Decoding Random Binary Linear Codes in2™/2°: How
1 4+ 1 = 0 Improves Information Set Decoding

Anja Becket, Antoine Joux?, Alexander May*, and Alexander Meurét*

L Université de Versailles Saint-Quentin, Laboratoire BRI
2
DGA
3 Ruhr-University Bochum, Horst Gortz Institute for IT-Seity
anj a. becker @ri sm uvsgq. fr, ant oi ne. j oux@mx. or g
{al ex. may, al exander . meur er }@ ub. de

Abstract. Decoding random linear codes is a well studied problem widimyn
applications in complexity theory and cryptography. Theusity of almost all
coding and LPN/LWE-based schemes relies on the assumptainttis hard
to decode random linear codes. Recently, there has beerepsoip improving
the running time of the best decoding algorithms for binamydom codes. The
ball collision technique of Bernstein, Lange and Petersled the complexity
of Stern’s information set decoding algorithm2$°555™ | Usingrepresentations
this bound was improved &9:°53™ by May, Meurer and Thomae. We show how
to further increase the number of representations and peopmew information
set decoding algorithm with running tin8-0494n,

1 Introduction

The NP-hard problem of decoding a random linear code is oneimost

promising problems for the design of cryptosystems thatsa@ire even in
the presence of quantum computers. Almost all code-bagpdosystems, e.g.
McEliece, rely on the fact that random linear codes are haudketode. In or-
der to embed a trapdoor in coding-based cryptography oralysiarts with

a well-structured secret code and linearly transforms it into a code that is

supposed to be indistinguishable from a random code.

An attacker has two options. Either he tries to distingutsh $crambled
versionC’ of C from a random code by revealing the underlying structure,
see [10, 27]. Or he directly tries to run a generic decodiggrithm on the
scrambled codé”.

Also closely related to random linear codes is the learnarifypwith noise
(LPN) problem that is frequently used in cryptography [1,16. In LPN, one
directly starts with a random linear codé and the LPN search problem is a
decoding problem irC. It was shown in [26] that the popular LPN decision

* Supported by DFG project MA 2536/7-1 and by ICT-2007-216BTRYPT I,
** Ruhr-University Research School, Germany Excellencéaliie [DFG GSC 98/1]

variant, a very useful tool for many cryptographic condinms, is equivalent
to the LPN search problem, and thus equivalent to decodirandom linear
code. The LWE problem of Regev [26] is a generalization of LieNcodes
over a larger field. Our decoding algorithm could be adjustedork for these
larger fields (similar to what was done in [8, 25]). Since tleeatling problem
lies at the the heart of coding-based and LPN/LWE-basedtagyaphy it is
necessary to study its complexity in order to define propeursty parameters
for cryptographic constructions.

Let us start by providing some useful notation. A binary éineodeC' is
a k-dimensional subspace &Y wheren is called the length of the code and
R = % is called its rate. A random-dimensional linear codé’ of lengthn
can be defined as the kernel of a random full-rank mafix ; Fé"*’“*”, i.e.
C = {c € F} | Hc! = 0'}. The matrixH is called a parity check matrix of
C. For ease of presentation, we use the convention that atbrgeare column
vectors which allows as to omit all transpositions of vegtor

The distancel of a linear code is defined by the minimal Hamming distance
between two codewords. Hence every vectawhose distance to the closest
codewordc € C'is at most the error correction capacity = Ld;QlJ can be
uniquely decoded to.

For any pointk = c+e € F that differs from a codeword € C' by an error
vectore, we define itssyndromeass(x) := Hx = H(c + e) = He. Hence,
the syndrome only depends on the error veet@nd not on the codeword
Thesyndrome decoding probleisito recovelk from s(x). This is equivalent to
decoding inC, since the knowledge af suffices to recovet from x.

Usually in cryptographic settings the Hamming weightd$ smaller than
the error correction capability, i.eit(e) < w = |41 |, which ensures unique
decoding. This setting is also known half/bounded distance decodingll
known half distance decoding algorithms achieve their woaise behavior for
the choicewt(e) = w. As a consequence we assumge) = w throughout this
work. In complexity theory, one also studies the so-caflébddecodingwhere
one has to compute a closest codeword to a garéitrary vectorx € F3. We
also give the complexity of our algorithm for full decodirat in the following
we will focus on half-distance decoding.

The running time of decoding algorithms for linear codes faraction of
the three code parametels, k, d|. However, with overwhelming probability
random binary linear codes attain a rdte= % which is close to the Gilbert
Varshamov bound — H(%) [9]. Therefore, we can express the running time
T(n, R) as a function im, R only. One usually measures the complexity of
decoding algorithms asymptotically in the code lengttSince all generic de-
coding algorithms run in exponential time, a reasonableimistthe complexity

coefficientF(R) as defined in [8], i.eF'(R) = lim, . < log T'(n, R) which
suppresses polynomial factors sinde % logp(n) = 0 for any polynomial
p(n). Thus, we havel'(n, R) = 2"F(B)+o(n) < onlF(R)]» for large enough
n. We obtain the worst-case complexity by takingxor<1[F(R)],. Here,
[x], := [« -107] - 107" denotes rounding up € R to a certain number of
p € N decimal places.

Related work. In syndrome decoding one has to compeaititom s(x), which
means that one has to find a weightinear combination of the columns &1
that sums to the syndromsx) overF—*. Thus, a brute-force algorithm would
require to computéZ) column sums. Inspired by the work of Prange [24], it
was already mentioned in the original work of McEliece [2hpdater more
carefully studied by Lee and Brickell [18] that the followirapproach, called
information set decodingields better complexity.

