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Modifying Boolean Functions
to Ensure Maximum Algebraic Immunity
Konstantinos Limniotis, Nicholas Kolokotronis, Member, IEEE, and Nicholas Kalouptsidis

Abstract—The algebraic immunity of cryptographic Boolean
functions is studied in this paper. Proper modifications of
functions achieving maximum algebraic immunity are proved,
in order to yield new functions of also maximum algebraic
immunity. It is shown that the derived results apply to known
classes of functions. Moreover, two new efficient algorithms to
produce functions of guaranteed maximum algebraic immunity
are developed, which further extend and generalize known
constructions of functions with maximum algebraic immunity.

Index Terms—algebraic attack, algebraic immunity, annihila-
tors, Boolean functions, cryptography

I. INTRODUCTION

Boolean functions constitute important building blocks for
cryptographic systems, either as S-boxes in block ciphers or
as filter/combiner functions in stream ciphers. The security
of these systems is mainly attributed to the properties of the
underlying functions. More precisely, cryptographic Boolean
functions need to satisfy specific criteria, such as balancedness
or high nonlinearity, in order to ensure resistance against
cryptanalytic attacks.

Among the attacks that have received great attention over
the last years is the so-called algebraic attack, which exploits
the structure of the underlying functions to construct an
overdefined system of nonlinear multivariate equations that
will allow to determine the secret key [11]. As a result of
the analysis derived in [17], the following property is stated
as a prerequisite for any function f in order to prevent
algebraic attacks: there should not be a function g of low
degree satisfying either f ∗ g = 0 or (f + 1) ∗ g = 0. This
observation leads to the definition of the algebraic immunity
as a significant cryptographic criterion for Boolean functions
that relates to the minimum degree of functions satisfying the
above condition. If such a low degree function g exists, then an
algebraic attack may take place. Moreover, an algebraic attack
can be more easily mounted if many linearly independent
(rather than only one) such low degree functions exist [11].
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There are many open problems that should be addressed
in the design of cryptosystems that are immune to algebraic
attacks [2]. An important open issue is the construction of
Boolean functions achieving the maximum possible algebraic
immunity. Several constructions of such functions are pro-
vided in the literature. The first one is the majority function,
described in [13], which is a symmetric function; other con-
structions of symmetric functions having maximum algebraic
immunity are also given in [1], [20], [9] (note that when
the number of the variables is odd, then the only symmetric
function with maximum algebraic immunity is the majority
function [19]). However, the symmetry property poses a risk
from a cryptographic point of view and, thus, constructions
of non-symmetric functions of maximum algebraic immunity
are of high importance. Several such constructions have been
given in [3], [4], [14], [22], [7]; unfortunately, most of the
functions do not present high nonlinearity, whereas others
are non-balanced. Further constructions, providing functions
with higher nonlinearities, are given in [5], [24], [21], [25]
(as is pointed out though in [8], the first construction in [24]
coincides with the construction in [5]). Finally, functions with
odd number of variables and maximum algebraic immunity
are constructed in [15]; however, this construction, although
it covers the entire space of functions with maximum alge-
braic immunity, is more theoretical than practical. In general,
constructing functions with maximum algebraic immunity
(without sacrificing other cryptographic criteria) still remains
an active research area.

Algebraic attacks may be further improved by exploiting
linear relations among the keystream bits; this approach,
called fast algebraic attack, was first proposed in [12]. Fast
algebraic attacks may be efficiently applied to cryptographic
systems that are resistant to conventional algebraic attacks;
however, they require knowledge of consecutive keystream bits
(which is not needed in algebraic attacks). Amongst the known
families of functions achieving maximum algebraic immunity,
those proposed in [5], [21] seem to behave well against
fast algebraic attacks. A maximum value for the algebraic
immunity is also a necessary (though not sufficient) condition
for withstanding such attacks [18].

In this paper, new results are proved for efficiently con-
structing cryptographic Boolean functions having maximum
algebraic immunity. Our analysis is based on exploring the
behavior of functions with maximum algebraic immunity
when some entries of their truth table are altered. First, we
prove that proper slight modifications yield functions whose
algebraic immunity is at least maximum minus one; this result
agrees with the heuristic arguments presented in [6] indicating
that a random Boolean function has high algebraic immunity
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with a high probability. Next we proceed by further proving
sufficient conditions to ensure that the functions obtained
via the aforementioned modification have maximum algebraic
immunity, whereas the cases of odd and even number of
variables are treated separately. Hence, these results further
strengthen the existing constructions of cryptographic func-
tions with maximum algebraic immunity by providing the
means to appropriately modify such functions so as to ensure
that the algebraic immunity does not decrease. In the process,
the proposed analysis yields two new efficient algorithms pro-
viding functions with maximum algebraic immunity. The first
one is based on proper modifications of the majority function
and it extends the construction in [22] (which is restricted to
the class of rotation symmetric Boolean functions), whereas it
generalizes the construction given in [7] (for the case of even
number of variables) to the odd case. The second algorithm,
which applies to functions of odd number of variables, is
based on proper modifications of the functions that have been
recently proposed in [21], [25]. For the first case, the Algebraic
Normal Form (i.e. multivariate representation) of the functions
is being considered, whereas for the second algorithm the
support of the function is decribed as a set of powers of
a primitive element over a finite field (i.e. the univariate
representation of functions is used).

