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ABSTRACT

Leakage-free authentication of trees and graphs have been studied
in the literature. Such schemes have several practical applications
especially in the cloud computing area. In this paper, we propose
an authentication scheme that computes only one signature (opti-
mal). Our scheme is not only super-efficient in the number of sig-
natures it computes and in its runtime, but also is highly versatile
– it can be applied not only to trees, but also to graphs and forests
(disconnected trees and graphs). While achieving such efficiency
and versatility, we must also mention that our scheme achieves the
desired security – leakage-free authentication of data objects rep-
resented as trees, graphs and forests. This is achieved by another
novel scheme that we have proposed in this paper – a secure nam-
ing scheme for nodes of such data structures. Such a scheme as-
signs "secure names" to nodes such that these secure names can
be used to verify the order between the nodes efficiently without
leaking information about other nodes. As far as we know, our
scheme is the first such scheme in literature that is optimal in its
efficiency, supports two important security concerns – authenticity
and leakage-free (privacy-preserving/confidentiality), and is versa-
tile in its applicability as it is to trees, graphs as well as forests. We
have carried out complexity as well as experimental analysis of this
scheme that corroborates its performance.

1. INTRODUCTION
In the emerging cloud computing paradigms, hosting and dis-

tribution of data is carried out by third party infrastructures and
servers, which may not be trusted (e.g., Amazon EC2, Amazon
Web Services AWS, “Database as a Service”[8]). In such third-
party data distribution settings, an important requirement is to as-
sure data authenticity. Data authenticity must be assured even when
the data that a user can access is a subset of the signed data, as users
maybe authorized to only access a subset of the data. In the cloud-
computing paradigms, which are increasingly being employed in
order to store and publish sensitive information belonging to in-
dividuals (such as healthcare) and enterprises, protection of pri-
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Figure 1: (a) Tree T and subtree Tδ . (b) Graph G and subgraph
Gδ .

vacy and confidentiality are as important as verifying authenticity
of data [1]. Such leakages can be used to infer sensitive informa-
tion that is not part of the received data, which in turn would lead
to privacy and confidentiality breaches.

Leakage-free authentication of data in cloud have several appli-
cations such as in assuring healthcare, biological, and financial data
(XML, graphs) while protecting privacy and confidentiality (for
HIPAA compliance), and in authenticating XPath query results.
Healthcare-specific examples, where leakages during authentica-
tion of trees and graphs lead to privacy breaches are given in [11]
and [12], respectively.

The problem is how does Alice (the trusted data owner) sign the
data (which is basically, a rooted directed tree or a directed graph)
once, so that the authenticity of a portion of the data (subtree or
a subgraph) received by a user can be verified without leaking any
information about the remaining part of the data. An authentication
scheme for a tree or a graph must allow one to verify the integrity
of its content (content integrity) as well as its structure (structural

integrity). Information that is not in a subtree/subgraph but is in its
source graph is referred to as extraneous information.

Leakage-free property: As an example, consider the tree in Fig-
ure 1(a) and suppose that the user receives the subtree Tδ . The user
should neither receive nor should be able to infer anything about
the extraneous information: nodes b, f, g and h, and edges e(d, b),
e(h, d), e(h, g), and e(g, f). The user should not be able to learn
about the existence of b from the process that verifies the order be-
tween siblings a and c. In the case of graphs, another basic form of
leakage is about immediate ancestors of a node. For example, as-
sume that the user receives Gδ , subgraph of G in Figure 1(b). The
user should not learn that node c has another immediate ancestor
other than d (which is h), which is in Gδ . For nodes a, b and d,
the user should not learn whether they have any other immediate
ancestors in G.

Threat Model. Signer of a tree/graph/forest is trusted. The third-
party server (cloud server) that processes the queries from clients
is not authorized to sign query results on behalf of the trusted data
owner, and the user may carry out carry out inference attacks on
the data received.



Our Contributions. In this paper, we propose an authentication
scheme for data objects represented as trees, graphs or even as
forests (disconnected trees/graphs). The proposed scheme supports
two important security properties: it (1) can be used to sign and ver-
ify authenticity of data objects, and (2) does not leak information
during authentication of data. The proposed scheme (1) is optimal
in the number of signatures it computes for any tree/graph/forest:
one signature; (2) can be used to authenticate not only trees but
also graphs and forests. We have also proposed a notion of se-
cure names that can be used to verify order between two siblings
of a tree/graph without leaking information as described earlier.
Two schemes are proposed – the first one is in-efficient but pro-
vides an understanding on how an effcient scheme can be devised.
The second naming scheme that we have proposed is both secure
and efficient. Next, we propose signature schemes for trees and
graphs based on these secure names and Condensed-RSA signature
scheme. Both schemes are secure with respect to the two properties
– authenticity and leakage-free properties. The CRSA schemes for
trees and graphs compute O(m) number of signatures computed
for trees, where m is the number of nodes.

In the next part of the paper, we show that we can achieve better
efficiency (than CRSA signatures) in leakage-free authentication
of trees, graphs and forests: only one signature is computed and
the number of expensive cryptographic operations such as modular
exponentiations is reduced to as many as two. We are not aware
of any other scheme in the literature that is more efficient and/or
more secure (unforgeable and leakage-free). Later in the paper,
we present experimental results related to computation of secure
names, Condensed-RSA (CRSA) based signature schemes, and the
single signature scheme (leakage-free redactable signature scheme
– LFR scheme). Our schemes are highly scalable. The scheme
for trees can accommodate trees with a high branching factors and
very large number of nodes in the order of millions, which is cor-
roborated by our experimental results. Branching factors of 100
and 300 (which result in trees with nodes as many as 1 million and
27 millions, respectively, with the height being 3) are handled by
the proposed scheme quite efficiently. We also show how replay
attacks can be prevented, how dynamic modifications to trees and
graphs are handled.

Related Work. One of the most widely applied and extended
techniques for authentication of tree-structured data is the Merkle
hash technique [14] (MHT), which is binding (that is, integrity-
preserving) but it has a major drawback in that it is not hiding
(i.e., it leaks information) [5]. It has been used in many scenar-
ios such as: integrity assurance of XML [7], selective dissemina-
tion of XML data [2], integrity assurance of DAGs [13] and veri-
fying completion of query results [16]. Merkle hash technique is
integrity-preserving, but at the same time leaks [5]. Such a tech-
nique is not suitable for integrity assurance in high assurance en-
vironment and in privacy-preserving environments. The MHT and
the techniques derived from it leak not only the Merkle hash of the
nodes that the user does not have access to, but also the structural
relationships, such as the parent-child relationships, and the sibling
relationships as well as the structural ordering pertaining to nodes
that the user does not have access to. Redactable and sanitizable1

signature schemes have been developed in order to verify integrity
of parts of a linear structured message that has been signed. A
message in this context is a linear sequence of sub-messages. In
this paper, our focus is on more complex structures: trees, graphs

1Sanitizable signatures require a designated sanitizer, and
redactable signatures allow for publicly sanitizable.

and forests. Moreover, all the schemes (except one mentioned later)
leak structural information of the parts that are not part of the sub-
message (such parts are called redacted or sanitized ones) being
validated.

