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Abstract. The Schnorr signature scheme has been known to be provably secure in the Random
Oracle Model under the Discrete Logarithm (DL) assumption since the work of Pointcheval and
Stern (EUROCRYPT ’96), at the price of a very loose reduction though: if there is a forger
making at most qh random oracle queries, and forging signatures with probability εF , then
the Forking Lemma tells that one can compute discrete logarithms with constant probability
by rewinding the forger O(qh/εF ) times. In other words, the security reduction loses a factor
O(qh) in its time-to-success ratio. This is rather unsatisfactory since qh may be quite large.
Yet Paillier and Vergnaud (ASIACRYPT 2005) later showed that under the One More Discrete
Logarithm (OMDL) assumption, any algebraic reduction must lose a factor at least q1/2

h in
its time-to-success ratio. This was later improved by Garg et al. (CRYPTO 2008) to a factor
q

2/3
h . Up to now, the gap between q

2/3
h and qh remained open. In this paper, we show that

the security proof using the Forking Lemma is essentially the best possible. Namely, under the
OMDL assumption, any algebraic reduction must lose a factor f(εF )qh in its time-to-success
ratio, where f ≤ 1 is a function that remains close to 1 as long as εF is noticeably smaller than
1. Using a formulation in terms of expected-time and queries algorithms, we obtain an optimal
loss factor Ω(qh), independently of εF . These results apply to other signature schemes based on
one-way group homomorphisms, such as the Guillou-Quisquater signature scheme.

Keywords: Schnorr signatures, discrete logarithm, Forking Lemma, Random Oracle Model,
meta-reduction, one-way group homomorphism

1 Introduction

Schnorr signatures. The Schnorr signature scheme [Sch89,Sch91], derived from the Schnorr
identification scheme (an honest-verifier zero-knowledge proof of knowledge of a discrete log-
arithm) through the Fiat-Shamir transform [FS86], is one of the earliest discrete log-based
signature schemes proposed in the literature. Its simplicity and efficiency (short signature
length and the possibility of pre-computing exponentiations for very quick on-line signature
generation) has attracted considerable attention. Its security has been analyzed in the Random
Oracle Model (ROM) [BR93] under the Discrete Logarithm (DL) assumption by Pointcheval
and Stern [PS96,PS00]. The main idea of the proof is to have the forger output two distinct
forgeries corresponding to the same random oracle query, but for two distinct answers of the
random oracle. The so-called Forking Lemma shows that by rewinding the forger O(qh/εF )
times, where qh is the maximal number of random oracle queries of the forger and εF its
success probability, then one finds two such forgeries with constant probability, which enables
to compute the discrete logarithm of the public key. Said otherwise, the reduction loses a
factor O(qh) in its time-to-success ratio. This results in a very loose security assurance since
qh may be quite large (e.g. 260), which implies to increase the problem parameters length in
order to achieve an appropriate provable security level.



Previous negative results. Whether the loss of this factor qh is unavoidable remained ob-
scure until Paillier and Vergnaud [PV05] showed that under the One More Discrete Logarithm
(OMDL) assumption1, any algebraic2 reduction from the DL problem to forging Schnorr sig-
natures in the ROM must lose a factor Ω(q1/2

h ) in its time-to-success ratio. Starting from
a reduction from the DL problem to forging Schnorr signatures in the ROM, [PV05] builds
a meta-reduction that solves the OMDL problem without using any forger (it simulates the
forger using the discrete log oracle it can access to solve the OMDL problem). This result was
later improved by Garg et al. [GBL08] to a factor Ω(q2/3

h ), using the same meta-reduction
(only the analysis of its success probability was improved). Interestingly, [GBL08] also showed
that under a simple assumption on the forger (namely that the distribution of the random
oracle query index ` corresponding to the forged signature is uniformly random in [1..qh]), the
factor lost in the time-to-success ratio of the reduction of [PS00] can be reduced from O(qh)
to O(q2/3

h ). Since the meta-reduction used in [PV05,GBL08] simulates a forger that obeys
this assumption, one cannot hope to improve the analysis of this particular meta-reduction
to show that a factor Ω(qh) must be lost by any algebraic reduction.

Contributions of this work. Up to now, the gap between the security reduction of [PS00]
loosing a factor O(qh) and the lower bound Ω(q2/3

h ) of [GBL08] remained open. Basically two
possible directions were conceivable in order to narrow it: either improve the security reduction
of [PS00] for a general forger, or find a better meta-reduction enabling to overcome the q2/3

h

bound. We essentially close this gap in the second direction by showing that under the OMDL
assumption, any algebraic reduction from the DL problem to forging Schnorr signatures in
the ROM must lose a factor f(εF )qh in its time-to-success ratio, where f is a function that
remains close to 1 as long as the success probability εF of the forger is noticeably smaller than
1. Our meta-reduction is different from the one used in [PV05,GBL08] (this is unavoidable
by the previous considerations). In particular, the random oracle query index ` corresponding
to the forged signature is not uniformly distributed in [1..qh] (it has a truncated geometric
distribution), nor is it independent for two distinct executions of the forger (as we argue later, a
uniformly distributed forgery index ` is in fact quite unnatural). Though the description of our
new meta-reduction is slightly more complicated, its analysis is arguably simpler (the analysis
of [GBL08] uses advanced results on the statistics of random permutations). Curiously, our
bound vanishes when εF is negligibly close to 1. We argue however that this shortcoming is
due to the formulation in terms of strictly bounded adversaries. By considering definitions
using expected-time (and queries) algorithms, we are able to show that any algebraic reduction
must lose a factor Ω(qh), independently of εF , in its expected-time-to-success ratio.

Interpretation of our results. Interpreting our results is quite delicate (as is often the case
for results in the ROM). The conservative point of view would be to consider that breaking
Schnorr signatures in the ROM is strictly easier than solving the DL problem (which our
results do not prove), and to increase security parameters adequately. Yet taking into account
that no one has been able to find a better forgery attack than by solving the DL problem,
another possible interpretation is that they point out the limitations of black-box reduction

1 The OMDL problem consists in solving n + 1 discrete logarithms by making at most n calls to a discrete
log oracle (cf. Section 2).

2 An algebraic reduction is limited to perform group operations when it manipulates group elements (cf.
Section 4).
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techniques. For example, consider the (t, qh, ε)-forger F obtained as follows: starting from any
algorithm that (t, ε)-solves the DL problem, F first recovers the secret key, and then forges a
signature corresponding to one of its qh > 1 random oracle queries (e.g. uniformly chosen at
random). This adversary is arguably artificial since it could forge a signature for any message
with a single random oracle query. Yet any black-box reduction will lose a huge factor when
using such a forger, whereas a non-black-box one, accessing the DL-subroutine of the forger,
would yield back an algorithm solving the DL problem with the same time-to-success ratio as
the forger.

Related work. Techniques similar to the ones of [PV05,GBL08] and this paper were used
to separate one-more computational problems independently by Brown [Bro07] (who termed
such results irreductions) and Bresson et al. [BMV08].

Coron [Cor02] gave a result close in spirit to ours for the RSA with Full Domain Hash
(FDH) signature scheme [BR96]: he showed that the security of RSA-FDH in the ROM cannot
be proved tightly equivalent to the hardness of inverting RSA. This was generalized by Dodis
and Reyzin [DR02] to FDH used with any trapdoor one-way permutation induced by a family
of claw-free permutations. There are however two main differences between these results and
ours. First, the result of [Cor02,DR02] is specific to chosen-message attacks (FDH is tightly
secure for no-message attacks), whereas in our case the result holds even for no-message
attacks. Second, the factor necessarily lost by any reduction for FDH is Ω(qs), where qs is
the maximal number of signature queries asked by the forger. A security proof matching this
Ω(qs) bound had been previously given by Coron [Cor00].

The security of the Schnorr signature scheme in the standard model remains elusive (be-
yond the obvious fact that key-recovery is as hard as the DL problem under no-message
attacks).3 Paillier and Vergnaud [PV05] showed that under the OMDL assumption, it is im-
mune to key-recovery under chosen-message attacks (whatever the hash function used), but
that it cannot be proved universally unforgeable under no-message attacks with respect to
an algebraic reduction (again under the OMDL assumption). Neven et al. [NSW09] gave nec-
essary conditions on the hash function for the Schnorr signature scheme to be existentially
unforgeable under chosen-message attacks, and also showed that these conditions are suffi-
cient in the generic group model. To the best of our knowledge, these are the only results up
to now. All practical4 discrete log-based signature schemes provably secure in the standard
model rely on bilinear groups [BB04,Wat05].

