
Variants of Waters’ Dual-System Primitives Using Asymmetric

Pairings

Somindu C. Ramanna1, Sanjit Chatterjee2, and Palash Sarkar1

1 Applied Statistics Unit
Indian Statistical Institute
203, B.T. Road, Kolkata

India 700108.
e-mail: {somindu r,palash}@isical.ac.in

2 Department of Computer Science and Automation
Indian Institute of Science
Bangalore, India 560012.

e-mail: sanjit@csa.iisc.ernet.in

Abstract. Waters, in 2009, introduced an important technique, called dual-system encryption, to
construct identity-based encryption (IBE) and related schemes. The resulting IBE scheme was described
in the setting of symmetric pairing. A key feature of the construction is the presence of random tags
in the ciphertext and decryption key. Later work by Lewko and Waters has removed the tags and
proceeding through composite-order pairings has led to a more efficient dual-system IBE scheme using
asymmetric pairings whose security is based on non-standard but static assumptions. In this work,
we have systematically simplified Waters 2009 IBE scheme in the setting of asymmetric pairing. The
simplifications retain tags used in the original description. This leads to several variants, the first
one of which is based on standard assumptions and in comparison to Waters original scheme reduces
ciphertexts and keys by two elements each. Going through several stages of simplifications, we finally
obtain a simple scheme whose security can be based on two standard assumptions and a natural and
minimal extension of the decision Diffie-Hellman problem for asymmetric pairing groups. The scheme
itself is also minimal in the sense that apart from the tags, both encryption and key generation use
exactly one randomiser each. This final scheme is more efficient than both the previous dual-system
IBE scheme in the asymmetric setting due to Lewko and Waters and the more recent dual-system IBE
scheme due to Lewko. We extend the IBE scheme to hierarchical IBE (HIBE) and broadcast encryption
(BE) schemes. Both primitives are secure in their respective full models and have better efficiencies
compared to previously known schemes offering the same level and type of security.
Keywords: identity-based encryption, dual-system encryption, asymmetric pairing.

1 Introduction

Constructions of identity based encryption schemes constitute one of the most challenging problems
of public-key cryptography. The notion of IBE was proposed in [16] and solved in [3, 7]. This lead
to a great deal of research on the topic. The solution in [3], though simple and elegant, had several
features which were not satisfactory from a theoretical point of view.

In this work, we will be interested in IBE schemes built from bilinear pairings. Till date, most
pairing based cryptographic schemes have been based on a bilinear map e : G × G → GT , where
G is a prime-order group of elliptic curve points over a finite field and GT is a subgroup of a finite
field. Such maps arise from Weil and Tate pairings and there is an extensive literature on efficient
implementation of such maps. Since the two components of the domain of e are same, such an e is

called a symmetric pairing. Another kind of pairings, where the order of G is composite has been
proposed [4]. Such pairings are called composite-order pairings and provide additional flexibility in
designing schemes. The trade-off, however, is that computing the pairing itself becomes significantly
slower and also the representation of the group elements becomes substantially longer.

Symmetric pairings (over prime order groups), are neither the most general nor the most efficient
of possible pairings over elliptic curves. A general bilinear map is of the form e : G1 × G2 → GT ,
where G1 is a prime-order group of points of an elliptic curve over a finite field F and G2 is a
group (of the same prime-order) of points of the same curve over an extension of F. Such maps are
called asymmetric pairings. Studies [19, 8, 5] have indicated that compared to symmetric pairings,
asymmetric pairings are much faster and more compact to implement.

An important work on pairing based IBE is [20] which builds upon earlier work in [1, 2] to provide
an efficient IBE scheme with several nice theoretical properties. Variants have been reported [6,
14] which result in IBE schemes which are efficient and have practical sized parameters. Though
important, a drawback of the scheme in [20] is that the size of the public parameters grows linearly
with the security parameter.

In a major innovation, Waters [21] introduced a new technique – called dual-system encryption
– for construction of IBE schemes and related primitives. The scheme presented in [21] has the
feature that the size of the public parameters is constant while retaining the other nice theoretical
properties of the previous scheme also due to Waters [20]. Dual-system encryption is by itself an
interesting notion and worthy of further investigation. The goal of a better understanding of dual-
system encryption would be to obtain IBE schemes with improved efficiency compared to the one
proposed in [21].

An immediate follow-up work [13] took the route of composite-order pairings. Such pairing
groups have ‘more structure’ which can possibly help in getting a clearer understanding of the
technique. (Waters remarks that his scheme [21] was first obtained for composite order groups.)
The approach taken by [13] is to look at a realization of the IBE scheme of [1] in the setting of
composite order groups so as to obtain adaptive-id security. They also gave a conversion of their
composite-order IBE scheme to an IBE scheme using prime-order asymmetric pairing. In a very
recent work [12], the framework of dual-system encryption has been thoroughly investigated and
an IBE scheme using prime-order pairing has been presented. We note that the conversion from
composite-order to prime-order pairings in [13] and considering prime order groups in [12] are
motivated by efficiency considerations.

Waters IBE scheme in [21] is based on symmetric pairings. The security of the scheme is based
on the hardness of the decision linear (DLin) and the decision bilinear Diffie-Hellman (DBDH)
assumptions. It is of interest to convert this to asymmetric pairings. For one thing, this will enable
faster and smaller implementations which will arise from the advantages of asymmetric pairings
over their symmetric variants. There is, however, another reason. Use of asymmetric pairings brings
forward the possibility of reducing the number of group elements in the ciphertext and keys. In
fact, Waters [21] himself mentions: “using the SXDH assumption we might hope to shave off three
group elements from both ciphertexts and private keys”. The rationale for this comment is that
for asymmetric pairings, the decision Diffie-Hellman (DDH) assumption holds for both G1 and
G2. This is the symmetric external Diffie-Hellman (SXDH) assumption. For symmetric pairings

2

the DDH assumption does not hold in G. Using the SXDH assumption will potentially lead to a
simpler scheme requiring a lesser number of group elements.

Following up on the above mentioned remark by Waters, we have systematically investigated
the various possibilities for using asymmetric pairings. To start the study, we performed a straight-
forward conversion to the setting of asymmetric pairings. The scheme in [21] is quite complex.
Several scalars are used in the public parameters, encryption and key generation. These have defi-
nite and inter-connected roles in the security proof. Our first task was to pin down the relationships
between these scalars and separate them out. This enabled us to work with one group of scalars
with minimal changes to other groups.

With a good understanding of the roles of the scalars, we are able to apply simplifications
in a stage-wise manner. The first simplification gives an IBE scheme (Scheme 1) which reduces
ciphertexts and keys by two elements each and whose security can be based on DDH1 (DDH
assumption in G1), DLin and the DBDH assumptions. We argue that the DDH2 assumption cannot
be directly used. So, the afore-mentioned suggestion by Waters cannot be fulfilled. On the other
hand, we show that using a natural and minimal extension of the DDH2 assumption, a significantly
more efficient scheme (Scheme 6) can be obtained.

Waters original scheme [21] used random tags in the ciphertext and the decryption key. Simpli-
fication of this scheme by both Lewko-Waters [13] and Lewko [12] yielded IBE schemes which did
not use such tags. In contrast, all our simplifications retain the tags used in the original descrip-
tion [21]. Even then, we are able to obtain significant simplifications and efficiency improvements.
This suggests that for the purpose of simplification as an IBE it is not important to do away
with the tags. Removing them has other positive consequences such as obtaining a constant size
ciphertext hierarchical IBE [13].

An interesting feature about Scheme 6 is the minimal use of randomisers. Apart from the tags,
exactly one randomiser each is used for encryption and key generation. Since at least one randomiser
each for encryption and key generation will be required for any secure IBE scheme, this feature
leads us to believe that there cannot be any further simplification of Waters scheme in [21] while
retaining the tags. To show that our simplification retains the flexibility of the original technique
by Waters, we present an analogue of the HIBE scheme along with a security proof in Section G.
This HIBE scheme inherits all the nice theoretical properties from [21], but, provides improved
efficiency. From this HIBE scheme we construct an adaptively secure BE scheme which is more
efficient than all the previously known BE schemes with adaptive security. The construction is
given in Section 4.2 and the security proof in Section H.

A comparison of the features of various IBE schemes based on the dual-system technique is
shown in Tables 1 and 2. The columns #PP , #MSK, #cpr, #key provide the number of group
elements in the public parameters, the master secret key, ciphertexts and decryption keys. The pub-
lic parameter and ciphertexts consist of elements of G1 while the master secret key and decryption
keys consist of elements of G2. Encryption efficiency counts the number of scalar multiplications in
G1 while decryption efficiency counts the number of pairings that are required. Key generation (a
less frequent activity) efficiency is given by the number of scalar multiplications in G2. Currently,
Scheme 6 is the most efficient among all the known dual-system IBE schemes.

3

scheme #PP #MSK #cpr #key enc eff dec eff key gen assump

Waters-09 [21] 13 5 9 8 14 9 12 DLin, DBDH

Lewko-11 [12] 24 30 6 6 24 6 6 DLin

Scheme 1 9 8 7 6 10 7 9 DDH1, DLin, DBDH
Table 1. Comparison of dual-system IBE schemes secure under standard assumptions. Waters-09 and Lewko-11 are
originally described using symmetric pairings; the figures are for direct conversion to asymmetric pairings. .

scheme #PP #MSK #cpr #key enc eff dec eff key gen assump

LW [13] 9 6 6 6 9 6 10 LW1, LW2, DBDH

Scheme 6 6 7 4 4 7 5 6 DDH1, DDH2v, DBDH
Table 2. Comparison of dual-system IBE schemes secure under non-standard but static assumptions. Note that
DDH1 is a weaker assumption than LW1 and DDH2v is a weaker assumption than LW2. .

2 Prerequisites

Definitions of IBE, HIBE and the corresponding security models is given in Section A. Here we
briefly describe asymmetric pairings and related assumptions. For more details on these the reader
is referred to [19, 8, 5].

2.1 Bilinear maps

Let G1, G2 and GT be cyclic groups of prime order p. G1 and G2 are written additively while
GT is written multiplicatively. A cryptographic bilinear map e : G1 × G2 → GT has the following
properties.

1. Bilinearity: For A1, B1 ∈ G1 and A2, B2 ∈ G2, e(A1 + B1, A2) = e(A1, A2)e(B1, A2) and
e(A1, A2 +B2) = e(A1, A2)e(A1, B2).

2. Non-degeneracy: For generators P1 of G1 and P2 of G2, e(P1, P2) 6= 1T , where 1T is the
identity element of GT .

3. Efficiency: The map e is efficiently computable.

A bilinear map is called symmetric or a Type-1 bilinear map if G1 = G2; otherwise it is
asymmetric. Asymmetric bilinear maps are further classified into Type-2 and Type-3 bilinear maps.
In the Type-2 setting, there is an efficiently computable isomorphism either from G1 to G2 or from
G2 to G1 whereas in the Type-3 setting no such isomorphisms are known. Previous works [19, 8,
5] have established that the Type-3 setting is the most efficient from an implementation point of
view.

We introduce some notation: Given generators P1 of G1 and P2 of G2 and elements R1 ∈ G1

and R2 ∈ G2, the notation R1 ∼ R2 indicates that R1 has the same discrete logarithm to base P1

as that of R2 to base P2. For a set X, let x ∈R X denote that x is a uniform random element of X.

In the following, we will assume the availability of an asymmetric bilinear map e : G1×G2 → GT

where G1 = 〈P1〉, G2 = 〈P2〉 and both G1 and G2 are groups of the same prime order p. Being of
prime order, any non-identity element of G1 is a generator of the group and the same holds for G2.

4

2.2 Hardness Assumption

We introduce a new hardness assumption for Type-3 pairings. Here we provide a discussion of this.
Section B describes the other standard hardness assumptions required in this work.

Let P1 and P2 be random generators of G1 and G2 respectively. The DDH problem in G1 is to
decide, given (P1, x1P1, x2P1, P2, Z1), whether Z1 = x1x2P1 or Z1 is a random element of G1. Here
x1, x2 ∈R Zp. Similarly one can define the DDH assumption in G2. In this case, an instance has the
form (P1, P2, x1P2, x2P2, Z2) and the task is to determine whether Z2 = x1x2P2 or whether Z2 is a
random element of G2. For convenience we will denote the DDH problem in G1 as DDH1 and that
in G2 as DDH2. The symmetric external Diffie-Hellman (SXDH) assumption is that both DDH1
and DDH2 problems are hard. Note that for symmetric pairing (i.e., for G1 = G2 = G = 〈P 〉),
DDH is easy to solve by comparing e(P,Z2) with e(x1P, x2P).

We will use DDH1 in our proofs. But DDH2 is not directly applicable to our proofs. An instance
of DDH2 has a single element P1 of G1. For our proofs, we will require some information about
x1P1 to be carried as part of the instance. If the instance is directly augmented by x1P1, then
the problem becomes easy, since one can compute the two pairings e(x1P1, x2P2) and compare
to e(P1, Z2). Suppose that instead of x1P1 we include the elements zP1 and zx1P1 where z is
chosen randomly from Zp. This pair of elements carries some information about x1P1, but, not
the element itself. An instance will now be (P1, zP1, zx1P1, P2, x1P2, x2P2, Z2). It, however, is easy
to check whether Z2 equals x1x2P2 by checking whether e(zx1P1, x2P2) equals e(zP1, Z2). This
suggests that the information about zP1 itself needs to be blinded by another randomiser. So,
instead of having zP1 directly, the elements dP1, dzP1 and dP2 are included where d is a random
element of Zp. The information about x1P1 is carried by the elements dP1, dzP1, zx1P1 and dP2.
Augmenting an instance of DDH2 with these elements embeds information about x1P1 but, does
not seem to provide any way to use this information to determine whether Z2 is real or random.
The entire thing can now be formulated as an assumption in the following manner.

Assumption DDH2v. Let P1,P2 be random generators of G1,G2 respectively and let x1, x2, d, z ∈R
Zp. The problem is to decide, given (P1, dP1, dzP1, zx1P1, P2, dP2, x1P2, x2P2, Z2), whether Z2 =
x1x2P2 or Z2 is a random element of G2.

This corresponds to a two-level blinding of x1P1. We have seen that providing x1P1 directly or
using a single-level blinding makes the problem easy. So, a two-level blinding is the minimum that
one has to use to get to an assumption about hardness.

The assumption DDH2v (the “v” stands for variant) is no harder than DDH2. This is because
an instance of DDH2v contains an embedded instance of DDH2 and an algorithm to solve DDH2
can be invoked on this embedded instance to solve the instance of DDH2v. On the other hand,
there is no clear way of using an algorithm to solve DDH2v to solve DDH2. Intuitively, this is due
to the fact that an instance of DDH2v contains some information about x1P1 whereas an instance
of DDH2 does not contain any such information.

In our reduction, we will use the assumption DDH2v. Since assumption DDH2v does not appear
earlier in the literature, it is a non-standard assumption. Having said this, we would also like to
remark that DDH2v arises naturally as a minimal assumption when one tries to augment an instance
of DDH2 with some information about x1P1 while maintaining the hardness of the problem. A proof

5

of security of this assumption in the generic group model is provided in Section B.1. We feel that
assumption DDH2v will have applications elsewhere for schemes based on asymmetric pairings.

3 Framework for Conversion

Our goal is to transform Waters-2009 IBE scheme to the asymmetric setting so that we can reduce
the number of components both in the ciphertext and the key. To that end, we first perform a
straightforward conversion of Waters IBE from the setting of symmetric pairing to the setting of
asymmetric pairing. (See [21] for the original description of Waters 2009 scheme.)

Let e : G1 ×G2 → GT be a Type 3 bilinear map and let P1 and P2 be generators of G1 and G2

respectively. After the conversion, either the ciphertext or the key will consist of elements of G1; the
other will consist of elements from G2. Elements of G1 will have shorter representation compared
to those of G2. For encryption, we want the ciphertext to be short and hence we choose its elements
to be from G1. The public parameters will consist of elements of G1 whereas the master secret key
will consist of elements of G2. We note that if the final goal were to construct a signature scheme,
then one would perform a conversion where the master secret key consists of elements of G1.