The paper is organized as follows; the basic definitions
and the notation used are introduced in Section II. Section
III presents the behavior of the functions with maximum
algebraic immunity if one or two entries of their truth table
are modified. This section forms the basis to identify sufficient
conditions to ensure that such modifications do not decrease
the algebraic immunity; such conditions are proved in Sec-
tion IV, whereas an algorithm is provided for constructing
functions with maximum algebraic immunity. This algorithm
is based upon the special structure of the majority function
and generalizes other known constructions lying in the same
context. In addition, by considering the univariate polynomial
representation of Boolean functions, we construct in Section
V another efficient algorithm for generating new functions of
odd number of variables and maximum algebraic immunity,
via appropriate modifications of the functions given in [21],
[25]. Finally, concluding remarks are given in Section VI.

II. PRELIMINARIES

Let f : Fn2 → F2 be a Boolean function, where F2 = {0, 1}
is the binary field. The set of Boolean functions on n variables
is denoted by Bn. The truth table of f is the binary vector

f = (f(0, 0, . . . , 0), f(0, 0, . . . , 1), . . . , f(1, 1, . . . , 1))

of length 2n, also denoted by f for simplicity. The Boolean
function f ∈ Bn is said to be balanced if wt(f) = 2n−1. The
support of a Boolean function f ∈ Bn is defined as supp(f) =
{b ∈ Fn2 : f(b) = 1}. We also define the support of a vector
b ∈ Fn2 as supp(b) = {1 ≤ i ≤ n : bi = 1}.

Any n-variable Boolean function f is uniquely expressed
by the Algebraic Normal Form (ANF) as

f(x) =
∑

v∈Fn
2

cvxv (1)

where the sum is taken modulo 2, cv ∈ F2 and xv =∏n
i=1 x

vi
i . The degree deg(f) of f is the highest number of

variables that appear in a monomial in its ANF.
Since there is a natural correspondence between the n-th

dimensional vector space Fn2 and the finite field F2n , a function
f ∈ Bn can also be represented by a univariate polynomial
from F2n to F2

f(x) =
2n−1∑
i=0

βix
i

where β0, β2n−1 ∈ F2 and β2i = (βi)2 ∈ F2n for 1 ≤ i ≤
2n−2; this polynomial is associated with a Mattson-Solomon
polynomial of f [16, p. 401].

The complement of a binary variable x will be denoted by
x = x + 1, where “+” represents addition modulo 2. Any
variable, in either complemented or uncomplemented form,
is called literal. Similarly, if b ∈ Fn2 , we write b , b + 1,
where 1 is the all-one vector of length n. For any Boolean
function f ∈ Bn and a vector b ∈ Fn2 , a minterm xb is
defined as xb = (x1 + b1) · · · (xn + bn). Hence, a minterm is
a product of literals where each of the variables appears once.
Clearly, xb ∈ Bn and xb(a) = 1 if and only if a = b. Any
product of k ≤ n literals, considered as a Boolean function
with n variables, is the indicator (or characteristic function)
of a flat of dimension n− k. Moreover, if a ∈ Fn2 is n-tuple
representation of an element αi ∈ F2n (in terms of some fixed
basis - e.g. polynomial), where α is a primitive element over
F2n , we also write the corresponding minterm as xαi .

If E is a linear subspace of Fn2 , we denote by f |E the
restriction of f on E. Then f is decomposed as follows

f(x) =
∑

a∈E⊥
ϑa+E(x)f |a+E(x) (2)

where E⊥ is the orthogonal complement of E and ϑa+E is the
indicator of the flat a+E, that is ϑa+E(x) = 1⇔ x ∈ a+E.

Definition 1: For any f ∈ Bn, its nonlinearity nl(f) is
defined as

nl(f) = min
g∈Bn:deg(g)≤1

wt(f + g) .