Faced with the apparent impossibility to obtain tight security reductions in the ROM
for discrete log-based schemes, two main research options emerged. The first was to rely
on weaker assumptions, with proposals such as the EDL scheme [GJ03] and subsequent im-
provements [CM05] relying on the Computational Diffie-Hellman assumption, and the pro-
posal by Katz and Wang [KW03] relying on the Decisional Diffie-Hellman assumption (see
also [GJKW07]). The second option was to find alternatives to the Fiat-Shamir transform with
tighter security reductions, as explored by Micali and Reyzin [MR02] (but their technique is
inapplicable to discrete log-based schemes) and Fischlin [Fis05] (but the resulting scheme is
relatively inefficient).

3 We note that the Fiat-Shamir transform is known to be intrinsically problematic in the standard
model [GK03].

4 General constructions of signature schemes from any one-way function are known, but are quite impractical.
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Open problems. We leave the problem of eliminating the dependency in εF for strictly
bounded adversaries as an intriguing (though minor) open question. This paper more or less
settles the case of algebraic reductions; a natural question is what can be said for arbitrary
reductions. More generally, an interesting research subject is to build an efficient signature
scheme with a tight reduction in the ROM under the DL assumption (and not under weaker
related ones), or to prove a general impossibility result. Another important challenge is to
say anything meaningful about the security of Schnorr signatures in the standard model, or
to propose a practical scheme based on DL-like assumptions provably secure in the standard
model and not relying on bilinear groups.

Organization. In Section 2, we give the necessary background on Schnorr signatures and
the DL and OMDL problems. In Section 3, we recall the security proof of [PS00] for Schnorr
signatures through the Forking Lemma. In Section 4, we describe our new meta-reduction and
show in Section 5 that it implies a necessary loss of a factor f(εF )qh for any algebraic reduction.
We put our results in a more general framework based on one-way group homomorphisms in
Appendix A, and extend them to other related signature schemes (such as Modified ElGamal)
in Appendix B. The expected-time and queries scenario is treated in Appendix D.

2 Preliminaries

[i..j] will denote the set of integers k such that i ≤ k ≤ j. When X is a non-empty finite set,
we write x←$ X to mean that a value is sampled uniformly at random from X and assigned
to x. We denote Berµ the Bernoulli distribution of parameter µ ∈ [0, 1] (i.e. δ ← Berµ is
such that Pr[δ = 1] = µ and Pr[δ = 0] = 1 − µ), and for µ ∈ [0, 1] and a non-zero positive
integer q, we denote Binµ,q the binomial distribution of parameters µ and q (i.e. X ← Binµ,q
is such that Pr[X = k] =

(q
k

)
µk(1 − µ)q−k). The security parameter will be denoted κ. We

will write f = poly(·) to denote a polynomially bounded function and f = negl(·) to denote
a negligible function. We assume the existence of an adequate group generation algorithm,
which on input 1κ returns a cyclic group G of prime order q ∈ [2κ−1, 2κ[ and a generator g
of G. We will assume that all algorithms are given (G, q, g) as input and will sometimes not
mention it explicitly.

The Schnorr signature scheme is obtained by applying the Fiat-Shamir transform [FS86]
to the Schnorr identification scheme [Sch89,Sch91].

Definition 1 (Schnorr signature scheme). Let G be a cyclic group of prime order q and
g be a generator of G. Let H : {0, 1}∗ × G → Zq be a hash function. The Schnorr signature
scheme is defined as follows:

– Key generation: Let x←$ Zq \ {0}, and y = gx. The private key is x and the public key is
y.

– Signature: To sign a message m ∈ {0, 1}∗, draw a ←$ Zq, compute r = ga, c = H(m, r),
and s = a+ cx mod q. The signature is (s, c).

– Verification: Given a message m ∈ {0, 1}∗, and a claimed signature (s, c), compute r =
gsy−c and check that c = H(m, r).

From a practical point of view, the Schnorr signature scheme is more usually defined with
a hash function mapping its inputs to {0, 1}k (interpreted as integers in [0..(2k − 1)]) rather
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than Zq. There is no difficulty in extending our results to this case (q must simply be replaced
by 2k in Theorem 2). When we talk of the Schnorr signature scheme in the Random Oracle
Model (ROM), we mean the scheme obtained when H is replaced by a random oracle.

In this work we focus on security against universal forgery under no-message attacks (UF-
NM-security) in the ROM. This a weak security notion, but this makes our negative result
of Section 4 stronger than considering a more constraining notion such as security against
existential forgery under chosen-message attacks.

Definition 2 (UF-NM forger). A forger F is said to (tF , qh, εF )-UF-NM-break Schnorr
signatures in the ROM if on input any message m ∈ {0, 1}∗ and a public key y ←$ G, F
runs in time at most tF , makes at most qh queries to the random oracle, and returns a valid
forgery (s, c) for m with probability at least εF (where the probability is taken over the random
choice of y, the random tape of F , and the answers of the random oracle).
Moreover, we will say that the forgery (s, c) corresponds to the random oracle query index
` ∈ [1..qh] if the `-th query/answer of F to the random oracle was H(m, gsy−c) = c.

In all the following, we will assume wlog the following: when F returns a forgery (s, c), and
made the query (m, gsy−c) to the random oracle, the corresponding answer was c (in other
words, the forger never returns a forgery that it knows to be invalid: we assume it returns ⊥ in
this case). For clarity, when the forger returns a forgery corresponding to the random oracle
query index `, we will assume it outputs the triplet (`, s, c). Note that the forger may return a
random forgery that does not correspond to any of its random oracle queries, in which case it
is valid with probability 1/q (see Appendix C, Lemma 5). We will denote (∅, s, c) the output
of the forger in that case. In all the following, when we say that the forger returns a forgery
(`, s, c), we mean ` 6= ∅ unless otherwise stated.

As we will see in Section 3, the security of Schnorr signatures in the ROM can be proved
under the assumption that the Discrete Logarithm (DL) problem, that we formalize below, is
hard.

Definition 3 (DL problem). Let G be a cyclic group of order q and g be a generator of G.
An algorithm A is said to (t, ε)-solve the DL problem if on input (G, q, g) and r ←$ G, it runs
in time at most t and returns the discrete logarithm of r in base g with probability at least ε
(where the probability is taken over the random choice of r and the random tape of A).

The One-More Discrete Logarithm (OMDL) problem, introduced under the name Known-
Target DL problem in [BNPS03], is defined as follows. Note that Koblitz and Menezes [KM07]
argue that the ODML problem might be easier than the DL problem for some groups.

Definition 4 (OMDL problem). Let G be a cyclic group of order q and g be a generator
of G. Let Θ be an oracle taking no input and returning a random element of G (named the
challenge oracle). Let DLogg(·) be the oracle returning the discrete logarithm in base g of its
input. An algorithm A is said to (t, n, ε)-solve the OMDL problem if on input (G, q, g), it runs
in time at most t, makes m ≤ n+1 queries r1, . . . , rm ← Θ, and returns the discrete logarithm
of all ri’s in base g while making strictly less than m queries to DLogg(·), with probability at
least ε (where the probability is taken over the random challenges of Θ and the random tape
of A).

5



3 Security Proof with The Forking Lemma

In this section, we recall the analysis of the security of the Schnorr signature scheme using
the Forking Lemma [PS96,PS00]. We focus on UF-NM-security, but there is no difficulty in
extending the result to existential forgery and to chosen-message attacks using the honest-
verifier zero-knowledge property of the Schnorr identification scheme [PS00].