A straightforward conversion will have the same structure as the one described in [21]. We use
the convention in this and later schemes that the subscript 1 will denote elements of G1 while the
subscript 2 will denote elements of G2. Further, messages are elements of GT and identities are
elements of Zp.

To generate PP , first choose α, b, a1, a2 randomly from Zp and consider the following. Let v, v′

and v′′ be random elements of Zp and define V2 = vP2, V
′
2 = v′P2 and V ′′

2 = v′′P2. Let τ = v+ a1v
′

and τ ′ = v + a2v
′′. Set T1 = τP1 and T ′

1 = τ ′P1. The PP will have elements Q1, U1,W1 ∈ G1 and
correspondingly the master secret key will have elements Q2, U2,W2 ∈ G2 with Q2 ∼ Q1, U2 ∼ U1

and W2 ∼W1. The structure of the PP and theMSK are as follows.

PP : (P1, bP1, a1P1, a2P1, ba1P1, ba2P1, T1, T
′
1, bT1, bT

′
1, Q1,W1, U1).

MSK: (P2, αP2, αa1P2, V2, V
′
2 , V

′′
2 , Q2,W2, U2).

Encrypt(M, id,PP): Randomisers s1, s2, t, ctag are chosen from Zp and define s = s1 + s2. The
ciphertext is (C0, C1, . . . , C7, E1, E2, ctag) where the various elements are defined as follows.

C0 =M · e(P1, P2)
ba1αs2

C1 = bsP1, C2 = ba1s1P1, C3 = a1s1P1, C4 = ba2s2P1,
C5 = a2s2P1, C6 = s1T1 + s2T

′
1, C7 = s1bT1 + s2bT

′
1 − tW1

E1 = t(idQ1 + ctagW1 + U1), E2 = tP1

KeyGen(id,MSK,PP): Randomisers r1, r2, z1, z2, ktag are chosen from Zp and define r = r1+ r2.
The key SKid is (K1, . . . ,K7, ktag) where the various elements are defined as follows.

K1 = αa1P2 + rV2, K2 = −αP2 + rV ′
2 + z1P2, K3 = −bz1P2, K4 = rV ′′

2 + z2P2,
K5 = −bz2P2, K6 = r2bP2, K7 = r1P2

D = r1(idQ2 + ktagW2 + U2).

6

The decryption algorithm requires 9 pairings and succeeds only if ctag in the ciphertext is not equal
to ktag of the decryption key, an event which occurs with overwhelming probability. See [21] for
the details.

Waters defines algorithms to generate semi-functional ciphertexts and keys. These cannot be
computed without knowledge of the secret components and are only used in the security reduction.
They are defined such that one should be able to decrypt a semi-functional ciphertext with a
normal key and a normal ciphertext with a semi-functional key; but decryption of a semi-functional
ciphertext with a semi-functional key should fail.

Semi-functional Ciphertext: Let C ′
0, . . . , C

′
7, E

′
1, E

′
2, ctag be ciphertext elements normally generated

by the Encrypt algorithm for messageM and identity id. Choose µ ∈ Zp at random. Let V ′
1 = v′P1

and V ′′
1 = v′′P1 so that V ′

1 ∼ V
′
2 and V ′′

1 ∼ V
′′
2 . The semi-functional ciphertext generation algorithm

will modify the normal ciphertext as: C0 = C ′
0, C1 = C ′

1, C2 = C ′
2, C3 = C ′

3, E1 = E′
1, E2 = E′

2

and

C4 = C ′
4 + ba2µP1, C5 = C ′

5 + a2µP1, C6 = C ′
6 − a2µV

′′
1 , C7 = C ′

7 − ba2µV
′′
1 .

Semi-functional Key: Let K ′
1, . . . ,K

′
7,D

′, ktag be secret key components normally generated by the
KeyGen algorithm for identity id. Choose at random γ ∈ Zp. The semi-functional key generation
algorithm will modify the normal key as: K3 = K ′

3, K5 = K ′
5, K6 = K ′

6, K7 = K ′
7, D = D′ and

K1 = K ′
1 − a1a2γP2, K2 = K ′

2 + a2γP2, K4 = K ′
4 + a1γP2.

It is easy to see that one can decrypt a semi-functional ciphertext with a normal key and a
normal ciphertext with a semi-functional key. However, decryption of a semi-functional ciphertext
with a semi-functional key will fail because the masking factor e(P1, P2)

ba1αs2 will be blinded by
the factor e(P1, P2)

ba1a2µγ .

Security proof. The security argument for the scheme proceeds through q + 3 games where q is
the number of key extraction queries made by the adversary. These games are

Gamereal,Game0, . . . ,Gameq,Gamefinal.

The transition between these games can be seen as three different reductions.

First reduction: The transition from Gamereal to Game0 is made by replacing the challenge
ciphertext by a semi-functional ciphertext. It is argued that detecting this change should be
hard.

Second reduction: There is a sequence of q changes from Gamek−1 to Gamek (for k = 1, . . . , q).
The k-th change is as follows. For the queries numbered 1 to k − 1, the adversary is given a
semi-functional key; for queries numbered k + 1 to q, the adversary is given a normal key. For
the k-th query, the adversary is given a response such that deciding whether the response is
normal or semi-functional is hard. The challenge ciphertext is semi-functional as in the first
reduction.

7

Third reduction: This tackles the transition from Gameq to Gamefinal. At this point, all re-
sponses to key queries are semi-functional and so is the challenge ciphertext. In the last tran-
sition, the challenge ciphertext is changed such that deciding whether it is the encryption of a
message or whether it is statistically independent of the PP and the responses is hard.

The first and second reductions are based on the hardness of the DLin problem whereas the third
reduction is based on the hardness of the DBDH problem. In the proof, the second reduction is
the most complex step. The subtle point is that the simulator should not be able to generate
a semi-functional ciphertext for the k-th identity. This is ensured by using algebraic techniques
from [1] to create ktag using a pair-wise independent function so that the simulator is able to
create a semi-functional ciphertext for idk only with ctag = ktag, in which case decryption fails
unconditionally.

3.1 An Analysis

Our conversion to asymmetric pairing and subsequent simplifications are based on an analysis of
the various scalars used in the scheme and their respective roles in the proof. Based on the scheme
itself and a study of the three reductions used by Waters, we make the following observations.

1. PP uses the scalars a1, a2 and b, whileMSK uses the scalars α and a1.
2. Key generation uses scalar randomisers r1, r2 and z1, z2. The scalar r is set to r1 + r2. We will

call this the split of r.
3. Ciphertext generation uses the scalar randomisers s1, s2 and t. The scalar s is set to s1 + s2.

We will call this the split of s.
4. The first two reductions in Waters proof are based on the DLin assumption. The first reduction

uses the split of s whereas the second reduction uses the split of r.

For conversion to asymmetric pairing, the following points are to be noted. These have been inferred
from a study of the security proof in [21].

1. The scalar α needs to be retained.
2. There are three basic possibilities for simplifications: remove the split of s; remove the split of
r; remove z1, z2.

3. Getting rid of a1 and a2 and using a single a will eliminate the requirement of the split of s.
This also means that the separate z1 and z2 are not required and instead a single z can be used.

4. Removing the split of r does not have a direct influence on the other scalars.
5. Removing the split of r and also z1, z2 means that the scalar b is no longer required.
6. In all but one of our schemes, the scalar t is kept either as part of the ciphertext or as part of

the key. In the final scheme, we show that the scalar t can also be removed. For this scheme,
there is a single randomiser s for the ciphertext and a single randomiser r for the key. Note
that further reduction in randomness is not possible. Key generation must have at least one
randomiser, as otherwise the algorithm becomes deterministic; similarly, encryption must also
have at least one randomiser, as otherwise the ciphertext becomes unique.

7. If the split of s and a1,a2 are retained, then the first reduction has to be based on DLin. If it is
removed, then we can base the first reduction on DDH1.

8

8. If the split of r is retained, then the second reduction has to be based on DLin. If it is removed,
we can no longer base the second reduction on DLin. However, it can neither be based on DDH2
for the following reason. An instance of DDH2 will provide P1 and some elements of G2. Apart
from P1 no other element of G1 is provided. The PP consists of elements of G1 which has to be
related to the instance in some way. Just having P1 does not provide any way to construct the
PP in the second reduction. So, removing the split of r implies that the second reduction can
be based on neither DLin nor DDH2. The assumption DDH2v introduced in Section 2 provides
the necessary mechanism for carrying the proof through.

9. The tags are chosen randomly and they play a crucial role in the security argument. We do not
consider removing tags. If the tags are removed, then it will be necessary to introduce copies
of the identity-hash (as done in [13]) to obtain the functionality of tags in the semi-functional
components. This leads to an increase in the number of elements in the ciphertext and key.

Based on the above points, we explore the different natural ways in which Waters 2009 IBE scheme
can be converted to asymmetric pairing. These are discussed below.

Scheme 1: Remove the split of s. This eliminates the requirement of having separate a1, a2 and
z1, z2. Reductions of ciphertext and key are by two elements each. Removing the split of s allows
the first reduction to be based on DDH1. Since the split of r is retained, the second reduction
is still based on DLin.

Scheme 2. Retain the split of s; this means that separate a1 and a2 are required. Remove the
split of r and also remove z1 and z2; this means that b can be removed. Leads to reductions of
ciphertext and key by 3 elements each. The first reduction of the proof can be based on DLin,
but, the second reduction cannot be based on either DLin or DDH2.

Scheme 3: Remove the split of s; retain the split of r but, remove z. Reductions of ciphertext
and key are by 3 elements each. In the proof, the first reduction can be based on DLin. The
second reduction cannot be based on DDH2. Neither can it be based on DLin. This requires a
more involved reasoning which we provide in Section F.

Scheme 4: Remove the splits of both r and s, but, retain z. Ciphertext and key are reduced
by 3 elements each. In the proof, the first reduction can be based on DDH1, but, the second
reduction cannot be based on either DLin or DDH2.

Scheme 5: Remove the splits of both r and s and also remove z. Ciphertext and keys are reduced
by 4 elements each. As in the previous case, the first reduction of the proof can be based on
DDH1, but, the second reduction cannot be based on either DLin or DDH2.

Scheme 6: In Schemes 1 to 5, the randomiser t is present in the ciphertext. In Scheme 6, the
splits of both r and s are removed; z is removed and the role of t is played by s. This leads
to a scheme where there is exactly one randomiser for encryption and exactly one randomiser
for key generation. Compared to Waters’ IBE [21], reduction of the ciphertext is by 5 elements
and the reduction of the key is by 4 elements. The first reduction of the proof can be based on
DDH1, while the second reduction is based on assumption DDH2v.

In Table 3, we provide the use of scalars in the various schemes. This illustrates the manner in
which the simplification has been obtained.

9

scheme PP MSK key gen enc

Waters-09 [21] α, a1, a2, b α, a1 r1, r2, (r = r1 + r2), z1, z2 s1, s2, (s = s1 + s2), t

Scheme 1 α, a, b α, b r1, r2, (r = r1 + r2), z s, t

Scheme 2 α, a1, a2 α r s1, s2, (s = s1 + s2), t

Scheme 3 α, a, b α, b r1, r2, (r = r1 + r2) s, t

Scheme 4 α, a, b α, b r, z s, t

Scheme 5 α, a α r s, t

Scheme 6 α, a α r s

Table 3. Usage of scalars in various schemes. Note that all the schemes use ktag for key generation and ctag for
encryption.

4 Constructions

In this section, we provide the description of Scheme 6. The security proof for this scheme is provided
in Appendix E. In Appendix D, we provide the description and security proof for Scheme 1. For
Schemes 2 to 5, only the descriptions are provided in Appendix F. These schemes primarily serve
the purpose of showing the stepping stones in moving from Scheme 1 to Scheme 6.

4.1 Scheme 6

Descriptions of PP ,MSK, ciphertext generation, key generation and decryption are provided.

Let a, v, v′ be random elements of Zp. Set V2 = vP2, V
′
2 = v′P2 and τ = v + av′ so that

τP2 = V2 + aV ′
2 .

PP : (P1, aP1, τP1, Q1,W1, U1, e(P1, P2)
α).

MSK: (P2, αP2, V2, V
′
2 , Q2,W2, U2).

Encrypt(M, id,PP): Choose random s, ctag from Zp; C is (C0, C1, C2, C3, E, ctag) where the ele-
ments are defined as follows.

C0 =M · e(P1, P2)
αs,

C1 = sP1, C2 = asP1, C3 = −τsP1 + sW1, E = s(idQ1 + ctagW1 + U1).

KeyGen(id,MSK,PP): Choose random r, ktag from Zp; SKid is (K1,K2,K3,D, ktag) where the
elements are defined as follows.

K1 = αP2 + rV2, K2 = rV ′
2 , K3 = rP2, D = r(idQ2 + ktagW2 + U2).

Decrypt (C, id,SKid,PP): As before, decryption succeeds only when ctag 6= ktag. Decryption is
done in two steps. First compute

A1 =

(

e(E,K3)

e(C1,D)

)1/(ctag−ktag)

= e(W1, P2)
rs

and then A2 = e(C1,K1)e(C2,K2)e(C3,K3) = e(P1, P2)
αse(W1, P2)

rs. Unmask the message as
M = (C0 · A1)/A2.

10

Semi-functional ciphertext: Let (C ′
0, C

′
1, C

′
2, C

′
3, E

′, ctag) be a normal ciphertext. Choose a random
µ from Zp. The semi-functional ciphertext is (C0, C1, C2, C3, E, ctag) where C0 = C ′

0, C1 = C ′
1,

C2 = C ′
2 + µP1, C3 = C ′

3 − µV
′
1 and E = E′.

Semi-functional key: Let (K ′
1,K

′
2,K

′
3,D, ktag) be a normal key. Choose a random γ from Zp. The

semi-functional key is (K1,K2,K3,D, ktag) where K1 = K ′
1− aγP2, K2 = K ′

2 + γP2, K3 = K ′
3 and

D = D′.

The complete security proof for this scheme is given in Section E.

Extension to HIBE: Waters extends the IBE scheme in [21] in a natural way to a HIBE scheme.
We show that our simplification of Waters scheme retains the original flexibility. In Section G, we
describe a HIBE which extends Scheme 6. This HIBE scheme is secure under the DDH1, DDH2v
and the DBDH assumptions and provides lesser and smaller parameters and better efficiencies
of key generation, delegation, encryption and decryption compared to the HIBE in [21]. The full
security proof for the HIBE is also given in Section G.2.

Conversion to Signature Scheme: There is a “dual” of Scheme 6 where the ciphertext elements
are in G2 and decryption keys consist of elements of G1. Using Naor’s observation, this dual of
Scheme 6 can be converted to a secure signature scheme. The signatures will be composed of
elements of G1 and will be smaller than the signatures obtained by the conversion of Waters’
2009 scheme to a signature scheme. In a similar manner, one can convert the dual of the HIBE in
Section G to obtain a HIBS scheme where signatures consist elements of G1.

4.2 Broadcast Encryption

The full version of Waters paper described a broadcast encryption (BE) scheme based on the dual-
system IBE in [21]. In this section, we describe a BE scheme based on Scheme 6. The security proof
is given in Section H and is based on the hardness of the DDH1, DDH2v and the DBDH problems.
The new BE scheme provides adaptive security and is more efficient than previously known BE
schemes providing adaptive security [10, 21].

Setup(κ, n): Based on the security parameter κ a group description along with a Type-3 pairing e :
G1×G2 → GT is generated. Let n be the total number of users. Generators P1 ∈R G1 and P2 ∈R G2

are chosen. Also choose random elements Q1,1, . . . Q1,n,W1 ∈ G1 and Q2,1, . . . , Q2,n,W2 ∈ G2 such
that Q2,i ∼ Q1,i for 1 ≤ i ≤ n, W2 ∼ W1. Let α, a, v, v

′ be random elements of Zp. Set V2 = vP2,
V ′
2 = v′P2 and τ = v + av′ so that τP2 = V2 + aV ′

2 .