Definition 2: Given f ∈ Bn, we say that g ∈ Bn is an
annihilator of f if and only if g lies in the set AN(f) = {g ∈
Bn : f∗g = 0}, where ∗ denotes the multiplication (point-wise
product) of Boolean functions.

From the analysis of [11], [17] it becomes evident that a
cryptographic Boolean function f should neither have low
degree multiples nor low degree annihilators; otherwise, it is
probable that an algebraic attack can be successfully mounted.
As it is proved in [17], these requirements are equivalent to
saying that f has high algebraic immunity.

Definition 3: The algebraic immunity AIn(f) of f ∈ Bn
is the minimum degree of all nonzero annihilators of f and
f + 1.

A well-known result, first proved in [11], is that AIn(f) ≤
dn2 e for all f ∈ Bn.

A simple class of functions achieving the maximum alge-
braic immunity consists of the so-called majority functions
[13], namely:
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Proposition 1: Let f ∈ Bn and ε ∈ F2. Then

f(x) =


0, if wt(x) < n

2 ,

ε, if wt(x) = n
2 (and n is even),

1, if wt(x) > n
2 ,

is called majority function and satisfies AIn(f) = dn2 e.
Amongst several constructions of Boolean functions achiev-

ing maximum algebraic immunity, the one of [5] is of high
importance since it also satisfies several other cryptographic
criteria. This construction is described as follows:

Proposition 2: Let n > 1 be an integer and α be a primitive
element of the finite field F2n . If f ∈ Bn with supp(f) =
{0, 1, α, α2, . . . , α2n−1−2}, then AIn(f) = dn2 e.

The above construction provides functions whose support
consists of consecutive powers of a primitive element α over
F2n . Generalizations of this construction have been recently
given in [21], [25], based on the univariate representation
of functions; to describe these, we first need to recall some
notation from [21], [25] (which will be used in the sequel).

A cyclotomic coset modulo 2n − 1 is defined as Id ={
d, 2d, . . . , 2nd−1d

}
, where nd is the smallest integer such

that 2ndd ≡ d (mod 2n − 1), and the smallest element j in
Id is referred to as coset leader. The set containing all coset
leaders modulo 2n − 1 will be denoted by I . We also denote
by md(x) the minimal polynomial of αd over F2 (whose roots
are the elements of Id). Next we define the polynomial

Rd(x) =
∏

i∈I,wt(i)=d

m2n−1−i(x) =
∏

i:wt(i)=n−d

(x− αi)

for 1 ≤ d ≤ n− 1, where Rn(x) = x+ 1 and R0(x) = x. We
also define the product

Rd1,d2(x) =
d2∏
i=d1

Ri(x)

for 0 ≤ d1 ≤ d2 ≤ n. It is clear that, for d1 < d2,

Rd1+1,d2(x) = 1 + r1x+ r2x
2 + . . .+ rE−1x

E−1 + xE (3)

where E =
∑d2
i=d1+1

(
n
i

)
(and ri ∈ F2, i = 1, . . . , E − 1).

Since r0 = rE = 1, the following
∑d1
i=0

(
n
i

)
×
∑d2
i=0

(
n
i

)
matrix

Rd1+1,d2 =



r0 r1 . . . rE 0 . . . 0
0 r0 . . . rE−1 rE . . . 0
...

... . . .
...

... . . .
...

0 0 . . .
...

... . . . 0

0 0 . . .
...

... . . . rE


(4)

is of full rank
∑d1
i=0

(
n
i

)
. Next we enumerate each column of

Rd1+1,n−1, where the first column is considered as the 0-th
column (and, thus, the last is the (2n − 2)-th column). For a
given function f ∈ Bn, let R

1f

d1+1,n−1 be the sub-matrix of
Rd1+1,n−1 such that the j-th column of Rd1+1,n−1 belongs
to R

1f

d1+1,n−1 if and only if αj ∈ supp(f); the sub-matrix
R

0f

d1+1,n−1 is similarly defined.

Theorem 1 ([21]): There exists g ∈ AN(f) with deg(g) ≤
d if and only if

d∑
i=0

(
n
i

)
> rank(R1f

d1+1,n−1)

Proposition 3 ([21]): Let n > 1 be an integer and α be
a primitive element of the finite field F2n . If f ∈ Bn with
supp(f) = {1, α, α2, . . . , αδn−1} ∪ S, where
• S ⊂ {αδn , . . . , αδn+δ̂n+1} and |S| = 2n−1 − δn,
• δn =

∑dn
2 e−1

i=0

(
n
i

)
,

• δ̂n =
(
n
dn

2 e
)
,

then AIn(f) = dn2 e.
Is is shown in [25] that specific modifications of any

function constructed via Proposition 3 yield other functions
of maximum algebraic immunity; these are further discussed
(and extended) in Section V.

