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Abstract. Decoding random linear codes is a well studied problem with many
applications in complexity theory and cryptography. The security of almost all
coding and LPN/LWE-based schemes relies on the assumption that it is hard
to decode random linear codes. Recently, there has been progress in improving
the running time of the best decoding algorithms for binary random codes. The
ball collision technique of Bernstein, Lange and Peters lowered the complexity
of Stern’s information set decoding algorithm to20.0556n . Usingrepresentations
this bound was improved to20.0537n by May, Meurer and Thomae. We show how
to further increase the number of representations and propose a new information
set decoding algorithm with running time20.0494n .

1 Introduction

The NP-hard problem of decoding a random linear code is one ofthe most
promising problems for the design of cryptosystems that aresecure even in
the presence of quantum computers. Almost all code-based cryptosystems, e.g.
McEliece, rely on the fact that random linear codes are hard to decode. In or-
der to embed a trapdoor in coding-based cryptography one usually starts with
a well-structured secret codeC and linearly transforms it into a codeC ′ that is
supposed to be indistinguishable from a random code.

An attacker has two options. Either he tries to distinguish the scrambled
versionC ′ of C from a random code by revealing the underlying structure,
see [10, 27]. Or he directly tries to run a generic decoding algorithm on the
scrambled codeC ′.

Also closely related to random linear codes is the learning parity with noise
(LPN) problem that is frequently used in cryptography [1, 13, 16]. In LPN, one
directly starts with a random linear codeC and the LPN search problem is a
decoding problem inC. It was shown in [26] that the popular LPN decision
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variant, a very useful tool for many cryptographic constructions, is equivalent
to the LPN search problem, and thus equivalent to decoding a random linear
code. The LWE problem of Regev [26] is a generalization of LPNto codes
over a larger field. Our decoding algorithm could be adjustedto work for these
larger fields (similar to what was done in [8, 25]). Since the decoding problem
lies at the the heart of coding-based and LPN/LWE-based cryptography it is
necessary to study its complexity in order to define proper security parameters
for cryptographic constructions.

Let us start by providing some useful notation. A binary linear codeC is
a k-dimensional subspace ofF

n
2 wheren is called the length of the code and

R := k
n is called its rate. A randomk-dimensional linear codeC of lengthn

can be defined as the kernel of a random full-rank matrixH ∈R F
(n−k)×n
2 , i.e.

C = {c ∈ F
n
2 | Hct = 0t}. The matrixH is called a parity check matrix of

C. For ease of presentation, we use the convention that all vectors are column
vectors which allows as to omit all transpositions of vectors.

The distanced of a linear code is defined by the minimal Hamming distance
between two codewords. Hence every vectorx whose distance to the closest
codewordc ∈ C is at most the error correction capacityω = ⌊d−1

2 ⌋ can be
uniquely decoded toc.

For any pointx = c+e ∈ F
n
2 that differs from a codewordc ∈ C by an error

vectore, we define itssyndromeass(x) := Hx = H(c + e) = He. Hence,
the syndrome only depends on the error vectore and not on the codewordc.
Thesyndrome decoding problemis to recovere from s(x). This is equivalent to
decoding inC, since the knowledge ofe suffices to recoverc from x.

Usually in cryptographic settings the Hamming weight ofe is smaller than
the error correction capability, i.e.wt(e) ≤ ω = ⌊d−1

2 ⌋, which ensures unique
decoding. This setting is also known ashalf/bounded distance decoding. All
known half distance decoding algorithms achieve their worst case behavior for
the choicewt(e) = ω. As a consequence we assumewt(e) = ω throughout this
work. In complexity theory, one also studies the so-calledfull decodingwhere
one has to compute a closest codeword to a givenarbitrary vectorx ∈ F

n
2 . We

also give the complexity of our algorithm for full decoding,but in the following
we will focus on half-distance decoding.

The running time of decoding algorithms for linear codes is afunction of
the three code parameters[n, k, d]. However, with overwhelming probability
random binary linear codes attain a rateR := k

n which is close to the Gilbert
Varshamov bound1 − H( d

n) [9]. Therefore, we can express the running time
T (n,R) as a function inn,R only. One usually measures the complexity of
decoding algorithms asymptotically in the code lengthn. Since all generic de-
coding algorithms run in exponential time, a reasonable metric is the complexity



coefficientF (R) as defined in [8], i.e.F (R) = limn→∞
1
n log T (n,R) which

suppresses polynomial factors sincelim 1
n log p(n) = 0 for any polynomial

p(n). Thus, we haveT (n,R) = 2nF (R)+o(n) ≤ 2n⌈F (R)⌉ρ for large enough
n. We obtain the worst-case complexity by takingmax0<R<1⌈F (R)⌉ρ. Here,
⌈x⌉ρ := ⌈x · 10ρ⌉ · 10−ρ denotes rounding upx ∈ R to a certain number of
ρ ∈ N decimal places.

Related work. In syndrome decoding one has to computee from s(x), which
means that one has to find a weight-ω linear combination of the columns ofH
that sums to the syndromes(x) overFn−k

2 . Thus, a brute-force algorithm would
require to compute

(n
ω

)

column sums. Inspired by the work of Prange [24], it
was already mentioned in the original work of McEliece [21] and later more
carefully studied by Lee and Brickell [18] that the following approach, called
information set decoding, yields better complexity.