There is little work concerning the problem of leakage-free in-
tegrity verification of trees and graphs.

Kundu and Bertino recently proposed the scheme for trees [11]
and graphs [12], which overcome such drawback of the MHT. How-
ever, these schemes use order between random numbers to verify
order between siblings. However, the structural signature scheme
for graphs is more expensive than the one proposed in this paper
in terms of the number of integrity verifiers (per node and back-
edges): it requires more than one depth first-traversals of graphs
with cycles (proportional to the number of back-edges), where as
the proposed scheme requires only one depth-first traversal of the
graph (irrespective of the number of back-edges). Brzuska et al [4]
proposed formal definitions of redactable structural signatures and
described a scheme for trees. However, their scheme is an expen-
sive one for trees: it computes quadratic number of signatures for
the children of each non-leaf node (in number of siblings) in order
to verify ordering among siblings. In contrast, in our scheme that is
presented in this paper, we just compute only one signature for any
tree, graph or forest. Moreover, our single signature scheme can be
easily applied to not only trees, but also graphs and forests.

2. SECURE NAMES
In this section, we describe a notion of “secure names” that are

assigned to the nodes in a tree. The purpose of secure names is
to convey the order of siblings (which node is to the left of which
other node) without leaking anything else (e.g., whether they are
adjacent siblings, how many other siblings are between them, etc).
For example, in Figure 1(a), a, b, and c are siblings such that a
≺ b ≺ c. Secure names ηa, ηb, and ηc are assigned to a, b, and
c, respectively. Given ηa, and ηc, alongwith a and b, a user can
establish the fact that a ≺ c. But it cannot learn anything about b,
or its existence (extraneous information).

The signing procedure traverses a tree T (V,E) bottom-up, and
assigns an N -bit secure name ηx to each node x in the tree, and then
computes the signature σT of the tree using these secure names.

2.1 Preliminary Scheme (Scheme-1)
Our approach for generating secure names follows a bottom-up

strategy. Let v1, . . . , vk be a list of siblings listed in left to right
order. Let lsb(s) denote the least significant bit of the bit-string s.
The secure names of siblings vi and vi+1 are computed such that
the least significant bits of the hash of ηvi‖ηvi+1 and the hash of
ηvi+1‖ηvi are 1 and 0, respectively. We call this as the ordering

property of secure names. This scheme is given in Figure 2.

Example: In the tree in Figure 1(a), N -bit secure names ηa,
and ηb, are assigned to a, and b, respectively. ηa is a assigned
as a random. ηb is computed such that lsb(H(ηa ‖ ηb)) = 1 and
lsb(H(ηb ‖ ηa)) = 0. This process is repeated for each set of sib-
lings.

2.1.1 Complexity

Scheme-1 takes exponential amount of time in terms of the num-
ber of children of a tree. The probability that a particular choice of
r is found suitable for ηvπ(i)

is 4−i+1, and the average number of

r values generated for the selection of such an ηvi is 4i−1. The
expected time to compute the secure names all k siblings is there-
fore:

∑k
i=1 4

i−1 = (4k − 1)/3, and the average time to compute



rNameGen: Compute the secure names for siblings v1, v2, . . . , vk,
children of node x, where vi ≺ vj , i < j.

1. For the root node root of T , assign a random to ηp̂root .

2. Repeat the following statements for each x ∈V . Let
v1, v2, . . . , vk be the set of the children of x.

3. Generate a random permutation π of the integers {1, . . . , k}.

4. Set ηvπ(1)
to be any random.

5. For i = 2, . . . , k, compute ηvπ(i)
as follows.

(a) Choose a random r.

(b) For j = 1, . . . , i− 1, do the following:

i. λ≺←H(ηvπ(j)
‖ r).

ii. λ≻←H(r ‖ ηvπ(j)
).

iii. If vπ(i) is to the left (resp., right) of vπ(j), then check
whether lsb(λ≺) is 1 (resp., 0) and lsb(λ≻) is 0
(resp., 1).

iv. If the answer is “yes” for all j, then ηvπ(i)
← r.

v. Else go back to Sub-step 5(a).

rNameVrfy: Verify the order between two nodes vi ≺ vj , using
their secure names ηvi and ηvj .

1. vi ≺ vj ⇔ lsb(H(ηvi ‖ ηvj ))= 1 ∧ lsb(H(ηvj ‖ ηvi)) = 0.

Figure 2: Algorithm to compute secure names for T (V,E)
(Scheme-1).

all secure names is (n − ℓ) ∗ (4k − 1)/3. Moreover, although it
is quite unlikely to happen, it is nevertheless possible that two non-
sibling nodes receive the same secure name. In such a case, step
5(a) should be repeated.

Given its high cost, we need to find a more efficient solution –
perhaps of linear complexity.

2.2 Efficient Scheme (Scheme-2)

Figure 3: Secure names ηVi and ηx of siblings Vi and x in the
context of the efficient naming scheme.

The main drawback of the Scheme-1 is the fact that the worst-
case time to compute an ηx, when x is the (j + 1)’th leftmost
child of its parent, is exponential in j (Step 3 in Section 2.1). This
section describes an improved scheme that does not suffer from
this drawback. As earlier, a non-leaf node in a tree has k number
of children. In what follows, we describe a more efficient scheme
for constructing a secure scheme.

The idea is, as before, to compute the ηx’s (secure names) bottom-
up and, within a set of siblings, in left-to-right order. The main
difference is how a secure name ηx is computed. This scheme
(Scheme-2) is given in Figure 4.

In this approach, we split the N -bit long secure name ηx of a
node x into two disjoint parts: ηl

x and ηr
x of sizes L and R refer

to the left and right parts of ηx, respectively (Figure 3). If x is the
leftmost child (i.e., the first child) of its parent then ηx is selected
randomly. If x is (m + 1)’th leftmost child of its parent, then ηx
depends on the secure names of its left siblings. Let w be a left
sibling of x: w ≺ x. Two bits (bw and b′w) in ηl

w and two bits
(bx and b′x) in ηl

x are selected and their values are set such that
bw ⊕ bx < b′w ⊕ b′x. bw and bx are the j’th leftmost bit in w and
x, respectively, where j is computed using ηr

w and ηr
x in this order

(because w ≺ x). Similarly b′w and b′x are the (j′)’th leftmost bit
in w and x, respectively, where j′ is computed using ηr

w and ηr
x in

the reverse order. Alongwith N , (L− 2 ∗k), and R are sufficiently
large as security parameters.