The main idea is to obtain from the forger two valid forgeries (`, s, c) and (`, s′, c′) cor-
responding to the same random oracle query (m, r), but for distinct answers of the random
oracle c 6= c′. Indeed this implies r = gsy−c = gs

′
y−c

′ , which yields the discrete logarithm of
the public key DLogg(y) = (s−s′)/(c−c′) mod q. For this, the reduction runs the forger with
input some messagem, public key y (the target element of the reduction), and some uniformly
chosen random tape ω, answering the random oracle queries of the forger uniformly at ran-
dom, until it returns a forgery corresponding to some random oracle query index ` ∈ [1..qh].
Then, it replays the forger, using the same input (m, y), the same random tape ω and the
same answers to random oracle queries up to the (`−1)-th one as for the successful execution.
Consequently, the `-th random oracle query of the forger is the same as in the successful exe-
cution. Starting from the `-th random oracle query, the reduction draws the answers uniformly
at random again (using the terminology of Section 4, we will say that such an execution forks
from the successful one at point `). It repeats this until the forger returns another forgery
corresponding to the same random oracle query index ` ∈ [1..qh]. The Forking Lemma gives
a lower bound on the probability that this strategy succeeds.

The security result for Schnorr signatures can be concretely stated as the following theo-
rem, from which it can easily be seen that the security reduction loses a factor O(qh) in its
time-to-success ratio tR/εR compared with the one of the forger tF /εF .

Theorem 1 ([PS00]). Assume there is a forger which (tF , qh, εF )-UF-NM-breaks Schnorr
signatures in the ROM for some group parameters (G, q, g). Assume moreover that εF ≥
max(2/(q + 1), 16qh/q). Then there is a reduction R which (tR, εR)-solves the DL problem
(for the same group parameters), where tR ' (16qh + 2)tF /εF and εR > 0.099.

Proof. We give a slightly adapted proof in Appendix C. ut

4 Description of the New Meta-Reduction

In the next section we will prove the following result, that we state informally for now.

Theorem (Informal). Under the OMDL assumption, any algebraic reduction from the DL
problem to UF-NM-breaking Schnorr signatures in the ROM must lose a factor f(εF )qh in its
time-to-success ratio, where qh is the maximal number of random oracle queries of the forger,
εF its success probability, and f(εF ) = εF / ln

(
(1− εF )−1).

In order to prove this result, we will start from an algebraic reduction R (the meaning
of algebraic will be explained shortly) that turns a UF-NM-forger for Schnorr signatures in
the ROM into a solver for the DL problem, and describe a meta-reductionM that uses the
reduction R to solve the OMDL problem without using any forger (the meta-reduction will
actually simulate the forger to the reduction thanks to its discrete log oracle). In order to
formalize this, we need a precise definition of a reduction.
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Definition 5. A reduction R is said to (tR, n, εR, qh, εF )-reduce the DL problem to UF-NM-
breaking Schnorr signatures in the ROM if upon input r0 ←$ G and after running at most
n times any forger which (tF , qh, εF )-UF-NM-breaks Schnorr signatures, R outputs DLogg(r0)
with probability greater than εR, within an additional running time tR (meaning that the total
running time of R is at most tR + ntF ).

The probability εR is taken as in Definition 3 over the random choice of r0 and the random
tape of R (the random tape of F is assumed under control of R). The reduction described in
the proof of Theorem 1 is a (O(1), (16qh + 2)/εF , 0.099, qh, εF )-reduction.

Similarly to previous work [PV05,GBL08], we will only consider algebraic reductions (orig-
inally introduced in [BV98]). An algorithm R is algebraic with respect to some group G if the
only operations it can perform on group elements are group operations (see [PV05] for de-
tails). We characterize such reductions by the existence of a procedure Extract which, given
the group elements (g1, . . . , gk) input to R, other inputs σ to R, R’s code, and any group
element y produced by R during its computation in at most t steps, outputs α1, . . . , αk ∈ Zq
such that y = gα1

1 . . . gαkk . We require that Extract runs in time poly(t, |R|, blog2 qc), where
|R| is the code size of R. As will appear clearly later, the need to restrict the reduction to
be algebraic arises from the fact that R can run the forger on arbitrary public keys, and the
meta-reduction will need to extract the discrete logarithm of these public keys (assuming R
returns the discrete logarithm of its input r0). This can also be interpreted as saying that
R runs F on public keys that are derived from its input r0 through group operations, which
does not seem an overly restrictive assumption. Note in particular that the reduction of [PS00]
using the Forking Lemma is algebraic: it repeatedly runs the forger on the same public key
y = r0 (or, in the variant described in Appendix C, on public keys y = (r0)α for α’s randomly
chosen during the first phase of the reduction).

We now describe the new meta-reductionM. It has access to an OMDL challenge oracle Θ
returning random elements from G, and to an oracle DLogg(·) returning the discrete logarithm
in base g of its input. It also has access5 to a (tR, n, εR, qh, εF )-algebraic reduction R, which
expects access to a forger F , and offers a random oracle interface that we denote R.H. We
assume tR, n, qh = poly(κ) and εR, εF = 1/poly(κ). Recall that the goal ofM is to return the
discrete logarithm of all challenge elements it queries to Θ, by making strictly less queries to
DLogg(·). In all the following we assume 0 < εF < 1, we fix α ∈]0, (1− εF )1/qh [ and we define
the quantities µ0 and µ ∈]0, 1[ (whose meaning will appear clearer in view of Lemmata 2
and 3) as:

µ0 = 1− (1− εF )1/qh and µ = µ0
1− α = 1

1− α
(
1− (1− εF )1/qh

)
.

M first queries the OMDL challenge oracle Θ, receiving a random element r0 ∈ G, and
runs R on input r0 and some uniformly chosen random tape. Then it simulates (at most) n
sequential executions of the forger that we denote Fi(mi, yi, ωi), 1 ≤ i ≤ n, where mi is the
input message, yi the input public key, and ωi the random tape of the forger received from
the reduction.6 Depending on how R chooses (mi, yi, ωi) and the answers to queries of M
to R.H, these successive executions may be identical up to some point, that we will call a
forking point.

5 By access we essentially mean black-box access, butM also needs the code of R to run procedure Extract.
6 We stress that Fi, i = 1, . . . , n, denote distinct executions of the same forger F .
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Definition 6 (Forking point). Consider two distinct simulated executions of the forger
Fi(mi, yi, ωi) and Fj(mj , yj , ωj), 1 ≤ j < i ≤ n. We say that execution Fi forks from execution
Fj at point ti/j = 0 if (mi, yi, ωi) 6= (mj , yj , ωj), or at point ti/j ∈ [1..qh] if all the following
holds:

– (mi, yi, ωi) = (mj , yj , ωj);
– for k ∈ [1..(ti/j − 1)], the k-th query and answer to R.H are the same in both executions;
– the ti/j-th query to R.H is the same in both executions, but the answers are distinct.

We also define the point where execution Fi forks from all previous executions as ti =
max{ti/j , 1 ≤ j < i}.

We assume wlog that all simulated executions are distinct, i.e. they fork at some point.
The simulation of the forger works as follows. The meta-reduction will dynamically con-

struct two (initially empty) disjoint sets Γgood, Γbad ⊂ G. Γgood will be the set of elements
z ∈ G whose discrete logarithm is known from M because it has made the corresponding
query to its discrete log oracle (we assume the discrete logarithm of elements in Γgood are
adequately stored byM), while Γbad will be the set of elements z ∈ G such thatM will never
make the corresponding query to its discrete log oracle. The main idea of the simulation of
the forger on input (m, y, ω) is thatM will return a forgery corresponding to the first query
R.H(m, r) such that the answer c satisfies ryc ∈ Γgood. Whether an element z ∈ G will be in
Γgood or Γbad will be determined by drawing a random coin δz ← Berµ during the simulation.
If δz = 1 (resp. δz = 0), z will be added to Γgood (resp. Γbad).

We now describe in details the i-th execution of the forger Fi(mi, yi, ωi) (see also Figure 1).
Before the simulation begins,M queries a challenge ri from Θ and initializes a flag forge =
false. Let ti denote the point where execution Fi forks from all previous executions. Assume
first that ti = 0, meaning that (mi, yi, ωi) is distinct from the input to all previous executions.
Then M proceeds as follows. For k = 1, . . . , qh, and while forge = false, it makes queries
(mi, r

βik
i ) to R.H using arbitrary7 randomization exponents βik ∈ Zq \ {0}. Denoting cik the

answer received from R.H,M computes zik = rβiki yciki . Three distinct cases may occur:

i) If zik ∈ Γbad, thenM simply continues with the next query to R.H.
ii) If zik ∈ Γgood, then by definitionM already requested DLogg(zik) to its discrete log oracle.