Information set decoding basically proceeds in two steps, an initial trans-
formation step and a search step. Both steps are iterated in aloop until the al-
gorithm succeeds. The initial transformation step starts by randomly permuting
the columns ofH. In particular, this permutes theω columns ofH that sum to
s(x), and thus permutes the coordinates ofe. Then we apply Gaussian elimina-
tion on the rows ofH in order to obtain a systematic form(Q | In−k), where

Q ∈ F
(n−k)×k
2 andIn−k is the(n − k)-dimensional identity matrix. The Gaus-

sian elimination operations are also applied tos(x) which results iñs(x).
Let us fix an integerp < ω. In the search step, we compute for every linear

combination ofp columns fromQ its Hamming distance tõs(x). If the distance
is exactlyω − p then can we add to ourp columns thoseω − p unit vectors
from In−k that exactly yield̃s(x). Undoing the Gauss elimination recovers the
desired error vectore. Obviously, information set decoding can only succeed if
the initial column permutation results in a permutede that has exactlyp ones in
its firstk coordinates andω− p ones in its lastn− k coordinates. Optimization
of p leads to a running time of20.05752n.

Leon[19] and Stern[29] observed in 1989 that one can improveon the run-
ning time when replacing in the search step the brute-force search for weight-p
linear combinations by a Meet-in-the-middle approach. Letus fix an integer
ℓ < n − k and let us project(Q | In−k) to its firstℓ rows. We split the projec-
tion of Q into two matricesQ1, Q2 each havingk2 columns. Then we create two
listsL1,L2 that contain all weight-p2 linear combinations of columns fromQ1

andQ2, respectively. Moreover, we add the projection ofs̃(x) to every element
in L2 and sort the resulting list.

Then we search for matching elements fromL1 andL2. These elements
define weight-p sums of vectors fromQ that exactly match̃s(x) in its first ℓ co-



ordinates. As before, if the remaining coordinates differ from s̃(x) by a weight-
(ω− p) vector, then we can correct these positions by suitable unitvectors from
In−k. The running time of this algorithm is20.05564n.

The ball collision technique of Bernstein, Lange and Peters[4] lowers this
complexity to20.05559n by allowing a non-exact matching of the elements of
L1 andL2. The same asymptotic complexity can be achieved by transform-
ing H into (Q | 0

In−k−ℓ
) with Q ∈ F

(n−k)×(k+ℓ)
2 , as proposed by Finiasz and

Sendrier [11]. The listsL1,L2 then each contain all weight-p
2 sums out ofk+ℓ

2
columns. The asymptotic analysis of this variant can be found in [22].

Notice that finding a weight-p sum of columns ofQ that exactly matches
s̃(x) in ℓ coordinates is a vectorial version of the subset sum problemin F

ℓ
2.

This vectorial version was called thecolumn match problemby May, Meurer
and Thomae (MMT) [22], who adapted the subset sum representation technique
from Howgrave-Graham and Joux [14] to the column match problem.

LetQ ∈ F
(n−k)×(k+ℓ)
2 be as before, whereq1, . . . ,qk+ℓ denote the columns

of Q. A Meet-in-the-Middle approach matches the firstℓ coordinates via the
identity

∑

i∈I1

qi =
∑

i∈I2

qi + s̃(x) , (1)

whereI1 ⊂
[

1, k+ℓ
2

]

, I2 ⊂
[

k+ℓ
2 + 1, k + ℓ

]

and|I1| = |I2| =
p
2 .

Using the representation technique, one choosesI1 andI2 no longer from
half-sized intervals but they both are chosen from the wholeinterval [1, k + ℓ]
such thatI1 ∩ I2 = ∅. Thus, every solutionI admits

( p
p/2

)

representations
I = I1 ∪ I2. Notice that increasing the range ofI1, I2 also increases the size
of the listsL1 andL2 from

((k+ℓ)/2
p/2

)

to
(

k+ℓ
p/2

)

. But constructing only a
( p
p/2

)−1
-

fraction of each list suffices to let a single representationof the solution sur-
vive on expectation. This approach leads to an algorithm which runs in time
20.05364n.

Our contribution. We propose to choose|I1| = |I2| =
p
2 + ε for someε > 0

such that|I1 ∩ I2| = ε. So we allow forε columnsqi that appear on both sides
of identity (1). Thus every solutionI is written as the symmetric difference
I = I1∆I2 := I1 ∪ I2 \ (I1 ∩ I2), where we cancel out allε elements in the
intersection ofI1 andI2.

Let us compare our approach with the realization of the search step in the
algorithms of Stern [29] and MMT [22]. In Stern’s algorithm both index sets
I1, I2 are chosen in a disjoint fashion. Thus every solutionI only has a unique
representation as the union ofI1 and I2. MMT choose fully intersecting sets
I1, I2, but they only consider a union ofdisjointsetsI1, I2. Basically, this allows



that every of thep elements inI = I1 ∪ I2 can appear either as an element ofI1

or as an element ofI2, so it can appear on both sides of identity (1).
In contrast, we choose fully intersecting setsI1, I2 and additionally allow

for a union of intersectingsets. Thus, we additionally allow that even those
k + ℓ− p elements that areoutside ofI = I1 ∪ I2 may appear inI1, I2 as long
as they appear in both sets, and thus cancel out. This drastically increases the
number of representations, since for random code instancesthe number of zeros
in an error vectore is much larger than the number of ones. Whereas MMT only
allow to split each 1-entry ofe into two parts, either1 = 0+ 1 or 1 = 1+ 0, we
also allow to split each 0-entry ofe into two parts, either0 = 0+0 or 0 = 1+1.
Hence our benefit comes from using the equation1 + 1 = 0 in F2. Notice that
our approach therefore increases the number of representation per solutionI to
( p
p/2

)

·
(

k+ℓ−p
ǫ

)

.
Our main algorithmic task that we describe in this work is theconstruction

of two listsL1,L2 such that a single representation of each solution survives.
This is realized by a three-level divide-and-conquer algorithm that is similar to
Wagner’s generalized birthday algorithm [30].