Information set decoding basically proceeds in two stepsngial trans-
formation step and a search step. Both steps are iteratetbopauntil the al-
gorithm succeeds. The initial transformation step startsahdomly permuting
the columns ofH. In particular, this permutes the columns ofH that sum to
s(x), and thus permutes the coordinates of hen we apply Gaussian elimina-
tion on the rows ofI in order to obtain a systematic for(® | I,_), where
Qe Fé"_k)” andI,,_ is the(n — k)-dimensional identity matrix. The Gaus-
sian elimination operations are also appliedt) which results ins(x).

Let us fix an integep < w. In the search step, we compute for every linear
combination ofp columns fromQ its Hamming distance t&(x). If the distance
is exactlyw — p then can we add to oyr columns thosevs — p unit vectors
from I, that exactly yields(x). Undoing the Gauss elimination recovers the
desired error vectas. Obviously, information set decoding can only succeed if
the initial column permutation results in a permutetthat has exactly ones in
its first & coordinates and — p ones in its last: — k£ coordinates. Optimization
of p leads to a running time @-05752n

Leon[19] and Stern[29] observed in 1989 that one can impoovthe run-
ning time when replacing in the search step the brute-fozeech for weights
linear combinations by a Meet-in-the-middle approach. Leffix an integer
¢ < n — k and let us projectQ | I,,_x) to its first/ rows. We split the projec-
tion of Q into two matricedQ, Q, each havingjzi columns. Then we create two
lists £1, Lo that contain all Weighg linear combinations of columns fro®;
andQ., respectively. Moreover, we add the projectiors(f) to every element
in Lo and sort the resulting list.

Then we search for matching elements frdim and £5. These elements
define weightp sums of vectors fronf) that exactly matcl¥(x) in its first¢ co-

ordinates. As before, if the remaining coordinates diffenfs(x) by a weight-
(w — p) vector, then we can correct these positions by suitableventbrs from
I,,_;. The running time of this algorithm @&’-0564n

The ball collision technique of Bernstein, Lange and Pd@riowers this
complexity t020-05559m py allowing a non-exact matching of the elements of
L1 and £,. The same asymptotic complexity can be achieved by tramsfor
ing H into (Q | In_ok_) with Q € Fé"*k)x(k”), as proposed by Finiasz and

4
Sendrier [11]. The list€;, £, then each contain all weight-sums out o

columns. The asymptotic analysis of this variant can beddaor22].

Notice that finding a weight-sum of columns ofQ that exactly matches
5(x) in ¢ coordinates is a vectorial version of the subset sum proliref.
This vectorial version was called tliwlumn match problerby May, Meurer
and Thomae (MMT) [22], who adapted the subset sum reprdsamtachnique
from Howgrave-Graham and Joux [14] to the column match jembl

LetQ € IF(Q”_’“)X(’“M) be as before, whekg, . .. , q;., denote the columns
of Q. A Meet-in-the-Middle approach matches the fitstoordinates via the

identity
dai=) ait+ix), 1)

1€l 1€l

wherel; C [1, 5], I, ¢ [5 + 1,k + (] and|I}| = || = &.

Using the representation technique, one chodsesmd ;> no longer from
half-sized intervals but they both are chosen from the widkrval [1, k& + /]
such thatl; N I, = . Thus, every solution admits (p%) representations
I = I U I,. Notice that increasing the range Bf, I, also increases the size
of the lists; and L from (*1/%) to (517). But constructing only ,7,) -
fraction of each list suffices to let a single representatibthe solution sur-

vive on expectation. This approach leads to an algorithncivhiins in time
90.05364n_

Our contribution. We propose to choosé;| = |I3| = £ + ¢ for somes > 0
such thatZ; N 1| = . So we allow fors columnsq; that appear on both sides
of identity (1). Thus every solutiod is written as the symmetric difference
I =1L Al :==1,U Iy \ (I N I2), where we cancel out all elements in the
intersection off; and .

Let us compare our approach with the realization of the sestep in the
algorithms of Stern [29] and MMT [22]. In Stern’s algorithnoth index sets
I, I are chosen in a disjoint fashion. Thus every solutiammly has a unique
representation as the union 6f and I,. MMT choose fully intersecting sets
I, I, but they only consider a union dfsjointsetsly, I,. Basically, this allows

that every of the elements il = I; U I, can appear either as an elemenf of
or as an element ak, so it can appear on both sides of identity (1).

In contrast, we choose fully intersecting séf{si> and additionally allow
for a union ofintersectingsets. Thus, we additionally allow that even those
k + ¢ — p elements that areutside off = I; U I, may appear iy, I as long
as they appear in both sets, and thus cancel out. This drdfsticcreases the
number of representations, since for random code instaheesimber of zeros
in an error vectoe is much larger than the number of ones. Whereas MMT only
allow to split each 1-entry of into two parts, eithet =0+1orl1 =140, we
also allow to split each 0-entry efinto two parts, eithed = 0+00r0 = 1+1.
Hence our benefit comes from using the equalion 1 = 0 in Fs. Notice that
our approach therefore increases the number of represenpear solution/ to
() - (F577).

Our main algorithmic task that we describe in this work is¢bastruction
of two lists £1, £ such that a single representation of each solution survives
This is realized by a three-level divide-and-conquer atgor that is similar to
Wagner's generalized birthday algorithm [30].

Our enhanced representation technique allows us to significlower the
asymptotic running time ta%0%49347 The following figure shows the curve of
the complexity coefficient for the two most recent algorithd, 22] compared
to our new algorithm.