PK : (P1, aP1, τP1, Q1,1, . . . , Q1,n,W1, e(P1, P2)
α).

MSK: (P2, αP2, V2, V
′
2 , Q2,1, . . . , Q2,n,W2).

Encrypt(PK, S ⊆ {1, . . . , n},M): Choose random s from Zp; C for the set S is (C0, C1, C2, C3, E)
where the elements are defined as follows.

C0 =M · e(P1, P2)
αs,

C1 = sP1, C2 = asP1, C3 = −τsP1 + sW1, E = s(
∑

i∈S Q1,i).

11

KeyGen(SK, j ∈ {1, . . . , n}): Choose random r from Zp; SKj is (K1,K2,K3,D,∀i 6=jDi) where the
elements are defined as follows.

K1 = αP2 + rV2, K2 = rV ′
2 , K3 = rP2

D = r(Q2,j +W2), Di = rQ2,i for i 6= j

Decrypt (C, S,SKj): Decryption works only if j ∈ S. It is done in two steps. First compute

A1 =





e(C1,D +
∑

i∈S

i 6=j
Di)

e(E,K3)



 = e(P1,W2)
rs

and then A2 = e(C1,K1)e(C2,K2)e(C3,K3) = e(P1, P2)
αse(W1, P2)

rs. Unmask the message as
M = (C0 · A1)/A2.

The semi-functional ciphertexts and keys for the BE are defined as follows.

Semi-functional ciphertext: Let C ′
0, C

′
1, C

′
2, C

′
3, E be ciphertext elements normally generated by the

Encrypt algorithm for message M and subset S ⊆ {1, . . . , n} of users. Let V ′
1 be an element of G1

such that V ′
1 ∼ V

′
2 . Choose µ ∈ Zp at random. The semi-functional ciphertext generation algorithm

will modify the normal ciphertext as: C0 = C ′
0, C1 = C ′

1, E = E′ and

C2 = C ′
2 + µP1, C3 = C ′

3 − µV
′
1 .

Semi-functional key: Let K ′
1,K

′
2,K

′
3,D

′,D′
i for all i 6= j be secret key components normally gen-

erated by the KeyGen algorithm for user j. The semi-functional key generation algorithm will
choose γ ∈ Zp at random and modify the normal key as K3 = K ′

3, D = D′, Di = D′
i for all i 6= j

and
K1 = K ′

1 − aγP2, K2 = K ′
2 + γP2.

5 Conclusion

We have converted Waters dual-system IBE scheme from the setting of symmetric pairings to that
of asymmetric pairings. This has been done in a systematic manner going through several stages of
simplifications. We have described in details two IBE schemes (Scheme 1 and Scheme 6). Security
of Scheme 1 is based on standard assumptions and reduces the sizes of ciphertexts and keys by 2
elements each from the original scheme of Waters. Scheme 6 is quite simple and minimal in the
sense that both encryption and key generation use one randomiser each. The security of Scheme 6
is based on two standard assumptions and a natural and minimal extension of the DDH assumption
for G2.

References

1. Dan Boneh and Xavier Boyen. Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles.
In Christian Cachin and Jan Camenisch, editors, EUROCRYPT, volume 3027 of Lecture Notes in Computer
Science, pages 223–238. Springer, 2004.

12

2. Dan Boneh and Xavier Boyen. Secure Identity Based Encryption Without Random Oracles. In Matthew K.
Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in Computer Science, pages 443–459. Springer, 2004.

3. Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from the Weil Pairing. SIAM J. Comput.,
32(3):586–615, 2003. Earlier version appeared in the proceedings of CRYPTO 2001.

4. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In Joe Kilian, editor,
TCC, volume 3378 of Lecture Notes in Computer Science, pages 325–341. Springer, 2005.

5. Sanjit Chatterjee and Alfred Menezes. On cryptographic protocols employing asymmetric pairings – the role of
ψ revisited. Discrete Applied Mathematics, 159(13):1311–1322, 2011.

6. Sanjit Chatterjee and Palash Sarkar. Trading Time for Space: Towards an Efficient IBE Scheme with Short(er)
Public Parameters in the Standard Model. In Dong Ho Won and Seungjoo Kim, editors, ICISC, volume 3935 of
Lecture Notes in Computer Science, pages 424–440. Springer, 2005.

7. Clifford Cocks. An Identity Based Encryption Scheme Based on Quadratic Residues. In Bahram Honary, editor,
IMA Int. Conf., volume 2260 of Lecture Notes in Computer Science, pages 360–363. Springer, 2001.

8. Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers. Discrete Applied
Mathematics, 156(16):3113–3121, 2008.

9. Craig Gentry and Alice Silverberg. Hierarchical ID-Based Cryptography. In Yuliang Zheng, editor, ASIACRYPT,
volume 2501 of Lecture Notes in Computer Science, pages 548–566. Springer, 2002.

10. Craig Gentry and Brent Waters. Adaptive security in broadcast encryption systems (with short ciphertexts).
In Antoine Joux, editor, EUROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages 171–188.
Springer, 2009.

11. Jeremy Horwitz and Ben Lynn. Toward Hierarchical Identity-Based Encryption. In Lars R. Knudsen, editor,
EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages 466–481. Springer, 2002.

12. Allison Lewko. Tools for simulating features of composite order bilinear groups in the prime order setting.
Cryptology ePrint Archive, Report 2011/490, 2011. http://eprint.iacr.org/.

13. Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully secure HIBE with
short ciphertexts. In Daniele Micciancio, editor, TCC, volume 5978 of Lecture Notes in Computer Science, pages
455–479. Springer, 2010.

14. David Naccache. Secure and practical identity-based encryption. IET Information Security, 1(2):59–64, 2007.
15. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM, 27:701–717,

October 1980.
16. Adi Shamir. Identity-Based Cryptosystems and Signature Schemes. In G. R. Blakley and David Chaum, editors,

CRYPTO, volume 196 of Lecture Notes in Computer Science, pages 47–53. Springer, 1984.
17. Elaine Shi and Brent Waters. Delegating capabilities in predicate encryption systems. In Luca Aceto, Ivan

Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors,
ICALP (2), volume 5126 of Lecture Notes in Computer Science, pages 560–578. Springer, 2008.

18. Victor Shoup. Lower bounds for discrete logarithms and related problems. In EUROCRYPT, pages 256–266,
1997.

19. Nigel P. Smart and Frederik Vercauteren. On computable isomorphisms in efficient asymmetric pairing-based
systems. Discrete Applied Mathematics, 155(4):538–547, 2007.

20. Brent Waters. Efficient Identity-Based Encryption Without Random Oracles. In Ronald Cramer, editor, EU-
ROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 114–127. Springer, 2005.

21. Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In Shai
Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages 619–636. Springer, 2009.

A Definitions and Security Models

We provide definitions and security models for identity-based encryption (IBE), hierarchical IBE
(HIBE) and broadcast encryption (BE).

A.1 Identity-Based Encryption

An (IBE) scheme consists of four probabilistic algorithms – Setup, KeyGen, Encrypt and
Decrypt – all of which run in time which is upper bounded by a polynomial in a security parameter
κ.

13

1. Setup outputs the public parameters PP and the master secret keyMSK. PP is made public
andMSK is kept secret.

2. KeyGen takes as input an identity id andMSK and returns a secret key SKid corresponding
to id.

3. Encrypt takes as input a message M , an identity id, the public parameters PP and produces
as output a ciphertext C.

4. Decrypt takes as input a ciphertext C, an identity id, the corresponding secret key SKid, the
public parameters PP and returns either the corresponding message M or returns ⊥ indicating
failure.

Security of an IBE scheme is modeled using a game between an adversary A and a challenger.
There are several stages of the game which are described as follows.

Setup: The challenger takes as input a security parameter κ and runs the Setup algorithm of the
IBE and provides the public parameters to A.

Phase 1: A makes a number of key extraction queries adaptively. It provides an id and the
challenger computes the secret key corresponding to id and returns the key to A.

Challenge: A provides a challenge identity id∗ and two equal length messages M0 and M1 to the
challenger with the restriction that id∗ should not have been queried in Phase 1. The challenger
then chooses a bit β uniformly at random from {0, 1} and returns an encryption of Mβ to A.

Phase 2: A issues more key extraction queries like in Phase 1 but it is not allowed to request a
key for id∗.

Guess: A outputs a bit β′.

A wins the above game if β = β′. The advantage of A in breaking the security of the IBE
scheme is defined in terms of the probability of the event that β = β′ in the above game as shown
below.

AdvAIBE =

∣

∣

∣

∣

Pr[β = β′]−
1

2

∣

∣

∣

∣

The IBE scheme is said to be secure if a probabilistic adversary running in time bounded by a
polynomial in the security parameter κ has a negligible (in κ) advantage of winning the above
game.

A.2 Hierarchical Identity-Based Encryption

A HIBE scheme is defined by five probabilistic algorithms – Setup, Encrypt, KeyGen, Delegate
andDecrypt . The runtime of all these algorithms is upper bounded by a polynomial in the security
parameter κ.

1. Setup outputs the public parameters PP and the master secretMSK. PP is made public and
MSK is kept secret.

2. KeyGen takes as input an identity vector
−→
id and master secretMSK and outputs the secret

key SK−→
id

corresponding to
−→
id .

14

3. Encrypt inputs a message M , an identity
−→
id , public parameters PP and returns a ciphertext

C.
4. Delegate inputs a depth ℓ identity vector

−→
id = (id1, . . . , idℓ) along with a secret key SK−→

id
and

an identity idℓ+1. It outputs a secret key for the depth d+ 1 identity vector (id1, . . . , idℓ+1).

5. Decrypt takes as input a ciphertext C, an identity vector
−→
id , secret key SK−→

id
, PP and returns

either the corresponding message M or ⊥ indicating failure.

The security model we follow is the one proposed by Shi and Waters [17]. The earlier security
definitions for HIBE [11, 9] made no distinction as to how a key is generated (by a fresh call to
the KeyGen algorithm or by delegation). These definitions were sufficient for most of the earlier
schemes since the two methods produced identically distributed keys. However, for the HIBE that
we describe this is not the case. We have to rely on the Shi-Waters model in order to be able to
keep track of the delegation paths of keys. Note that Shi-Waters model is weaker than the standard
security model for HIBE.

As usual, the security for a HIBE scheme is modeled as a game between an adversary A and a
simulator. Following are the different phases of the security game.

Setup: The challenger runs the Setup algorithm of the HIBE and gives the public parameters to
A. It also initializes a set S = ∅ which denotes the set of secret keys it has created but not revealed.

Phase 1: A makes a number of queries of the following types adaptively.

– Create The adversary A provides an identity
−→
id for which the challenger creates a key SK−→

id
but does not give it to A. The challenger adds the secret key to S.

– Delegate A specifies a secret key SK−→
id

in S and provides an identity id to the challenger. The
challenger runs the delegation algorithm of the HIBE with inputs PP ,SK−→

id
, id and adds the

resulting key for (
−→
id , id) to S.

– Reveal A specifies an element SK of S. The challenger removes SK from S and returns it to
A.

Challenge: A provides a challenge identity
−→
id ∗ and two equal length messages M0 and M1 to the

challenger with the restriction that
−→
id∗ should not have been queried in Phase 1. The challenger

then chooses a bit β uniformly at random from {0, 1} and returns an encryption of Mβ for
−→
id∗ to

A.

Phase 2: A issues more key extraction queries as in Phase 1 with the restriction that any revealed

identity
−→
id is not a prefix of

−→
id ∗.

Guess: A outputs a bit β′.

A wins the above game if β = β′. The advantage of A in breaking the security of the IBE
scheme is defined in terms of the probability of the event that β = β′ in the above game as shown
below.

AdvAHIBE =

∣

∣

∣

∣

Pr[β = β′]−
1

2

∣

∣

∣

∣

.

The HIBE scheme is said to be secure if all probabilistic adversaries running in time bounded by a
polynomial have negligible advantage in winning the above game.

15

A.3 Broadcast Encryption

A broadcast encryption scheme is defined by four probabilistic algorithms whose runtimes are
bounded above by a polynomial in the security parameter κ. The first three are executed by the
broadcasting entity and the last one by a recipient of the broadcast message.

1. Setup takes as input the number of users n. It outputs a public/secret key pair (PK,SK).
2. KeyGen takes as input SK, a user index i ∈ {1, . . . , n} and returns a private key SKi for user
i.

3. Encrypt inputs a subset S ⊆ {1, . . . , n} of users to whom the message is to be broadcast, the
public key PK and the message M . It outputs a ciphertext C.

4. Decrypt takes as input a ciphertext C, a set S of users to whom C is encrypted and the user’s
secret key SKi. If i ∈ S then the corresponding message M is returned.

Adaptive CPA security of a broadcast encryption (BE) scheme is defined via the following game
between an adversary A and a challenger.

Setup: The challenger runs the Setup algorithm and gives the public key PK to A.

Private Key Queries: A adaptively issues private key queries for a number of users from
{1, . . . , n}.

Challenge: A specifies two messages M0,M1 and a challenge set S∗ such that, for every private
key query i, i /∈ S∗. The challenger chooses β ∈R {0, 1} and returns to A the encryption of Mβ for
the set S∗.

Guess: The adversary outputs its guess β′ for β.

The adversary wins the above game if β = β′. The advantage of A in breaking the security of
the BE scheme is defined in terms of the probability of the event that β = β′ in the above game as
shown below.

AdvABE =

∣

∣

∣

∣

Pr[β = β′]−
1

2

∣

∣

∣

∣

.

A BE scheme is said to be secure if for all probabilistic adversaries running in time bounded above
by a polynomial in the security parameter κ, the advantage of winning the above game is negligible.

B Hardness Assumptions

Decision Diffie-Hellman (DDH) assumption. Let P1 and P2 be random generators of G1 and
G2 respectively. The DDH problem inG1 (denoted DDH1) is to decide, given (P1, x1P1, x2P1, P2, Z1),
whether Z1 = x1x2P1 or Z1 is a random element of G1. Here x1, x2 ∈R Zp.

Let A be a probabilistic polynomial time (PPT) algorithm that outputs either 0 or 1. Define
its advantage in solving the DDH1 as follows.

AdvADDH1 = |Pr[A(P1, x1P1, x2P1, P2, x1x2P1) = 1]− Pr[A(P1, x1P1, x2P1, P2, Y1) = 1]|

where Y1 ∈R G1. The DDH1 assumption is that for every PPT algorithm A, AdvADDH is negligible
for a suitable choice of parameters used to generate the groups. Similarly one can define the DDH
assumption in G2 (DDH2).

16

Assumption DDH2v. Let P1,P2 be random generators of G1,G2 respectively and let x1, x2, d, z ∈R
Zp. The problem is to decide, given (P1, dP1, dzP1, zx1P1, P2, dP2, x1P2, x2P2, Z2), whether Z2 =
x1x2P2 or Z2 is a random element of G2.

Let A be a probabilistic polynomial time (PPT) algorithm that outputs a bit. Define its advan-
tage in solving breaking DDH2v as follows.

AdvADDH2v = |Pr[A(P1, dP1, dzP1, zx1P1, P2, dP2, x1P2, x2P2, x1x2P2) = 1]

− Pr[A(P1, dP1, dzP1, zx1P1, P2, dP2, x1P2, x2P2, Y2) = 1]|

where Y1 ∈R G2. The assumption is that AdvADDH2v is negligible in the parameters that define the
size of the groups. In Section B.1, we show the hardness of the DDH2v assumption in the generic
group model.

Decision Linear (DLin) assumption. Let P1, F1,H1 be random generators of G1 and P2, F2,H2

be random generators ofG2. Let x1, x2 ∈R Zp and Y2 ∈R G2. LetA be a PPT algorithm that outputs
either 0 or 1. Define its advantage in solving the DLin problem as follows.