Example: For N = 512, choose L=360 for k ≤ 100, and R=152
in the context of current computational power. In the tree in Fig-
ure 1(a), secure names ηa, and ηb, are assigned to a, and b, re-
spectively. ηa is an N -bit random and each bit of ηl

a is marked as
not-used. ηb is computed as follows. ηr

b is an R-bit random and
ηl
b is initialized to 0. Each bit of ηl

b is marked as not-used. j is
computed as (1 + H(ηr

a ‖ ηr
b ) mod L). Since j’th leftmost bits

of ηl
a and ηl

b referred to as bi and b, respectively, are marked as
not-used, j′ is computed as (1 +H(ηr

b ‖ η
r
a) mod L). If (j 6= j′)

and the (j′)’th leftmost bits of ηl
a and ηl

b referred to as b′i and b′, re-
spectively, are marked as not-used, then proceed as follows. Assign
either (0,0) or (1,1) to (bi,b

′
i) in ηl

a, and (0,1) or (1,0) to (b,b′) in ηl
b.

Such an assignment assures that bi ⊕ b(= 0) < b′i ⊕ b′(= 1). The
j’th and (j′)’th bits of ηa and ηb are marked as used. ηc depends
on both ηa and ηb. This process is repeated for each set of siblings.

2.2.1 Complexity

The above algorithm translates into a simple and constant-time
test of which of two given siblings is to the left of the other. But
we need to analyze the expected number of re-starts. Suppose that
the size L of the left part (ηl

x) of a secure name is 500. The proba-
bility of a “collision” and re-start at Step (1) is the probability that
2k numbers drawn randomly from the 500 choices [1, 500] are not
all distinct, i.e., that at least 2 of them are equal. This is the clas-
sic birthday problem, and the probability of a re-start is (assuming
2k ≤ 500): 1−

∏2k−1
j=1 {(1− (j/500))} ≈ 1−e−(2k)(2k−1)/1000.

For 2k = 50 this probability is 0.91, hence the expected number
of re-starts is (1/(1 − 0.91) = 11, which is much better than the
preliminary scheme where the expected number of re-starts would
have been proportional to 425. Scheme-2 incurs linear cost O(n)
in terms of the number of nodes in the tree.

3. TREES
In this section, we describe the signature, distribution and ver-

ification protocols for trees. Prior to computing the signatures, a
dummy node is inserted by splitting an edge: if e(x, y) is an edge
in the original tree, add a node w such that e(x,w) and e(w, y) are
the new edges in the modified tree. Secure name ηw of each in-
serted node w is a random. Such node w when given to a user only
when the user has access to both x and y. The ordering between
them is not needed to be verified by secure names.

3.1 Leakage-Free Signatures of Trees (rSign)
An integrity verifier (IV ) of a node is the hash of the secure

name of its parent, its secure name and its contents. In case of



rNameGen: Compute the secure name for x such that
v1, v2, . . . , vk, x are siblings, where vi ≺ vj ≺ x, i < j.

1. Choose a sufficiently large N . Choose L and R are such that
(a) N = L + R, (b) R ≥ log(L), and (c) (L− 2 ∗ k) and R are
sufficiently large as security parameters. Let ηr

x and ηl
x refer

to the right-part consisting of R and left-part consisting of L
bits of the secure name ηx of x.

2. Assign random values to ηr
x, and zero values to ηl

x. Associate
with each bit of ηl

x a status that is initially set to not-used.

3. Compute secure names of siblings in the left-to-right order of
the siblings. Let v1, . . . , vk be the siblings to the left of x,
where vi is the ith leftmost one. (Each of the ηvi ’s of these k
siblings of x have already been computed.)

4. For i = 1 to k do the following.

(a) λ≺ ← H(η
r
vi ‖ ηr

x); j ← 1 + (λ≺ mod L). Let bi
(resp., b) denote the jth leftmost bit of ηl

vi (resp., ηl
x).

If the status of b is not-used then continue with the next
step, else go back to step (2).

(b) λ≻←H(η
r
x ‖ ηr

vi); j
′ ← 1 + (λ≻ mod L). Let b′i

(resp., b′) denote the (j′)’th leftmost bit of ηl
vi (resp.,

ηl
x).

(c) If (j 6= j′) and the status of b′ is not-used then proceed
to the next step, else go back to step (2).

(d) Set b and b′ such that bi ⊕ b < b′i ⊕ b′.

(e) Change the status of b and b′ from not-used to used.

rNameVrfy: Verify whether y ≺ z, using their secure names ηy
and ηz .

1. j ← 1 + (H(ηr
y ‖ η

r
z) mod L)

2. j′ ← 1 + (H(ηr
z ‖ η

r
y) mod L)

3. Let by and bz be the j’th, and b′y and b′z are the (j′)’th bits in
ηy and ηz , respectively.

4. Check the following: y ≺ z ⇔ by ⊕ bz < b′y ⊕ b′z.

Figure 4: Efficient algo to compute secure names for a tree
(Scheme-2).

inserted nodes, no contents is used in IV . Using the IV s, we de-
fine a signature σT (V,E) (also referred to as σT ) for T (V,E). In
cases when “the received subtree (sent to the user) is the same as
the original tree” is a sensitive information, the signature of a tree
may be salted using a random value in order to protect this fact.
The (salted) tree signature is publicly available or passed to the
user alongwith the subtree that the user has access to. σT (V,E) is
an aggregate signature, computed over the IV s of its nodes. We
define a signature for trees based on the condensed-RSA (CRSA)
signatures [15]. A brief summary of CRSA is given in [12].

DEFINITION 3.1 (INTEGRITY VERIFIER). Let x be a node in

tree T (V,E), and cx be the content of node x. Its integrity verifier

(IV ) denoted by ξx, is defined as: ξx←H(ηp̂x‖ηx‖cx).

In what follows, we define the signature of a tree based on Condensed-
RSA signature scheme [15] and aggregate signatures [3].

rSign: Sign tree T (V,E).

1. For each node x∈V , compute its secure name ηx, and compute
its IV : ξx←H(ηp̂x‖ηx‖cx).

2. Assign a salt ωT to T .

3. Compute the “signature of the tree” σT (V,E) using CRSA as
follows:

(a) For each x ∈V , σx← (ξx)d̄ mod n̄.

(b) Compute the signature σT by evaluating Eq. 1, where
ΩT ← ωT

d̄ mod n̄.

Figure 5: Algorithm to sign a tree using CRSA.

rRedact: Computed signature of the redacted subtree Tδ(Vδ, Eδ)
⊆ T (V,E).

1. σ′
Tδ
← 〈σTδ

,VO,ΘTδ
〉, computed as follows.