In that case, it sets `i = k, si = DLogg(zik), ci = cik, and sets the flag forge to true.
iii) If zik /∈ Γgood∪Γbad, thenM draws a random coin δzik ← Berµ. If δzik = 0, zik is added to

Γbad andM continues with the next query to R.H. If δzik = 1, thenM queries DLogg(zik)
and adds zik to Γgood. It then proceeds exactly as in case ii), and moreover stores the
value of βik as βi.

Once the flag forge has been set to true, M completes the sequence of queries to R.H
arbitrarily.8 When the qh queries to R.H have been issued, if forge = false, thenM returns
⊥ to R, meaning that execution Fi fails to forge. Else, forge = true andM returns (`i, si, ci)
as set at step ii) as forgery for mi to R. Moreover, ifM did not query its discrete log oracle
during the simulation (either because no forgery was returned or because zik was already in
Γgood), thenM directly queries DLogg(ri) (a more economic strategy could be used, but this
simplifies notations).

7 The only constraint is that the βik’s be distinct in order to avoid making twice the same query.
8 Alternatively, we could letM stop its queries here since queries after the forgery point are irrelevant.
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The simulation for the case ti ≥ 1 is quite similar to the case ti = 0, with one important
difference though. By definition of the forking point, the ti first queries to R.H are determined
by previous executions, andM must simulate the forger accordingly. In particular, it cannot
embed the current challenge ri before the (ti + 1)-th query. If there is some query R.H(mi, r)
of index k ∈ [1..(ti− 1)] such that the answer c satisfies z = ryci ∈ Γgood, thenM sets the flag
forge to true and will return a forgery corresponding to the first such query (without having
to query its discrete log oracle since z is already in Γgood). Note that this same forgery was
necessarily already returned in at least one previous execution. At the end of the simulation,
M directly queries DLogg(ri).

Assume now that the flag forge is still set to false when arrived at the ti-th query. By
definition of the forking point, this query was first issued during a previous execution j < i, so
thatM cannot choose it freshly. The answer of R.H, however, differs from the one received
in all previous executions from which Fi forks exactly at point ti. Denote (mi, r̂) this ti-th
query to R.H (r̂ = r

βjti
j , where rj was the challenge used during the j-th execution), ĉ the

corresponding new answer, and ẑ = r̂yĉi . If ẑ ∈ Γbad, then M can resume the simulation as
described for ti = 0, starting from the (ti + 1)-th query to R.H. If ẑ ∈ Γgood, then M can
forge a signature for this query without calling its discrete log oracle (and hence will be able
to query directly DLogg(ri) at the end of the simulation). If ẑ /∈ Γgood ∪ Γbad, thenM draws
a fresh coin δẑ ← Berµ. If δẑ = 0, then M can also resume the simulation as described for
ti = 0, starting from the (ti + 1)-th query to R.H. The problematic case arises if δẑ = 1, since
M must return a forgery for the ti-th query but does not know the discrete logarithm of ẑ
yet. Hence,M queries ŝ = DLogg(ẑ), completes the sequence of queries to R.H arbitrarily for
k = ti + 1 to qh, and outputs (`i = ti, ŝ, ĉ) as forgery for message mi. After the simulation of
Fi,M makes the additional query DLogg(ri). For the sake of the discussion in Section 5, we
will say that event Bad happens if this last case occurs during one of the n simulations. As we
will see shortly, event Bad makesM fail since in totalM makes two calls to DLogg(·) related
to the same challenge rj .9

Once the n calls to the forger have been simulated, the reduction R returns either ⊥ (in
which case M returns ⊥ as well), or the discrete logarithm a0 of r0. In the latter case, M
uses the procedure Extract to retrieve10 xi = DLogg(yi) for i = 1 to n. For each challenge
ri received from Θ, either M queried directly ai = DLogg(ri), or during the simulation of
Fi, M returned (`i, si, ci) as forgery, with si = DLogg(r

βi
i y

ci
i ). Hence M can compute the

discrete logarithm of ri as ai = (si − cixi)/βi mod q. Finally, M returns a0 and (ai)i=1..n.
This concludes the description of the meta-reduction.
Differences with the previous meta-reduction. In [PV05,GBL08], the distribution of
the indexes `i returned by the meta-reduction was uniform in [1..qh] and independent for
each execution. On the contrary, for our meta-reduction, it is not difficult to see that for
an execution such that all zik = rβiki yciki are fresh, `i is distributed according to a truncated
geometric distribution:

Pr[`i = k] = µ(1− µ)k−1 for k ∈ [1..qh] and Pr[`i = ⊥] = 1−
qh∑
k=1

µ(1− µ)1−k .

9 We could simply let M abort in that case, but for simplicity of the analysis we prefer to let it make an
additional call to DLogg(·).

10 More precisely, for each i ∈ [1..n], Extract returns γi and γ′i such that yi = gγir
γ′

i
0 = gγi+a0γ

′
i .
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Moreover, when an execution forks from previous ones at ti > 0, the distribution of `i is
obviously not independent from the previous forgery indexes `j . In fact, returning a forgery
for independently and uniformly chosen `i’s leads to counter-intuitive behaviors. Consider
two distinct executions of a forger F . Assume that some execution F1 returns a forgery
corresponding to some random oracle query index `1. Then, if another execution F2 forks
from the first one at t2/1 > `1, it seems more natural for F2 to return the same forgery as
F1 rather than a new one since the forger “knows” the corresponding signature. Such events
cannot happen with our meta-reduction because it simulates a forger that has a natural
interpretation: when run on input (m, y), it returns a forgery for the first query H(m, r) such
that the answer c satisfies ryc ∈ Γgood, where Γgood is a set of size ∼ µq such that the forger
can compute the discrete logarithm of elements of Γgood efficiently.

5 Proof of the Main Theorem

We will now prove a sequence of lemmata from which our main result will easily follow. The
following lemma will be useful. It results from a simple function analysis and is stated without
proof.

Lemma 1. Let εF ∈]0, 1[, and µ0 = 1− (1− εF )1/qh. Then for any qh ≥ 1, one has:

εF ≤ qhµ0 ≤ ln
(
(1− εF )−1

)
.

5.1 Successful Simulation of the Forger

The first thing to do is to lower bound the probability that R succeeds in returning DLogg(r0).
For this, we will show that with sufficiently high probability, M simulates a “good” forger,
i.e. a forger that would succeed with probability greater than εF when interacting with a real
random oracle (rather than R.H).

Definition 7 (Good forger). We say that a forger F making qh random oracle queries is
µ0-good if for any input (m, y, ω), the distribution over uniform sequences of random oracle
answers (c1, . . . , cqh) of the forgery index ` follows a truncated geometric law of parameter
µ̃ ≥ µ0, i.e. Pr[` = k] = µ̃(1− µ̃)k−1 for k ∈ [1..qh].

Lemma 2. Let µ0 = 1−(1−εF )1/qh. Then a µ0-good forger making qh random oracle queries
(tF , qh, εF )-UF-NM-breaks Schnorr signatures in the ROM (for some tF ).

Proof. Fix any message m. Then for any (y, ω), the probability over the answers (c1, . . . , cqh)
of the random oracle that F returns a valid forgery is

qh∑
k=1

µ̃(1− µ̃)k−1 = 1− (1− µ̃)qh ≥ 1− (1− µ0)qh = εF .

