case, is the same. But, remember, we had that
M, Π, S′,A |= φ̂ 6` t. This means that t cannot be computed without the encryp-
tion anywhere and therefore the adversary’s computation on the fake encryption
cannot give good result by more than negligible probability. So the adversary will
end up throwing a coin in this case.

– Putting the previous two points together, we have Prob{bACCA2 = b | S′} − 1
2

is non-negligible. Then, since outside S′, ACCA2 thows a coin, Prob{bACCA2 =
b} − 1

2 is non-negligible, which means CCA2 security is broken. 2

23

6 Conclusions

We have shown a technique to define symbolic adversaries that are at least as strong as
computational adversaries. The basic idea is that, instead of listing all manipulations the
symbolic adversary is allowed to do, we allow the symbolic adversary to do anything
unless it contradicts some axioms, which are derived from the limitations of the com-
putational adversary. In a rather involved theorem, we showed that at least when only
bounded number of protocol sessions are allowed, to any computational attack there is
a corresponding symbolic attack. Further, we have shown a few axioms that arise from
the limitations of computational adversaries, and which are to limit the symbolic adver-
sary. Besides some rather trivially valid axioms, we showed the validity of a ”secrecy
axiom”, that relies on IND-CCA2 security.

From our method, we can derive a verification procedure, simulating the (symbolic)
protocol rules, and checking at each computation step the consistency of the formulas
expressing that transitions are enabled, together with the axioms and the negation of
the security properties. In order to automate this process we mainly need a (hopefully
efficient) procedure checking the consistency of such a set of constrained formulas.
This is future work. We are however optimistic, because the examples of axioms that
we considered yield a saturated set of constrained formulas (as defined in [24]). On
the other hand, as shown in [10], the consistency of ground clauses, together with a
saturated set of clauses, can be performed in polynomial time.

We carried out a proof of a two sessions NSL, showing what are the minimal as-
sumptions that guarantee its correctness, but we need to design an automated tool, in
order to carry out further experiments. Also extensions of the results to indistinguisha-
bility properties could be investigated.

References

1. M. Abadi and P. Rogaway. Reconciling two views of cryptography: the computational sound-
ness of formal encryption. In Proc. 1rst IFIP International Conference on Theoretical Com-
puter Science, volume 1872 of Lecture Notes in Computer Science, Sendai, Japan, 2000.

2. Martı́n Abadi, Bruno Blanchet, and Hubert Comon-Lundh. Models and proofs of protocol
security: A progress report. In Computer Aided Verification (CAV), volume 5643 of Lecture
Notes in Computer Science, pages 35–49. Springer, 2009.

3. M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable dolev-yao style cryp-
tographic library. In Proc. IEEE Computer Security Foundations workshop, 2004.

4. M. Backes and B. Pfitzmann. Limits of the cryptographic realization of Dolev-Yao style
XOR. In Proc. 10th European Symposium on Research in Computer Security (ESORICS),
2005.

5. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested
operations. In Proc. 10th ACM Concerence on Computer and Communications Security
(CCS’03), 2003.

6. M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulatability (rsim) framework for
asynchronous systems. Information and Computation, 205(12), 2007.

7. Michael Backes, Dennis Hofheinz, and Dominique Unruh. Cosp: A general framework for
computational soundness proofs. In ACM CCS 2009, pages 66–78, November 2009. Preprint
on IACR ePrint 2009/080.

24

8. G. Bana and H. Comon-Lundh. Towards unconditional soundness: Computationally com-
plete symbolic attacker. In Proceedings of POST’12, Lecture Notes in Computer Science,
2012.

9. G. Bana, K. Hasebe, and M. Okada. Secrecy-oriented first-order logical analysis of crypto-
graphic protocols, 2010. http://eprint.iacr.org/2010/080.

10. David Basin and Harald Ganzinger. Automated complexity analysis based on ordered reso-
lution. Journal of the Association of Computing Machinery, 48(1):70–109, January 2001.

11. Bruno Blanchet. An automatic security protocol verifier based on resolution theorem proving
(invited tutorial). In 20th International Conference on Automated Deduction (CADE-20),
Tallinn, Estonia, July 2005.

12. Bruno Blanchet. A computationally sound mechanized prover for security protocols. IEEE
Transactions on Dependable and Secure Computing, 5(4):193–207, 2008. Special issue
IEEE Symposium on Security and Privacy 2006.

13. Ran Canetti and Tal Rabin. Universal composition with joint state. In Proceedings of the
23rd Annual International Cryptology Conference (CRYPTO), volume 2729 of Lecture Notes
in Computer Science, pages 265–281. Springer, 2003.

14. Hubert Comon-Lundh and Véronique Cortier. Computational soundness of observational
equivalence. In Proc. ACM Conf. Computer and Communication Security (CCS), 2008.

15. Hubert Comon-Lundh and Véronique Cortier. How to prove security of communication
protocols? a discussion on the soundness of formal models w.r.t. computational ones. In
Christoph Dürr and Thomas Schwentick, editors, Proceedings of the 28th Annual Sympo-
sium on Theoretical Aspects of Computer Science (STACS’11), volume 9 of Leibniz Interna-
tional Proceedings in Informatics, pages 29–44, Dortmund, Germany, March 2011. Leibniz-
Zentrum für Informatik.