2. ΘTδ
is the set of all secure names of the nodes and their re-

spective parents in Tδ: ΘTδ
← {(ηx,ηp̂x )|x ∈ Vδ}.

3. Compute the collective integrity verifier VO as follows.

4. CRSA: VO ← ωT

∏
x∈(V −Vδ)

ξx mod n̄;

σTδ
←

∏
x∈Vδ

σx mod n̄.

Figure 6: Algorithm to redact a subtree using CRSA.

DEFINITION 3.2 (SIGNATURE OF TREES USING CRSA). Let

T (V,E) be a tree. LetH denote a random oracle. Let the RSA sig-

nature σx of each node x be defined as follows σx ← ξd̄x mod n̄,

where ξx is the IV of x. Let the salt be ωT be a random, and let

ΩT ← ωT
d̄ mod n̄. The signature of T , denoted by σT , is defined

as

σT = ΩT

∏

x∈V

σx mod n̄. (1)

3.2 Distribution (rRedact)
The distributor D sends the following items to Bob, who has ac-

cess to Tδ(Vδ, Eδ), a subtree of tree T (V,E): (Tδ(Vδ, Eδ),VOTδ
,σT ),

where VOTδ(Vδ,Eδ) (also referred to as VOTδ
) is the verification

object of Tδ , and σT the signature of the T (V,E). The follow-
ing steps show how to compute VOTδ

. D computes two collective
integrity verifiers σTδ

and ∆Tδ
as part of VOTδ

over the integrity
verifiers of all the nodes that are not in the subtree and also includes
the salt.
VO is used to verify the signature of the tree, and is used to

detect if any node(s) has been dropped form Tδ in an unauthorized
manner. σTδ

is used to verify the signature of all the nodes in the
subtree in an aggregate manner, and is used to detect if any node(s)
has been injected form Tδ in an unauthorized manner. ηx is the
secure name of x.

3.3 Authentication (rVrfy)
Bob receives the subtree Tδ(Vδ, Eδ), the signature of the tree

σT , and the verification object VO. As part of the content authenti-
cation process, Bob computes the integrity verifiers of the nodes in
Vδ and combines them with the received collective integrity verifier
VO. If the contents of the nodes are valid, the structural integrity



rVrfy: Verify authenticity of subtree Tδ(Vδ, Eδ).
Authentication of nodes:

1. For each node y ∈Vδ , compute ξy ←H(ηp̂y‖ηy‖cy).

2. CRSA: Verify (a) and (b):

(a) (σTδ
)ē

?
=

∏
y∈Vδ

ξy (mod n̄), and,

(b) (σT )ē
?
= VO

∏
y∈Vδ

ξy (mod n̄).

3. If (a) and (b) are valid, then the contents and secure names
of Tδ are authenticated. Otherwise, if (b) is invalid and (a)
is valid, then the received nodes are authenticated, but either
some nodes have been dropped, or VO and/or σT have been
tampered with.

Verification of edges and ordering among siblings:

1. Carry out a depth-first traversal on Tδ .

2. Parent-child relationship: Let x be the parent of y in Tδ; if (ηx
6= ηp̂y ), then this relationship is incorrect.

3. Order among siblings: For ordered trees, in Tδ , let y and z are
children of x, and let y ≺ z.

(a) For scheme-1 (Section 2.1): y ≺ z ⇔
(lsb(H(ηy ‖ ηz)) = 1) ∧ (lsb(H(ηz ‖ ηy)) = 0).

(b) For scheme-2 (Section 2.2):

i. j ← 1 + (H(ηr
y ‖ η

r
z) mod L)

ii. j′ ← 1 + (H(ηr
z ‖ η

r
y) mod L)

iii. by and bz are the j’th, and b′y and b′z are the (j′)’th
bits in ηy and ηz , respectively.

iv. y ≺ z ⇔ by ⊕ bz < b′y ⊕ b′z.

Figure 7: Algorithm to verify a subtree using CRSA.

is verified with the help of secure names: the parent-child relation-
ship, and the order among the siblings. Authentication of contents
and structural positions of the subtree received includes (1) verifi-
cation of integrity and, (2) verification of the source of the subtree.
The integrity verification of structural relations in a tree involves
traversing the tree and using the secure-name of two siblings of its
parent or its sibling. The user can carry out verification of integrity
of a n′-node subtree in O(n′)-time. The verification procedure is
given in Figure 7.

4. GRAPHS
Consider a simple graph G shown in Figure 1(b). It is a directed

acyclic graph (DAG) with node c having two immediate ancestors
– d and h Our solution for trees described earlier, does not work
for graphs. In case of graphs, a node may have multiple incom-
ing edges (i.e., multiple immediate ancestors such as c), whereas
in case of trees, a node has only one parent (immediate ancestor)
except for the root, which does not have any parent. Therefore, in
the context of graphs, we cannot use the notion of integrity verifiers
that is used for trees (Definition 3.1). The challenge in designing
leakage-free signatures for graphs arises from the fact that the set
αδ(x) of immediate ancestors of a node x in a subgraph Gδ is a
(possibly empty) subset of the set α(x) of immediate ancestors of
x in G. The question is how to verify the authenticity of αδ(x)
without leaking any information about (α(x)\αδ(x)): whether it
is empty or non-empty, what is its size, etc? For example, c has

rSign: Sign a graph G(V,E).

1. For each node x∈V ,

(a) For each node x, compute its secure name ηx.

(b) For each node x, compute its integrity verifier
ξx←H(ηx‖cx); For each edge e(x, y), compute its in-
tegrity verifier ξ(x,y)←H(ηx‖ηy).

2. Assign a salt ωG to G.

3. Compute the signature using CRSA σG:

(a) For each x ∈V , σx ← (ξx)d̄ mod n̄; For each edge
e(x, y) ∈E, σ(x,y)← (ξ(x,y))

d̄ mod n̄.

(b) ΩG← ωG
d̄ mod n̄. Compute

σG(V,E) ← ΩG

∏
x∈V σx

∏
e(x,y)∈E σ(x,y) mod n̄.

Figure 8: Algorithm to sign a graph using CRSA.

only d as its immediate ancestor Gδ , whereas it has d and h as the
immediate ancestors in G. How to authenticate the fact that d in
fact is a correct immediate ancestor of c in Gδ , without leaking any
information about h. Figures 8, 9 and 10 describe schemes to sign,
redact and verify graphs using CRSA, respectively. In what fol-
lows, ordering among siblings makes sense for graphs with cycles
if and only if, the back-edge (or the edge which can be removed to
break a given cycle among nodes) need to be of different semantics.

4.1 Leakage-Free Signatures for Graphs (rSign)
Our proposed scheme computes the integrity verifier of a node

independent of the secure name of the parent, and integrity verifiers
for edges. It computes secure names for nodes that have specific
ordering with their siblings. If in a graph, the ordering between
some siblings is not possible, then the secure names of such nodes
are just randoms.