F(R)
0.05f
o.04f
o.03f
0.02f

0.01-

0.2 0.4 0.6 0.8 1o R=kn

Fig. 1: Comparison of’(R) for code rate9) < R < 1 for bounded distance decoding. Our
algorithm is represented by the thick curve, MMT is the thimve and Ball-collision is the
dashed curve.

2 Generalized Information Set Decoding

We now give a detailed description of a generalized infoiomaset decod-
ing (ISD) framework as described by Finiasz and Sendrie} ii2009. Re-

call that the input to an ISD algorithm is a tup(H, s) whereH € F{")"
is a parity check matrix of a random lineat, k, d]-code ands = He is the
syndrome of the unknown error vectoof weightw := wt(e) = %51].

ISD is a randomized Las Vegas type algorithm that iteratesst@ps until
the solutione is found. The first step is an initial linear transformatidnttee
parity check matrixH, followed by a search phase as the second step.

In the initial transformation, we permute the columnskfby multiply-
ing with a random permutation matrik € F;*". Then we perform Gaus-
sian elimination on the rows dP by multiplying with an invertible matrix
T € F(Q”_k)x(”_k). This yields a parity check matrid = THP in quasi-
systematic form containing@&submatrix in the right upper corner as illustrated
in Fig. 2. Here we denote b’ the projection ofQ to the rows defined by the
index set/ C {1,...,n — k}. Analogously, we denote b); the projection
of Q to its columns. In particular we defing := {1,...,¢} and[¢,n — k] =
{¢,...,n — k}. We denote the initial transformatidnit(H) := THP.

Fig. 2: Parity check matril in quasi-systematic form.

We sets := Ts and look for an ISD-solutio® of (H,§), i.e. we look for an
é satisfyingHé = § andwt(é) = w. This yields a solutiore = Pé for the
original problem. Notice that applying the permutation rnxato € leaves the
weight unchanged, i.evt(e) = w, andTHe = Heé = § = TsimpliesHe = s
as desired. In the search phase, we try to find all error v@étdhat have a
specific weight distribution, i.e. we search for vectord tten be decomposed
into & = (&1,6,) € FA x F~" wherewt(é;) = p andwt(&z) = w — p.
SinceP shufflese’s coordinates into random positiorishas the above weight
distribution with probability

D CSED

()

P = 2

The inverse probability?—! is the expected number of repetitions ustihas

the desired distribution. Then it suffices to find the truadatectore; € F4+*

that represents the position of the figsbnes. To recover the full error vector

é = (é1,62), the missing coordinates, are obtained as the last— k — ¢
coordinates ofQ€&; + §. Hence, the goal in the ISD search phase is to compute
the truncated error vect@ efficiently. For the computation @f; we focus on

the submatrixQ¥ e F5***9. Since we fixed th@-submatrix in the right-
hand part ofH, we ensure thaQé; exactly matches the syndrongeon its
first £ coordinates. Finding a#é; with such a property was called tsabmatrix
matching problenin [22].

Definition 1 (Submatrix Matching Problem). Given a random matrixQ €
ng(km and a target vectos € %, the submatrix matching problem (SMP)
consists in finding a sett of sizep such that the corresponding columns@f
sum up tas, i.e. to findI C [1,k + ¢], |I| = p such that

o(Qr) =) _q; =s, whereg; is thei-th column ofQ.
i€l
Note that the SMP itself can be seen as just another syndreotelohg instance
with parity check matrixQ, syndromes € F and parameter: + ¢, ¢, p].

Our improvement stems from a new algorithnroi@MNMATCH allowing
to solve the SMP more efficiently by using more represemiatif a solutior/.
In Alg. 1 we describe the resulting ISD algorithm. Here weaterfor a vector
x € Fy and an index sel C [n] by x; € IFIQI | the restriction ofx to the
coordinates of .

Algorithm 1 GENERALIZEDISD
Input: Parity check matridH € Fy"~*)*"
Output: Errore € F3

Parameters:p, ¢

, syndromes = He with wt(e) = w.

Repeat
ComputeH — Init(H) ands — Ts whereH = THP, P random permutation.
Computel =COLUMNMATCH(Q!, 51, p).
For all solutionse; € £ do
If wt(Qé1 +8) =w — pthen
Computeé' — (él, é2) € IFS whereey «— (Qé1 + g)[g+17n_k)]
Output e = €P.

LetT := T'(n, R;p,¢) denote the running time of @ UMNMATCH. Then the
running time of GNERALIZEDISD isP~! - T.

3 The Merge-Join Building Block

In order to realize our improved SMP algorithm, we first idimoe an essential
building block that realizes the following task. Given a ma@ < ng(km and
two lists £, and £, containing binary vectorsy, ..., x s, andyi, ...,y |z, of
length% + ¢, we aim to join those elements andy; into a new listC = £; >
L2 whose sum has weight i.e.wt(x; +y;) = p. Furthermore, we require that
the corresponding column-sum & already matches a given target F; on

its right-mostr < ¢ coordinates, i.6(Q(x; +y;)), = t-

L1 Lo
i9 —[010100 011100 | jo
110100 110100
100100 —J1
11 —
X
* x,000
* *IOOO
T
* x1000
* %000
L

Fig. 3: lllustration of the MERGE-JOIN algorithm to obtainl = £, > La.

Searching for matching vecto(Qy;);,; + t and (Qx;);,; accomplishes this
task. We call all matching vectors with weight differentrfre inconsistent so-
lutions Notice that we might also obtain the same vector sum fronmdifferent
pairs of vectors from_q, £5. In this case we obtain a matched vector that we
already have, which we callduplicate During our matching process we filter
out all inconsistent solutions and duplicates.