AdvADLin =|Pr[A(P1, F1,H1, P2, F2,H2, x1P2, x2F2, (x1 + x2)H2) = 1]

− Pr[A(P1, F1,H1, P2, F2,H2, x1P2, x2F2, Y2) = 1]|

The DLin assumption is that for every PPT algorithm A, AdvADLin is negligible.

Decisional Bilinear Diffie-Hellman (DBDH) assumption. Let P1, P2 be random generators
of G1,G2 respectively and let x1, x2, x3 be random elements of Zp. Let YT be a random element of
GT . For a probabilistic polynomial time (PPT) algorithm A that outputs either 0 or 1, define its
advantage in solving the DBDH problem as follows.

AdvADBDH =|Pr[A(P1, x1P1, x2P1, x3P1, P2, x1P2, x2P2, x3P2, e(P1, P2)
x1x2x3) = 1]

− Pr[A(P1, x1P1, x2P1, x3P1, P2, x1P2, x2P2, x3P2, YT) = 1]|

The DBDH assumption is that for every PPT algorithm A, AdvADBDH is negligible. Informally, it
should be computationally hard to distinguish between e(P1, P2)

x1x2x3 and a random element of
GT .

B.1 Generic Security of DDH2v

Here we will provide a proof of the security of assumption DDH2v in the generic group model. The
generic group model is an idealised model introduced by [18] in which lower bounds on computa-
tional complexity of solving certain problems can be obtained without looking into the structure
of the actual groups that are used in a protocol. Let e : G1 ×G2 → GT be an asymmetric bilinear
group where no isomorphisms from G1 to G2 or G2 to G1 are efficiently computable. The elements
of groups G1, G2 and GT are encoded as uniform random strings so that the adversary can only
test for equality of group elements. Four oracles are provided to the adversary out of which three
simulate the group actions in G1, G2 and GT and the fourth one simulates the bilinear map e. The

17

group encodings are modeled as three injective maps σ1 : Zp → Σ1, σ2 : Zp → Σ2 and σT : Zp → ΣT

where E1,E2,ET ⊂ {0, 1}
∗. The following theorem provides an upper bound on the advantage of

an adversary that solves the DDH2v problem in a generic bilinear group.

Theorem 1. Let A be an algorithm that attempts to solve the DDH2v problem in the generic group

model making at most m queries to the oracles computing the group actions in G1, G2, GT and

the bilinear map e. If d, z, x1, x2, y ∈R Zp, b ∈R {0, 1} with yb = x1x2 and y1−b = y and σ1, σ2, σT are

random encodings, then given p, σ1(1), σ1(d), σ1(dz), σ1(zx1), σ2(1), σ2(d), σ2(x1), σ2(x2), σ2(y0), σ2(y1)
the advantage ε of A in solving the problem is bounded above by

ε ≤
3(m+ 10)2

2p
.

Proof. Let B denote an algorithm that simulates the generic bilinear group for A. B maintains
three lists

L1 = {(F1,i, σ1,i) : i = 0, 1, . . . , δ1 − 1},

L2 = {(F2,i, σ2,i) : i = 0, 1, . . . , δ2 − 1},

LT = {(FT,i, σT,i) : i = 0, 1, . . . , δT − 1}

such that at each step δ of the game the relation δ1 + δ2 + δT = δ + 10 holds. Here F⋆,⋆’s are
multivariate polynomials over 6 variables d, z, x1, x2, y0, y1 and σ⋆,⋆’s are strings from {0, 1}∗. At
the beginning of the game i.e., δ = 0, the lists are intialized by setting δ1 = 4, δ2 = 6 and
δT = 0. The polynomials 1, d, dz, zx1 are assigned to F1,0, F1,1, F1,2, F1,3 and 1, d, x1, x2, y0, y1 to
F2,0, F2,1, F2,2, F2,3, F2,4, F2,5 respectively. The encodings for these polynomials are strings uniformly
chosen from {0, 1}∗ without repetition. We assume that A queries the oracles on strings previously
obtained from B and B can easily obtain the index of a given string σj,i in the list Lj. The oracles
are simulated as follows.

Group actions in G1,G2 and GT : Consider the group G1. A submits two strings σ1,i and σ1,j
and a selection bit indicating addition or subtraction. B first computes F1,δ1 = F1,i ± F1,j . If there
exists an index k with 0 ≤ k < δ1 such that F1,δ1 = F1,k then B sets σ1,δ1 = σ1,k. Otherwise it sets
σ1,δ1 to a uniform random string from {0, 1}∗ \{σ1,0, . . . , σ1,δ1−1}. B then adds the pair (F1,δ1 , σ1,δ1)
to L1, returns σ1,δ1 to A and increments δ1 by one.

Group actions in G2 and GT are simulated similarly with the selection bit indicating multipli-
cation or division in case of GT .

Bilinear map: A submits two operands σ1,i, σ2,j . B fetches the corresponding polynomials F1,i, F2,j

and computes FT,δT = F1,i ·F2,j . If for some k with 0 ≤ k < δT , FT,δT = FT,k then set σT,δT = σT,k;
otherwise σT,δT is set to a random string chosen uniformly from {0, 1}∗ \{σT,0, . . . , σT,δT−1}. B then
adds the pair (FT,δT , σT,δ1) to L1, returns σT,δT to A and increments δT by one.

A makes at most m oracle queries, terminates and returns a bit b′ to the simulator. Let v =
(d, z, x1, x2.y0, y1) denote the vector consisting of variables over which the polynomials are defined.
Now the simulator chooses at random d∗, z∗, x1

∗, x2
∗, y∗ ∈ Zp and b ∈ {0, 1} and sets yb

∗ = x1
∗x2

∗,
y1−b

∗ = y∗. Let v
∗ = (d∗, z∗, x1

∗, x2
∗, y0

∗, y1
∗). B assigns v

∗ to the variables v. The simulation
provided by B is perfect unless this assignment causes any of the following to hold.

18

1. F1,i − F1,j = 0 for some i 6= j and F1,i 6= F1,j.
2. F2,i − F2,j = 0 for some i 6= j and F2,i 6= F2,j.
3. FT,i − FT,j = 0 for some i 6= j and FT,i 6= FT,j.

Let F denote the event that atleast one of the above holds, indicating failure. The following
result by Schwartz [15] will be used in arguing that the event failure occurs with low probability.
Let p be a prime number and F (Z1, . . . , Zk) be a non-zero polynomial in Zp[Z1, . . . , Zk] of degree
d. Then, if z1, . . . , zk are uniform elements of Zp , the probability that F (z1, . . . , zk) = 0 is at most
d/p.

The simulation is perfect when F does not occur and in such a case the bit b is information
theoretically hidden from the adversary. To see this, observe that all variables except yb and y1−b

are independent of the bit b. Since yb is x1x2 which is a polynomial of degree 2, the adversary will
win it somehow produces x1x2 using combinations of polynomials from L1 and L2. The only degree
two polynomials that can be constructed are d2, dx1, dx2, dz, zx1 or a sum of these. A could also
try to engineer a degree 3 polynomial in LT composed of x1x2. The only such polynomial is zx1x2
which can be constructed using σ1(zx1) and σ2(x2). However, to find out the bit b, A will need
σ1(z) which is not available in the instance. So Pr[b = b′|¬F] = 1/2.

We now only need to obtain a bound on the probability that F occurs. For fixed i and j,
F1,i−F1,j is a polynomial of degree at most 2 and hence is zero at a random v

∗ with probability at
most 2/p. Similary F2,i − F2,j vanishes at v∗ with probability at most 1/p. The list L3 consists of
polynomials of degree at most 3 which implies that the third case holds with probability at most
3/p. There are totally

(δ1
2

)

,
(δ2
2

)

,
(δT
2

)

pairs of polynomials from L1,L2, LT respectively. Also since
there are at most m queries we have δ1 + δ2 + δT = δ + 10 ≤ m+ 10. It now follows that

Pr[F] ≤

(

δ1
2

)

2

p
+

(

δ2
2

)

1

p
+

(

δT
2

)

3

p

≤
3(m+ 10)2

p
.

We have

Pr[b = b′] = Pr[b = b′|¬F] Pr[¬F] + Pr[b = b′|F] Pr[F]

≤ Pr[b = b′|¬F](1− Pr[F]) + Pr[F]

≤
1

2
+

1

2
Pr[F]

and

Pr[b = b′] ≥ Pr[b = b′|¬F](1− Pr[F]) =
1

2
−

1

2
Pr[F]

together resulting in the required bound on the advantage as follows.
∣

∣

∣

∣

Pr[b = b′]−
1

2

∣

∣

∣

∣

≤
Pr[F]

2
≤

3(m+ 10)2

2p
.

⊓⊔

19

C Lewko’s IBE Scheme Using Asymmetric Pairing

In a recent work [12], Lewko has systematically described a method for converting a dual-system
IBE scheme from the setting of composite order groups to that of prime order groups. For simplicity,
the description in [12] has been given in terms of symmetric pairing. It is fairly easy to convert it
to the setting of asymmetric pairing. In this section, we briefly describe this scheme.

For the convenience of presentation, some notation has been introduced in [12]. For −→v =
(v1, . . . , vn) ∈ Z

n
p and an elliptic curve point P , define

−→v P
∆
= (v1P, . . . , vnP).

Note that computing −→v P requires n scalar multiplications. This notation is extended as follows.

a−→v P
∆
= (av1P, . . . , avnP);

(−→v +−→w)P
∆
= ((v1 + w1)P, . . . , (vn + wn)P);

en(
−→v P1,

−→wP2)
∆
=

n
∏

i=1

e(viP1, wiP2) = e(P1, P2)
−→v ·−→w .

Here −→v · −→w denotes the dot product. The computation of en(·, ·) requires n pairings.

Let D = (
−→
d1 , . . . ,

−→
d6) be a basis for Z6

p and D
∗ = (

−→
d∗1, . . . ,

−→
d∗6) be another basis of Z6

p such that
−→
di ·
−→
d∗j ≡ 0 mod p for i 6= j; and

−→
di ·
−→
d∗i = ψ for all i, where ψ is a uniform random element of Z.

Such a pair of bases is called “orthonormal” in [12].

An asymmetric bilinear map e : G1×G2 → GT will be used. Elements P1 and P2 are respectively
generators of G1 and G2. To set up the scheme in [12], first one chooses a random pair of orthonormal
bases D and D

∗. Further, choose random scalars α, θ, σ from Zp. The first four vectors of D and
D
∗ are actually used in the scheme. The other two elements of the bases are used to define the

semi-functional spaces.

PP : e(P1, P2)
αθ

−→
d1·

−→
d∗
1 ,
−→
d1P1,

−→
d2P1,

−→
d3P1,

−→
d4P1.

MSK: θ
−→
d∗1P2, αθ

−→
d∗2P2, θ

−→
d∗2P2, σ

−→
d∗3P2, σ

−→
d∗4P2.

Note that the PP consists of 24 elements of G1 and the MSK consists of 30 elements of G2.
The public key generator may also keep the scalars α, θ, σ and the bases D and D

∗ as the secret.
This will lead to a faster key generation algorithm.

Key generation: The input is an identity id. Choose random elements r1 and r2 from Zp. The
secret key for the identity id is SKid and is defined to be the following 6-tuple of elements of G2.

SKid =
(

(α+ r1id)θ
−→
d∗1 − r1θ

−→
d∗2 + r2idσ

−→
d∗3 − r2σ

−→
d∗4

)

P2.

A key consists of 6 elements of G2. Generation of SKid from MSK requires 30 scalar multiplica-
tions in G2. But, generation from the scalars α, θ, σ and the bases D and D

∗ will require 6 scalar
multiplications in G2.

20

Encrypt: The input consists of an identity id and a message M ∈ GT . Choose random elements
s1 and s2 from Zp. The ciphertext is defined to be (C1, C2) where C1 and C2 are elements of G1

and are defined as follows.

C1 =M ×
(

e(P1, P2)
αθ

−→
d1·

−→
d∗
1

)s1
;

C2 =
(

s1
−→
d1 + s1id

−→
d2 + s2id

−→
d3 + s2id

−→
d4

)

P1.

A ciphertext consists of 6 elements of G1. Generation of a ciphertext from the public parameters

requires 24 scalar multiplications in G1, i.e., the four 6-tuples s1(
−→
d1P1), s1id(

−→
d2P1), s2id(

−→
d3)P1 and

s2id(
−→
d4P1) have to generated and added together. Generation of each of these 6-tuples will require

6 scalar multiplications in G1 for a total of 24 scalar multiplications.

Decrypt: Given PP , an identity id, a corresponding key SKid and a ciphertext (C1, C2), decryption
can be compactly described as follows: return C1/e6(C2,SKid). This requires 6 pairing operations.

Descriptions of the semi-functional keys and ciphertexts are given in [12] in terms of symmetric
pairing. These can also be easily converted to the setting of asymmetric pairings. The security of
the above scheme should also be based on DLin assumptions in G1 and G2.

Further simplications to the above scheme may be possible along the lines of the simplifications
we made to Waters’ 2009 scheme. Then the hardness assumption is unlikely to be DLin or SXDH;
possibly a combination of DDH1, DDH2v and DBDH may work. On the other hand, the amount
of reduction in parameters and improvement in efficiency is not clear. In particular, it is unlikely
that the resulting scheme would be better than Scheme 6.

D Scheme 1

In this section, we provide the description and the security argument for Scheme 1.

D.1 Description of Scheme 1

Choose generators P1 ∈R G1 and P2 ∈R G2; random elements Q1,W1, U1 ∈ G1 and Q2,W2, U2 ∈ G2

such that Q2 ∼ Q1, U2 ∼ U1 andW2 ∼W1. Let v, v
′ be chosen randomly from Zp and set V2 = vP2,

V ′
2 = v′P2. Pick α, a, b at random from Zp. Set τ = v + av′ so that τP2 = V2 + aV ′

2 .

PP : (P1, aP1, bP1, abP1, τP1, bτP1, Q1,W1, U1, e(P1, P2)
bα).

MSK: (P2, αP2, bP2, V2, V
′
2 , Q2, U2,W2).

Encrypt(M, id,PP): Choose random s, t, ctag from Zp. C is (C0, C1, . . . , C5, E1, E2, ctag) where
the elements are computed as follows.

C0 =M · e(P1, P2)
bαs,

C1 = bsP1, C2 = basP1, C3 = asP1, C4 = −τsP1, C5 = −τbsP1 + tW1,
E1 = t(idQ1 + ctagW1 + U1), E2 = tP1.

21

KeyGen(id,MSK,PP): Choose random r1, r2, z, ktag from Zp and let r = r1 + r2. SKid is
(K1, . . . ,K5,D, ktag) where the elements are computed as follows.

K1 = αP2 + rV2, K2 = rV ′
2 − zP2, K3 = bzP2, K4 = br2P2, K5 = r1P2,

D = r1(idQ2 + ktagW2 + U2).

Decrypt (C, id,SKid,PP): Decryption succeeds only when ctag 6= ktag, an event which occurs with
overwhelming probability. Decryption is done in several stages. Using the relations r = r1 + r2 and
V2 + aV ′

2 = τP2, compute

A1 = e(C1,K1)e(C2,K2)e(C3,K3)e(C4,K4)e(C5,K5)

= e(P1, P2)
bαse(P1, V2)

bsre(P1, V
′
2)

absre(P1, P2)
−basze(P1, P2)

basz

× e(P1, P2)
−τbsr2e(P1, P2)

−τbsr1e(W1, P2)
tr1

= e(P1, P2)
bαse(P1, V2 + aV ′

2 − τP2)
bsre(W1, P2)

tr1

= e(P1, P2)
bαse(P1,W2)

tr1

The last step follows from the fact that the discrete log of W1 to base P1 is same as that of W2 to
base P2. Then if ctag 6= ktag compute

A2 =

(

e(E1,K5)

e(E2,D)

)1/(ctag−ktag)

=

(

e(t(idQ1 + ctagW1 + U1), r1P2)

e(tP1, r1(idQ2 + ktagW2 + U2))

)1/(ctag−ktag)

=

(

e(W1, P2)
tr1ctag

e(P1,W2)tr1ktag

)1/(ctag−ktag)

= e(P1,W2)
tr1

Unmask C0 to get the message M as M = (C0 ·A2)/A1.