III. GENERAL CONCEPTS
OF MODIFICATION STRATEGIES

In this section we prove that proper slight modifications
of any function f ∈ Bn with maximum algebraic immunity
dn2 e yields functions which are bound to have maximum or
almost maximum (that is bn2 c) algebraic immunity. Moreover,
it is shown that the lowest degree annihilator of any such
modified function with algebraic immunity bn2 c is unique.
These results, apart from their own significance, form the basic
building blocks to derive proper modifications of functions en-
suring maximum algebraic immunity, which are subsequently
described in Section IV.

We first present a preliminary result that is subsequently
used; this result does not depend on the parity of n.

Lemma 1: Let f ∈ Bn have no nonzero annihilators of
degree less than k, 1 < k ≤ deg(f), and let a ∈ Fn2 be
such that f(a) = 0. Then, the function h = f + xa does not
have nonzero annihilators of degree less than k.

Proof: Note that h(x) = f(x) for all x 6= a, whereas
h(a) = 1. Hence, AN(h) ⊂ AN(f).

The following result is also well-known [2].
Proposition 4: If n is odd, then f ∈ Bn has maximum

algebraic immunity n+1
2 if and only if f is balanced and has

no nonzero annihilators of degree less than n+1
2 .

If n is even, then things are different; a necessary (but
not sufficient) condition for f to have maximum algebraic
immunity n

2 is that [3]

|wt(f)− 2n−1| ≤
(
n−1
n/2

)
Based on the above, we prove the following which extends

the result of [23, Corollary 4.1] stating that AIn(f+x0) = n−1
2

(where 0 ∈ Fn2 is the all-zero vector) for all f ∈ Bn with
AIn(f) = n+1

2 and n odd.
Proposition 5: Let f ∈ Bn, where n is odd, having max-

imum algebraic immunity n+1
2 , and let a ∈ Fn2 be such that

f(a) = 1. Then the function h = f + xa satisfies

AIn(h) =
n− 1

2

and, moreover, it has a unique annihilator u of degree n−1
2 .
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Proof: Note that (f + 1)(a) = 0 and, consequently,
Lemma 1 implies that the function h + 1 has no nozero
annihilators of degree less than n+1

2 . We shall first prove
that there exists nonzero u ∈ AN(h) with deg(u) < n+1

2 .
Let us assume that such function does not exist. Hence, the
function h has also the maximum possible algebraic immunity
n+1

2 . However, since h is clearly not balanced (recall that
f is necessarily balanced), we get a contradiction due to
Proposition 4.

Next, we shall prove that the annihilator u of the function
h satisfying deg(u) ≤ n−1

2 < n+1
2 is unique. Note that any

such u (as any annihilator of h) satisfies

h ∗ u = 0⇒ (f + xa) ∗ u = 0⇒ f ∗ u = xa ∗ u.

The fact deg(u) < AIn(f) implies that xa ∗ u can not be
identically zero and, since the weight of the Boolean function
xa is 1, we necessarily get

f ∗ u = xa . (5)

If there existed u′ 6= u with deg(u′) < AIn(f) and f∗u′ = xa,
then we would obtain f ∗ (u + u′) = 0, which contradicts
the fact that AIn(f) = n+1

2 . Thus, the function u ∈ AN(h)
satisfying deg(u) < n+1

2 is unique.
Since f(a) = 1, we have xa = f ∗ xa and (5) yields that

f ∗ (u+ xa) = 0, i.e. u+ xa ∈ AN(f). Let E be a (n− 1)-
dimensional (affine) subspace of Fn2 not containing vector a,
such that E ∪ {a + E} = Fn2 . Then

f |E ∗ (u+ xa)|E = 0⇒ f |E ∗ u|E = 0

and, since AIn(f) = n+1
2 , its restriction f |E can not have

nonzero annihilators of degree less than n−1
2 . Thus it holds

either deg(u|E) ≥ n−1
2 , in which case we immediately get

deg(u) = n−1
2 , or u|E = 0. Note that we can always find a

(n−1)-dimensional flat E not containing a for which u|E 6= 0.
Indeed, if this was not true then we would be able to find
k > n−1

2 flats E1, . . . , Ek such that u|Ei = 0 and V =
⋂
iEi

be a (n− k)-dimensional flat not containing a ∈ Fn2 ; then we
would obtain u = ϑa+V u|a+V from (2) and deg(u) > n−1

2
(since u 6= 0), which contradicts the fact that deg(u) ≤ n−1

2 .
Hence, deg(u) = n−1

2 , thus concluding our proof.
In the proof of Proposition 5 we saw that if u ∈ AN(f+xa)

then u+xa ∈ AN(f). In particular, the minimum degree such
u is associated with one annihilator g (equal to u+ xa) of f
all terms of which, with degree greater than n−1

2 , coincide
with those in the ANF of xa.