The matching process is illustrated in Fig. 3. The complégerahm is
given as Alg. 2 and is based on a classical algorithm from Kfti¥] which
realizes the collision search as follows. Sort the firstlégtcographically ac-
cording to ther-bit labelsL; (x;) := (Qx;),) and the second list according to
the labelsLa(y;) := (Qy;)}; + t- We addt to the labels of the second list to
guarantedQ(x; + y;)) = t.

To detect all collisions, one now initializes two countérand j starting at
the beginning of the list€; and £, and pointing at elements; andy;. As
long as those elements do not yield a collision, either j is increased de-
pending on the relative order of the labéls(x;) and L, (y;). Once a collision
L1(x;) = Lo(y;) occurs, four auxiliary counter, i; andjo, j; are initialized
with ¢ andj, respectively. Them, andj; can further be incremented as long as
the list elements retain the same labels, whjland j, mark the first collision
(i, j) between labeld,; (x;) andLy(y;). Obviously, this procedure defines two

Algorithm 2 MERGEJOIN

Input: L1, Lo, r,pandt € F;
Output: £ = L1 < Lo

Lexicographically sort£; and L, according to the labelsli(x:) := (Qx:),; and
La(y;) == (Qy;)m + t.
Set collision counte€ «— 0. Let: — 0 andj — (|£2] — 1)
While i < |£1| andj < |£2| do
If L1(x:) <iew L2(y;) theni + +
If L1 (Xz) Slex Lg(y]‘) thenj + +
If Ll(Xi) = Lg(yj) then
Letio,il — 1 andjo,jl —]
While i1 < |[,1| and L, (Xil) =1 (Xio) doi; + +
While j1 < [£2|andLz(y;,) = L2(yj,) doji + +
For ¢ «— iptoi; — 1do
For j « jotoji — 1do
C=C+1
Insert collisionx; + y; into list £ (unless filtered out)
Leti «— 41,7 «— 71
OutputL, C.

setsCy = {x;,,...,%;, } andCy = {yj,,...,¥; } such that all possible com-
binations yield a collision, i.e. the sét; x (5 can be added to the output list
L.

This procedure is then continued with— ¢; andj < j; until one of the
countersi, j arrives at the end of a list. As mentioned before, we removhen
fly inconsistent solutions with incorrect weight (x; + y;) # p and duplicate
elements; +y; = x; + yo.

Note that we introduced a collision countérwhich allows us to take into
account the time that is spent for removing inconsistenttgmis and duplicates.
The total running time oMERGE-JOIN is given by

T = O (max {|L1],|L2|,C}) .

Assuming uniformly distributed labels; (x;) andL,(y;) it holds thatE [C] =
L] - |Lof - 27T

4 Our New Algorithm for Solving the Submatrix Matching
Problem

As explained in Section 2, improving the submatrix matchpngblem (SMP)
automatically improves information set decoding (ISD).

Our new SMP algorithm is inspired by usiegtended representatiosm-
ilar to Becker, Coron and Joux [2] for the subset sum problem.

In the MMT algorithm [22] a weigh{» error vectore € IF’;” is written as
the sume; + eo. However, MMT only allow that every 1-entry splits to either
a 1-entry inx; and a O-entry iy, or vice versa. lfvt(e;) = wt(ez) = & this
allows for (psz) different representations as a sum of two vectors.

Our key observation is that we can also split thentries ofe into either
(0,0) or (1,1). Hence if we choosevt(e;) = wt(ez) = § + ¢ then we gain
a factor of(k+f‘p), namely the number of positions where we split(asl).
Notice that in all coding-based scenarios(e) is relatively small compared
to £ andn. Thuse contains many more zeros than ones, from which our new
representation heavily profits.

To solve the SMP, we proceed as follows. llet [k + /] be the index set
of cardinalityp with o(Q;) = s that we want to find.

We represent by two index setd; and i, of cardinalityg 4 ¢ contained in
the whole intervalk + (] and require/; ands to intersect in a fixed number of
e coordinates as illustrated in Fig. 4.

|| =p

L =p/2+e

e | Laniiy
///////////

Fig. 4: Decomposition of an index s&fnto two overlapping index sets.

The resulting index sdtis then represented as the symmetric differehe®l, :=
(I1 U Iy) \ ({1 N I2) which yields an index sek of cardinalityp as long as/;
andI; intersect in exactly positions.

It turns out that the optimal running time can be obtained fyyiydng the
representation technigue twice, i.e. we introduce furtkeresentations of the
index sets/; and; on a second computation layer.

4.1 Our COLUMNMATCH Algorithm

Our algorithm can be described as a computation tree of depth, see Fig. 7
for an illustration. We enumerate the layers from bottomay, i.e. the third
layer identifies the initial computation of disjoint basstdi3; and 5, and the
zero layer identifies the final output list

Recall that we aim to find an index setof sizep with ., q; = s. We
introduce parameters; ande, representing the number of additiongs we

Layer 3 Disjoint base listd3;,; andB; 2 fori =1,...,4 weight

s \ s 2
N s N s
N s N s

weight
Layer 2 L s c? L p2="5 +e
> >
T T
1 l weight
Layer 1 £ ra Llé” Iry =246
1 1
| |
>
weight

|
|

Layer O L p
|

Fig. 5: lllustration of the @ LUMNMATCH algorithm.

allow on the first and second layer, respectively. In theofeihg description,
we equip every object with an upper index that indicatesatautation layer,
eg.a Iistcf) is contained in the second layer.