This remains true for the probability over (y, ω) and the answers of the random oracle. ut

The success probability of the forger simulated byM when interacting with a real random
oracle depends on the random tape of M through the draws of the coins δz. We will now
show that with overwhelming probability,M simulates a µ0-good forger. Note that the oracle
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1 2 3 4 5 6 7 8 9

r1 r1 r1 r1 r1 r1 r1 r1 r1
`1 =⊥

r2 r2 r2 ∗ ∗ ∗ ∗ ∗ ∗
`2 = 3

∗ ∗ ∗ ∗ ∗
`3 = 3

r4 r4 r4 r4 r4 r4
`4 =⊥

r5 r5 ∗ ∗ ∗ ∗
`5 = 5

r6 r6 r6 r6
`6 = 9

r7 r7 ∗ ∗
`7 = 7

∗ ∗
`8 = 7

Fig. 1. A possible execution tree of the simulated forger for qh = 9 and n = 8. Execution paths go from the
root to the leaves. The root symbolizes the beginning of each simulation of the forger. Vertices originating from
the root symbolizes the input (m, y, ω) received from R: execution paths sharing the same vertex correspond
to the same input. Then, each internal node symbolizes a query to the random oracle R.H, and the vertex
originating from this node symbolizes the corresponding answer. Again, execution paths sharing a node, resp.
a vertex, share the same query, resp. answer. The label above each query node represents the challenge ri from
Θ used byM to construct the query (we do not indicate the randomization exponent βik). Stars indicate that
the query is arbitrary since it comes after the forgery point for the execution. Finally, leaves symbolize the
output of the forger (a forgery or ⊥). Here, we simply label leaves with the index `i of the random oracle
query corresponding to the forgery (with the convention that `i = ⊥ in case the simulated forger returns
⊥) and we circle the corresponding random oracle query in the execution path. The first execution is run
on some input (m1, y1, ω1) and returns no forgery. All subsequent executions are run on the same input
(m2, y2, ω2) 6= (m1, y1, ω1). The second execution returns some forgery for `2 = 3. The third execution forks
from the second one at t3 = 4 > `2 so that it returns the same forgery as the second execution. The fourth and
fifth executions both fork from previous ones at t4 = t5 = 3. The fourth one returns no forgery while the fifth
one returns a forgery for l5 = 5. The sixth and seventh executions both fork from previous ones at t6 = t7 = 5,
both returning a forgery for resp. l6 = 9 and l7 = 7. Finally, execution 8 forks from previous ones at t8 = 7,
and returns a forgery for l8 = 7: since two forgeries related to the same challenge r7 are returned, event Bad
happens (assumingM has to make two queries to its discrete log oracle to forge the signatures).
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answers c of R.H may be determined by the random tape of R, which is set uniformly at
random byM. Hence elements z = ryc may range over all G, andM must be able to draw δz
independently for any z ∈ G. In order to avoid using an exponential amount of randomness,
M should derive the coins δz from a secure pseudorandom number generator. In all the
following, we will assume that the coins δz are truly random. By a standard hybrid argument,
this assumption cannot affect the success probability ofM by more than a negligible quantity
(since otherwiseM would constitute a distinguisher for the pseudorandom number generator).

Lemma 3. Set α = q−1/4. Then there is a negligible function ν such that for any challenges
(r1, . . . , rn) received from Θ and any randomization exponents βik, M simulates a µ0-good
forger with probability greater that (1− ν) over its random tape.

Proof. Assume that all coins δz for z ∈ G are drawn before the simulation starts rather than
by lazy sampling (this does not change the success probability of the simulated forger). By
definition, Γgood = {z ∈ G : δz = 1}. Clearly, the size of Γgood is distributed according to the
binomial distribution Binµ,q. A Chernoff bound hence gives:

ν
def= Pr

δz
[|Γgood| ≤ (1− α)µq] ≤ e−µqα2/2 .

Fix an arbitrary input (m, y, ω). For any r ∈ G, the probability over c ←$ Zq that
ryc ∈ Γgood is equal to µ̃ = |Γgood|/q. Recall that the simulated forger returns a forgery
corresponding to the first random oracle query H(m, r) such that the answer c satisfies ryc ∈
Γgood. Hence, independently of the sequence of queries of the simulated forger, the distribution
over uniform sequences of random oracle answers (c1, . . . , cqh) of the forgery index ` follows
a truncated geometric law of parameter µ̃. When |Γgood| > (1 − α)µq = µ0q, then µ̃ > µ0.
This holds for any input (m, y, ω) and any sequence of queries of the simulated forger, so that
for any challenges (r1, . . . , rn) received from Θ and any randomization exponents βik, with
probability greater than (1− ν) over the draws of the coins δz,M simulates a µ0-good forger.
Moreover, we have:

e−µqα
2/2 = e

− qhµ0qα
2

2qh(1−α) ≤ e−
qhµ0qα

2

2qh ≤ e−
εF
√
q

2qh ,

where for the last inequality we used Lemma 1 and α = q−1/4. Since by assumption qh =
poly(κ) and εF = 1/poly(κ), we see that ν is negligible, hence the result. ut

5.2 Success of the Meta-Reduction

The next step is to analyze the probability thatM succeeds given that R does. It is straight-
forward to verify that the computation of the discrete logarithm of all challenges (r1, . . . , rn)
received from Θ byM is correct. Consequently, given that R returns the discrete logarithm
of r0, M may only fail because it did not make strictly less queries to DLogg(·) than to Θ.
However, it is not hard to see from the description ofM that if event Bad does not happen,
then M makes exactly one query to its discrete log oracle per simulation of the forger, and
hence returns the discrete logarithm of n + 1 challenges while making n queries to DLogg(·).
Hence, given that R returns a0 = DLogg(r0), and that event Bad does not happen, thenM is
successful.

The last step towards proving our main theorem is to bound the probability of event Bad.

12



Lemma 4. Event Bad happens with probability less than

nµ ≤ n ln
(
(1− εF )−1)

(1− α)qh
.

Proof. Consider the i-th simulation of the forger byM. Let ti be the point where this execution
forks from all previous executions. By construction ofM, Bad can only happen if ti ≥ 1, and
the output of the fresh coin δẑ (we refer to notations of Section 4) drawn to decide whether a
signature must be forged for the ti-th query is 1, which happens with probability µ. An union
bound on the n simulated executions and Lemma 1 give the result. ut

5.3 Main Theorem and Discussion

We are now ready to state and prove the main theorem of this paper.

Theorem 2. Assume there is an algebraic reduction R that (tR, n, εR, qh, εF )-reduces the DL
problem to UF-NM-breaking Schnorr signatures in the ROM, with εF < 1. Set α = q−1/4.
Then there is a negligible function ν such that the meta-reduction M (tM , n, εM )-solves the
OMDL problem, where:

εM ≥ εR

(
1− ν − n ln

(
(1− εF )−1)

(1− α)qh

)
tM ≤ poly(tR, |R|, n, qh, blog2(q)c) .

Proof. Denote Sim the event thatM simulates a µ0-good forger. By Lemma 2 and by definition
of a (tR, n, εR, qh, εF )-reduction, when Sim happens, R returns DLogg(r0) with probability
greater than εR (over r0 and its own random tape). Provided that R returns the discrete
logarithm of r0 and that Bad does not happen, the meta-reduction is successful. Hence, one
has εM ≥ εR(1−Pr[Sim]−Pr[Bad]). Combining Lemmata 3 and 4 yields the lower bound on
εM . Taking into account the fact thatM uses a secure pseudorandom number generator rather
than truly random coins cannot modify εM by more than a negligible amount (otherwiseM
would constitute a distinguisher), that we can incorporate in ν. The running time of M is
upper bounded by the sum of the time needed to simulate the n executions of the forger which
is poly(n, qh, blog2 qc), the additional running time tR ofR, and the time to run Extract which
is poly(tR, |R|, blog2 qc), hence the result. ut

Remark 1. As already noted by [PV05] for their meta-reduction, the above proof can be
straightforwardly extended to reductions of the OMDL problem to forging Schnorr signatures
in the ROM. Hence the security of Schnorr signatures cannot be proved tightly equivalent to
the OMDL problem either (under the OMDL assumption).

Interpretation. Recall that the total running time of the reduction is at most tR + ntF .
Denote ρF = tF /εF and ρR = (tR + ntF )/εR ≥ ntF /εR the time-to-success ratio of resp. the
forger and the reduction. Then some computation gives:

n ln
(
(1− εF )−1)

(1− α)qh
≤ εRρR

(1− α)f(εF )qhρF
≤ ρR

(1− α)f(εF )qhρF
,
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where f(εF ) = εF / ln
(
(1− εF )−1). Hence one has:

εM ≥ εR
(

1− ν − ρR
(1− α)f(εF )qhρF

)
.