16. V. Cortier and B. Warinschi. Computationally sound, automated proofs for security pro-
tocols. In Proc. 14th European Symposium on Programming (ESOP’05), volume 3444 of
Lecture Notes in Computer Science, pages 157–171, 2005.

17. Anupam Datta, Ante Derek, John C. Mitchell, Vitaly Shmatikov, and Mathieu Turuani. Prob-
abilistic polynomial-time semantics for a protocol security logic. In Proceedings of 32nd In-
ternational Colloquium on Automata, Languages and Programming (ICALP), volume 3580
of Lecture Notes in Computer Science, pages 16–29. Springer, 2005.

18. A. Armando et al. The AVISPA Tool for the automated validation of internet security pro-
tocols and applications. In Computer Aided Verification, (CAV’05), volume 3576 of Lecture
Notes in Computer Science, pages 281–285, 2005.

19. Melvin Fitting. An embedding of classical logic in s4. The Journal of Symbolic Logic,
35(4):529–534, 1970.

20. Harald Ganzinger and Robert Nieuwenhuis. Constraints and theorem proving. In Con-
straints in Computational Logics: Theory and Applications, volume 2002 of Lecture Notes
in Computer Science, pages 159–201, 2001.

21. Vladimir Lifschitz. Closed-world databases and circumscription. Artif. Intell., 27(2):229–
235, 1985.

22. Gavin Lowe. Breaking and fixing the needham-schroeder public-key protocol using fdr. In
Tools and Algorithms for the Construction and Analysis of Systems (TACAS), volume 1055
of Lecture Notes in Computer Science, pages 147–166, 1996.

23. J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic protocol
analysis. In Proc. 8th ACM Conference on Computer and Communications Security, 2001.

24. Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem proving. In Hand-
book of Automated Reasoning, pages 371–443. Elsevier and MIT Press, 2001.

25. Peter Ryan, Steve Schneider, Michael Goldsmith, Gavin Lowe, and Bill Roscoe. The Mod-
elling and Analysis of Security Protocols. Addison Wesley, 2000.

25

26. Dominique Unruh. Computational soundness of hash functions. Presented at the 6th work-
shop on Formal and Computational Cryptography (FCC), July 2010.

27. Dominique Unruh. The impossibility of computationally sound xor, July 2010. Preprint on
IACR ePrint 2010/389.

28. Bogdan Warinschi. A computational analysis of the needham-schroeder protocol. In 16th
Computer security foundation workshop (CSFW), pages 248–262. IEEE, 2003.

A Axioms for the Needham-Schroeder-Lowe protocol

In our NSL proof, we assumed that A executes initiator sessions only, and B executes
responder sessions only. We further assumed that they don’t initiate sessions with them-
selves. We also assumed that all agents other than A and B are corrupted, so their keys
are available to the adversary. Clearly, if we prove security in this case, it also holds
with other honest agents. We used the convention 〈x, y, z〉 ≡ 〈x, 〈y, z〉〉. We showed
that in a symbolic execution, violating the secrecy of nonces N1 and N2, as well as
violating the agreement and authentication properties are inconsistent with our axioms.

Computationally Sound Axioms Used

– x = x, and the substitutability (congruence) property of equal terms holds for =, `
predicates.

– Self derivability: φ̂,x, x ` x
– Increasing capabilities: φ̂,x ` y −→ φ̂,x, x ` y
– Commutativity: If x′ is a permutation of x, then φ̂,x ` y −→ φ̂,x′ ` y
– Transitivity of derivability: φ̂,x ` y ∧ φ̂,x,y ` z −→ φ̂,x ` z
– Functions are derivable: φ̂,x ` f(x)
– No telepathy: fresh(x; φ̂) −→ φ̂ 6` x
– Fresh items are independent:

fresh(x; φ̂,x) ∧ RandGen(N) ∧ x 4 φ̂ ∧ φ̂,x, x ` N −→ φ̂,x ` N ∨ x = N

– Special to IND-CCA encryption:
• Secrecy:

RandGen(K) ∧ eK v φ̂ ∧ fresh(R; φ̂,x, x) ∧ x 4 φ̂ ∧ x 4 φ̂

∧ φ̂,x, {x}ReK ` x

−→ dK v φ̂,x, x ∨ φ̂,x ` x

• Non-malleability (assuming there is only one kind of encryption and pairing):

RandGen(N) ∧ RandGen(K) ∧ eK v φ̂ ∧ N v φ̂ ∧ x 4 φ̂

∧ φ̂,x ` y ∧ φ̂,x, dec(y, dK) ` N ∧ ∀xR(y = {x}ReK → {x}ReK 6v φ̂)

−→ dK v φ̂,x ∨ φ̂,x ` N

Here, new constraints are

26

– t v φ̂, s1, ..., sn, where s1, ..., sn and t are closed terms:
M, σ, 〈t1, . . . , tm〉 , n |= t v φ̂, s1, ..., sn if t is a subterm of some ti or some si

– t 4 φ̂, where t is closed:
M, σ, 〈t1, . . . , tm〉 , n |= t 4 φ̂ if for every handle h of t, φ̂ ` h.

– And
fresh(x; φ̂,x) = RandGen(x) ∧ x 6v φ̂,x

Further Needed Axiom (The implementation needs to satisfy this too)
For this protocol, we need an additional axiom, namely that for an honestly generated
nonce N ,

¬W (π2 (N)).

That is, the second projection of a nonce can never be a name (by overwhelming prob-
ability on a non-negligible set).

27