On the first layer, we search for index séﬁé) andIQ(” in [k + ¢] of size
p1 := § +¢e1 which intersect in exactly; coordinates such thdt= Ifl)AIQ(”.
In other words, we create lists of binary vecteﬁé) andegl) of weightp; and
search for tuple$e(11),e(21)) such thatzvt(e(ll) —|—e(21)) =p andQ(e(ll) +e§1)) =
S.

Note that the number of tuplée(ll),e(;)) that represent a single solution vector
eis

mivtie) = (5)(F777) @)

2 €1
To optimize the running time, we impose a constraint-pmns log, Ry coordi-

nates of the corresponding vectmgl) such that we can still expect to find
one representation of the desired solutéon

More precisely, the algorithm proceeds as follows. We fipstafirandom

vectortgl) er Fy', sett(Ql) =S + tgl) and compute two lists

L = (e e FE | wi(e;) = pr and(Qel)ppyy =tV fori = 1,2.

Observe that any two elemer‘éél) € Egl), i = 1,2, already fulfill by con-
struction the equatio(nQ(egl) + egl)))[m = s, I-e. they already match the
syndromes on r; coordinates. In order to solve the SMP, we are interested in
a solutione = e(11) + e(21) that matches the syndromnseon all / positions and
has weighexactlyp. Onceﬁgl) andﬁgl) have been created, this can be accom-
plished by calling the MRGE-JOIN algorithm from Sect. 3 on inpul’,gl),ﬁ(;)
with targets, weightp and parametet.

It remains to show how to construﬁ\(ll), Egl).

We represenégl) as a sum of two overlapping vectoegll,e(zf) both of
weightp, := B + &5, i.e. we require the two vectors to intersect in exaetly
coordinates. Altogether, the solutieris now decomposed as

(1) (1) (2) (2)

e=e; +e =e +e (2) (2).

+ey +e;

Clearly, there are

D1 k+¢—p
R ?; = .
2(177 ,81782) <p1/2> (£)

many representations f@él) wherep; = £ + ;. Similarly to the first layer,
this allows us to fixs = log Rs coordinates of the partial sun@el@) to some
target value$§2). More precisely, we draw two target vectm@,tgf) € F?,
settg) = (tg-l))[m + tg)_l for j = 1,2, and compute four lists

£ = (e e Pt | wi(el”) = py and(Qe!?), =t fori = 1,... 4,

2]

Notice that by construction all combinations of two elensédmm either£(12), £§2)

or £g2),£f) match their respective target vechﬂ’) onry coordinates.

Creating the lists £§2), cee Eff). We exemplary explain how to creaféQ).
The remaining lists can be constructed analogously. Weyapplassical Meet-
in-the-middle collision search, i.e. we decompegé aSe?’ =1y + z by two
non-overlapping vectorg andz of lengthk + ¢. To be more precise, we first

choose a random partition ¢f + ¢] into two equal sized setB; and P, i.e.
[k +] = Py U P with |Py| = | P,| = &£, and forcey to have its2 1-entries
in P; andz to have its%2 1-entries inP,. That is we construct two base lists

Br = {y € F§* | wi(y) = 2 andy, = 0Vi € P}

and
By = {z € F"*! | wt(z) = % andz; = OVi € Py}

We invoke MERGEJOIN to computecf) = MERGEJOIN (B, B, Tg,pg,t(12)).
Let S5 = |B1| = |B2| denote the size of the base lists anddgtbe the total
number of matched vectors that occur iERGEIOIN (since the splitting is dis-
joint, neither duplicates nor inconsistencies can ariBe¢n MERGEJOIN needs
time

Tg(p, @; €1, 82) =0 (max {53, Cg}) .

Clearly, we have

o . ((k+1£)/2
53 = 53(1), f, 61352) - < p2/2 .
Assuming uniformly distributed partial sums we obtain
52
E[Cs] = 2—?; :

We would like to stress that decompos'mﬁ) into x andy from disjoint sets?;

and P, introduces a probability of loosing the vecm&?) and hence the solution
e = e§2) + e§2) + eff) + eff). For a randomly chosen partitioR;, P», the

probability thate(12) equally distributes it§-entries overP; and P is given by

(o)
Pspiit = I(Zifg)
b2

which is asymptotically inverse-polynomial im. Choosing independent par-
titions P; 1, P; » and appropriate base list3; 1, B; » for all four lists El@), we
can guaranteendependensplitting conditions for all theal(z) yielding a total
splitting probability ofPspiir = (Psp|it)4 which is still inverse-polynomial im.

After having created the Iistéf), i = 1,...,4 on the second layer, two
more applications of the FRGEJOIN algorithm suffice to compute the lists
Eﬁl) on the first layer. Eventually, a last application 0ERGEJOIN yields £,
whose entries are solutions to the SMP. See Alg. 3 for a cdmpkeudocode
description.

Algorithm 3 COLUMNMATCH

Input: Q € FX**+ s cFs, p<k+ ¢
Output: List £ of vectors ine € F5™ with wt(e) = pandQe = s
Parameters: Choose optimat1, e2 and seip1 = p/2 + ¢1 andpz = p1/2 + e2.

Choose random partitions; 1, P; » of [k + ¢] and create the base lidss; andB; 2.
Chooset") € F5! and set”) = s;,,; + t{".
Chooset'”, t5” e F32. Sett”) = (£1")) + t2 andt? = (£57) () + t5.
ComputeL!® = MERGE-JOIN(B; 1, Bia, 72, p2, t\7) fori = 1,... 4.
ComputeL!") = MERGEJOIN(LSY |, £ 71, p1, 8V fori =1, 2.
Computel = MERGE-JOIN(L{", £5V 0, p, s).
Output L.