Since tR, |R|, n, qh, blog2(q)c = poly(κ), tM = poly(κ), so that under the OMDL assump-
tion, one must have εM negligible. Then the inequality above yields (using εR = 1/poly(κ)
and ν, α = negl(κ)):

ρR ≥ f(εF )qhρF − negl(κ) .

Hence one must have that ρR is negligibly close to f(εF )qhρF : the reduction essentially loses
a factor f(εF )qh in its time-to-success ratio.

The function f(εF ) is depicted below. For small εF , one has f(εF ) ' 1 − εF /2 (which
is a good approximation up to εF ' 0.5). For εF close to 1, writing εF = 1 − u, one has
f(εF ) ' −1/ ln(u). In particular, for εF = 1−1/poly(κ), f(εF ) ' C/ ln(κ) for some constant
C, which shows that f approaches 0 very slowly. For f(εF ) ≤ q−1/3

h , our bound becomes worse
than the one by Garg et al. [GBL08]. However, for large qh (which is the case of interest), this
implies that εF is very close to 1 (e.g. for qh = 260, a rough estimation shows that our bound
is not worse than q2/3

h before εF > 1− e−219).

εF

f(εF )

0 .5 1

.5

1

It is interesting to consider what happens when εF = 1 since our bound vanishes in that
case, while both the security reduction of [PS00] and the necessary loss Ω(q2/3

h ) of [GBL08]
hold. In that case one has by definition µ = 1, which means that the meta-reduction simulates
an adversary which always returns a forgery corresponding to its first random oracle query
(in which case there is a reduction which succeeds by running the forger only twice). However,
this singularity seems to be an artifact due to definitions in terms of strictly bounded-time and
queries algorithms and we can escape it by considering expected-time and queries algorithms.
This is developed in Appendix D. The main idea is that when simulating a forger making an
expected number of random oracle queries qh, one can choose the distribution of the forgery
index ` to be a geometric distribution of parameter µ ' 1/qh. This is not possible when the
number of oracle queries must be strictly less than qh, in which case we had to appeal to a
truncated geometric distribution. It remains nevertheless that in the special case of a forger
making strictly less than qh random oracle queries and forging with probability εF = 1, we
do not know of any better simulation strategy than choosing the forgery index uniformly at
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random in [1..qh] as was done in the meta-reduction of [PV05,GBL08], in which case one gets
a loss factor Ω(q2/3

h ) at best.
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A Extension to Generalized Schnorr Signatures

Basically all what is needed from a signature scheme for the security proof through the Forking
Lemma to apply is that it is 2-extractable, meaning informally that given two valid signatures
corresponding to the same random oracle query, but for two distinct answers of the random
oracle, on can recover the secret key (or more generally solve some hard problem). This
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property is inherited by any signature scheme derived through the Fiat-Shamir transform
from an identification scheme that is itself 2-extractable (this property is also called special
soundness in that case). Maurer [Mau09] presented a framework for unifying zero-knowledge
proofs of knowledge (which imply identification schemes). In this section, we point out that
our results apply in fact to any signature scheme derived through the Fiat-Shamir transform
from this framework. We call such signature schemes generalized Schnorr signatures. This
generalization is based on the notion of one-way group homomorphism.

Definition 8 (One-way group homomorphism). Let (E,⊗) and (G,�) be two groups
with efficiently computable group operation. A function ϕ : E→ G is a group homomorphism
if ϕ(x ⊗ y) = ϕ(x) � ϕ(y) for all x, y ∈ E. An algorithm is said to (t, ε)-solve the inversion
problem for ϕ if upon input X ∈ G, it runs in time at most t and outputs x ∈ E such that
ϕ(x) = X with probability greater than ε. One says that ϕ is (t, ε)-one-way if no algorithm
(t, ε)-solves the corresponding inversion problem.

Note that ϕ(x⊗k) = (ϕ(x))�k. We will use lower case letters for elements of E and upper case
letters for elements of G, and will simply denote xk for x⊗k and Xk for X�k. Analogously
to the OMDL problem, one can easily define the one-more inversion problem for ϕ, which
consists in solving n+ 1 inversion challenges for ϕ by making less than n calls to an inversion
oracle.

Given a one-way group homomorphism, Maurer [Mau09] defined a proof of knowledge (for
a preimage of an element X ∈ G) from which one can derive the following signature scheme.

Definition 9 (Generalized Schnorr signature scheme). Let (E,⊗) and (G,�) be two
groups and ϕ be a group homomorphism from E to G. Let H : {0, 1}∗ × G → C be a hash
function, where C is a finite subset of Z. The generalized Schnorr signature scheme is defined
as follows:

– Key generation: Let x ←$ E \ {1E}, and X = ϕ(x). The private key is x and the public
key is X.

– Signature: To sign a message m ∈ {0, 1}∗, draw r ←$ E, compute R = ϕ(r), c = H(m,R),
and s = r ⊗ xc. The signature is (s, c) ∈ E× C.

– Verification: Given a message m ∈ {0, 1}∗, and a claimed signature (s, c), compute R =
ϕ(s)�X−c and check that c = H(m,R).

Then following [Mau09], there is a simple sufficient condition for the scheme to be 2-
extractable (in the sense that given two valid signatures (s, c) and (s′, c′) corresponding to
the same random oracle query (m,R), one can solve the inversion problem for ϕ and recover
the secret key of the scheme).

Theorem 3. Assume that for any X ∈ G\{1G} and for any c 6= c′ ∈ C, there exists efficiently
computable values v ∈ Z and u ∈ E such that gcd(c − c′, v) = 1 and ϕ(u) = Xv. Then the
generalized Schnorr signature scheme is 2-extractable.

Proof. Assume that the public key is X and one is given two valid signatures (s, c) and (s′, c′)
corresponding to the same random oracle query (m,R), with c 6= c′. Then R = ϕ(s)�X−c =
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ϕ(s′) � X−c′ . Let v and u be as in the statement of the theorem. Using Euclid’s algorithm
one can find a, b ∈ Z such that av + b(c− c′) = 1. Then:

Xc−c′ = ϕ(s⊗ s′−1)
X1−av = ϕ((s⊗ s′−1)b)

X = ϕ(ua)� ϕ((s⊗ s′−1)b)
X = ϕ(ua ⊗ (s⊗ s′−1)b) ,

so that ua ⊗ (s⊗ s′−1)b is the pre-image of X. ut

Hence, given that the group homomorphism is one-way, that log2 |C| = poly(κ), and
that the conditions of Theorem 3 are fulfilled, one can generalize Theorem 1 to show that
the generalized Schnorr signature scheme is UF-NM-secure (in fact, using the honest-verifier
zero-knowledge property of the underlying proof of knowledge one can show that it is EF-
CMA-secure). The security reduction loses a factor O(qh) as well. Theorem 2 can then be
informally generalized as follows: assuming the one-more inversion problem is hard for ϕ, then
any G-algebraic reduction from the inversion problem for ϕ to UF-NM-breaking generalized
Schnorr signatures in the ROM must lose a factor f(εF )qh in its time-to-success ratio. We
now give three prominent instantiations of this framework.
The Schnorr signature scheme. This corresponds to the case where (E,⊗) = (Zq,+), G
is any cyclic group of order q with generator G, and C = Zq, where q is prime. The group
homomorphism is defined by ϕ(x) = Gx. Conditions of Theorem 3 are fulfilled for any c 6= c′

by v = q and u = 0.
The Guillou-Quisquater signature scheme [GQ88]. Let m = pq be a RSA-modulus
(p and q are primes), and e be a (sufficiently large) prime integer. Then the GQ scheme
corresponds to the case where (E,⊗) = (G,�) = (Z∗m, ·) and C = Ze. The one-way group
homomorphism is defined by ϕ(x) = xe (note that e is public). The inversion problem for
ϕ is of course the classical RSA problem (restricted to prime e’s rather than e’s such that
gcd(e, (p − 1)(q − 1)) = 1), and the one-more inversion problem is the so-called one-more
RSA problem [BNPS03]. Conditions of Theorem 3 are fulfilled for any c 6= c′ by v = e and
u = xe = X.
The Okamoto signature scheme [Oka92]. This corresponds to the case where (E,⊗) =
(Zq × Zq,+) (component-wise addition) and (G,�) is any cyclic group of order q with gen-
erators G1 6= G2, where q is prime, and C = Zq. The group homomorphism is defined by
ϕ(x1, x2) = Gx1

1 G
x2
2 . Conditions of Theorem 3 are fulfilled for any c 6= c′ by v = q and

u = (0, 0). The inversion problem for ϕ is called the representation problem. We point out
however that since the representation problem is known to be polynomially equivalent to
the DL problem when q is prime [Bra93], Okamoto signatures offer little advantage com-
pared with Schnorr signatures from the perspective of security in the ROM. Okamoto’s paper
was primarily interested in the underlying identification scheme, which has the property of
being witness-hiding (and hence secure against active attacks) under the DL assumption,
whereas the Schnorr identification scheme is only known to be honest-verifier zero-knowledge
(and hence secure against passive attacks) under the DL assumption.11 The Okamoto sig-
11 We note that Bellare and Palacio [BP02] proved that the Schnorr identification scheme is secure against

active attacks under the OMDL assumption.
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nature scheme however is provably secure in the standard model, but at the price of a very
strong and ad-hoc assumption on the hash function (namely some weak form of correlation
intractability [CGH98]).