A direct result from Proposition 5 and Lemma 1 is the
following.

Corollary 1: If AIn(f) = n+1
2 and n odd, then

AIn(f + xa) =
n− 1

2
, ∀a ∈ Fn2 ,

and the annihilator of degree n−1
2 is unique.

Corollary 1 implies that the modification of any entry in
the truth table of f ∈ Bn with maximum algebraic immunity
always results in a function of algebraic immunity decreased
by 1. The importance of the above results rests with the fact
that the annihilator of either f + xa or f + xa + 1 with the
minimum degree n−1

2 is unique, since it is known that an

algebraic attack may be more easily mounted if many (rather
than only one) low-degree annihilators are determined [11].
Combining the above, we obtain the following result.

Proposition 6: Let n be odd and f ∈ Bn be such that
AIn(f) = n+1

2 . Then, for any a ∈ supp(f) and b /∈ supp(f),
the function h = f + xa + xb satisfies AIn(h) ≥ n−1

2 .
Proof: First note that for g = f+xa and g′ = 1+f+xb

we get g(b) = 0 and g′(a) = 0 respectively, whereas both g, g′

have algebraic immunity n−1
2 and a unique annihilator of such

degree, according to Corollary 1. Then, the claim follows by
applying Lemma 1 on g + xb (that is h) and g′ + xa (that is
h+ 1).

Proposition 6 implies that any modification of two entries
of the truth table of f ∈ Bn, with n odd and AIn(f) = n+1

2 ,
such that the resulting function remains balanced yields a
function with algebraic immunity at least n−1

2 . This result
agrees with the heuristic results presented in [6] indicating that
the algebraic immunity of a random balanced Boolean function
with n variables is at least bn2 c with very high probability.
Moreover, if a function f obtained via Proposition 6 satisfies
AIn(f) = n−1

2 then there is only one annihilator of f with
degree n−1

2 . The same claim holds for f + 1.
Although the case of even number of variables n is quite

different, some of the above results still hold; this is shown
next.

Proposition 7: Let f ∈ Bn, where n is even, having
maximum algebraic immunity n

2 , and let a ∈ Fn2 be such
that f(a) = 1. Then,

h = f + xa

satisfies AIn(h) ≥ n
2 − 1. If AIn(h) = n

2 − 1, then h has a
unique annihilator u of degree n

2 − 1 and u+ xa ∈ AN(f).
Proof: According to Lemma 1, h + 1 does not have

annihilators of degree less that n
2 . To show that h does not

have annihilators of degree less that n2 −1 (and if u ∈ AN(f)
with deg(u) = n

2 − 1 does exist, then it is unique) we simply
proceed as in the proof of Proposition 5.

A special case of Proposition 7, imposing restrictions on
the weight of f , was proved in [23, Theorem 4.2] under a
different formulation: if AIn(f) = n

2 and wt(f) = 2n−1 +
(−1)f(0)

(
n−1
n/2

)
, then AIn(h) = n

2 − 1; that is, only functions
whose weight is at the extreme points of the valid range (any
function with algebraic immunity n

2 can have) are considered.
Proposition 8: Let n be even and f ∈ Bn be such that

AIn(f) = n
2 . Then, for any a ∈ supp(f) and b /∈ supp(f),

the function
h = f + xa + xb

satisfies AIn(h) ≥ n
2 − 1; moreover, if annihilators of either h

or h+ 1 exist with degree n
2 − 1, then they are unique.

Proof: Direct consequence of Proposition 7 and Lemma
1 (see also the proof of Proposition 6).

Concluding this section, we show that modifications of bal-
anced Boolean functions as those described above may result
in functions with the maximum possible algebraic degree.

Corollary 2: Let f ∈ Bn be balanced. Then it is always
possible to choose a ∈ supp(f), b ∈ supp(f + 1) such that
deg(h) = n − 1, i.e. the maximum possible, where h = f +
xa + xb.
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Proof: Let yi denote the monomial yi =
∏
j 6=i xj of

degree n− 1, and let c ∈ Fn2 be the vector whose coordinate
ci is the coefficient of yi in the ANF of f , i = 1, 2, . . . , n.
By construction, deg(h) ≤ n − 1, since f is balanced, and
therefore the coefficient of

∏
i xi in the ANF of xa + xb is

zero. It is straightforward to show that the coefficient of yi in
the ANF of xa + xb is equal to ai + bi. Therefore, we get
deg(h) = n− 1 if and only if a + b + c is nonzero.