It remains to estimate the complexity obCuMNMATCH as a function of the
parametersp, ¢; 1, e2), where(e1, £2) are optimization parameters. Notice that
the values-; andp; are fully determined byp, ¢; 1, e2). The base list$; and

Bs are of sizeSs(p, ¢;¢1,e2) as defined above.

The three consecutive calls to teERGE-JOIN routine create Iist$Z§2) of

size Sy (p, £; 21,), lists L1 of size Sy (p, £; 21, 2) and the final listC (which
has not to be stored). More precisely, we obtain

k+¢

Si(p,l;e1,62) =E {\Egi)]} = () -2 " for¢ =1, 2.

Here we assume uniformly distributed partial SLQISZ(]),

Let C; for i = 1,2,3 denote the number of all matching vectors (includ-
ing possible inconsistencies or duplicates) that occunertiiree MERGE-JOIN
steps. If we set3 = 0 andry = ¢, then

E[C)] = §2 . 2ni—Ti1,

Following the analysis of MRGEJOIN in Sect. 3, the time complexiti€s; of
the three MERGE-JOIN steps is given by

Ti(p,4; €1, €2) = max {S;, Cs} .
The overall time and space complexity is thus given by
T(p,@; 81,82) :maX{Tg,TQ,Tl} (4)

and
S(p,l;e1,e2) = max {Ss, S2, 51}

For optimizingT'(p, ¢; 1, 2) one has to compute th&;. Heuristically, we can
assume that th€’; achieve their expected values up to a constant factor. Since
our heuristic analysis also relies on the fact that progegartial sums of the
form (Qe);,, yield uniformly distributed vectors if, a proper theoretical anal-
ysis needs to take care of a certain class of malformed irgoitycheck matri-
cesH. We show how to obtain a provable variant of our algorithnt wnarks for

all but a negligible amount of input matricék in App.A. The provable variant
simply aborts computation if th€; differ too much from their expectation.

5 Comparison of Asymptotic Complexity

We now show that we improve information set decoding by aroegptial fac-
tor in comparison to the latest results [4, 22]. To compugedbmplexity coef-
ficient F'(R) for our algorithm for a fixed code ratg, we need to optimize the
parameter®, ¢, 1 ande, such that the expression

T(p,l;e1,€2) - P(p,)" (5)
is minimized under the natural constraints

0 </ <min{n —k,n—k—w—p}

0 <p < min{w, k + ¢}
O<e1<k+{l-—p

0<eg<k+L—p1

0 <Ra(p,l;e1,e2) < Ri(p,lye1,e2) < L .

The time per iteratiorf” is given by Eq. (4) and the number of iteratioRs !

equals((k;é) (";f;ﬁ/(g)) " as given in Eq. (2).

For random linear codes, we can reldte= k/n and D = d/n via the
Gilbert-Varshamov bound. Thus asymptotically we obtAin= H~'(1 — R) +
o(1), whereH is the binary entropy function. Fdmounded distance decoding
we setlV := w/n = D/2. We numerically determined the optimal parameters
for several equidistant rate® and interpolated®'(R). To calculateF'(R) we
make use of the well known approximati¢ff;) = 2/ (B/a)nto(n) The results
are shown in Fig. 1.

Forfull decoding in the worst-case we need to decode a highest weight coset
leader of the cod€’, its weightw corresponds to theovering radiusf C which
is defined as the smallest radiusuch that”' can be covered by discrete balls
of radiusr. The Goblick bound [12] ensures that- nH (1 — R) + o(n) for
all linear codes. Independently, Blinovskii [6] and LevitirOJZurther proved

1o R=k/m

I I I I
0.2 0.4 0.6 0.8

Fig. 6: F'(R) for full decoding. Our algorithm is represented by the ttéokve, MMT is the thin
curve and Ball-collision is the dashed curve.

that this bound is tight foalmost alllinear codes, i.e: = nH (1 —R)+o(n).
This justifies our choicé)’ = H~!(1 — R) for the full decoding scenario.

We conclude by taking a closer look at therst-casecomplexities of decoding
algorithms for random linear codes and a typical McEliedgrggwith relative
distanceD = 0.04 and rateR = 0.7577. Notice that three out of the four
parameter sets for security levels between 80 and 256 hit[Bpclosely match
these code parameters.

half-dist. full dec. McEliece
time space time space time space

Lee-Brickell 0.05752 - 0.1208 - 0.0857 -
Stern 0.05564 | 0.0135 0.1167 | 0.0318 0.0809 | 0.0327
Ball-collision|| 0.05559 | 0.0148 0.1164 | 0.0374 0.0807 | 0.0348
MMT 0.05364 0.0216 0.1116 0.0541 0.0760 0.0482
Our algorithnj| 0.04934 | 0.0286 0.1019 | 0.0769 0.0672 | 0.0586

Table 1: Comparison of worst-case complexity coefficieatg, the time columns represent the
maximal complexity coefficient’(R) for 0 < R < 1.

All algorithms were optimized for speed, not for memory. Baromparison of
full decoding with fixed memory, we can easily restrict BadHision, MMT and
our new algorithm to the space complexity coefficierit317 of Stern’s algo-
rithm which holds fork ~ 0.446784. In this case, we obtain time complexities
Foan(R) = 0.1163, Fumr (R) = 0.1129 and Fuy(R) = 0.1110, which shows
that our improvement is not a pure time memory tradeoff.