DEFINITION 4.1 (INTEGRITY VERIFIER: NODE). Let x be a

node in graph G(V,E), and cx be the content of node x. Its in-

tegrity verifier (IV ) denoted by ξx, is defined as: ξx←H(ηx‖cx).

DEFINITION 4.2 (INTEGRITY VERIFIER: EDGE). Let e(x, y)
be an edge in graph G(V,E). Its integrity verifier (IV ) denoted by

ξ(x,y), is defined as: ξx←H(ηx‖ηy).

Signature of a graph is then computed as the aggregate signa-
ture of the integrity verifiers of nodes and edges. Distribution is
similar in the case of trees: if a user has access to a specific set of
nodes and edges, signatures of the integrity verifiers of the edges
and nodes as well as the secure names of the nodes are given to the
user alongwith the nodes and edges. Also the aggregate signature
of these IV s are given to the user alongwith the signature of the
source graph and the verification object.

The signature scheme has a complexity of O(|V |+ |E|). It com-
putes as many signatures as the number of nodes and edges in the
graph (as in the case of trees) and another signature for the whole
graph.

4.2 Distribution of Graphs (rRedact)
The distributor D sends the following items to Bob, who has ac-

cess to Gδ(Vδ, Eδ), a subgraph of graph G(V,E): (Gδ ,VOGδ
,σG),



rRedact: Computation of the redacted signature of Gδ(Vδ, Eδ):

1. Compute σGδ
and ∆Gδ

as follows.

2. CRSA: (a)σGδ
←

∏
y∈Vδ

σy

∏
e(x,y)∈Eδ

σ(x,y) mod n̄.

(b) ∆Gδ
← ωG

∏
y∈V −Vδ

ξy∏
e(x,y)∈E−Eδ

ξ(x,y) mod n̄.

3. ΘGδ
←{ηx | x∈}; VOGδ

←〈σGδ
,∆Gδ

,ΘGδ
〉.

Figure 9: Algorithm to redact a subgraph using CRSA.

rVrfy: Verification of authenticity of subgraph Gδ(Vδ, Eδ)
Authentication of contents:

1. For each node x ∈Vδ in a subgraph Gδ(Vδ, Eδ), compute its
integrity verifier: ξx←H(ηx‖cx).

2. For each edge e(x, y), compute its integrity verifier:
ξ(x,y)←H(ηx‖ηy).

3. CRSA: Compute (a) ((σGδ
)ē

?
=

∏
x∈Vδ

ξx (mod n̄)) and,

(b) ((σG)ē
?
= ∆Gδ

∏
x∈Vδ

ξx (mod n̄)).

4. If (a) and (b) are valid, then the contents and secure names
of Gδ are authenticated. Otherwise, if (b) is invalid and (a)
is valid, then the received nodes are authenticated, but either
some nodes have been dropped, ∆Gδ

and/or σG have been
tampered with. Parent-child relationship is verified during this
process.

Verification of ordering among siblings:

1. Carry out a depth-first traversal on Gδ .

2. Order among siblings: In Gδ , let y and z are children of x,
and let y ≺ z.

(a) For scheme-1 (Section 2.1): y ≺ z ⇔(lsb(H(ηy ‖
ηz)) = 1) ∧ (lsb(H(ηz ‖ ηy)) = 0).

(b) For scheme-2 (Section 2.2):

i. j ← 1 + (H(ηr
y ‖ η

r
z) mod L)

ii. j′ ← 1 + (H(ηr
z ‖ η

r
y) mod L)

iii. by and bz are the j’th, and b′y and b′z are the (j′)’th
bits in ηy and ηz respectively.

iv. y ≺ z ⇔ by ⊕ bz < b′y ⊕ b′z.

Figure 10: Algorithm to verify a subgraph using CRSA.

where VOGδ
(also referred to as VOGδ

) is a verification object,
and σG is the signature of G.

∆Gδ
is used to verify the signature of the graph, and is used to

detect if any node(s) has been dropped form Gδ in an unauthorized
manner. σGδ

is used to verify the signature of all the nodes in
the subgraph in an aggregate manner, and is used to detect if any
node(s) has been injected form Gδ in an unauthorized manner. ηx
is the secure name of x.

Example: D has to send Gδ in our example to Bob. σG is a
CRSA-signature. D computes the ∆Gδ

as a modular multiplication
of the salt ωG, and the integrity verifiers of f , g, and h, because f ,
g, and h are not in Gδ . Now VOGδ

is the tuple consisting of σGδ
,

∆Gδ
and a set consisting of an element for each node in Gδ . D

then sends the signature of the graph σG and VOGδ
alongwith Gδ ,

to the user.

4.3 Authentication (rVrfy)
Bob receives the subgraph Gδ(Vδ, Eδ), the secure name ηx of

each node x, verification object VOGδ
, and the signature of the

graph σG. It verifies the authenticity of the contents; if they are
authentic then the structural integrity is verified.

4.3.1 Authentication of the contents of subgraph Gδ

By contents, we mean the contents of each node x as well as
ηx. In order to authenticate contents of Gδ(Vδ, Eδ), Bob first com-
putes the integrity verifiers ξx for each node, and then combines
them appropriately with ∆Gδ

in order to verify the signature σG.
If the signature verifies, the edges and ordering among siblings are
also verified. Authentication of contents of Gδ(Vδ, Eδ) has a com-
plexity of O(|Vδ|+ |Eδ|).

Example: Bob computes the integrity verifiers of a, b, c and d
in Gδ in our example. Consider CRSA signatures. Bob computes
a modular multiplication of these integrity verifiers together with
∆Gδ

received as part of VOGδ
. Then Bob applies the signature

verification process of CRSA on the result of this multiplication
and the received signature σG of the graph. If the verification turns
out to be valid, the contents are authenticated.

5. SINGLE SIGNATURE SCHEME
In this section, we propose a construction of leakage-free redactable

signaturesfor trees that is secure as well as highly efficient (com-
putes only one signature). The LFR signature scheme is based on
the notion of secure namesdeveloped earlier in the paper, and the
redactable set signaturesdeveloped by Johnson, Molnar, Song and
Wagner (JMSW) [9].