IV. PROPER MODIFICATIONS OF FUNCTIONS

In this section we derive new techniques for generating
functions with maximum algebraic immunity. To achieve this
goal, we focus on necessary and sufficient conditions to obtain
functions with maximum algebraic immunity via Proposition
6 (for the odd case) or Proposition 8 (for the even case).

First, we introduce a partial ordering of vectors in Fn2 as
follows:

u � v ⇔ supp(u) ⊆ supp(v), u,v ∈ Fn2 ,

and we say that u is smaller than or equal to v (equiva-
lently, v is greater than or equal to u). The strict inequality
≺ is defined similarly. Moreover, for any set of vectors
{v1,v2, . . . ,vm} of Fn2 , we say that vi is a maximal element
if and only if there is no 1 ≤ j ≤ m such that vi ≺ vj ; a
minimal element is similarly defined. For any function f ∈ Bn,
we also define the following sets:

min�(f) = {a ∈ supp(f) : b � a⇒ b = a ∀b ∈ supp(f)},
max�(f) = {a ∈ supp(f) : a � b⇒ b = a ∀b ∈ supp(f)}.

Clearly, both min�(f) and max�(f) are subsets of supp(f).
Next, the cases of odd and even number of variables will

be treated separately.

A. The odd case
In order to prove sufficient conditions to ensure maximum

algebraic immunity, the following Lemma will be used.
Lemma 2: With the notation of Proposition 6, let g = f +

xa and g′ = 1 +f +xb. If u, u′ are the unique annihilators of
g, g′ respectively of degree n−1

2 , then u(a) = u′(b) = 1 and

AIn(h) =
n+ 1

2
⇔ u(b) = 1 or u′(a) = 1 .

Proof: The existence and uniqueness of u, u′ with degree
n−1

2 is ensured by Proposition 5. The fact that u + xa ∈
AN(f) (see proof of Proposition 5) and f(a) = 1 implies
(u + xa)(a) = 0 and eventually u(a) = 1 (u′(b) = 1 is
obtained similarly). From the definition of g, g′, h and Lemma
1, we get

AN(h) ⊂ AN(g) and AN(h+ 1) ⊂ AN(g′) .

To ensure that u /∈ AN(h) and u′ /∈ AN(1 + h), which
immediately yields AIn(h) = n+1

2 due to the uniqueness
of u, u′, we need to enforce u(b) = u′(a) = 1 (since
h(b) = (1 + h)(a) = 1). However, due to Proposition 4, only
one of these conditions suffices to give the desired result.

We next prove that there exist specific functions enabling
(in a straightforward manner) the selection of vectors a, b such
that all the conditions in Lemma 2 are satisfied.

Theorem 2: Let f ∈ Bn with n odd and AIn(f) = n+1
2 .

Then
AIn(f + xa + xb) =

n+ 1
2

∀b ≺ a

where a ∈ min�(f) satisfying wt(a) ≥ n+1
2 ; moreover, if

such a does exist, then wt(a) = n+1
2 .

Proof: Let k = wt(a). Note that f(a) = 1, f(b) = 0
by hypothesis. Let E be the k-dimensional subspace E =
{x ∈ Fn2 : x � a} and g = f + xa. It is easily seen that
g|E = f |E+xa|E is identically zero (due to the minimality of
a, the function f |E has weight 1 with f |E(a) = 1). Thus, the
indicator of E is a function of degree n− k < n+1

2 given by

u = ϑ|E =
∏

i/∈supp(a)

(xi + 1)⇔ u(x) =
∑
b�a

xb

that annihilates g. Hence, Corollary 1 implies that deg(u) =
n−1

2 (and, thus, k = n+1
2 ) and, moreover, u is the unique

function with the above properties. Our proof is concluded
by noting that u satisfies the conditions of Lemma 2; indeed,
u(b) = 1 ∀b ≺ a. Thus, according to Lemma 2, AIn(f+xa +
xb) = n+1

2 .
As a result of the above, starting from a given function

with maximum algebraic immunity and applying Theorem 2,
we may construct a (possibly large) number of functions with
maximum algebraic immunity.

The following result is proved along the same lines.
Theorem 3: Let f ∈ Bn with n odd and AIn(f) = n+1

2 .
Then

AIn(f + xa + xb) =
n+ 1

2
∀ b � a

where a ∈ max�(f) satisfying wt(a) ≤ n−1
2 ; moreover, if

such a does exist, then wt(a) = n−1
2 .