For a better verifiability of our optimization and the regdt complexi-
ties, we make all data including the Mathematica code plybhwailable at

http://cits.rub. de/ personen/ meurer. htm .If needed, this code
may also be used to compute optimal parameters for arbit@ig parameters.

Acknowledgment. We would like to thank Dan Bernstein for several excellent
comments, in particular he proposed to use random padifamngenerating the
base lists in the GLUMNMATCH algorithm.

References

10.

11.

12.

13.

14.

15.

M. Alekhnovich. More on Average Case vs Approximation @exity. In 44th Symposium
on Foundations of Computer Science (FOCS), pages 298—-803, 2

A. Becker, J.-S. Coron, and A. Joux. Improved genericritlyos for hard knapsacks. ElU-
ROCRYPTvolume 6632 ol ecture Notes in Computer Sciengages 364-385. Springer,
2011.

D.J. Bernstein, T. Lange and C. Peters. Attacking and ridfig the McEliece Cryp-
tosystem. IrPost-Quantum Cryptography, Second International WorgsR& Crypto 2008
pages 31-46. Springer, 2008.

D. J. Bernstein, T. Lange, and C. Peters. Smaller deccehkpgnents: ball-collision de-
coding. INCRYPTQvolume 6841 of_ecture Notes in Computer Scieng@ages 743-760.
Springer, 2011.

R. J. M. Elwyn R. Berlekamp and H. C. van Tilborg. On the neme intractability of certain
coding problems. IREEE Transactions on Information Thegmolume 24, pages 384-386,
1978.

V.M. Blinovskii. Lower asymptotic bound on the number wfdar code words in a sphere
of given radius inFy . In Probl. Peredach. Inform., vol 23, pages 50-53, 1987.

A. Canteaut and F. Chabaud. A new algorithm for finding minn-weight words in a linear
code: Application to mceliece’s cryptosystem and to narsemse bch codes of length 511.
IEEE Transactions on Information Theo#4(1):367—-378, 1998.

J.T. Coffey and R.M. Goodman. The complexity of inforroatset decoding. IMEEE
Transactions on Information Thegryolume 36, pages 1031-1037, 1990.

J.T. Coffey and R.M. Goodman. Any code of which we cannatktlis good. InlIEEE
Transactions on Information Theqryolume 36, 1990.

J.-C. Faugeére, A. Otmani, L. Perret, and J.-P. TillleBistinguisher for High Rate McEliece
Cryptosystems. I'YACC 2010full version available as eprint Report 2010/331, 2010.

M. Finiasz and N. Sendrier. Security bounds for the aesfgcode-based cryptosystems.
In M. Matsui, editor,Asiacrypt 2009volume 5912 ol ecture Notes in Computer Science
pages 88-105. Springer, 2009.

T.J. Goblick, Jr. Coding for a discrete information ssuwith a distortion measure. Ph.D.
dissertation, Dept. of Elect. Eng., M.I.T., Cambridge, MAR62.

N.J. Hopper and M. Blum. Secure Human Identificationdtmais. InLecture Notes in Com-
puter Sciencevolume 2248, Proceedings #idvances in Cryptology - ASIACRYPT 2001
pages 52-66. Springer 2001.

N. Howgrave-Graham and A. Joux. New generic algorithonshérd knapsacks. |BU-
ROCRYPTvolume 6110 oL ecture Notes in Computer Sciengages 235-256. Springer,
2010.

J. P. Jordan. A variant of a public key cryptosystem basegoppa codesSIGACT News
15:61-66, January 1983.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

20.

30.

E. Kiltz, K. Pietrzak, D. Cash, A. Jain and D. Venturi. Eiffint Authentication from Hard
Learning Problems. IAdvances in Cryptology - EUROCRYPT 20fidges 7-26. Springer,
2001.

D. Knuth. Art of Computer Programming, Volume 3: Sorting and Seaghiddison-
Wesley Professional, 2 edition, 1998.

P. J. Lee and E. F. Brickell. An observation on the seguafitMcEliece’s public-key cryp-
tosystem. IPAdvances in Cryptology - EUROCRYPT 1988ges 275-280, 1988.

J. S. Leon. A probabilistic algorithm for computing nmmim weights of large error-
correcting codeslEEE Transactions on Information Thegi34(5):1354 — 1359, 1988.

L.B. Levitin. Covering radius of almost all linear codsgisfies the Goblick bound. IEEE
Internat. Symp. on Information Theoigobe, Japan, 1988.

R. J. McEliece. A public-key cryptosystem based on akjelroding theory. Idet Propul-
sion Laboratory DSN Progress Repdi2—44, pages 114-116, 1978.

A. May, A. Meurer and E. Thomae. Decoding Random Lineade8anO(2°-%%4") In
Asiacrypt 2011Springer, 2011To appear.

P. Q. Nguyen, I. E. Shparlinski, and J. Stern. Distridoutif modular sums and the security
of the server aided exponentiation. Brogress in Computer Science and Applied Logic
volume 20 offFinal proceedings of Cryptography and Computational Nunitieeory work-
shop, Singapore (1999pages 331-224, 2001.

E. Prange. The Use of Information Sets in Decoding Cycbides. IRE Transaction on
Information Theoryvolume 8, issue 5, pages 5-9, 1962.

C. Peters. Information-Set Decoding for Linear Codes By. In Post-Quantum Cryptog-
raphy, Third International Workshop, PQCrypto 20&ages 81-94. Springer, 2010.