Our enhanced representation technique allows us to significantly lower the
asymptotic running time to20.04934n. The following figure shows the curve of
the complexity coefficient for the two most recent algorithms [4, 22] compared
to our new algorithm.
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Fig. 1: Comparison ofF (R) for code rates0 < R < 1 for bounded distance decoding. Our
algorithm is represented by the thick curve, MMT is the thin curve and Ball-collision is the
dashed curve.

2 Generalized Information Set Decoding

We now give a detailed description of a generalized information set decod-
ing (ISD) framework as described by Finiasz and Sendrier [11] in 2009. Re-



call that the input to an ISD algorithm is a tuple(H, s) whereH ∈ F
(n−k)×n
2

is a parity check matrix of a random linear[n, k, d]-code ands = He is the
syndrome of the unknown error vectore of weightω := wt(e) = ⌊d−1

2 ⌋.
ISD is a randomized Las Vegas type algorithm that iterates two steps until

the solutione is found. The first step is an initial linear transformation of the
parity check matrixH, followed by a search phase as the second step.

In the initial transformation, we permute the columns ofH by multiply-
ing with a random permutation matrixP ∈ F

n×n
2 . Then we perform Gaus-

sian elimination on the rows ofHP by multiplying with an invertible matrix
T ∈ F

(n−k)×(n−k)
2 . This yields a parity check matrix̃H = THP in quasi-

systematic form containing a0-submatrix in the right upper corner as illustrated
in Fig. 2. Here we denote byQI the projection ofQ to the rows defined by the
index setI ⊂ {1, . . . , n − k}. Analogously, we denote byQI the projection
of Q to its columns. In particular we define[ℓ] := {1, . . . , ℓ} and[ℓ, n − k] =
{ℓ, . . . , n− k}. We denote the initial transformationInit(H) := THP.

H̃ =

0

z }| {
k + ℓ

z }| {
n− k − ℓ

z
}|

{

ℓ

z
}|

{

n− k − ℓ

| {z }
p

| {z }

ω − p

Q[ℓ]

In−k−ℓQ[ℓ+1,n−k]

Fig. 2: Parity check matrix̃H in quasi-systematic form.

We sets̃ := Ts and look for an ISD-solutioñe of (H̃, s̃), i.e. we look for an
ẽ satisfyingH̃ẽ = s̃ andwt(ẽ) = ω. This yields a solutione = Pẽ for the
original problem. Notice that applying the permutation matrix to ẽ leaves the
weight unchanged, i.e.wt(e) = ω, andTHe = H̃ẽ = s̃ = Ts impliesHe = s

as desired. In the search phase, we try to find all error vectors ẽ that have a
specific weight distribution, i.e. we search for vectors that can be decomposed
into ẽ = (ẽ1, ẽ2) ∈ F

k+ℓ
2 × F

n−k−ℓ
2 wherewt(ẽ1) = p andwt(ẽ2) = ω − p.

SinceP shufflese’s coordinates into random positions,ẽ has the above weight
distribution with probability

P =

(

k+l
p

)(

n−k−l
ω−p

)

(

n
ω

) . (2)



The inverse probabilityP−1 is the expected number of repetitions untilẽ has
the desired distribution. Then it suffices to find the truncated vector̃e1 ∈ F

k+ℓ
2

that represents the position of the firstp ones. To recover the full error vector
ẽ = (ẽ1, ẽ2), the missing coordinates̃e2 are obtained as the lastn − k − ℓ
coordinates ofQẽ1 + s̃. Hence, the goal in the ISD search phase is to compute
the truncated error vector̃e1 efficiently. For the computation of̃e1 we focus on
the submatrixQ[ℓ] ∈ F

ℓ×(k+ℓ)
2 . Since we fixed the0-submatrix in the right-

hand part ofH̃, we ensure thatQẽ1 exactly matches the syndromẽs on its
first ℓ coordinates. Finding añe1 with such a property was called thesubmatrix
matching problemin [22].

Definition 1 (Submatrix Matching Problem). Given a random matrixQ ∈R

F
ℓ×(k+ℓ)
2 and a target vectors ∈ F

ℓ
2, thesubmatrix matching problem (SMP)

consists in finding a setI of sizep such that the corresponding columns ofQ

sum up tos, i.e. to findI ⊆ [1, k + ℓ], |I| = p such that

σ(QI) :=
∑

i∈I

qi = s, whereqi is thei-th column ofQ.

Note that the SMP itself can be seen as just another syndrome decoding instance
with parity check matrixQ, syndromes ∈ F

ℓ
2 and parameters[k + ℓ, ℓ, p].

Our improvement stems from a new algorithm COLUMNMATCH allowing
to solve the SMP more efficiently by using more representations of a solutionI.
In Alg. 1 we describe the resulting ISD algorithm. Here we denote for a vector
x ∈ F

n
2 and an index setI ⊂ [n] by xI ∈ F

|I|
2 the restriction ofx to the

coordinates ofI.

Algorithm 1 GENERALIZEDISD

Input: Parity check matrixH ∈ F
(n−k)×n
2 , syndromes = He with wt(e) = ω.