The above two Theorems, in conjunction with Proposition
4, lead to the following result which forms the basis for our
proposed construction method.

Corollary 3: Let f ∈ Bn with n odd and AIn(f) = n+1
2 .

If a ∈ supp(f), b ∈ supp(1 + f), with b ≺ a, satisfy one of
i) a ∈ min�(f) and wt(a) ≥ n+1

2 ;
ii) b ∈ max�(1 + f) and wt(b) ≤ n−1

2 ;
then f + xa + xb has maximum algebraic immunity n+1

2 .
The above can be applied to known constructions of Boo-

lean functions of maximum algebraic immunity, thus general-
izing them and leading to new functions.

Example 1: Let f ∈ B5 be constructed via Proposition 2,
where α is a root of the primitive polynomial p(x) = x5 +
x2 + 1 over F2. It can be verified that a = (1 0 1 0 1) is a
minimal element of supp(1 + f). Thus, Theorem 2 implies
that swapping a with any element b ≺ a lying in supp(f)
results in another function with maximum algebraic immunity;
namely, since the element of F2n with 5-tuple representation
(1 0 1 0 1) is α22, we get that any function of the form

supp(f) = {0, 1, α, α2, . . . , α14, α22} \ {s}

where s ∈ {0, 1, α2, α4, α5, α7, α10}, has maximum algebraic
immunity 3.

We next prove, similarly to the previous analysis, another
swapping between supp(f) and supp(f+1) which also results
in functions with maximum algebraic immunity; this is -
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somehow - the inverse swapping of those given in Theorems
2 and 3 and may apply to functions that do not have the
properties described in Theorems 2, 3.

Theorem 4: Let f ∈ Bn with n odd and AIn(f) = n+1
2 .

Let us suppose that there exists a ∈ supp(f + 1) such that
• wt(a) ≥ n+1

2 ,
• all the smaller than a vectors with degree less than n+1

2 ,
apart from a vector b, also lie in supp(f + 1).

Then,
AIn(f + xa + xb) =

n+ 1
2

Proof: Due to Proposition 5, there exists an annihilator
u of f + xa + 1 with degree n−1

2 (and, due to Lemma 1, the
function f + xa does not have nonzero annihilator of degree
less than n+1

2 ). Note also that, as it is shown in the proof of
Proposition 5, u(a) = 1. Moreover, since (f+xa+1)(w) = 1
for all w 6= b such that w ≺ a, we get that for each such w it
holds u(w) = 0. Hence, since u(a) = 1 and deg(u) < n+1

2 ,
we necessarily get that u(b) = 1. The claim follows from
Lemma 2.

Example 2: Let us consider the following function of max-
imum algebraic immunity, that can be obtained by the method
proposed in [25, Construction 2]:

supp(f) = {α15, α16, . . . , α30} \ {α18} ∪ {α3}

It can be verified that the element α11 ∈ supp(f + 1),
with 5-tuple representation (1 1 1 0 0), satisfies the condi-
tions imposed in Theorem 4 (for a = α11 and b = α19)
and, thus, swapping α11 with α19 ∈ supp(f) (with 5-tuple
representation (0 1 1 0 0)) results in another function with
also maximum algebraic immunity (this swapping can not be
obtained by using the method described in [25]).

In addition, the element α22 (with 5-tuple representation
(1 0 1 0 1)) is a minimal element of supp(f) and, thus,
Theorem 2 can be also applied; consequently, we finally get
that any function of the form

supp(h) = supp(f) \ {α19, α22} ∪ {α11, s}

where s ∈ {0, 1, α2, α4, α5, α7, α10}, has maximum algebraic
immunity 3.

Note that functions of the highest possible algebraic degree
(i.e. n−1) can be generated by a proper (each time) selection
of the vectors a, b such as to ensure that the condition implied
in the proof of Corollary 2 holds. Other cryptographic criteria
though, such as nonlinearity, are contingent (apart from the
choice of a, b) on the properties of the functions that are used
as a starting point.