We now define semi-functional ciphertexts and keys. They are used only in the security reduction
and they cannot be computed without knowledge of the secret elements.

Semi-functional ciphertext: Let C ′
0, C

′
1, C

′
2, C

′
3, C

′
4, C

′
5, E

′
1, E

′
2, ctag be ciphertext elements normally

generated by the Encrypt algorithm for message M and identity id. Let V ′
1 be an element of G1

such that V ′
1 ∼ V

′
2 . Choose µ ∈ Zp at random. The semi-functional ciphertext generation algorithm

will modify the normal ciphertext as: C0 = C ′
0, C1 = C ′

1, E1 = E′
1, E2 = E′

2 and

C2 = C ′
2 + bµP1, C3 = C ′

3 + µP1, C4 = C ′
4 − µV

′
1 , C5 = C ′

5 − bµV
′
1 .

Semi-functional key: Let K ′
1,K

′
2,K

′
3,K

′
4,K

′
5,D

′, ktag be secret key components normally generated
by the KeyGen algorithm for identity id. Choose at random γ ∈ Zp. The semi-functional key
generation algorithm will modify the normal key as: K3 = K ′

3, K4 = K ′
4, K5 = K ′

5, D = D′ and

K1 = K ′
1 − aγP2, K2 = K ′

2 + γP2.

22

One can decrypt a semi-functional ciphertext with a normal key and a normal ciphertext with
a semi-functional key. This is easily seen by verifying that

e(bµP1,K2)e(µP1,K3)e(−µV
′
1 ,K4)e(−bµV

′
1 ,K5) = 1T

and e(C1,−aγP2)e(C2, γP2) = 1T where K2,K3,K4,K5 and C1, C2 are normal key and ciphertext
components respectively. However, decryption of a semi-functional ciphertext with a semi-functional
key will fail because the masking factor e(P1, P2)

bαs will be blinded by an additional factor of
e(P1, P2)

bµγ .

D.2 Security Proof

As is usual, the proof goes through a sequence of games. Let Gamereal denote the real security game.
Game0 is just like Gamereal except that the challenge ciphertext is a semi-functional encryption of
the chosen message. Let q be the number of key extraction queries made by the adversary during
the attack. Define Gamek for 1 ≤ k ≤ q such that the first k keys returned to the adversary are
semi-functional and the rest are normal. Let Gamefinal be defined similar to Gameq except that now
the challenge ciphertext is a semi-functional encryption of a random message. Let Xreal, Xk and
Xfinal denote the events that the adversary wins in Gamereal, Gamek and Gamefinal for 0 ≤ k ≤ q
respectively.

Lemma 1. If there exists an adversary A such that AdvAGamereal
−AdvAGame0 = ε, then we can build

an algorithm B having advantage ε in solving the DDH1 problem.

Proof. The algorithm B receives (P1, sP1, aP1, P2, Z1) as an instance of DDH1. We describe how it
will simulate each phase in the security game.

Setup: B chooses random elements α, b, yv, y
′
v, yq, yw, yu from Zp and sets the parameters as follows.

P1 = P1, sP1 = sP1, aP1 = aP1, Q1 = yqP1,W1 = ywP1, U1 = yuP1,

P2 = P2, V2 = yvP2, V
′
2 = y′vP2.

This implicitly sets τ = yv+ay
′
v. Using this, the element τP1 can be computed as yvP1+y

′
v(aP1). The

simulator computes the remaining parameters using b, α and gives the following public parameters
to A.

PP = {G, P1, P2, aP1, bP1, baP1, τP1, bτP1, Q1,W1, U1, e(P1, P2)
bα}

where G is the group description with groups G1 and G2 given by the generators P1 and P2. Note
that a and s (randomiser for challenge ciphertext) come from the assumption and are not known
to B.

Phase 1: A makes a number of key extract queries. B knows the master secret and using that it
returns a normal key generated using the KeyGen algorithm for every key extract query made by
A.

Challenge: B receives the target identity id∗ and two messages M0 and M1 from A. It chooses
β ∈ {0, 1} at random. To encrypt Mβ , B chooses t, ctag∗ at random from Zp and computes the
ciphertext elements as follows.

C0 =Mβ · e(sP1, P2)
bα

23

C1 = b(sP1), C2 = bZ1, C3 = Z1, C4 = −yv(sP1)− y
′
vZ1, C5 = −byv(sP1)− by

′
vZ1 + tW1

E1 = t(id∗Q1 + ctag∗W1 + U1), E2 = tP1

B returns C∗ = (C0, C1, C2, C3, C4, C5, E1, E2, ctag
∗) to A. Now either Z1 = asP1 or Z1 = (as+c)P1

for some c ∈R Zp. In the first case we have

C2 = basP1, C3 = asP1

C4 = −(yv + ay′v)sP1 = −τsP1

C5 = −b(yv + ay′v)sP1 + tW1 = −bτP1 + tW1

making C∗ a normal ciphertext. In the second case, we have

C2 = basP1 + bcP1, C3 = asP1 + cP1

C4 = −(yv + ay′v)sP1 − y
′
vcP1 = −τsP1 − cV

′
1

C5 = −b(yv + ay′v)sP1 − by
′
vcP1 + tW1 = −bτsP1 + tW1 − bcV

′
1

Then C∗ is a semi-functional encryption of Mβ with µ = c. Note that, to check whether C∗ is
semi-functional or not, B itself could try to decrypt it with a semi-functional key for id∗. However
since aP2 is not known to B, it cannot create such a key.

Phase 2: As in first phase, B returns a normal key for every query.

Guess: The adversary returns its guess β′ to B.

If C∗ is normal then B simulates Gamereal and if it is semi-functional, B simulates Game0.
Therefore if A is able to distinguish between Gamereal and Game0 i.e., if β = β′, then the simu-
lator can decide whether C∗ is normal or semi-functional and thus solve the DDH1 problem with
advantage

AdvBDDH1 = |Pr[Xreal]− Pr[X0]| = AdvAGamereal
− AdvAGame0 = ε

⊓⊔

Lemma 2. If there exists an adversary A such that AdvAGamek−1
−AdvAGamek

= ε, then we can build

an algorithm B having advantage ε in solving the DLin problem.

Proof. The algorithm B receives (P1, F1,H1, P2, F2,H2, x1P2, x2F2, Z2) as an instance of the DLin
problem.

Setup: B chooses random elements α, a, λ, ν, y′v , yq, yw, yu from Zp and sets the parameters as
follows.

P1 = P1, bP1 = F1, P2 = P2, bP2 = F2, V2 = −aH2, V
′
2 = H2 + y′vP2

Q1 = −λF1 + yqP1, U1 = −νF1 + yuP1,W1 = F1 + ywP1

This sets τ = ay′v which is known to the simulator. The remaining parameters required to provide
PP to A are computed using a, α and τ and other elements of the DLin instance as shown below.

abP1 = aF1, τP1 = ay′vP1, bτP1 = ay′vF1, e(P1, P2)
bα = e(F1, P2)

α

24

Phases 1 and 2: Let id1, id2, . . . , idq denote the identities for which A requests the corresponding
secret keys. In Gamek, B changes the answer to k’th query from a normal key to a semi-functional
one. Let SK′

idi
= (K ′

1,K
′
2,K

′
3,K

′
4,K

′
5,D

′, ktag) be a normally generated key for idi. Note that B
can create such a key because it knows the master secret. For i < k, the simulator should return a
semi-functional key for idi. B chooses γ ∈ Zp at random, sets

K1 = K ′
1 − aγP2, K2 = K ′

2 + γP2, K3 = K ′
3, K4 = K ′

4, K5 = K ′
5, D = D′

and then returns the modified key SKidi to A. For i > k, B returns the normal key generated using
the algorithm KeyGen.

When i = k, i.e., for identity idk, suppose that a normal key SK′
idk

is generated with r′1, r
′
2, z

′

as the randomisers and ktag = λidk + ν. The simulator then modifies the key elements as follows.

K1 = K ′
1 − aZ2, K2 = K ′

2 + Z2 + y′v(x1P2), K3 = K ′
3 + y′v(x2F2)

K4 = K ′
4 + x2F2, K5 = K ′

5 + x1P2, D = D′ + (yq idk + ywktag + yu)(x1P2)

implicitly setting r1 = r′1 + x1, r2 = r′2 + x2, r = r′ + x1 + x2 and z = z′ + y′vx2. Now B returns the
secret key SKidk = (K1, . . . ,K5,D, ktag).

If Z2 = (x1 + x2)H2, we have

K1 = αP2 + r′V2 − a(x1 + x2)H2

= αP2 − ar
′H2 − a(x1 + x2)H2

= αP2 − (r′ + x1 + x2)aH2

= αP2 + rV2

and

K2 = K ′
2 + Z2 + y′v(x1P2)

= r′V ′
2 − z

′P2 + (x1 + x2)H2 + y′v(x1P2)

= r′H2 + r′y′vP2 − z
′P2 + (x1 + x2)H2 + y′v(x1P2) + y′vx2P2 − y

′
vx2P2

= (r′ + x1 + x2)H2 + (r′ + x1 + x2)y
′
vP2 − (z′ + y′vx2)P2

= rV ′
2 − zP2

indicating that SKidk is a normally distributed key and so B perfectly simulates Gamek−1. When
Z2 is a random element of G2, it could be expressed as Z2 = (x1 + x2)H2 + cP2. Then it is easy
to see that SKidk would be a semi-functional key for idk with γ = c in which case B is simulating
Gamek.

Challenge: B receives the challenge identity id∗ and two messages M0 and M1 from A. It chooses
β ∈ {0, 1} at random. It cannot generate a semi-functional ciphertext for the challenge identity
without knowledge of bV ′

1 but setting ctag∗ = λid∗+ν enables it to do so. Since λ and ν are hidden
from the attacker and λx+ν is a pairwise independent function for the choice of λ and ν, both ctag∗

and ktag will be independently and uniformly distributed as required. B first generates a normal

25

ciphertext C′ = (C ′
0, C

′
1, C

′
2, C

′
3, C

′
4, C

′
5, E

′
1, E

′
2, ctag

∗) with randomisers s, t′ and ctag∗ = λid∗ + ν
using the Encrypt algorithm. Then it picks µ ∈ Zp at random and modifies C′ as follows.

C0 = C ′
0, C1 = C ′

1, C2 = C ′
2 + µF1, C3 = C ′

3 + µP1, C4 = C ′
4 − µH1 − µy

′
vP1

C5 = C ′
5 + µywH1 − µy

′
vF1, E1 = E′

1 + µ(yq id
∗ + ywctag

∗ + yu)H1, E2 = E′
2 + µH1

Since the simulator does not know bH1 it has to construct C5 by setting tP1 = t′P1+µH1 implicitly.
We need only verify that C5 is well-formed; rest of the elements are constructed according to the
original semi-functional algorithms.

C5 = C ′
5 + µywH1 − µy

′
vF1

= −bτsP1 + t′W1 + µywH1 − µy
′
vF1

= −bτsP1 + t′(F1 + ywP1) + µywH1 − µy
′
vF1

= −bτsP1 + t′bP1 + t′ywP1 + µywH1 − µy
′
vF1 + bµH1 − bµH1

= −bτsP1 + b(t′P1 + µH1) + yw(t
′P1 + µH1)− bµ(y

′
vP1 +H1)

= −bτsP1 + tW1 − bµV
′
1

B returns C∗ = (C0, C1, C2, C3, C4, C5, E1, E2, ctag
∗) to A.

In the key extraction phase, in order to generate a semi-functional ciphertext for idk, the sim-
ulator must be able to compute bV ′

1 or create t(idkQ1 + ctagW1 + U1) = (ctag − λidk − ν)(t
′F1 +

bµH1)+(yqidk+ywctag+yu)(t
′P1+µH1) which is possible only when ctag = λidk+ν. Decryption of

this ciphertext with SKidk will fail unconditionally and hence the simulator gains no information.
Now if A is able to distinguish between Gamek−1 and Gamek then it is able to decide whether
SKidk is normal or semi-functional. In this case B can solve the DLin problem with advantage

AdvBDLin = |Pr[Xk−1]− Pr[Xk]| = AdvAGamek−1
− AdvAGamek

= ε

⊓⊔

Lemma 3. If there exists an adversary A such that AdvAGameq − AdvAfinal = ε, then we can build

an algorithm B having advantage ε in breaking the DBDH assumption.

Proof. B receives (P1, xP1, aP1, sP1, P2, xP2, aP2, sP2, Z) as an instance of the DBDH problem.

Setup: With b, yv, y
′
v, yq, yw, yu chosen at random from Zp, B sets the parameters as

P1 = P1, P2 = P2, abP1 = b(aP1), V2 = yvP2, V
′
2 = y′vP2, τP1 = yvP1 + y′v(aP1)

Q1 = yqP1,W1 = ywP1, U1 = yuP1, e(P1, P2)
bα = e(xP1, aP2)

b

implicitly setting a = a, α = xa and τ = yv + ay′v. The remaining parameters can be computed
easily. B returns PP to A.

Phases 1 and 2: When A asks for the secret key for the i’th identity idi, B chooses at random
r1, r2, z

′, ktag, γ′ ∈ Zp with r = r1+r2. It implicitly sets γ′ = x−γ and z = z′+x. It then computes
a semi-functional key for idi as follows.

K1 = γ′(aP2) + rV2 = xaP2 − aγP2 + rV2 = αP2 + rV2 − aγP2

26

K2 = rV ′
2 − z

′P2 − γ
′P2 = rV ′

2 − z
′P2 − xP2 + γP2 = rV ′

2 − zP2 + γP2

K3 = bz′P2 + b(xP2) = bzP2

K4 = br2P2, K5 = r1P2

D = r1(idiQ2 + ktagW2 + U2).

Observe that B cannot create a normal key without knowing α.

Challenge: B receives the challenge identity id∗ and two messages M0 and M1 from A. It chooses
β ∈ {0, 1} and ctag∗, µ′, t ∈ Zp at random and generates a semi-functional challenge ciphertext as
follows. Here B implicitly sets µ′ = µ+ as.

C0 =Mβ · Z
b, C1 = b(sP1)

C2 = bµ′P1 = basP1 + bµP1, C3 = µ′P1 = asP1 + µP1

C4 = −yv(sP1)− µ
′y′vP1 = −yvsP1 − asy

′
vP1 − µy

′
vP1 = −τsP1 − µV

′
1

C5 = −byv(sP1)− bµ
′y′vP1 + tW1 = −byvsP1 − basy

′
vP1 − bµy

′
vP1 + tW1 = −τsP1 + tW1 − µV

′
1

E1 = t(id∗Q1 + ctag∗W1 + U1), E2 = tP1

The challenge ciphertext C∗ = (C0, C1, C2, C3, C4, C5, E1, E2, ctag
∗) is returned to A. If Z equals

e(P1, P2)
xas then C∗ will be a semi-functional encryption of Mβ; if Z is a random element of GT

then C∗ will be a semi-functional encryption of a random message. If A can identify whether the
game simulated was Gameq or Gamefinal, then B will be able to decide whether Z = e(P1, P2)

xas

or not and hence break the DBDH assumption with advantage

AdvBDBDH = |Pr[Xq]− Pr[Xfinal]| = AdvAGameq − AdvAGamefinal
= ε

⊓⊔

Let εDDH1 = maxB AdvBDDH1 where the maximum is taken over all PPT algorithms B. Similarly
define εDLin and εDBDH.

Theorem 2. If the DDH1, DLin and DBDH assumptions hold, then no PPT adversary making at

most q key extract queries can break the security of Scheme 1.