Output: Errore ∈ F
n
2

Parameters:p, ℓ

Repeat
ComputeH̃← Init(H) ands̃← Ts whereH̃ = THP, P random permutation.
ComputeL =COLUMNMATCH(Q[ℓ], s̃[ℓ], p).
For all solutionsẽ1 ∈ L do

If wt(Qẽ1 + s̃) = ω − p then
Computeee← (ẽ1, ẽ2) ∈ F

n
2 whereẽ2 ← (Qẽ1 + s̃)[ℓ+1,n−k]

Output e = eeP.

Let T := T (n,R; p, ℓ) denote the running time of COLUMNMATCH. Then the
running time of GENERALIZEDISD isP−1 · T .



3 The Merge-Join Building Block

In order to realize our improved SMP algorithm, we first introduce an essential
building block that realizes the following task. Given a matrix Q ∈ F

ℓ×(k+ℓ)
2 and

two listsL1 andL2 containing binary vectorsx1, . . . ,x|L1| andy1, . . . ,y|L2| of
lengthk + ℓ, we aim to join those elementsxi andyj into a new listL = L1 ⊲⊳
L2 whose sum has weightp, i.e.wt(xi +yj) = p. Furthermore, we require that
the corresponding column-sum ofQ already matches a given targett ∈ F

r
2 on

its right-mostr ≤ ℓ coordinates, i.e.(Q(xi + yj))[r] = t.

L1

010100i0 →
110100

i1 →
100100

L2

011100 ← j0

← j1
110100

r

⊲⊳

L

⋆ ⋆ 000
⋆ ⋆ 000

⋆ ⋆ 000
⋆ ⋆ 000

Fig. 3: Illustration of the MERGE-JOIN algorithm to obtainL = L1 ⊲⊳ L2.

Searching for matching vectors(Qyj)[r] + t and (Qxi)[r] accomplishes this
task. We call all matching vectors with weight different from p inconsistent so-
lutions. Notice that we might also obtain the same vector sum from twodifferent
pairs of vectors fromL1,L2. In this case we obtain a matched vector that we
already have, which we call aduplicate. During our matching process we filter
out all inconsistent solutions and duplicates.

The matching process is illustrated in Fig. 3. The complete algorithm is
given as Alg. 2 and is based on a classical algorithm from Knuth [17] which
realizes the collision search as follows. Sort the first listlexicographically ac-
cording to ther-bit labelsL1(xi) := (Qxi)[r] and the second list according to
the labelsL2(yj) := (Qyj)[r] + t. We addt to the labels of the second list to
guarantee(Q(xi + yj))[r] = t.
To detect all collisions, one now initializes two countersi and j starting at
the beginning of the listsL1 andL2 and pointing at elementsxi andyj . As
long as those elements do not yield a collision, eitheri or j is increased de-
pending on the relative order of the labelsL1(xi) andL2(yj). Once a collision
L1(xi) = L2(yj) occurs, four auxiliary countersi0, i1 andj0, j1 are initialized
with i andj, respectively. Theni1 andj1 can further be incremented as long as
the list elements retain the same labels, whilei0 andj0 mark the first collision
(i, j) between labelsL1(xi) andL2(yj). Obviously, this procedure defines two



Algorithm 2 MERGE-JOIN

Input: L1,L2, r, p andt ∈ F
r
2

Output: L = L1 ⊲⊳ L2

Lexicographically sortL1 and L2 according to the labelsL1(xi) := (Qxi)[r] and
L2(yj) := (Qyj)[r] + t.
Set collision counterC ← 0. Let i← 0 andj ← (|L2| − 1)
While i < |L1| andj < |L2| do

If L1(xi) <lex L2(yj) then i + +
If L1(xi) >lex L2(yj) then j + +
If L1(xi) = L2(yj) then

Let i0, i1 ← i andj0, j1 ← j
While i1 < |L1| andL1(xi1) = L1(xi0) do i1 + +
While j1 < |L2| andL2(yj1) = L2(yj0) do j1 + +
For i← i0 to i1 − 1 do

For j ← j0 to j1 − 1 do
C = C + 1
Insert collisionxi + yj into listL (unless filtered out)

Let i← i1 , j ← j1
OutputL, C.

setsC1 = {xi0 , . . . ,xi1} andC2 = {yj0 , . . . ,yj1} such that all possible com-
binations yield a collision, i.e. the setC1 × C2 can be added to the output list
L.

This procedure is then continued withi ← i1 andj ← j1 until one of the
countersi, j arrives at the end of a list. As mentioned before, we remove onthe
fly inconsistent solutions with incorrect weightwt(xi + yj) 6= p and duplicate
elementsxi + yj = xk + yℓ.

Note that we introduced a collision counterC which allows us to take into
account the time that is spent for removing inconsistent solutions and duplicates.
The total running time ofMERGE-JOIN is given by

T = Õ (max {|L1|, |L2|, C}) .

Assuming uniformly distributed labelsL1(xj) andL2(yj) it holds thatE [C] =
|L1| · |L2| · 2

−r.

4 Our New Algorithm for Solving the Submatrix Matching
Problem

As explained in Section 2, improving the submatrix matchingproblem (SMP)
automatically improves information set decoding (ISD).

Our new SMP algorithm is inspired by usingextended representationssim-
ilar to Becker, Coron and Joux [2] for the subset sum problem.