Review of JMSW Redactable Set Signatures: Johnson etal. [9] de-
veloped a redactable set signaturescheme based on RSA primitives
and random oracle. The signature secure (EU-CMAover ⊂ and
∪ operation). Since it is redactable, given thesignature of a set,
and the elements that are to be removed from the set (thatresults in
the subset), anyone who knows the public key, can efficiently com-
putethe signature of the subset. The signature is history-independent,
and thus canbe shown to be a leakage-free redactable signature for
sets. Let the public keybe ē and the RSA modulus be n̄. Some con-
straints on RSA are that n̄ =p̄.q̄, where p̄ and q̄ are “safe primes”.Given
a set S = {s1, s2, . . . , sn}, its signatureσS is computed as fol-
lows: compute H(S) =

∏
1≤i≤nH(Si) mod n̄, and I(S) =

H−1
S mod φ(n̄), whereφ(n̄) = (p̄ − 1)(q̄ − 1). Signature σS is

computed as(ē)I(S). Verification proceeds as follows: Given a set
S’, and asignature σ, one computes the H(S′) =

∏
1≤i≤|S′|H(S

′
i),

where S′
i is the i’th element in S′; And then it is checkedif (σ)H(S′)

is equal to ē. If the equality holds, σ is a validsignature of the set
S′. In order to compute the signature of a subsetS′′ ⊂ S, one
redacts the hashes of the elements S\ S′′ fromthe signature σS as

follows: compute H(S\S′′) andσS′′ is computed as σS
H(S\S′′).

5.1 LFR Signature: rΠ

In this section, we present an LFR signature scheme rΠ for trees
that can be easily extended to graphs/forests. Ordered graphs and
forests can be signed using theabove scheme. The number of sig-
natures computed is optimal: 1, and the number of hashingscarried
out is O(|V | + |E|). The signing, distribution, and verification
schemes are given in Figures 11, 13, and 12, respectively.

5.2 Complexity



rSign: Sign tree T (V,E). Let p(x) be the parent of node x.

1. For each node w with m children, let xi be the i’th child,1 ≤
i ≤ m, and xj ≺ xj+1, 1 ≤ j ≤ m− 1.

2. Let ηx refer to the secure name assigned to node x.

3. Add a dummy node dxyto each edge e(x, y), thereby split-
ting the edge to two edgese(x, dxy) and e(dxy, y). As-
sign a random ηdxy to each dummy node dxy. V ′← V ∪
{dxy|e(x, y) ∈ E}.

4. For each node x in V ′, compute θx←H(ηp(x) ‖ ηx ‖ cx).

5. H(V )←
∏

x∈V θx mod n̄.

6. σT ← (ē)I(V ) mod n̄, where I(V ) ← H−1
V mod φ(n̄),

φ(n̄) = (p̄− 1)(q̄ − 1).

Figure 11: LFR: Algorithm to sign a tree.

rRedact: Compute signature of subtree(s) Tδ(Vδ, Eδ) ⊂T (V,E).

1. σTδ
← (σT )H(V \Vδ) mod n̄, where H(V \Vδ) ←∏

x∈V \Vδ
θx mod n̄.

Figure 12: LFR: Algorithm to redact a subtree.

Single signature scheme: Our single signature scheme takes a
singletraversal on a tree/graph/forest, and incurs cost of O(n +
m), where n and m are number of nodes and edges,respectively.
The number of signatures computed is 1, and the number oforder-
preserving encryptions that are carried out is n/k, as that many
groupsof siblings are there. The cost of computing a subtree/subgraph/sub-
forest ofn′ nodes and m′ edges is O(n − n′ +m −m′), because
n−n′ nodes and m−m′edges have to be redacted from the signa-
ture. The cost of verifying theintegrity of a subtree/subgraph/sub-
forest is O(n′ +m′), but needs to verifyonly 1 signature. There is
no decryption of the encrypted integers.Brzuska et al’s scheme: For
trees, it computes n signatures for thetree, and quadratic number of
signatures for each group of siblings: O(k2)(and there are n/k
such groups of siblings), k is the arity of the tree.More precisely, it
computes O(n+nk) signatures, and incurs cost of O(n+nk). The
cost of computing a subtree ofn′ nodes is O(n′+n′k), because n′k
orderings and their signatures have tobe selected. The cost of veri-
fying the integrity of a subtree/subgraph/sub-forestis O(n′ + n′k):
these many signatures are verified.Comparison: In comparison to
our scheme, signing by Brzuska et al’s isn + nk times more ex-
pensive. For computation of signature of redactedsignatures, our
scheme requires one modular exponentiation, whereas the other
scheme doesnot need any such operations; however, their scheme
incurs O(nk) moretraversal cost. Verification of the integrity of a
subtree using Brzuska et al’s is(n′ + n′k) times more expensive
than our scheme.

6. PERFORMANCE RESULTS
We carried out experiments over the two schemes proposed in

Sections 2.1 and 2.2.We implemented these two techniques in Java
1.6 and JCA 6.0 (Java Cryptography Architecture) APIs. The ex-
periments were carried out on a IBM Thinkpad with the following
specification: Linux (Ubuntu 8.10) on Intel Core 2 Duo CPU2.2GHz
with 2.98GB RAM. SHA-512 is used as the hash function.

Verification (rVrfy): Verify (σ, Tδ(Vδ, Eδ)); verifier receivesθx for
each node x in Vδ , and θdxy for each edgee(x, y) in Vδ . Verification

of Contents:

1. For each node x in V ′, compute θx←H(ηp(x) ‖ ηx ‖ cx).

2. H(Vδ)←
∏

x∈Vδ
θx mod n̄, θx =H(ηp(x) ‖ ηx ‖ cx).

3. If σTδ

H(Vδ) mod n̄ = ē, all nodes are authenticated.

Verification of Edges and Ordering:

1. Carry out a depth-first traversal on Tδ .

2. Parent-child relationship: Let x be the parent of y in Tδ; if (ηx
6= ηp̂y ), then this relationship is incorrect.

3. Order among siblings: For ordered trees, in Tδ , let y and z are
children of x, and let y ≺ z.

(a) For Scheme-1 (Section 2.1): y ≺ z ⇔
(lsb(H(ηy ‖ ηz)) = 1) ∧ (lsb(H(ηz ‖ ηy)) = 0).

(b) For Scheme-2 (Section 2.2):

i. j ← 1 + (H(ηr
y ‖ η

r
z) mod L)

ii. j′ ← 1 + (H(ηr
z ‖ η

r
y) mod L)

iii. by and bz are the j’th, and b′y and b′z are the (j′)’th
bits in ηy and ηz respectively.

iv. Check: y ≺ z ⇔ by ⊕ bz < b′y ⊕ b′z.

4. If contents, the edges, and the orderings among all siblings are
verified to be authentic, return 1, else return 0.

Figure 13: LFR: Algorithm to verify a subtree.

Computing Secure Names: Our performance results corroborate
the theoretical analysis and show that the second technique outper-
forms the first technique both in the number of attempts and the
time required to successfully assign a secure name to a nodes es-
pecially when the breadth of a tree is as high as in the order of
hundreds. We considered trees of branching factor (the number of
children a non-leaf node can have) ranging from 1 to 100. Consid-
ering the upper limit, a tree that has a breadth of 100 and a height
as small as 3, can have as many as 1 million nodes. In the plots, the
rank of a child among its siblings (other children of the same par-
ent) is i, 0 ≤ i ≤ 99. Figures 14 and 15refer to the performance
results with respect to (1) and (2),respectively.Scheme 1 and 2 re-
spectively refer to the preliminary technique(Sections 2.1) and the
better technique(Section 2.2).