Proof. Using lemmas 1, 2 and 3, we have for any polynomial time attacker A,

AdvAScheme−1 ≤ |Pr[Xreal]− Pr[X0]|+

q
∑

k=1

(|Pr[Xk−1]− Pr[Xk]|) + |Pr[Xq]− Pr[Xfinal]|

= εDDH1 + qεDLin + εDBDH

which is negligible in the security parameter κ. ⊓⊔

27

E Security Proof for Scheme 6

Define Gamereal, Gamek (for 0 ≤ k ≤ q) and Gamefinal as before.

Lemma 4. If there exists an adversary A such that AdvAGamereal
−AdvAGame0 = ε, then we can build

an algorithm B having advantage ε in solving the DDH1 problem.

Proof. The algorithm B receives (P1, sP1, aP1, P2, Z1) as an instance of DDH1. We describe how it
will simulate each phase in the security game.

Setup: B chooses random elements α, yv, y
′
v, yq, yw, yu from Zp and sets the parameters as follows.

P1 = P1, sP1 = sP1, aP1 = aP1, Q1 = yqP1,W1 = ywP1, U1 = yuP1

P2 = P2, V2 = yvP2, V
′
2 = y′vP2

This implicitly sets τ = yv+ay
′
v. Using this, the element τP1 can be computed as yvP1+y

′
v(aP1). The

simulator computes the remaining parameters using α and gives the following public parameters
to A.

PP = {G, P1, P2, aP1, τP1, Q1,W1, U1, e(P1, P2)
bα}

Phase 1: A makes a number of key extract queries. B knows the master secret and using that it
returns a normal key for every key extract query made by A.

Challenge: B receives the target identity id∗ and two messages M0 and M1 from A. It chooses
β ∈ {0, 1} at random. To encrypt Mβ , B chooses ctag∗ at random from Zp and computes the
ciphertext elements as follows.

C0 =Mβ · e(sP1, P2)
α

C1 = sP1, C2 = Z1, C3 = −yv(sP1)− y
′
vZ1 + yw(sP1)

E = (id∗yq + ctag∗yw + yu)(sP1)

B returns C∗ = (C0, C1, C2, C3, E, ctag
∗) to A.

If Z1 = asP1 then the challenge ciphertext is normal; otherwise if Z1 is a random element of
G1 i.e., Z1 = (as+ c)P1 then the ciphertext is semi-functional with µ = c.

Note that, to check whether C∗ is semi-functional or not, B itself could try to decrypt it with a
semi-functional key for id∗. However since aP2 is not known to B, it cannot create such a key.

Phase 2: As in first phase, B returns a normal key for every query.

Guess: The adversary returns its guess β′ to B.

If C∗ is normal then B simulates Gamereal and if it is semi-functional B simulates Game0.
Therefore if A is able to distinguish between Gamereal and Game0 i.e., if β = β′, then the simulator
can solve the DDH1 problem with advantage

AdvBDDH1 = |Pr[Xreal]− Pr[X0]| = AdvAGamereal
− AdvAGame0 = ε

⊓⊔

28

Lemma 5. If there exists an adversary A such that AdvAGamek−1
−AdvAGamek

= ε, then we can build

an algorithm B having advantage ε in breaking the assumption DDH2v.

Proof. Let (P1, dP1, dzP1, zx1P1, P2, dP2, x1P1, x2P2, Z2) be the instance of DDH2v that B receives.

Setup: B chooses random elements a, α, λ, ν, y′v , yq, yu, yw ∈R Zp and sets the parameters as follows.
P1 = P1, P2 = P2, Q2 = −λ(dP2) + yqP2, U2 = −ν(dP2) + yuP2, W2 = dP2 + ywP2, V2 = −a(x1P2)
and V ′

2 = x1P2 + y′vP2 setting τ = ay′v using which one can compute τP1 = ay′vP1. The public
parameters Q1,W1, U1 can be computed since B has dP1. The remaining parameters required to
provide PP to A are computed using a, α and other elements of the problem instance.

Phases 1 and 2: The key extraction queries for identities id1, . . . , idq are answered in the following
way. For i < k, a semi-functional key is returned and for i > k a normal key is returned. For i = k,
a normal key K ′

1,K
′
2,K

′
3,D

′ is generated using randomiser r′ ∈R Zp, ktag = λidk + ν and then
modified as:

K1 = K ′
1 − aZ2, K2 = K ′

2 + Z2 + y′v(x2P2), K3 = K ′
3 + x2P2

D = D + (yq id+ ywktag + yu)(x2P2)

thus implicitly setting r = r′ + x2. Since dx2P2 is not known to B it can create D only when
ktag = λidk + ν. If Z2 = x1x2P2 then the key for idk will be normal and otherwise it will be semi-
functional with γ = c where Z2 = (x1x2 + c)P2. Note that a semi-functional ciphertext for idk with
any value of ctag cannot be generated without the knowledge of dx1zP1 which is neither available
from the assumption nor can be computed by B. This rules out the obvious way of checking whether
the key for idk is semi-functional or not.

Challenge: B receives two messages M0,M1 and a challenge identity id∗ during the challenge
phase. It chooses β ∈R {0, 1}, generates a normal ciphertext with randomiser s′ ∈R Zp, ctag

∗ =
λid∗ + ν and changes the ciphertext elements as follows. Since λ and ν are chosen independently
and uniformly at random, the function λX + ν is a pairwise independent function. This causes the
tag values of the challenge ciphertext and the k-th key to appear properly distributed from the
adversary’s view.

C0 = C ′
0 · e(zx1P1, P2)

C1 = C ′
1 + x1zP1, C2 = C ′

2 + a(zx1P1) + dzP1, C3 = C ′
3 − ay

′
v(zx1P1) + yw(zx1P1)− y

′
v(dzP1)

E = E′ + (yq id+ ctag∗yw + yu)(zx1P1)

setting s = s′ + zx1 and µ = dz. It is easy to check that C3 is well-formed.

C3 = C ′
3 − ay

′
v(zx1P1) + yw(zx1P1)− y

′
v(dzP1)

= −ay′v(s
′ + zx1)P1 + s′W1 + yw(zx1P1) + dzx1P1 − dzx1P1 − y

′
vdzP1

= −ay′vsP1 + s′W1 + zx1(dP1 + ywP1)− dz(x1P1 + y′vP1)

= −ay′vsP1 + sW1 − µV
′
1

Now A will be able to distinguish between Gamek−1 and Gamek if it can decide whether SKidk

is normal or semi-functional. In this case B can break the assumption DDH2v with advantage

AdvBDDH2v = |Pr[Xk−1]− Pr[Xk]| = AdvAGamek−1
− AdvAGamek

= ε

⊓⊔

29

Lemma 6. If there exists an adversary A such that AdvAGameq − AdvAfinal = ε, then we can build

an algorithm B having advantage ε in breaking the DBDH assumption.

Proof. B receives (P1, xP1, aP1, sP1, P2, xP2, aP2, sP2, Z) as an instance of the DBDH problem.

Setup: With b, yv, y
′
v, yq, yw, yu chosen at random from Zp, B sets the parameters as

P1 = P1, P2 = P2, aP1 = aP1, V2 = yvP2, V
′
2 = y′vP2, τP1 = yvP1 + y′v(aP1)

Q1 = yqP1,W1 = ywP1, U1 = yuP1, e(P1, P2)
bα = e(xP1, aP2)

implicitly setting a = a, α = xa and τ = yv + ay′v. The remaining parameters can be computed
easily. B returns PP to A.

Phases 1 and 2: When A asks for the secret key for the i’th identity idi, B chooses at random
r, ktag, γ′ ∈ Zp implicitly setting γ′ = x − γ. It then computes a semi-functional key for idi as
follows.

K1 = γ′(aP2) + rV2 = xaP2 − aγP2 + rV2 = αP2 + rV2 − aγP2

K2 = rV ′
2 − γ

′P2 = rV ′
2 + xP2 + γP2 = rV ′

2 + γP2

K3 = rP2,D = r(idiQ2 + ktagW2 + U2).

Observe that B does not know α and hence cannot create a normal key.

Challenge: B receives the challenge identity id∗ and two messages M0 and M1 from A. It chooses
β ∈ {0, 1} and ctag∗, µ′, t ∈ Zp at random and generates a semi-functional challenge ciphertext as
follows. Here B implicitly sets µ′ = µ+ as.

C0 =Mβ · Z
b,

C1 = sP1, C2 = µ′P1 = asP1 + µP1

C3 = −yv(sP1)− µ
′y′vP1 + yw(sP1) = −yvsP1 − asy

′
vP1 − µy

′
vP1 + sW1 = −τsP1 − µV

′
1 + sW1

E = (yqid
∗ + ywctag

∗ + yu)(sP1)

The challenge ciphertext C∗ = (C0, C1, C2, C3, E, ctag
∗) is returned to A. If Z = e(P1, P2)

xas then
C∗ will be a semi-functional encryption of Mβ; if Z is a random element of GT then C∗ will be
a semi-functional encryption of a random message. If A can identify whether the game simulated
was Gameq or Gamefinal, then B will be able to decide whether Z = e(P1, P2)

xas or not and hence
break the DBDH assumption with advantage

AdvBDBDH = |Pr[Xq]− Pr[Xfinal]| = AdvAGameq − AdvAGamefinal
= ε

⊓⊔

Theorem 3. If the DDH1, DDH2v and DBDH assumptions hold, then no polynomial time adver-

sary A making at most q key extraction queries can break the security of Scheme 6.

Proof. Using lemmas 4, 5 and 6, we have for any polynomial time attacker A,

AdvAScheme−6 ≤ |Pr[Xreal]− Pr[X0]|+

q
∑

k=1

(|Pr[Xk−1]− Pr[Xk]|) + |Pr[Xq]− Pr[Xfinal]|

= εDDH1 + qεDDH2v + εDBDH

which is negligible in the security parameter κ. ⊓⊔

30

F Schemes 2 to 5

We follow a compact notation to denote normal and semi-functional ciphertexts and keys. In the
description of ciphertexts and keys, certain group elements are shown in curly brackets {}. These
constitute the semi-functional components.

F.1 Scheme 2

P1, Q1,W1, U1 ∈ G1 and P2 ∈ G2 are random generators. Let Q2,W2, U2 ∈ G2 with Q2 ∼ Q1,
W2 ∼ W1 and U2 ∼ U1. Choose a1, a2, v, v

′, v′′ be chosen at random from Zp and define V2 =
vP2, V

′
2 = v′P2, V

′′
2 = v′′P2 be chosen at random. Define τ1 = v + a1v

′ and τ2 = v + a2v
′′ so that

τ1P2 = V2 + a1V
′
2 and τ2P2 = V2 + a2V

′′
2 .

The public parameters and master secret are given by

PP = {G, P1, a1P1, a2P1, τ1P1, τ2P1, Q1,W1, U1, e(P1, P2)
α}

MSK = {P2, αP2, V2, V
′
2 , V

′′
2 , Q2,W2, U2}

The randomisers for the ciphertext are s1, s2, t ∈ Zp with s = s1 + s2. V
′′
1 ∈ G1 has the same

discrete log to base P1 as V ′′
2 to base P2.

Ciphertext:
C0 =M · e(P1, P2)

αs

C1 = sP1, C2 = a1s1P1, C3 = a2s2P1 {+a2µP1}, C4 = −(τ1s1 + τ2s2)P1 + tW1 {−a2µV
′′
1 }

E1 = t(idQ1 + ctagW1 + U1), E2 = tP1

Key:
K1 = αP2 + rV2 {−a1a2γP2}, K2 = rV ′

2 {+a2γP2}, K3 = rV ′′
2 {+a1γP2}, K4 = rP2

D = r(idQ2 + ktagW2 + U2)

Security: With the DLin assumption, it is possible to show that Gamereal and Game0 are indis-
tinguishable. We give a brief sketch of the proof. Let (P1, F1,H1, x1P1, x2F1, P2, F2,H2, Z1) be an
instance of DLin that the simulator B receives. It chooses α, yq, yw, yu, yv, y

′
v, y

′′
v ∈R Zp and con-

structs the parameters as P1 = P1, a1P1 = F1, a2P1 = H1, Q1 = yqP1,W1 = ywP1, U1 = yuP1, V2 =
yvP2, V

′
2 = y′vP2, V

′′
2 = y′′vP2, implicitly setting τ1 = yv + a1y

′
v and τ2 = yv + a1y

′′
v . Since B has the

master secret it can create a normal key for any identity. It answers all the key extraction queries
with normal keys. In the challenge phase it receives two messages M0,M1 and an identity id∗. It
then chooses β ∈R {0, 1}. A normal ciphertext C ′

0, . . . , C
′
4, E

′
1, E

′
2, ctag for identity id∗ and message

Mβ is first generated using randomisers s′1, s
′
2, t and then modified as follows:

C0 = C ′
0 · e(x1P1, P2)

α, C1 = C ′
1 + x1P1, C2 = C ′

2 − x2F1

C3 = C ′
3 + Z1, C4 = C ′

4 − yvx1P1 + y′vx2F1 − y
′′
vZ1, E1 = E′

1, E2 = E′
2

implicitly setting s1 = s′1−x2, s2 = s′2+x1+x2 and s = s1+s2 = s′+x1. If Z1 = (x1+x2)H1 then
the ciphertext is normal; otherwise Z1 = (x1 + x2 + c)H1 for some c ∈R Zp whence the ciphertext
is semi-functional with µ being set to c.

31

Now let’s take a look at the second reduction and it’s proof using DDH2 and DLin assumptions.

First consider the DDH2 assumption. Let (P1, P2, x1P2, x2P2, Z2) be an instance of DDH2. As
mentioned earlier, except for P1 such an instance consists of elements of G2. The PP , on the other
hand, consists entirely of elements of G1. There is no way that the PP can be based on the given
instance and so getting a reduction is not possible. Now consider the DLin assumption. In this
scheme, the randomiser r is not split. As such there is no way to base this reduction on the DLin
assumption.

F.2 Scheme 3

Random generators P1, Q1,W1, U1 ∈ G1 and P2 ∈ G2 are chosen. Let α, a, b ∈R Zp and Q2,W2, U2 ∈
G2 with Q2 ∼ Q1, W2 ∼ W1 and U2 ∼ U1. Also, let V2, V

′
2 ∈R G2 and τ ∈ Zp such that τP2 =

V2 + aV ′
2 .

The public parameters and master secret are given by

PP = {G, P1, P2, bP1, abP1, τP1, bτP1, Q1,W1, U1, e(P1, P2)
bα}

MSK = {αP2, bP2, V2, V
′
2 , Q2,W2, U2}

V ′
1 will have the usual meaning. Randomisers for the ciphertext and the key are s, t and r1, r2

respectively with r = r1 + r2.

Ciphertext
C0 =M · e(P1, P2)

bαs

C1 = bsP1, C2 = basP1{+bµP1}, C3 = −τsP1 {−µV
′
1}, C4 = −bτsP1 + tW1 {−bµV

′
1}

E1 = t(idQ1 + ctagW1 + U1), E2 = tP1

Key
K1 = αP2 + rV2 {−aγP2}, K2 = rV ′

2 {+γP2}, K3 = br2P2, K4 = r1P2

D = r1(idQ2 + ktagW2 + U2)

Security: The first reduction goes through with the DDH1 assumption. We provide a brief sketch.
Suppose that (P1, aP1, sP1, P2, Z1) is the instance of DDH1. It simulates the game in the following
way – choose α, b, yv , y

′
v, yq, yu, yw ∈R Zp and set P1 = P1, aP1 = aP1, Q1 = yqP1,W1 = ywP1, U1 =

yuP1, P2 = P2V2 = yvP2, V
′
2 = y′vP2. Construct the challenge ciphertext as

C0 =Mβ ·e(sP1, P2)
bα, C1 = b(sP1), C2 = bZ1, C3 = −yv(sP1)−y

′
vZ1, C4 = −byv(sP1)−by

′
vZ1+tW1.

Computing E1 and E2 is straightforward. Note that the randomiser s comes from the assumption.

For the second reduction, we cannot rely on DDH2 assumption for the same reason as that for
Scheme 2. In this case, there is a split of the randomiser r. So, one may hope to base the reduction
on the DLin problem.