In the MMT algorithm [22] a weight-p error vectore ∈ F
k+ℓ
2 is written as

the sume1 + e2. However, MMT only allow that every 1-entry splits to either
a 1-entry inx1 and a 0-entry inx2, or vice versa. Ifwt(e1) = wt(e2) = p

2 this
allows for

( p
p/2

)

different representations as a sum of two vectors.
Our key observation is that we can also split the0-entries ofe into either

(0, 0) or (1, 1). Hence if we choosewt(e1) = wt(e2) = p
2 + ε then we gain

a factor of
(k+ℓ−p

ε

)

, namely the number of positions where we split as(1, 1).
Notice that in all coding-based scenarioswt(e) is relatively small compared
to k andn. Thuse contains many more zeros than ones, from which our new
representation heavily profits.

To solve the SMP, we proceed as follows. LetI ⊂ [k + ℓ] be the index set
of cardinalityp with σ(QI) = s that we want to find.

We representI by two index setsI1 andI2 of cardinality p
2 + ε contained in

the whole interval[k + l] and requireI1 andI2 to intersect in a fixed number of
ε coordinates as illustrated in Fig. 4.

|I | = p

e

|I1| = p/2 + ε

e1

|I2| = p/2 + ε

e2

Fig. 4: Decomposition of an index setI into two overlapping index sets.

The resulting index setI is then represented as the symmetric differenceI1∆I2 :=
(I1 ∪ I2) \ (I1 ∩ I2) which yields an index setI of cardinalityp as long asI1

andI2 intersect in exactlyε positions.
It turns out that the optimal running time can be obtained by applying the

representation technique twice, i.e. we introduce furtherrepresentations of the
index setsI1 andI2 on a second computation layer.

4.1 Our COLUMNMATCH Algorithm

Our algorithm can be described as a computation tree of depththree, see Fig. 7
for an illustration. We enumerate the layers from bottom to top, i.e. the third
layer identifies the initial computation of disjoint base listsB1 andB2 and the
zero layer identifies the final output listL.

Recall that we aim to find an index setI of sizep with
∑

i∈I qi = s. We
introduce parametersε1 andε2 representing the number of additional1’s we



. . .

Disjoint base listsBi,1 andBi,2 for i = 1, . . . , 4Layer 3

Layer 2

Layer 1

Layer 0

weight
p2

2

weight
p2 = p1

2
+ ε2

weight
p1 = p

2
+ ε1

weight
p

⊲⊳ ⊲⊳

⊲⊳

r2 r2

r1L

L
(1)
1 L

(1)
2

L
(2)
1 L

(2)
2 L

(2)
3 L

(2)
4

Fig. 5: Illustration of the COLUMNMATCH algorithm.

allow on the first and second layer, respectively. In the following description,
we equip every object with an upper index that indicates its computation layer,
e.g. a listL(2)

j is contained in the second layer.

On the first layer, we search for index setsI
(1)
1 andI

(1)
2 in [k + ℓ] of size

p1 := p
2 + ε1 which intersect in exactlyε1 coordinates such thatI = I

(1)
1 ∆I

(1)
2 .

In other words, we create lists of binary vectorse
(1)
1 ande

(1)
2 of weightp1 and

search for tuples(e(1)
1 , e

(1)
2 ) such thatwt(e

(1)
1 +e

(1)
2 ) = p andQ(e

(1)
1 +e

(1)
2 ) =

s.

Note that the number of tuples(e(1)
1 , e

(1)
2 ) that represent a single solution vector

e is

R1(p, ℓ; ε1) :=

(

p
p
2

)(

k + l − p

ε1

)

. (3)

To optimize the running time, we impose a constraint onr1 ≈ log2 R1 coordi-

nates of the corresponding vectorsQe
(1)
i such that we can still expect to find

one representation of the desired solutione.



More precisely, the algorithm proceeds as follows. We first fix a random
vectort(1)

1 ∈R F
r1
2 , sett(1)

2 := s[r1] + t
(1)
2 and compute two lists

L
(1)
i = {ei

(1) ∈ F
k+ℓ
2 | wt(ei) = p1 and(Qe

(1)
i )[r1] = t

(1)
i } for i = 1, 2.

Observe that any two elementse(1)
i ∈ L

(1)
i , i = 1, 2, already fulfill by con-

struction the equation(Q(e
(1)
1 + e

(1)
2 ))[r1] = s[r1], i.e. they already match the

syndromes on r1 coordinates. In order to solve the SMP, we are interested in
a solutione = e

(1)
1 + e

(1)
2 that matches the syndromes on all ℓ positions and

has weightexactlyp. OnceL(1)
1 andL(1)

2 have been created, this can be accom-

plished by calling the MERGE-JOIN algorithm from Sect. 3 on inputL(1)
1 ,L

(1)
2

with targets, weightp and parameterℓ.
It remains to show how to constructL(1)

1 ,L
(1)
2 .

We represente(1)
i as a sum of two overlapping vectorse(2)

2i−1, e
(2)
2i both of

weightp2 := p1

2 + ε2, i.e. we require the two vectors to intersect in exactlyε2

coordinates. Altogether, the solutione is now decomposed as

e = e
(1)
1 + e

(1)
2 = e

(2)
1 + e

(2)
2 + e

(2)
3 + e

(2)
4 .