O. Regev. On lattices, learning with errors, randomalineodes, and cryptography. In
Proceedings of the 37th Annual ACM Symposium on Theory opQamy (STOC) pages
84-93, 2005.

N. Sendrier. Finding the permutation between equivdiesar codes: The support splitting
algorithm INIEEE Transactions on Information Theomolume 46, pages 1193-1203, 2000.
N. Sendrier. On the security of the McEliece public-kegptosystem. In M. Blaum, P. Far-
rell, and H. van Tilborg, editordnformation, Coding and Mathematicpages 141-163.
Kluwer, 2002. Proceedings of Workshop honoring Prof. BoliENere on his 60th birthday.
J. Stern. A method for finding codewords of small weight.Ptoceedings of the 3rd In-
ternational Colloquium on Coding Theory and Applicatippages 106—113, London, UK,
1989. Springer-Verlag.

D. Wagner. A generalized birthday problem QRYPTO’2002pages 288—-303, 2002.

A A Provable Variant of COLUMNMATCH

In order to obtain a provable variant of theoQUMNMATCH algorithm, we
consider the following variant ®ovABLECM. Recover that one invocation of
CoLUMNMATCH requires the random choice of three target vectélr)se F3!
andt(12), (2) e F2.

Essentlally, in ROVABLECM we repeatedly invoke GLUMNMATCH with
different independent target valueg) and add some artificial abort criteria
that prevent the lists in the computation from growing urestpdly strong.
More detailed, for an integer parametére N, we first choose random tar-
get valuest(l-) € IF(”) andtf]).,tz(,f,)€ € F3? for 1 < i,j,k < 84 and invoke

COLUMNMATCH(t?Z),th), (?j)) forall 1 < 4,5,k < 84 until a solution is
found. Furthermore, every single computation is abortedoas as a list ex-
ceeds its expected size by more than a fact@dffor a fixed constant > 0.

We now aim to prove the following

Theorem 1. For everyy > 0, the modified algorithniPROVABLECM outputs
a solutione € F5™, i.e. Qe = s andwt(e) = p, for a fraction of at least

1—60-2-7" randomly chose® € F5* ™ with probability atleasti— % > 3
intimeO (T(p, 4;e1,e2) - 227™) whereT (p, £;¢1, 2) is defined as in Eq.(4).

We make use of the following helpful theorem that can be oabthiby a
straightforward modification of the result in [23, Theorerf]3

Theorem 2. For a fixed matrixQ € Fy'*", a target vectort € F}* and an
arbitrary setB c FZ7, we define

Pq(B,t) == {xeB : Qx =t}

el
Then for allB C F% it holds that

2m —1

QeFrn te]Fm

The high-level idea for the proof of Theorem 1 is to considher three dif-
ferent nodes of decomposition as illustrated in Fig. 7. Fengsuch node, we
introduce a random variabl&; indicating whether the algorithm fails at this
point or not. The overall failure probability can then be eppounded by using
the union bound, i.ePr [PROVABLECM fails| < > Pr [X; = 0]. Hence, we
need to upper bound the failure probability of every smgjden For this pur-
pose, we divide every; into three events?(] and setX; :=]_[XJ We now
define these events exemplarily for nalle.

— X{ represents the event that for at least one choice o{fttit}} the solution
e € L has at least one representation= e; + ex with (Qey),,| = tglj)
and(Qe2)[r1] =Sy T t()

— X? represents the event that for at least one choice o{ttﬁ%} the size of

lists Egl) and Egl) do not exceed the expected value by more than a factor
of 27",

— X3 represents the event that for at least one choice o{fﬁﬁ}} total number
of collisionsC1, see Sect.4, does not exceed it's expected value by more than
a factor of27".

D\\\XQ D D X3 D

- ~ -

ﬁgl) [’él)

Fig. 7: lllustration of different decomposition nodes.

Basically, all these events depend on the structure of thex@ and we
need to exclude some pathological cases yielding clustiséributionsQe (for
example the all-zero matrix). Hence, for all three eventdefine appropriate
sets of “good” and “bad” matriceQ which eventually allow to upper bound the
failure probabilities of these events. Applying Theorenll@es to upper bound
the fraction of bad matrices. The following three lemmastcnthe amount of
bad matriceqQ and target values' J)for everyX] We omit the proofs which
can be adopted from the proof of [2, Theorem 2] in a straightfmd way.

Lemma 1. For all buta — A 7 fraction of theQ’s, the proportion of bad’s w.r.t.
to X} is smaller than/3L.

Lemma 2. For all but a (A 1) fraction of theQ’s, the proportion of bad's

w.r.t. to X7 is smaller thans; .

Lemma 3. For all but a 1—/? fraction of theQ's, the proportion of bad’s w.r.t.
to X7 is smaller than;.

Using these lemmas, one can easily show that the totaldracfi badQ’s for
oneof the three nodes can be bounded by
1 2A 16 20

— < — ford >
A-1 T (aotpe A s erd=r

and hence the total fraction of b&Qf's for all three nodes is upper bounded by
%. Furthermore, considering godg's, the proportion of bad’s for onenode

is given by
A—1 1 1 1

A Toataa 1A
and hence we have

8/
Pr [X; = 0] = Pr[all 84 manyt’s bad < (1 - ﬁ) <e?.

Eventually this yields
. 3
Pr [PROVABLECM fails | < -
e
for every goodQ as stated in the theorem. Notice, that the worst-case rgnnin

time of PROVABLECMis given by a total number of? = 237" invocations of
COLUMNMATCH.