We have also carried out the experiments for branching factor 1
to 300, which requires modification of the size of the secure names
(only in the case of the second technique) in order to accommodate
the breadth of 300, which could not have been possible with the
size of 512-bits for the secure name; 300 is a very large branching
factor – a tree of a small height 3 and branching factor 300 has as
many as 27 million nodes. The plots in Figures 16 and17 refer to
the performance results with respect to the number of attempts to
compute a secure name of a node and the time to compute such
a secure name, respectively with respect to the position of a node
among its siblings.

Performance of Signature Schemes

Both the CRSA-based and single-signature schemes that we have
implemented use the efficient secure naming scheme in order to as-
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Figure 14: Average number of attempts to assign a secure name to
a node; branching factor ≤ 100.
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Figure 15: Average time in micro-sec to assign a secure name to a
node; branching factor ≤ 100.
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Figure 16: Average number of attempts to assign a secure name to
a node; branching factor ≤ 300.

sign secure names to the siblings prior to signing the data. The time
to compute signatures, distribute and verify them include the time
to compute secure names. These performance results are applica-
ble for forests as well, as the schemes for them are only different
from the tree in the sense of representation of the edges. The ex-
perimental results for sign, verify and distribute hold for not only
tree but also for graphs and forests. The X-axis for trees represents
the number of integrity verifiers for nodes, whereas the graphs and
forests, it represents the number of integrity verifiers for nodes and

graphs. The Y-axis represents the time taken to compute the secure
names and sign, distribute and verify.
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Figure 17: Average time in micro-sec to assign a secure name to a
node; branching factor ≤ 300.
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Figure 18: CRSA: Time to sign the integrity verifiers of a
tree/graph/forest.
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Figure 19: CRSA: Time to redact the integrity verifiers of a
tree/graph/forest.

CRSA-based Signature Scheme: We have carried out experiments
using the efficient naming scheme. The plots for time to sign, dis-
tribute and verify trees are given in Figures 18, 19 and 20. The
performances of these algorithms are similar to the performances
of the algorithms in structural signatures. The dominant cost factor
in signing, and verification is the modular exponentiation (modular
multiplication for distribution) for CRSA. Verification of structural
relationships is quite fast (less expensive than the cost of comput-
ing the secure names in the efficient scheme as shown in Figure 15),
and do not affect the verification cost in any significant way; such
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Figure 20: CRSA: Time to verify the integrity verifiers of a
tree/graph/forest.
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Figure 21: LFR: Signing a tree/graph/forest.
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Figure 22: LFR: Computation of redacted signature of a sub-
tree/subgraph/subforest.

cost is not included in the plot for verification.

LFR: Single Signature Scheme

Signing a tree using our scheme (that deals with sibling ordering
as well) of 2 ∗ 220 (more than 2 Million) nodes requires about 70
seconds (Figure 21), which is in fact quite efficient. In contrast,
for a tree with 65535 nodes, computing the RSA signatures for
Brzuska et al’s signature scheme [4] takes more than 1100 seconds
(even without sibling ordering). It is significantly expensive than
our signing scheme. The time to compute signatures of redacted
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Figure 23: LFR: Verification of a subtree/subgraph/subforest.

subtrees decreases as the size of the redacted subtree increases (Fig-
ure 22), because the number of nodes to be redacted decreases with
the increase in the size of the subtree. It takes about 5 seconds to
compute the redacted signature of a 1-Million-node subtree (of a 2
Million node tree). It corroborates the fact that redaction of signa-
tures is more efficient than re-computing them. Verification of the
signature of a redacted subtree of 1 Million nodes (of a 2 Million
node tree) requires about 5 seconds (Figure 23) , which is signifi-
cantly less expensive than Brzuska et al’s scheme: that has to verify
1 Million signatures just for parent-child relationships.

7. SECURITY ANALYSIS
We prove the security of the signature schemes by proving the

leakage-free property of the secure names, unforgeability and leakage-
free property of the signature schemes, for both trees and graphs.
In what follows, A denotes a probabilistic polynomial time (PPT)
adversary.

7.1 Secure Names

LEMMA 7.1 (LEAKAGE-FREE PROPERTY). Under the ran-

dom oracle hypothesis, secure names computed by Scheme-2 are

leakage-free.

PROOF. Sketch: Consider that an adversary A can determine
with non-negligible probability whether a given set of secure names
for a subset of siblings Vδ have been computed as part of the com-
putation of secure names of V (Vδ ⊂ V ), or have been computed
afresh. Consider the sets of nodes as output from A: V0 = {x,z}
and V1 = {x,y,z}, x ≺ y ≺ z. b is drawn uniformly and randomly
from {0, 1}. The adversary then receives the challenge (V0,Θ0).
Consider that b = 1, and A outputs b′ = 1. A determines that
there are one or more siblings in between x and z. It implies that
the j′th and (j′)’th bit positions for (x,y) pair and/or for (y,z) pair
are known to A, which implies that A has been able to carry out
second-preimage attack on H. The bits of the secure names are
assigned using ⊕ operation, and the probability of each bit being
assigned 0 or 1 is 1

2
. R: the number of bits on the ηr

w, w is either
of x,y, or z, is a security parameter (λ2). Therefore,H is not a ran-
dom oracle, which contradicts our assumption. Otherwise, A has
carried out a brute-force attack by enumerating all possible secure
names; however, the number of bits that are never used for any pair
of siblings (L− 2 ∗ k) is a large value - a security parameter (λ1).
It implies that A can carry out such brute force search over an ex-
ponential search space, a contradiction to the assumption that A is
a probabilistic-polynomial adversary.



As earlier, let all secure names be in the interval [1 : U ]. To
prove that a secure name ηx reveals nothing about its rank i among
its siblings, it suffices to prove that the process for secure-name
assignment is such that the probability of a bit in ηx being either 0
or 1 is 1

2
, and it is true for all the bits in ηx. We give a proof by

induction.
Basis: Case I: x is the left-most child of its parent: ηx is randomly
chosen.
Case II: x is the second left-most child of its parent: Let v1 be the
left sibling of x. The R bits are randomly chosen. Two out of the
remaining bits referred to as b and b′ are chosen such that (b1⊕b) <
(b′1 ⊕ b′) (Step 2 of the scheme). However, b1 and b′1 are bits in the
random v1, i.e. the probability that the value of b1 (or b′1) is either 0
or 1 is 1

2
. Result of the XOR (⊕) of a random number with another

(possibly non-random) number is also a random number [10]. Thus
b and b′ are also random bits. The remaining bits of x are “not used”
and randomly chosen. Thus the number n(x)) is a random.
Inductive step:
If vk is the k’th left-most child of its parent and ηvk is a random
number, then ηx is also a random number where x is the (k+1)’st
leftmost child of its parent. r(vk) + 2(k − 1) number of bits in ηx
are already “used”. By Step 2 in the scheme, two bits at positions
j and j′ that are still unused in ηvk are chosen. The r(x) bits are
randoms as well as the two bits at j and j′ leftmost positions in ηx
are also randoms. The remaining bits are “not used” and chosen
randomly. Thus ηx is also a pseudo-random.