B Extension to Other Related Signature Schemes

Finally, we mention another scheme whose security can be analyzed with the Forking Lemma,
and to which our results apply, but which does not fit in the framework described in the
previous section, namely the Modified ElGamal signature scheme proposed by [PS00].

Definition 10 (Modified ElGamal signature scheme). Let G be a group of prime order
q, and g be a generator of G. Let also F : G → Zq be a so-called conversion function, whose
output is assumed to be close to uniformly distributed.12 Let H : {0, 1}∗ ×G → Zq be a hash
function. The Modified ElGamal signature scheme is defined as follows:

– Key generation: Let x←$ Zq \ {0}, and y = gx. The private key is x and the public key is
y.

– Signature: To sign a message m ∈ {0, 1}∗, draw a ←$ Zq \ {0}, compute r = ga, c =
H(m, r), and s = a−1(c− xF (r)) mod q. The signature is (s, r).

– Verification: Given a message m ∈ {0, 1}∗, and a claimed signature (s, r), compute c =
H(m, r), and check that gc = rsyF (r).

The scheme can be seen to be 2-extractable as follows: assume one has two signatures
(s, r) and (s′, r) corresponding to the same message m and the same random oracle query
H(m, r), but for two distinct answers c and c′ of the random oracle. Then gc = rsyF (r) and
gc
′ = rs

′
yF (r), so that cs′ − c′s = xF (r)(s′ − s) mod q, which yields x provided F (r) 6= 0.

The only additional complication is to lower bound the probability that F (r) 6= 0, which can
be easily handled thanks to the assumption that the output of F is close to uniform.

Our results can be easily transposed to the Modified ElGamal signature scheme, with one
difference though: in order to simulate a forgery for a random oracle query H(mi, ri) whose
answer was ci, the meta-reduction must be able to compute si = DLogri(g

ciy
−F (ri)
i ), that is

a discrete log in base ri instead of base g. Hence, one needs the so-called free-base OMDL
assumption [PV05]: the free-base OMDL problem is defined as the classical OMDL problem,
except that the solving algorithm has access to an oracle DLog(·)(·), where both the base
and the target element are freely chosen by the algorithm. When the reduction succeeds, the
meta-reduction retrieves xi = DLogg(yi), and can compute the discrete log of each challenge
ri as s−1

i (ci − xiF (ri)) mod q.
We believe our results can also be extended to other related schemes such as variants

of DSA considered in [PV96], or Trusted ElGamal signatures [BPVY00], but we have not
checked the details.

C Proof of Theorem 1

Before proving Theorem 1, we state a useful lemma which gives a lower bound on the proba-
bility that the forger returns a forgery that corresponds to one of its random oracle queries.
12 F is not required to be hard to inverse. When G is the subgroup of prime order q of Z∗p, where p = Aq + 1,

for A small, one can use F (x) = x mod q.
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Lemma 5. Let F be a forger which (tF , qh, εF )-UF-NM-breaks Schnorr signatures in the
ROM (for some group parameters (G, q, g)). Then for any message m ∈ {0, 1}∗, the probability
(over the public key y, the random tape of the forger, and the answers of the random oracle)
that it returns a forgery (s, c) corresponding to one of its random oracle queries is greater
than

ε′F
def= εF

q − 1/εF
q − 1 .

Proof. Recall that we assume wlog that when F returns a forgery (s, c), and made the query
(m, gsy−c) to the random oracle, the corresponding answer was c (otherwise we let F return
⊥). We partition the outcomes of the forgery experiment into 3 disjoint events:

1. event NF: the forger returns ⊥;
2. event RO: the forger returns a valid forgery corresponding to one of its random oracle

queries;
3. event NRO: the forger returns a forgery that does not correspond to any of its random

oracle queries (in which case the forgery is valid with probability exactly 1/q).

We also let Forge denote the event that the forger returns a successful forgery. We are inter-
ested in Pr[RO]. One has:

Pr[RO] = Pr[RO ∧ Forge]
= Pr[Forge]− Pr[NRO ∧ Forge]
= εF − Pr[Forge|NRO] Pr[NRO]
= εF − Pr[NRO]/q .

Using Pr[NRO] = 1− Pr[NF]− Pr[RO] ≤ 1− Pr[RO], one gets the result. ut

Proof of Theorem 1. The reduction R receives a challenge element z ∈ G of which it must
compute the discrete logarithm. R fixes an arbitrary message m ∈ {0, 1}∗ that it will use for
all executions of the forger F (recall that the forger succeeds with probability at least εF for
any message). R runs in two phases. In the first one, it repeatedly runs F up to N1 times
with message m, public key y = zα for α←$ Zq \ {0}, some uniformly chosen random tape ω,
and uniform answers to random oracle queries of the forger, until F returns a forgery (`, s, c)
corresponding to some random oracle query index ` ∈ [1..qh] (all randomness is renewed at
each trial). If there is no successful execution, the reduction fails. Otherwise, let y = zα, ω and
(c1, . . . , c`) be resp. the public key, the random tape, and the answers to the ` first random
oracle queries of the forger for this successful execution.

In the second phase, the reduction replays up to N2 times the forger with the same public
y, the same random tape ω, and the same first `− 1 answers (c1, . . . , c`−1) to random oracle
queries of the forger as in the successful execution (hence the `-th random oracle query (m, r`)
of the forger is the same as in the successful execution). The qh−`+1 last answers (c′`, . . . , c′qh)
to random oracle queries of the forger are drawn at random at each trial. The reduction
succeeds provided one of these N2 executions returns a forgery (`, s′, c′) corresponding to the
same random oracle query index `, and c′` 6= c`. Indeed, if we denote (m, r) the `-th random
oracle query in both successful executions, one has r = gsy−c = gs

′
y−c

′ and the reduction can
compute the discrete log of z as (s − s′)/α(c − c′) mod q. Clearly, the running time of R is
O((N1 +N2)tF ). We analyze now its success probability.
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The reason why we have the reduction run the forger with public keys y = zα for random
α’s rather than simply z in the first phase is that otherwise one has to appeal to the Splitting
Lemma [PS00, Lemma 1] since all experiments in the first phase share some randomness (this
subtlety was not taken into account in [PS00], as already noted by [MR02]). Using this re-
randomization trick, one has, according to Lemma 5, that the probability, for any of the N1
first trials, that the forger returns a forgery corresponding to one of its random oracle query,
is greater than

ε′F = εF
q − 1/εF
q − 1 .

Globally, the first phase yields an execution returning a forgery corresponding to some random
oracle query with probability greater than 1− (1− ε′F )N1 .