Clearly, there are

R2(p, ℓ; ε1, ε2) =

(

p1

p1/2

)

·

(

k + ℓ− p1

ε2

)

many representations fore(1)
j wherep1 = p

2 + ε1. Similarly to the first layer,

this allows us to fixr2 ≈ log R2 coordinates of the partial sumsQe
(2)
i to some

target valuest(2)
i . More precisely, we draw two target vectorst

(2)
1 , t

(2)
3 ∈ F

r2
2 ,

sett(2)
2j = (t

(1)
j )[r2] + t

(2)
2j−1 for j = 1, 2, and compute four lists

L
(2)
i = {e

(2)
i ∈ F

k+l
2 | wt(e

(2)
i ) = p2 and(Qe

(2)
i )[r2] = t

(2)
i } for i = 1, . . . , 4.

Notice that by construction all combinations of two elements from eitherL(2)
1 ,L

(2)
2

orL(2)
3 ,L

(2)
4 match their respective target vectort

(1)
j on r2 coordinates.

Creating the listsL
(2)
1 , . . . , L

(2)
4 . We exemplary explain how to createL(2)

1 .
The remaining lists can be constructed analogously. We apply a classical Meet-
in-the-middle collision search, i.e. we decomposee

(2)
1 ase

(2)
1 = y + z by two

non-overlapping vectorsy andz of lengthk + ℓ. To be more precise, we first



choose a random partition of[k + ℓ] into two equal sized setsP1 andP2, i.e.
[k + ℓ] = P1 ∪ P2 with |P1| = |P2| =

k+ℓ
2 , and forcey to have itsp2

2 1-entries
in P1 andz to have itsp2

2 1-entries inP2. That is we construct two base lists

B1 := {y ∈ F
k+ℓ
2 | wt(y) =

p2

2
andyi = 0∀i ∈ P2}

and
B2 := {z ∈ F

k+ℓ
2 | wt(z) =

p2

2
andzi = 0∀i ∈ P1}.

We invoke MERGE-JOIN to computeL(2)
1 = MERGE-JOIN(B1,B2, r2, p2, t

(2)
1 ).

Let S3 = |B1| = |B2| denote the size of the base lists and letC3 be the total
number of matched vectors that occur in MERGEJOIN (since the splitting is dis-
joint, neither duplicates nor inconsistencies can arise).Then MERGEJOIN needs
time

T3(p, ℓ; ε1, ε2) = O (max {S3, C3}) .

Clearly, we have

S3 := S3(p, ℓ; ε1, ε2) =

(

(k + ℓ)/2

p2/2

)

.

Assuming uniformly distributed partial sums we obtain

E [C3] =
S2

3

2r2
.

We would like to stress that decomposinge
(2)
1 into x andy from disjoint setsP1

andP2 introduces a probability of loosing the vectore
(2)
1 and hence the solution

e = e
(2)
1 + e

(2)
2 + e

(2)
3 + e

(2)
4 . For a randomly chosen partitionP1, P2, the

probability thate(2)
1 equally distributes its1-entries overP1 andP2 is given by

Psplit =

((k+ℓ)/2
p2/2

)2

(k+ℓ
p2

)

which is asymptotically inverse-polynomial inn. Choosing independent par-
titions Pi,1, Pi,2 and appropriate base listsBi,1,Bi,2 for all four listsL(2)

i , we

can guaranteeindependentsplitting conditions for all thee(2)
i yielding a total

splitting probability ofPSplit = (Psplit)
4 which is still inverse-polynomial inn.

After having created the listsL(2)
i , i = 1, . . . , 4 on the second layer, two

more applications of the MERGEJOIN algorithm suffice to compute the lists
L

(1)
j on the first layer. Eventually, a last application of MERGEJOIN yieldsL,

whose entries are solutions to the SMP. See Alg. 3 for a complete pseudocode
description.



Algorithm 3 COLUMNMATCH

Input: Q ∈ F
ℓ×k+ℓ
2 , s ∈ F

ℓ
2, p ≤ k + ℓ

Output: List L of vectors ine ∈ F
k+ℓ
2 with wt(e) = p andQe = s

Parameters:Choose optimalε1, ε2 and setp1 = p/2 + ε1 andp2 = p1/2 + ε2.

Choose random partitionsPi,1, Pi,2 of [k + ℓ] and create the base listsBi,1 andBi,2.
Chooset(1)

1 ∈R F
r1

2 and sett(1)
2 = s[r1] + t

(1)
1 .

Chooset(2)
1 , t

(2)
3 ∈R F

r2

2 . Sett(2)
2 = (t

(1)
1 )[r2] + t

(2)
1 andt

(2)
4 = (t

(1)
2 )[r2] + t

(2)
3 .

ComputeL(2)
i = MERGE-JOIN(Bi,1,Bi,2, r2, p2, t

(2)
i ) for i = 1, . . . , 4.

ComputeL(1)
i = MERGE-JOIN(L

(2)
2i−1,L

(2)
2i , r1, p1, t

(1)
i ) for i = 1, 2.

ComputeL = MERGE-JOIN(L
(1)
1 ,L

(1)
2 , ℓ, p, s).

OutputL.

It remains to estimate the complexity of COLUMNMATCH as a function of the
parameters(p, ℓ; ε1, ε2), where(ε1, ε2) are optimization parameters. Notice that
the valuesri andpi are fully determined by(p, ℓ; ε1, ε2). The base listsB1 and
B2 are of sizeS3(p, ℓ; ε1, ε2) as defined above.

The three consecutive calls to theMERGE-JOIN routine create listsL(2)
j of

sizeS2(p, ℓ; ε1, ε2), listsL(1)
i of sizeS1(p, ℓ; ε1, ε2) and the final listL (which

has not to be stored). More precisely, we obtain

Si(p, ℓ; ε1, ε2) = E

[

|L
(i)
j |

]

=

(

k + ℓ

pi

)

· 2−ri for i = 1, 2.