Consider an instance of the DLin assumption: (P1, F1,H1, P2, F2,H2, x1P2, x2F2, Z2). The sim-
ulator B chooses α, b, y′v, yq, yu, yw ∈R Zp and computes the parameters as P1 = P1, P2 = P2, bP1 =
F1, V2 = −aH2, V

′
2 = aH2 + y′vP2 so that Z2 could be embedded in K1 and K2. Observe that

32

τ = ay′v. We can successfully construct K1, K3 and K4 setting r1 = r′1 + x1, r2 = r′2 + x2 and
r = r′ + x1 + x2, but composing K2 with the same r is impossible. Any other way of using DLin
assumption also results in failure.

F.3 Scheme 4

The public parameters and master secret are given by

PP = {G, P1, P2, aP1, abP1, τP1, Q1,W1, U1, e(P1, P2)
α}

MSK = {αP2, bP2, V2, V
′
2 , Q2,W2, U2}

Randomisers for the ciphertext and the key are s, t and r, z respectively.

Ciphertext
C0 =M ·e(P1, P2)

αs, C1 = sP1, C2 = asP1{+µP1}, C3 = basP1{+bµP1}, C4 = −τsP1+tW1{−µV
′
1}

E1 = t(idQ1 + ctagW1 + U1), E2 = tP1

Key
K1 = αP2 + rV2 {−aγP2}, K2 = rV ′

2 − bzP2 {+γP2}, K3 = zP2, K4 = rP2

D = r(idQ2 + ktagW2 + U2)

Here, the first reduction goes through with the DDH1 assumption. The argument is similar to
that of Scheme 3. As before, the second reduction cannot be based on the DDH2 assumption. Since
there is no split of the randomiser r, there is no way to base the second reduction on the DLin
assumption.

F.4 Scheme 5

Let V2, V
′
2 ∈ G2 and τP2 = V2+ aV ′

2 . V
′
1 will have the usual meaning. The PP andMSK are given

by

PP = {G, P1, P2, aP1, τP1, Q1,W1, U1, e(P1, P2)
α}

MSK = {αP2, V2, V
′
2 , Q2,W2, U2}

For the ciphertext and the key, s, t ∈ Zp and r ∈ Zp respectively are chosen as the randomisers.

Ciphertext
C0 =M · e(P1, P2)

αs, C1 = sP1, C2 = asP1 {+µP1}, C3 = −τsP1 + tW1 {−µV
′
1}

E1 = t(idQ1 + ctagW1 + U1), E2 = tP1

Key
K1 = αP2 + rV2 {−aγP2}, K2 = rV ′

2 {+γP2}, K3 = rP2

D = r(idQ2 + ktagW2 + U2)

The first security reduction can be based on DDH1 assumption but the second reduction does not
hold with either DDH2 or the DLin assumption.

33

G Extending Scheme 6 to a HIBE Scheme

We provide a brief description of the HIBE scheme. The nature of the extension is completely
analogous to the way the IBE in [21] has been extended to a HIBE.

The setting is of an asymmetric bilinear map e : G1×G2 → GT as before. Messages are elements
of GT . Identities are tuples of Zp of lengths varying from 1 to some maximum size n. As in [21], we
assume that if two identities agree on some component, then they agree on all previous components.
The HIBE scheme that we describe below is an extension of Scheme 6. We describe the various
functionalities of this scheme.

G.1 Construction

Let a, v, v′ be random elements of Zp. Set V2 = vP2, V
′
2 = v′P2 and τ = v + av′ so that τP2 =

V2+aV
′
2 . LetW1 be a random element of G1 and letW2 ∈ G2 be such thatW1 ∼W2. For 1 ≤ i ≤ n,

let Q1,i, U1,i be random elements of G1 and Q2,i, U2,i be elements of G2 such that Q1,i ∼ Q2,i and
U1,i ∼ U2,i.

PP : (P1, aP1, τP1, Q1,1, . . . , Q1,n,W1, U1,1, . . . , U1,n, e(P1, P2)
α).

MSK: (P2, αP2, V2, V
′
2 , Q2,1, . . . , Q2,n,W2, U2,1, . . . , U2,n).

Actually, only αP2 is the master secret. The other components of MSK has to be provided with
the decryption key so as to enable further key delegation.

Encrypt(M, (id1, . . . , idℓ),PP): Choose random s and ctag1, . . . , ctagℓ from Zp. C is

(C0, C1, C2, C3, E1, . . . , Eℓ, ctag1, . . . , ctagℓ)

where the elements are defined as follows.

C0 =M · e(P1, P2)
αs,

C1 = sP1, C2 = asP1, C3 = −τsP1 + sW1,
Ei = s(idiQ1,i + ctagiW1 + U1,i) for 1 ≤ i ≤ ℓ.

KeyGen(
−→
id = (id1, . . . , idℓ),MSK,PP): Choose random r1, . . . , rℓ, ktag1, . . . , ktagℓ from Zp and

set r = r1 + · · · + rℓ. SK−→
id

consists of the elements (P2, V2, V
′
2 , Q2,1, . . . , Q2,n,W2, U2,1, . . . , U2,n)

along with the tuple (K1,K2,K3,1, . . . ,K3,ℓ,D1, . . . ,Dℓ, ktag1, . . . , ktagℓ) where the elements are
defined as follows.

K1 = αP2 + rV2, K2 = rV ′
2

K3,i = riP2 for i = 1, . . . , ℓ,
Di = ri(idiQ2,i + ktagiW2 + U2,i) for i = 1, . . . , ℓ.

The elements (P2, V2, V
′
2 , Q2,1, . . . , Q2,n,W2, U2,1, . . . , U2,n) are provided to enable further delega-

tion.

34

Delegate(
−→
id = (id1, . . . , idℓ),SK−→

id
, idℓ+1,PP): Other than the tags, all elements of SK−→

id
corre-

sponding to identity components at the previous levels are re-randomised. The components required
for further delegation are not re-randomised.

Choose random r1, . . . , rd, rℓ+1, ktagℓ+1 from Zp and set r = r1 + · · · + rℓ + rℓ+1. The new
components of the key for the identity tuple of length (ℓ+ 1) are as follows.

K3,ℓ+1 = rℓ+1P2, Dℓ+1 = rℓ+1(idiQ2,ℓ+1 + ktagℓ+1W2 + U2,ℓ+1)P2.

Re-randomisation of the previous components is done as follows.

K1 ← K1 + rV2, K2 ← K2 + rV ′
2

K3,i ← K3,i + riP2 for i = 1, . . . , ℓ,
Di ← Di + ri(idiQ2,i + ktagiW2 + U2,i) for i = 1, . . . , ℓ.

Decrypt (C, id,SKid,PP): Decryption succeeds only when ctagi 6= ktagi for i = 1, . . . , ℓ. First
compute

A1 =

ℓ
∏

i=1

(

e(Ei,K3,i)

e(C1,Di)

)1/(ctagi−ktagi)

= e(W1, P2)
rs.

Then compute

A2 = e(C1,K1)e(C2,K2)e

(

C3,

ℓ
∑

i=1

K3,i

)

= e(P1, P2)
αse(W1, P2)

rs.

Unmask the message as M = (C0 ·A1)/A2.

G.2 Security Proof

We first define semi-functional ciphertexts and keys for the HIBE.

Semi-functional ciphertext: Let C ′
0, C

′
1, C

′
2, C

′
3, E

′
1, . . . , E

′
d, ctag1, . . . , ctagℓ be ciphertext elements

normally generated by the Encrypt algorithm for message M and identity
−→
id = (id1, . . . , idℓ).

Let V ′
1 be an element of G1 such that V ′

1 ∼ V ′
2 . Choose µ ∈ Zp at random. The semi-functional

ciphertext generation algorithm will modify the normal ciphertext as: C0 = C ′
0, C1 = C ′

1, Ej = E′
j

for 1 ≤ j ≤ ℓ and

C2 = C ′
2 + µP1, C3 = C ′

3 − µV
′
1 .

Semi-functional key: Let K ′
1,K

′
2,K

′
3,1, . . . ,K

′
3,ℓ,D

′
1, . . . ,D

′
ℓ, ktag1, . . . , ktagℓ be secret key compo-

nents normally generated by the KeyGen algorithm for identity
−→
id = (id1, . . . , idℓ). Randomly

choose γ ∈ Zp. The semi-functional key generation algorithm will modify the normal key as:
K3,j = K ′

3,j, Dj = D′
j for 1 ≤ j ≤ ℓ and

K1 = K ′
1 − aγP2, K2 = K ′

2 + γP2.

35

For the security proof, we follow the path set out by [21]. Suppose that the attacker A makes
at most qR reveal queries and qA create and delegate queries. Security is proved via a hybrid
argument over a sequence of qR+3 games. Let Gamereal be the actual HIBE security game defined
in Section A.2. Game0 is similar to Gamereal except that the challenge ciphertext is semi-functional.
In Gamek (for 1 ≤ k ≤ qR), the first k keys are semi-functional and the rest are normal. During
the reduction, the keys are changed from normal to semi-functional just before they are revealed.
Gamefinal is just like GameqR except that the challenge ciphertext is a semi-functional encryption
of a random message. Define Xreal, Xk for 0 ≤ k ≤ qR and Xfinal as earlier. The following lemmas
provide the indistinguishability arguments.

Lemma 7. If there exists an adversary A such that AdvAGamereal
−AdvAGame0 = ε, then we can build

an algorithm B having advantage ε in solving the DDH1 problem.

Proof. The algorithm B receives (P1, sP1, aP1, P2, Z1) as an instance of DDH1. We describe how it
will simulate each phase in the security game.

Setup: B chooses random elements α, yv, y
′
v, yq1 , . . . , yqn , yw, yu1

, . . . , yun from Zp and sets the
parameters as follows.

P1 = P1, sP1 = sP1, aP1 = aP1, P2 = P2, V2 = yvP2, V
′
2 = y′vP2

Wi = ywPi, Qi,j = yqjPi, Ui,j = yuj
Pi for i = 1, 2 and 1 ≤ j ≤ n

This implicitly sets τ = yv+ay
′
v. Using this, the element τP1 can be computed as yvP1+y

′
v(aP1). The

simulator computes the remaining parameters using α and gives the following public parameters
to A.

PP = {G, P1, P2, aP1, τP1, Q1,1, . . . , Q1,n,W1, U1,1, . . . , U1,n, e(P1, P2)
bα}

Phase 1: A makes a number of key extract queries. B knows the master secret and using that it
returns a normal key for every key extract query made by A.

Challenge: B receives the target identity
−→
id ∗ = (id∗1, . . . , id

∗
ℓ) and two messages M0 and M1 from

A. It chooses β ∈ {0, 1} at random. To encrypt Mβ , B chooses ctag∗1, . . . , ctag
∗
ℓ at random from Zp

and computes the ciphertext elements as follows.

C0 =Mβ · e(sP1, P2)
α

C1 = sP1, C2 = Z1, C3 = −yv(sP1)− y
′
vZ1 + yw(sP1)

Ej = (id∗jyqj + ctag∗jyw + yuj
)(sP1) for 1 ≤ j ≤ ℓ

B returns C∗ = (C0, C1, C2, C3, E1, . . . , Eℓ, ctag
∗
1, . . . , ctag

∗
ℓ) to A.

If Z1 = asP1 then the challenge ciphertext is normal; otherwise if Z1 is a random element of
G1 i.e., Z1 = (as+ c)P1 then the ciphertext is semi-functional with µ = c.

Note that, to check whether C∗ is semi-functional or not, B itself could try to decrypt it with a

semi-functional key for
−→
id ∗. However since aP2 is not known to B, it cannot create such a key.

Phase 2: As in first phase, B returns a normal key for every query.

36

Guess: The adversary returns its guess β′ to B.

If C∗ is normal then B simulates Gamereal and when it is semi-functional, B simulates Game0.
Therefore if A is able to distinguish between Gamereal and Game0 i.e., if β = β′, then the simulator
can solve the DDH1 problem with advantage

AdvBDDH1 = |Pr[Xreal]− Pr[X0]| = AdvAGamereal
− AdvAGame0 = ε

⊓⊔

Lemma 8. If there exists an adversary A such that AdvAGamek−1
−AdvAGamek

= ε, then we can build

an algorithm B having advantage qAε in breaking the assumption DDH2v.

Proof. Let (P1, dP1, dzP1, zx1P1, P2, dP2, x1P1, x2P2, Z2) be the instance of DDH2v that B receives.

Setup: B chooses random elements a, α, λ1, . . . , λn, ν1, . . . , νn, y
′
v, yq1 , . . . , yqn , yu1

, . . . , yun , yw ∈R
Zp and sets the parameters as follows. P1 = P1, P2 = P2,Q2,j = −λj(dP2)+yqjP2, U2,j = −νj(dP2)+
yuj

P2 for 1 ≤ j ≤ n, W2 = dP2+ ywP2, V2 = −a(x1P2) and V
′
2 = x1P2+ y

′
vP2 setting τ = ay′v using

which one can compute τP1 = ay′vP1. The public parameters Q1,1, . . . , Q1,n,W1, U1,1, . . . , U1,n can
be computed since B has dP1. The remaining parameters required to provide PP to A are computed
using a, α and other elements of the problem instance.

Phases 1 and 2: We first describe how create, delegate and reveal queries are handled. The
simulator B chooses θ ∈ {1, 2, . . . , qA} at random and guesses that the k-th key revealed will be
the θ-th key either created directly or by delegation. It then creates a counter  for the number of
create/delegate queries and initializes it to zero. B now considers two cases.

Case  6= θ : If this is a create query for an identity
−→
id of depth ℓ then B chooses tags ktag1, . . . , ktagℓ

at random and associates them along with
−→
id to the -th member of the set S. Otherwise, if

this is a delegate query with inputs
−→
id of depth ℓ − 1 and an identity idℓ, then the simulator

chooses one new tag ktagℓ. The other ℓ− 1 tags ktag1, . . . , ktagℓ−1 are copied from the key we
are delegating from. All these tags are associated with the -th element of S.

Case  = θ : If this is a create query for an identity
−→
id = (id1, . . . , idℓ) of depth ℓ then B chooses

tags ktag1, . . . , ktagℓ−1 at random, sets ktagℓ = λℓidℓ + νℓ and associates these tags along with
−→
id to the -th member of the set S. Otherwise, if this is a delegate query with inputs

−→
id of

depth ℓ− 1 and an identity idℓ, then the simulator sets ktagℓ = λℓidℓ + νℓ. The other ℓ− 1 tags
ktag1, . . . , ktagℓ−1 are copied from the key we are delegating from. B associates these tags with
the -th element of S.

Each element of the set S is now associated with tag values but not a key. This is sufficient
since the only elements that are not re-randomized during delegation are the tags. So the keys can
be constructed just before revealing. Now consider the ı-th reveal query for ı ∈ {1, . . . , qR} and
suppose that this query is for the -th key to be revealed. For ı > k the simulator has to create a
normal key and does so using the master secret and the tag values stored in the -th element of S.
For ı < k, B creates a semi-functional key by first creating a normal key using the tag values stored
in the -th element of S and then modifies it using its knowledge of aP2.