Let Ω be the space from which the random tape for F is drawn. For any ` ∈ [1..qh],
and any sequence (y, ω, c1, . . . , c`−1) ∈ G \ {1G}×Ω× (Zq)`−1, we define P`(y, ω, c1, . . . , c`−1)
as the probability over uniformly random sequences (c′`, . . . , c′qh) that the forger, when run
on input (m, y) with random tape ω and the sequence of answers of the random oracle
(c1, . . . , c`−1, c

′
`, . . . , c

′
qh

), returns a forgery corresponding to its `-th random oracle query.
We will say that (y, ω, c1, . . . , c`−1) is good if P`(y, ω, c1, . . . , c`−1) is greater than ε′F /4qh,
and that a complete execution (y, ω, c1, . . . , cqh) is `-good if (y, ω, c1, . . . , c`−1) is good. We
will denote Good` the event that an execution is `-good. We also denote ROl the event
that an execution returns a forgery corresponding to the random oracle query index `, and
RO = tqh`=1RO` (disjoint union). Recall that according to Lemma 5, Pr[RO] ≥ ε′F . Finally, we
denote Good = tqh`=1(Good`∧ROl). We want to lower-bound the probability that the successful
execution obtained in the first phase is `-good (where ` is the index of the random oracle
query corresponding to the forgery returned by this execution). In other words, we want to
lower-bound Pr[Good|RO]. Let L be the set of indexes ` ∈ [1..qh] such that Pr[RO`|RO] ≥ 1/2qh.
Then one has:∑

`∈L
Pr[RO`] = Pr[RO]−

∑
`/∈L

Pr[RO`] ≥ Pr[RO]− qh
Pr[RO]

2qh
= Pr[RO]

2 .

Moreover, for any ` ∈ L:

Pr[Good`|RO`] = 1− Pr[Good`]
Pr[RO`]

Pr[RO`|Good`] ≥ 1− 2qh
ε′F
· ε
′
F

4qh
= 1

2 ,

where we used Pr[Good`] ≤ 1, Pr[RO`] ≥ ε′F /2qh for ` ∈ L, and Pr[RO`|Good`] ≤ ε′F /4qh by
definition of an `-good execution.

Then one has:

Pr[Good|RO] = 1
Pr[RO]

qh∑
`=1

Pr[Good|RO`] Pr[RO`]

= 1
Pr[RO]

qh∑
`=1

Pr[Good`|RO`] Pr[RO`]

≥ 1
2
∑
`∈L

Pr[RO`]
Pr[RO]

≥ 1
4 .
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Hence, the first phase yields an execution returning a forgery corresponding to some ran-
dom oracle query index ` with probability greater than 1− (1−ε′F )N1 , and when this happens
this execution is `-good with probability greater than 1/4. In that case the second phase is
successful with probability greater than 1−(1−ε′F /4qh+1/q)N2 , where the 1/q term accounts
for the fact that one must have c′` 6= c`. Globally, the reduction is successful with probability
greater than

1
4
(
1−

(
1− ε′F

)N1
)(

1−
(

1− ε′F
4qh

+ 1
q

)N2
)

.

From now on, we assume both εF ≥ 2/(q+1), which implies ε′F ≥ εF /2, and εF ≥ 16qh/q,
which implies ε′F /4qh − 1/q ≥ εF /16qh. Taking N1 = 2/εF and N2 = 16qh/εF then gives a
success probability greater than

1
4

(
1− 1

e

)2
> 0.099 ,

which concludes the proof. ut

D Expected-Time and Queries Forgers

We start by defining an expected-time and expected number of queries forger. Since we will
consider forgers making a potentially unbounded number of random oracle queries, we cannot
use the UF-NM-security notion. Indeed, when given a message m as input, a UF-NM-forger
can make at most q useful random oracle queriesH(m, r), one for each for r ∈ G. Hence we will
rather use the EF-NM-security notion (where the number of potentially useful random oracle
queries is unbounded). This is rather a technical detail, yet in order to get a mathematically
clean result we cannot avoid it.

Definition 11 (EF-NM exp-forger). A forger F is said to (tF , qh, εF )-exp-EF-NM-break
Schnorr signatures in the ROM if on input a public key y ←$ G, F runs in expected-time less
than tF , makes an expected number of queries to the random oracle less than qh, and returns
a valid forgery (s, c) for some message m with probability at least εF (where the probability
and the expected values are taken over the random choice of y, the random tape of F , and the
answers of the random oracle).

We also define the corresponding notion of an expected-time reduction.

Definition 12. A reduction R is said to (tR, n, εR, qh, εF )-exp-reduce the DL problem to EF-
NM-exp-breaking Schnorr signatures in the ROM if for any forger F which (tF , qh, εF )-exp-
EF-NM breaks Schnorr signatures and upon input r0 ←$ G, it runs F an expected number of
times less than n, and outputs DLogg(r0) with probability greater than εR, within an expected
additional running time less than tR (meaning that the total expected running time of R is
less than tR + ntF ).

We also need corresponding definitions for the DL and OMDL problems in terms of
expected-time and queries algorithms. This is straightforward and we omit them. There is
also no difficulty in deriving the analogue of Theorem 1 for an expected-time and queries
forger (one can use the fact that with probability greater than 1/2, the number of random
oracle queries of the forger is less than 2qh). We can now prove the following theorem, whose
interpretation can be carried out similarly to the one of Theorem 2.
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Theorem 4. Assume there is an algebraic reduction R that (tR, n, εR, qh, εF )-exp-reduces the
DL problem to EF-NM-exp-breaking Schnorr signatures in the ROM. Then there is a meta-
reductionM and a negligible function ν such thatM (tM , n, εM )-exp-solves the OMDL prob-
lem, where:

εM ≥ εR
(

1− ν − 2n
qh

)
tM ≤ poly(tR, |R|, n, qh, blog2(q)c) .

Proof. The meta-reduction M used here is quite similar to the one used in Section 4, and
we only outline the differences. First, for any α ∈]0, 1 − 1/qh[, we define µ0 = 1/qh and
µ = µ0/(1−α). The simulation of the i-th execution of the forger Fi(yi, ωi) (there is no input
message since we consider existential forgery) is exactly the same as in Section 4, except that
M makes (an a priori unbounded number of) queries (mik, r

βik
i ) for arbitrary messages mik

until the answer cik satisfies zik = rβiki yciki ∈ Γgood. As previously, whether an element z is
in Γgood is decided by drawing δz ← Berµ. Note that since there are at most q − 1 possible
randomization exponents βik,M may have to use more than one message (hence the need to
consider existential forgers). Once such a query has been obtained, the simulated forger stops
its queries andM returns a forgery corresponding to this good query (possibly by making the
appropriate call DLogg(zik) to its discrete log oracle). Note that the simulated forger always
returns a forgery corresponding to its last random oracle query. The behavior ofM once all
the simulated executions of the forger have been carried out remains unchanged.

The analysis ofM is quite similar to Section 5. First, by a Chernoff bound, one has:

ν
def= Pr

δz
[|Γgood| ≤ (1− α)µq] ≤ e−µqα2/2 .

When |Γgood| > 0, the forger simulated by M succeeds in forging with probability 1 ≥ εF
when interacting with a random oracle. Moreover, denoting Q the random variable counting
the number of random oracle queries made by the simulated forger, one can see that for
any input (y, ω), the distribution of Q over uniform answers of the random oracle follows a
geometric law of parameter µ̃ = |Γgood|/q: for any k ≥ 1, Pr[Q = k] = µ̃(1− µ̃)k−1. A classical
calculation then gives that the expected value of Q (over the answers of the random oracle) is
1/µ̃. Hence when |Γgood| > (1− α)µq = µ0q, the expected value of Q is less than 1/µ0 = qh.
This holds for any input (y, ω) and hence this remains true for the expected value of Q over
(y, ω) and the answers of the random oracle. Hence, denoting Sim the event thatM simulates
a “good” forger (i.e. a forger making an expected number of random oracle queries less than
qh and forging with probability greater than εF ), one has Prδz [Sim] ≥ (1− ν).

It remains to bound the probability of event Bad, defined similarly as in Section 4. For a
single execution it happens with probability less than µ. Denote N the number of executions
of the forger by the reduction. Then:

Pr[Bad] =
+∞∑
k=0

Pr[Bad|N = k] Pr[N = k] ≤
+∞∑
k=0

kµPr[N = k] = µE(N) ≤ nµ .

Putting everything together, one obtains:

εM ≥ εR(1− Pr[Sim]− Pr[Bad]) ≥ εR(1− ν − nµ) .
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Setting α = 1/2 yields ν ≤ e−q/(4qh) which can be shown to be negligible as in proof of
Lemma 3. The final bound follows.

The running time ofM is straightforward to analyze. ut
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