7.2 Trees

LEMMA 7.2. The signature scheme rΠ≡ (rGen, rSign, rRedact,

rVrfy) for trees using the CRSA scheme is existentially unforge-

able under the adaptive chosen-message attack over the subset op-

eration.

PROOF. Sketch: Unforgeability of the signature is due to the
unforgeability of CRSA. If the signature of a tree can be forged by
an A, then A has managed to solve the RSA problem or the Com-
putational Diffie-Hellman problem, which however are assumed to
be hard problems.

Given the correctness of the secure names (scheme-1 or scheme-
2), the order between siblings can be verified. In case the order
between siblings or edge relationship in a tree has been forged,
then the hash functionH is not a random oracle, which contradicts
our assumption.

LEMMA 7.3. The signature scheme rΠ≡ (rGen, rSign, rRedact,

rVrfy) for trees using the CRSA scheme is leakage-free.

PROOF. Sketch: rΠ is leakage-free if and only if the secure
naming scheme is leakage-free, which is proven in Lemmas ?? and
??.

7.3 Graphs

LEMMA 7.4. The signature scheme rΠ = (rGen, rSign, rRedact,

rVrfy) for graphs using the CRSA scheme is existentially unforge-

able under the adaptive chosen-message attack over the subset op-

eration.

Proof is similar to the proof of Lemma 7.2.

LEMMA 7.5. The signature scheme rΠ = (rGen, rSign, rRedact,

rVrfy) for graphs using the CRSA scheme is leakage-free.

Proof is similar to the proof of Lemma 7.3.

7.4 Single Signature Scheme
The following lemmas state the security of the proposed con-

struction rΠ.

LEMMA 7.6. Under the random oracle hypothesis, and the as-

sumption that the RSA problem is hard, and that the secure nam-

ing scheme Scheme-2 is secure, rΠ is existentially unforgeable un-

der chosen-message attack over subset (and union) operation over

trees/graphs/forests.

PROOF. Suppose that rΠ can be forged for a subtree Tδ . In one
scenario, either a node x can be substituted by another node y in the
subtree such that θx = θy . It implies thatH has encountered a colli-
sion, contradicting the assumption thatH is a random oracle. Simi-
larly, forging a wrong parent-child relationship is not feasible under
the random oracle hypothesis. If forging is carried out by forging
the signature of a set (other than subset and union operations), then
the JMSW signature scheme has been broken, which implies that
the adversary has solved the RSA problem efficiently [9]. The or-
der between two siblings cannot be forged under the random oracle
hypothesis (because theH involves θx of each node x).

LEMMA 7.7. Under the random oracle hypothesis, and the as-

sumption that the RSA problem is hard, then rΠ is leakage-free.

PROOF. Suppose that rΠ is not leakage-free for a subtree Tδ

of tree T . In other words, if Tδ and T are given to the rΠ, the
signature that one receives from Tδ leaks the fact whether it was
computed from scratch or by redaction from the signature of T . If
existence of a sibling in T , but not in Tδ , is leaked by the signature
of Tδ , then the plaintext values of the position of a sibling among
other siblings has been recovered, i.e., the secure naming scheme
Scheme-2 has computed secure names that are not leakage-free,
which however is not true. If a parent-child (edge) relationship
between two nodes x and y in Tδ is leaked, then θdxy is not distinct,
which is a contradiction.

8. DISCUSSION
We would now describe how the schemes presented in this paper

can be used for certain other scenarios.

Forests

Our single-signature scheme for graphs can be used to sign and
authenticate forests as-it-is, i.e., a set of dis-connected trees/graphs
in a leakage-free manner. Our scheme for graphs does not depend
on connected-ness of graphs.

8.1 Encrypted Trees, Graphs and Forests
In cloud computing, often plaintext data is not delivered to the

cloud servers. If the contents of the nodes are encrypted (but not the
structure), out schemes (including the structural signature schemes)
can be used directly to such scenarios. The only changes that are
needed are (1) Share with the server the integrity verifiers, which
are hashed values. (2) use a perfect one-way hash functions [6]
to compute the hashes, which can then be hashed again to be con-
verted to full-domain hashes. Perfect one-way hash functions do
not leak contents of the message being hashed, whereas standard
(such as SHA1 or SHA2) hash functions leak information.

8.2 Dynamic Trees, Graphs and Forests
In order to incrementally compute the signature of the updated

tree, an insertion (resp., deletion) of a new node requires a new se-
cure name, and leads to a modular multiplication (resp., division)
in case of CRSA and an group addition (resp., subtraction) on the



elliptic curve followed by a bilinear operation. In an updated graph,
the signature of immediate ancestors has also to be updated appro-
priately. Unlike in the MHT, in our schemes, the updates do not get
propagated up in a tree. They do not affect the secure name of other
siblings or nodes in Scheme-1; however, in Scheme-2, they affect
the secure name of other siblings. The single signature scheme sup-
ports both redaction and union of two signatures, which is why, it
also supports dynamic updates on trees, graphs and forests.

Computation of a new secure name in the j’th rank among its
siblings does not affect any secure names of other siblings in case of
Scheme-1. However, in the case of Scheme-2, it affects the secure
names of all other siblings.

9. CONCLUSION AND FUTURE WORKS
In this paper, we propose an authentication scheme for data ob-

jects represented as trees, graphs or even as forests (disconnected
trees/graphs). The proposed scheme supports two important secu-
rity properties: it (1) can be used to sign and verify authenticity of
data objects, and (2) does not leak information during authentica-
tion of data. The proposed scheme (1) is optimal in the number
of signatures it computes for any tree/graph/forest: one signature;
(2) can be used to authenticate not only trees but also graphs and
forests. In order to achieve such level of security as well as ef-
ficiency, we developed the notion of secure names, and proposed
an efficient scheme for computation of secure names. Experimen-
tal results corroborate our complexity analysis, and show that our
schemes are highly scalable, which is essential in a cloud comput-
ing paradigm. We are in the process of implementing this scheme
as part of a security stack of a cloud computing platform that is
planned to host biological databases used by both academia and
industry.
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