37

Now consider the case when ı = k. If  6= k then the simulator aborts and makes a random guess
of the distribution of Z2. Otherwise, using the master secret, it generates a normal key SK′

−→
id

for

the identity
−→
id = (id1, . . . , idℓ) with components K ′

1,K
′
2,K

′
3,1, . . . ,K

′
3,ℓ,D

′
1, . . . ,D

′
ℓ and tag values

already assigned. We know that ktagℓ = λℓidℓ + νℓ. Let r
′
1, . . . , r

′
ℓ be the randomisers used with

r′ = r′1 + · · ·+ r′ℓ. B then chooses γ ∈ Zp at random, sets

K1 = K ′
1 − aZ2, K2 = K ′

2 + Z2 + y′v(x2P2)

K3,j = K ′
3,j, Dj = D′

j for 1 ≤ j ≤ ℓ− 1

K3,ℓ = K ′
3,ℓ + x2P2

Dℓ = D′
ℓ + (yqℓ idℓ + ywktagℓ + yuℓ

)(x2P2)

thus implicitly setting rℓ = r′ℓ + x2 and r = r′ + x2. It returns the key SK−→
id

consisting of
K1,K2,K3,1, . . . ,K3,ℓ,D1, . . . ,Dℓ, ktag1, . . . , ktagℓ to A. The choice of ktagℓ = λℓidℓ + νℓ allows

B to create Dℓ. If Z2 = x1x2P2 then the key for
−→
id will be normal and otherwise it will be semi-

functional with γ = c where Z2 = (x1x2 + c)P2. Note that a semi-functional ciphertext for
−→
id with

any value of ctagℓ cannot be generated without the knowledge of dx1zP1 which is neither available
from the assumption nor can be computed by B. This rules out the obvious way of checking whether
the key for idℓ is semi-functional or not.

Challenge: B receives two messagesM0,M1 and a challenge identity
−→
id ∗ = (id∗1, . . . , id

∗
ℓ) during the

challenge phase. It chooses β ∈R {0, 1}, generates a normal ciphertext with randomisers s′ ∈R Zp

and ctag∗j = λj id
∗
j + νj for 1 ≤ j ≤ ℓ. Observe that the tags are chosen this way to be able to create

the ciphertext elements E1, . . . , Eℓ. The simulator then changes the ciphertext elements as follows.

C0 = C ′
0 · e(zx1P1, P2)

C1 = C ′
1 + x1zP1, C2 = C ′

2 + a(zx1P1) + dzP1, C3 = C ′
3 − ay

′
v(zx1P1) + yw(zx1P1)− y

′
v(dzP1)

Ej = E′
j + (yqj idj + ctag∗jyw + yuj

)(zx1P1) for 1 ≤ j ≤ ℓ

setting s = s′ + zx1 and µ = dz.

Now A will be able to distinguish between Gamek−1 and Gamek if it can decide whether SK−→
id

is normal or semi-functional. When the game  6= k then the guess is random and the probability
that A wins is 1/2. So we need only consider the event  = k which happens with probability 1/qA.
Then B can break the assumption DDH2v with advantage

AdvBDDH2v = |Pr[Xk−1]− Pr[Xk]| = qA(Adv
A
Gamek−1

− AdvAGamek
) = qAε

⊓⊔

Lemma 9. If there exists an adversary A such that AdvAGameqR
− AdvAfinal = ε, then we can build

an algorithm B having advantage ε in breaking the DBDH assumption.

Proof. B receives (P1, xP1, aP1, sP1, P2, xP2, aP2, sP2, Z) as an instance of the DBDH problem.

38

Setup: With b, yv, y
′
v, yq1 , . . . , yqn , yw, yu1

, . . . , yun chosen at random from Zp, B sets the parameters
as

P1 = P1, P2 = P2, aP1 = aP1, V2 = yvP2, V
′
2 = y′vP2, τP1 = yvP1 + y′v(aP1)

Q1,j = yqjP1,W1 = ywP1, U1,j = yuj
P1 for 1 ≤ j ≤ n, e(P1, P2)

bα = e(xP1, aP2)

implicitly setting a = a, α = xa and τ = yv + ay′v. The remaining parameters can be computed
easily. B returns PP to A.

Phases 1 and 2: When A asks for the secret key for an identity vector
−→
id = (id1, . . . , idℓ),

B chooses at random r1, . . . , rℓ, ktag1, . . . , ktagℓ, γ
′ ∈ Zp with r = r1 + · · · + rℓ implicitly setting

γ′ = x− γ. It then computes a semi-functional key for
−→
id as follows.

K1 = γ′(aP2) + rV2 = xaP2 − aγP2 + rV2 = αP2 + rV2 − aγP2

K2 = rV ′
2 − γ

′P2 = rV ′
2 + xP2 + γP2 = rV ′

2 + γP2

K3,j = rjP2,Dj = rj(idjQ2,j + ktagjW2 + U2,j) for 1 ≤ j ≤ ℓ.

Observe that B does not know α and hence cannot create a normal key.

Challenge: B receives the challenge identity
−→
id ∗ = (id∗1, . . . , id

∗
ℓ) and two messages M0 and M1

from A. It chooses β ∈ {0, 1} and ctag1∗, . . . , ctag
∗
ℓ , µ

′, t ∈ Zp at random and generates a semi-
functional challenge ciphertext as follows. Here B implicitly sets µ′ = µ+ as.

C0 =Mβ · Z
b,

C1 = sP1, C2 = µ′P1 = asP1 + µP1

C3 = −yv(sP1)− µ
′y′vP1 + yw(sP1) = −yvsP1 − asy

′
vP1 − µy

′
vP1 + sW1 = −τsP1 − µV

′
1 + sW1

Ej = (yqj id
∗
j + ywctag

∗
j + yuj

)(sP1) for 1 ≤ j ≤ ℓ

The challenge ciphertext C∗ = (C0, C1, C2, C3, E1, . . . , Eℓ, ctag
∗
1, . . . , ctag

∗
ℓ) is returned to A. If Z =

e(P1, P2)
xas then C∗ will be a semi-functional encryption of Mβ; if Z is a random element of GT

then C∗ will be a semi-functional encryption of a random message. If A can identify whether the
game simulated was Gameq or Gamefinal, then B will be able to decide whether Z = e(P1, P2)

xas

or not and hence break the DBDH assumption with advantage

AdvBDBDH = |Pr[XqR]− Pr[Xfinal]| = AdvAGameqR
− AdvAGamefinal

= ε

⊓⊔

Theorem 4. If the DDH1, DDH2v and DBDH assumptions hold, then no polynomial time adver-

sary A making at most qR reveal queries can break the security of the HIBE scheme.

Proof. Using lemmas 7, 8 and 9, we have for any polynomial time attacker A,

AdvAHIBE ≤ |Pr[Xreal]− Pr[X0]|+

qR
∑

k=1

(|Pr[Xk−1]− Pr[Xk]|) + |Pr[XqR]− Pr[Xfinal]|

= εDDH1 + qRqA × εDDH2v + εDBDH

which is negligible in the security parameter κ. ⊓⊔

39

H Security Proof for the BE Scheme in Section 4.2

The proof is organised as a sequence of games. Gamereal denotes the real BE security game as
defined in Section A.3. Game0 is similar to Gamereal except that the ciphertext encrypted to the
challenge set is semi-functional. Suppose that the adversary queries for private keys of q users. In
Gamek for 1 ≤ k ≤ q, the private keys returned for the first k queries are semi-functional and the
rest are normal. Gamefinal is just like Gameq except that the challenge ciphertext is an encryption
of a random message. Define Xreal, Xk for 0 ≤ k ≤ q and Xfinal as earlier.

Lemma 10. If there exists an adversary A such that AdvAGamereal
− AdvAGame0 = ε, then we can

build an algorithm B having advantage ε in solving the DDH1 problem.

Proof. The algorithm B receives (P1, sP1, aP1, P2, Z1) as an instance of DDH1. We describe how it
will simulate each phase in the security game.

Setup: B chooses random elements α, yv, y
′
v, yq1 , . . . , yqn , yw from Zp and sets the parameters as

follows.
P1 = P1, sP1 = sP1, aP1 = aP1, Q1,i = yqiP1 for 1 ≤ i ≤ n,W1 = ywP1

P2 = P2, V2 = yvP2, V
′
2 = y′vP2

This implicitly sets τ = yv + ay′v. Using this, the element τP1 can be computed as yvP1 + y′v(aP1).
The simulator computes the remaining parameters using α and gives the public key PK to A.

Private Key Queries: A issues a number of private key queries adaptively. B returns a normal
key for every key query computed using SK.

Challenge: B receives the challenge set S∗ and two messages M0 and M1 from A. It chooses
β ∈ {0, 1} at random and computes the ciphertext elements as follows.

C0 =Mβ · e(sP1, P2)
α

C1 = sP1, C2 = Z1, C3 = −yv(sP1)− y
′
vZ1 + yw(sP1)

E = (
∑

i∈S∗

yqi)(sP1)

B returns C∗ = (C0, C1, C2, C3, E) to A. If Z1 = asP1 then the challenge ciphertext is normal;
otherwise if Z1 is a random element of G1 i.e., Z1 = (as+c)P1 then the ciphertext is semi-functional
with µ = c.

Note that, to check whether C∗ is semi-functional or not, B itself could try to decrypt it with
a semi-functional key for some user i ∈ S∗. However since aP2 is not known to B, it cannot create
such a key.

Guess: The adversary returns its guess β′ to B.

If C∗ is normal then B simulates Gamereal and it is semi-functional B simulates Game0. Therefore
if A is able to distinguish between Gamereal and Game0 i.e., if β = β′, then the simulator can solve
the DDH1 problem with advantage

AdvBDDH1 = |Pr[Xreal]− Pr[X0]| = AdvAGamereal
− AdvAGame0 = ε

⊓⊔

40

Lemma 11. If there exists an adversary A making at most q private key queries such that AdvAGamek−1
−

AdvAGamek
= ε, then we can build an algorithm B having advantage at most qε in breaking the as-

sumption DDH2v.

Proof. Let (P1, dP1, dzP1, zx1P1, P2, dP2, x1P1, x2P2, Z2) be the instance of DDH2v that B receives.

Setup: B chooses random elements a, α, y′v , yq1 , . . . , yqn , yw ∈R Zp and sets the parameters as
follows. B guesses a value j′ ∈ {1, . . . , q}. P1 = P1, P2 = P2, Q2,j′ = −dP2 + yqj′P2, Q2,i = yqiP2 for
i 6= j′, W2 = dP2 + ywP2, V2 = −a(x1P2) and V

′
2 = x1P2 + y′vP2 setting τ = ay′v using which one

can compute τP1 = ay′vP1. The public parameters Q1,1, . . . , Q1,n,W1 can be computed since B has
dP1. The remaining parameters required to provide PK to A are computed using a, α and other
elements of the problem instance.

Private Key Queries: The queries before the k-th query are answered with a semi-functional
key and for those after k-th query, normal keys are returned. Suppose that the k-th query is for
the private key of user j.

When j 6= j′, the simulator B returns a normal key to A and randomly guesses whether Z2 =
x1x2P2 or not. In such a case, the adversary has zero advantage in distinguishing between the
games. Also B has zero advantage in solving the DDH2v problem.

Next we consider the case j = j′ which happens with probability at least 1/q. For the k-th query
(for user j) a normal key SKj with elements K ′

1,K
′
2,K

′
3,D,∀i 6=jDi is generated using randomiser

r′ ∈R Zp and then modified as:

K1 = K ′
1 − aZ2, K2 = K ′

2 + Z2 + y′v(x2P2), K3 = K ′
3 + x2P2

D = D′ + (yqj + yw)(x2P2), Di = D′
i + yqi(x2P2) for all i 6= j.

Since j = j′,

D = D′ + (yqj + yw)(x2P2)

= r′(Q2,j +W2) + x2(yqj + yw)P2

= r′(−dP2 + yqjP2 + dP2 + ywP2) + x2(yqj + yw)P2

= (r′ + x2)(yqj + yw)P2

= (r′ + x2)(−d+ yqj + d+ yw)P2

= (r′ + x2)(Q2,j +W2).

This implicitly sets r = r′+x2. If Z2 = x1x2P2 then the key SKj will be normal and otherwise it
will be semi-functional with γ = c where Z2 = (x1x2+ c)P2. Note that a semi-functional ciphertext
for any set containing user j cannot be generated without V ′

1 and thus the obvious way of checking
whether SKj is semi-functional or not is ruled out.

Challenge: B receives two messages M0,M1 and a challenge set S∗. It chooses β ∈R {0, 1},
generates a normal ciphertext with elements C ′

0, C
′
1, C

′
2, C

′
3, E

′ generated using the randomiser
s′ ∈R Zp and changes the ciphertext elements as follows.

C0 = C ′
0 · e(zx1P1, P2)

41

C1 = C ′
1 + x1zP1, C2 = C ′

2 + a(zx1P1) + dzP1, C3 = C ′
3 − ay

′
v(zx1P1) + yw(zx1P1)− y

′
v(dzP1)

E = E′ + (
∑

i∈S∗

yqi)(zx1P1)

setting s = s′ + zx1 and µ = dz. It is easy to check that C3 is well-formed.

Now A will be able to distinguish between Gamek−1 and Gamek if it can decide whether SKj

is normal or semi-functional. If it succeeds B can break the assumption DDH2v with advantage

AdvBDDH2v = |Pr[Xk−1]− Pr[Xk]| ≤ q(Adv
A
Gamek−1

− AdvAGamek
) = qε

⊓⊔

Lemma 12. If there exists an adversary A such that AdvAGameq − AdvAfinal = ε, then we can build

an algorithm B having advantage ε in breaking the DBDH assumption.

Proof. B receives (P1, xP1, aP1, sP1, P2, xP2, aP2, sP2, Z) as an instance of the DBDH problem.

Setup: With b, yv, y
′
v, yq1 , . . . , yqn , yw chosen at random from Zp, B sets the parameters as

P1 = P1, P2 = P2, aP1 = aP1, V2 = yvP2, V
′
2 = y′vP2, τP1 = yvP1 + y′v(aP1)

Q1,1 = yq1P1, . . . , Q1,n = yqnP1,W1 = ywP1, e(P1, P2)
bα = e(xP1, aP2)

implicitly setting a = a, α = xa and τ = yv + ay′v. The remaining parameters can be computed
easily. B returns PP to A.

Private Key Queries: When A asks for the secret key for user j, B chooses at random r, γ′ ∈ Zp

implicitly setting γ′ = x− γ. It then computes a semi-functional key for j as follows.

K1 = γ′(aP2) + rV2 = xaP2 − aγP2 + rV2 = αP2 + rV2 − aγP2

K2 = rV ′
2 − γ

′P2 = rV ′
2 + xP2 + γP2 = rV ′

2 + γP2

K3 = rP2, D = r(Q2,j +W2), Di = rQ2,i for i 6= j.

Observe that B does not know α and hence cannot create a normal key.

Challenge: B receives the challenge set S∗ and two messages M0 and M1 from A. It chooses
β ∈ {0, 1} and µ′ ∈ Zp at random and generates a semi-functional challenge ciphertext as follows.
Here B implicitly sets µ′ = µ+ as.

C0 =Mβ · Z
b,

C1 = sP1, C2 = µ′P1 = asP1 + µP1

C3 = −yv(sP1)− µ
′y′vP1 + ywsP1 = −yvsP1 − asy

′
vP1 − µy

′
vP1 + ywsP1 = −τsP1 − µV

′
1 + sW1

E = (
∑

i∈S∗

yq,i)(sP1)

The challenge ciphertext C∗ = (C0, C1, C2, C3, E, ctag
∗) is returned to A. If Z = e(P1, P2)

xas then
C∗ will be a semi-functional encryption of Mβ to S∗; if Z is a random element of GT then C∗ will be
a semi-functional encryption of a random message. If A can identify whether the game simulated

42

was Gameq or Gamefinal, then B will be able to decide whether Z = e(P1, P2)
xas or not and hence

break the DBDH assumption with advantage

AdvBDBDH = |Pr[Xq]− Pr[Xfinal]| = AdvAGameq − AdvAGamefinal
= ε

⊓⊔

Theorem 5. If the DDH1, DDH2v and DBDH assumptions hold, then no polynomial time ad-

versary A making at most q private key queries can break the security of the broadcast encryption

scheme.

Proof. Using lemmas 10, 11 and 12, we have for any polynomial time attacker A,

AdvABE ≤ |Pr[Xreal]− Pr[X0]|+

q
∑

k=1

(|Pr[Xk−1]− Pr[Xk]|) + |Pr[Xq]− Pr[Xfinal]|

≤ εDDH1 + q2εDDH2v + εDBDH

which is negligible in the security parameter κ. ⊓⊔

43