Here we assume uniformly distributed partial sumsQe
(j)
i .

Let Ci for i = 1, 2, 3 denote the number of all matching vectors (includ-
ing possible inconsistencies or duplicates) that occur in the three MERGE-JOIN

steps. If we setr3 = 0 andr0 = ℓ, then

E [Ci] = S2
i · 2

ri−ri−1.

Following the analysis of MERGE-JOIN in Sect. 3, the time complexitiesTi of
the three MERGE-JOIN steps is given by

Ti(p, ℓ; ε1, ε2) = max {Si, Ci} .

The overall time and space complexity is thus given by

T (p, ℓ; ε1, ε2) = max {T3, T2, T1} (4)

and
S(p, ℓ; ε1, ε2) = max {S3, S2, S1} .



For optimizingT (p, ℓ; ε1, ε2) one has to compute theCi. Heuristically, we can
assume that theCi achieve their expected values up to a constant factor. Since
our heuristic analysis also relies on the fact that projected partial sums of the
form (Qe)[r] yield uniformly distributed vectors inFr

2, a proper theoretical anal-
ysis needs to take care of a certain class of malformed input parity check matri-
cesH. We show how to obtain a provable variant of our algorithm that works for
all but a negligible amount of input matricesH in App.A. The provable variant
simply aborts computation if theCi differ too much from their expectation.

5 Comparison of Asymptotic Complexity

We now show that we improve information set decoding by an exponential fac-
tor in comparison to the latest results [4, 22]. To compute the complexity coef-
ficient F (R) for our algorithm for a fixed code rateR, we need to optimize the
parametersp, ℓ, ε1 andε2 such that the expression

T (p, ℓ; ε1, ε2) · P(p, ℓ)−1 (5)

is minimized under the natural constraints

0 <ℓ < min{n− k, n − k − ω − p}

0 <p < min{ω, k + ℓ}

0 <ε1 < k + ℓ− p

0 <ε2 < k + ℓ− p1

0 <R2(p, ℓ; ε1, ε2) < R1(p, ℓ; ε1, ε2) < ℓ .

The time per iterationT is given by Eq. (4) and the number of iterationsP−1

equals
(

(k+ℓ
p

)(n−k−ℓ
ω−p

)

/
(n
ω

)

)−1
as given in Eq. (2).

For random linear codes, we can relateR = k/n andD = d/n via the
Gilbert-Varshamov bound. Thus asymptotically we obtainD = H−1(1−R) +
o(1), whereH is the binary entropy function. Forbounded distance decoding,
we setW := ω/n = D/2. We numerically determined the optimal parameters
for several equidistant ratesR and interpolatedF (R). To calculateF (R) we
make use of the well known approximation

(αn
βn

)

= 2αH(β/α)n+o(n). The results
are shown in Fig. 1.

Forfull decoding, in the worst-case we need to decode a highest weight coset
leader of the codeC, its weightω corresponds to thecovering radiusof C which
is defined as the smallest radiusr such thatC can be covered by discrete balls
of radiusr. The Goblick bound [12] ensures thatr ≥ nH−1(1−R) + o(n) for
all linear codes. Independently, Blinovskii [6] and Levitin [20] further proved
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Fig. 6:F (R) for full decoding. Our algorithm is represented by the thickcurve, MMT is the thin
curve and Ball-collision is the dashed curve.

that this bound is tight foralmost alllinear codes, i.e.r = nH−1(1−R)+o(n).
This justifies our choiceW = H−1(1−R) for the full decoding scenario.
We conclude by taking a closer look at theworst-casecomplexities of decoding
algorithms for random linear codes and a typical McEliece setting with relative
distanceD = 0.04 and rateR = 0.7577. Notice that three out of the four
parameter sets for security levels between 80 and 256 bit from [3] closely match
these code parameters.

half-dist. full dec. McEliece
time space time space time space

Lee-Brickell 0.05752 - 0.1208 - 0.0857 -
Stern 0.05564 0.0135 0.1167 0.0318 0.0809 0.0327
Ball-collision 0.05559 0.0148 0.1164 0.0374 0.0807 0.0348
MMT 0.05364 0.0216 0.1116 0.0541 0.0760 0.0482
Our algorithm 0.04934 0.0286 0.1019 0.0769 0.0672 0.0586

Table 1: Comparison of worst-case complexity coefficients,e.g. the time columns represent the
maximal complexity coefficientF (R) for 0 < R < 1.

All algorithms were optimized for speed, not for memory. Fora comparison of
full decoding with fixed memory, we can easily restrict Ball-collision, MMT and
our new algorithm to the space complexity coefficient0.0317 of Stern’s algo-
rithm which holds fork ≈ 0.446784. In this case, we obtain time complexities
Fball(R) = 0.1163, FMMT (R) = 0.1129 andFour(R) = 0.1110, which shows
that our improvement is not a pure time memory tradeoff.

For a better verifiability of our optimization and the resulting complexi-
ties, we make all data including the Mathematica code publicly available at



http://cits.rub.de/personen/meurer.html. If needed, this code
may also be used to compute optimal parameters for arbitrarycode parameters.

Acknowledgment. We would like to thank Dan Bernstein for several excellent
comments, in particular he proposed to use random partitions for generating the
base lists in the COLUMNMATCH algorithm.
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A A Provable Variant of COLUMNMATCH

In order to obtain a provable variant of the COLUMNMATCH algorithm, we
consider the following variant PROVABLECM. Recover that one invocation of
COLUMNMATCH requires the random choice of three target vectorst

(1)
1 ∈ F

r1
2

andt
(2)
1 , t

(2)
3 ∈ F

r2
2 .

Essentially, in PROVABLECM we repeatedly invoke COLUMNMATCH with
different independent target valuest(j)

i and add some artificial abort criteria
that prevent the lists in the computation from growing unexpectedly strong.
More detailed, for an integer parameterΛ ∈ N, we first choose random tar-
get valuest(1)

1,i ∈ F
(r1)
2 andt

(2)
1,j , t

(2)
3,k ∈ F

r2
2 for 1 ≤ i, j, k ≤ 8Λ and invoke

COLUMNMATCH(t
(1)
1,i , t

(2)
1,j , t

(2)
3,j ) for all 1 ≤ i, j, k ≤ 8Λ until a solution is

found. Furthermore, every single computation is aborted assoon as a list ex-
ceeds its expected size by more than a factor of2γn for a fixed constantγ > 0.
We now aim to prove the following

Theorem 1. For everyγ > 0, the modified algorithmPROVABLECM outputs
a solutione ∈ F

k+ℓ
2 , i.e. Qe = s and wt(e) = p, for a fraction of at least

1−60·2−γn randomly chosenQ ∈ F
ℓ×(k+ℓ)
2 with probability at least1− 3

e2 > 1
2

in timeÕ
(

T (p, ℓ; ε1, ε2) · 2
3γn

)

whereT (p, ℓ; ε1, ε2) is defined as in Eq.(4).

We make use of the following helpful theorem that can be obtained by a
straightforward modification of the result in [23, Theorem 3.2].

Theorem 2. For a fixed matrixQ ∈ F
m×n
2 , a target vectort ∈ F

m
2 and an

arbitrary setB ⊂ F
n
2 , we define

PQ(B, t) :=
1

|B|
|{x ∈ B : Qx = t}| .

Then for allB ⊂ F
n
2 it holds that

1

2mn

∑

Q∈F
m×n
2

∑

t∈F
m
2

(PQ(B, t)−
1

2m
)2 =

2m − 1

2m|B|
.

The high-level idea for the proof of Theorem 1 is to consider the three dif-
ferent nodes of decomposition as illustrated in Fig. 7. For every such node, we
introduce a random variableXi indicating whether the algorithm fails at this
point or not. The overall failure probability can then be upper bounded by using
the union bound, i.e.Pr [PROVABLECM fails ] ≤

∑

Pr [Xi = 0]. Hence, we
need to upper bound the failure probability of every single node. For this pur-
pose, we divide everyXi into three eventsXj

i and setXi :=
∏

Xj
i . We now

define these events exemplarily for nodeX1.



– X1
1 represents the event that for at least one choice of the{t

(1)
1,j} the solution

e ∈ L has at least one representatione = e1 + e2 with (Qe1)[r1] = t
(1)
1,j

and(Qe2)[r1] = s[r1] + t
(1)
1,j .

– X2
1 represents the event that for at least one choice of the{t

(1)
1,j} the size of

listsL(1)
1 andL(1)

2 do not exceed the expected value by more than a factor
of 2γn.

– X3
1 represents the event that for at least one choice of the{t

(1)
1,j} total number

of collisionsC1, see Sect.4, does not exceed it’s expected value by more than
a factor of2γn.

. . .

L
(1)
1 L

(1)
2

L

X2 X3

X1

Fig. 7: Illustration of different decomposition nodes.

Basically, all these events depend on the structure of the matrix Q and we
need to exclude some pathological cases yielding clustereddistributionsQe (for
example the all-zero matrix). Hence, for all three events wedefine appropriate
sets of “good” and “bad” matricesQ which eventually allow to upper bound the
failure probabilities of these events. Applying Theorem 2 allows to upper bound
the fraction of bad matrices. The following three lemmas control the amount of
bad matricesQ and target valuest(b)

i,j for everyXj
i . We omit the proofs which

can be adopted from the proof of [2, Theorem 2] in a straightforward way.

Lemma 1. For all but a 1
Λ−1 fraction of theQ’s, the proportion of badt′s w.r.t.

to X1
i is smaller thanΛ−1

Λ .

Lemma 2. For all but a 2Λ
(Λ−1)2

fraction of theQ’s, the proportion of badt′s

w.r.t. toX2
i is smaller than 1

2Λ .

Lemma 3. For all but a 16
Λ fraction of theQ’s, the proportion of badt′s w.r.t.

to X3
i is smaller than 1

4Λ .



Using these lemmas, one can easily show that the total fraction of badQ’s for
oneof the three nodes can be bounded by

1

Λ− 1
+

2Λ

(Λ− 1)2
+

16

Λ
≤

20

Λ
for Λ ≥ 7

and hence the total fraction of badQ’s for all three nodes is upper bounded by
60
Λ . Furthermore, considering goodQ’s, the proportion of badt’s for onenode
is given by

Λ− 1

Λ
+

1

2Λ
+

1

4Λ
= 1−

1

4Λ

and hence we have

Pr [Xi = 0] = Pr [all 8Λ manyt’s bad] ≤

(

1−
1

4Λ

)8Λ

≤ e−2 .

Eventually this yields

Pr [PROVABLECM fails ] ≤
3

e2

for every goodQ as stated in the theorem. Notice, that the worst-case running
time of PROVABLECMis given by a total number ofΛ3 = 23γn invocations of
COLUMNMATCH.