1) Construction of an iterative algorithm: Using as a start-
ing point the majority function f ∈ Bn, Corollary 3 directly
results in the development of an iterative algorithm (see Alg. 1)
that constructs new functions of maximum algebraic immunity.
In each step, the algorithm implements the procedure described
by Corollary 3 and appropriately swaps elements between the
supports of f and f+1 to obtain a new function with maximum
algebraic immunity. The algorithm outputs a set of Boolean
functions {fi}i≥1, where fi is obtained at the i-th step (line
9 of Alg. 1). An important remark is that functions obtained
via Alg. 1 can be efficiently implemented since the ANF of

Algorithm 1 Generate Functions of Maximum AI
input: odd n, majority function f ∈ Bn
initialization: i← 0, f0 ← f

1: S ← supp(f) \\vectors of weight ≥ dn
2
e

2: S′ ← supp(1 + f) \\vectors of weight ≤ bn
2
c

3: T ← min�(f) \\vectors of weight = dn
2
e

4: T ′ ← max�(1 + f) \\vectors of weight = bn
2
c

5: while (T 6= ∅) ∨ (T ′ 6= ∅) do
6: i← i+ 1
7: (ai, bi) ∈ {S ×S′ : ai ∈ T ∨ bi ∈ T ′} \\choose randomly
8: fi ← fi−1 + xai + xbi \\swap ai, bi
9: S ← S \ {ai}

10: S′ ← S′ \ {bi}
11: T ← T \ {v ∈ T : v � bi}
12: T ′ ← T ′ \ {u ∈ T ′ : u ≺ ai}
13: end

output: functions {fi}i≥1 : AIn(fi) = dn
2
e

the majority function (our starting point) is easily computed
due to its symmetric structure.

We further analyze Alg. 1 next. Let us assume that, at step
i, fi is obtained from fi−1 by swapping ai ∈ supp(fi−1) and
bi ∈ supp(fi−1+1); then it is easy to see that ai is necessarily
a maximal element of supp(1 + fi) and bi is necessarily a
minimal element of supp(fi). In order to examine whether
the vectors ai or bi could also be used at step i + 1, we
distinguish between the following cases:

Case 1: ai ∈ min�(fi−1). Hence, at the beginning of
the i-th step, ai ∈ T (and fi−1(ai) = 1), whereas fi(ai) = 0
following the execution of line 9. Suppose we want to use ai
at step i+ 1 to obtain a new function. This can be done by

i) applying Theorem 2 on fi; a vector a ∈ T such that
ai ≺ a would be needed (not true, as wt(ai) = wt(a)),

ii) applying Theorem 3 on 1 + fi; then ai would have to
satisfy wt(ai) < n+1

2 (not true).
Case 2: bi ∈ max�(1+fi−1). Hence, at the beginning of

the i-th step, bi ∈ T ′ (and fi−1(bi) = 0), whereas fi(bi) = 1
following the execution of line 9. Likewise, suppose we want
to use bi at step i+ 1; this can be done by

i) applying Theorem 2 on fi; then bi would have to satisfy
wt(bi) ≥ n+1

2 (not true),
ii) applying Theorem 3 on 1+fi; a vector a ∈ T ′ such that

bi � a would be needed (not true, as wt(bi) = wt(a)).
Thus, neither ai nor bi can be used at step i + 1. It is
also easy to see that ai and bi can not be used in any
subsequent swapping and, therefore, they can be excluded
from the remaining steps; this is reflected in lines 10–11 of
Alg. 1. Furthermore, since ai ∈ max�(1 + fi), all elements
smaller than ai in supp(1 + fi) can not be used by Theorem
3 and are removed from T ′; similar arguments also hold for
bi and T (see lines 12–13 of Alg. 1).

Finally, note that if ai ∈ T at the beginning of the i-th step
of the algorithm, then all u ≺ ai are lying in S′ (see line 12
of Alg. 1); likewise, all v � bi belong to S if bi ∈ T ′ (see
line 13 of Alg. 1). Consequently, if at least one of T, T ′ is
non–empty, then there always exists a pair (ai, bi) satisfying
the conditions of Corollary 3.
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TABLE I
GENERATION OF FUNCTIONS fi ∈ B5 : AIn(fi) = 3, 1 ≤ i ≤ 5

i ai bi removed from T removed from T ′ deg(fi) nl(fi)
0 4 10
1 00111 00011 00111, 01011, 10011 00110, 00101, 00011 4 10
2 11001 00001 01101, 10101, 11001 11000, 10001, 01001 4 10
3 10111 10100 10110, 11100 10100, 10010 3 12
4 01110 00110 01110 01100, 01010 4 10
5 11010 10000 11010 − 4 10

Example 3: For n = 5, the constructions of Proposition 1,2
have degree 4 and nonlinearity 10 (whereas their algebraic
immunity is the maximum possible, that is 3). Starting with
n = 5 and the majority function f ∈ B5 (Proposition 1), the
initialization process of Alg. 1 gives i = 0, f0 = f and

T = {00111,01011,01101,01110,10011,
10101,10110,11001,11010,11100}

T ′ = {00011,00101,00110,01001,01010,
01100,10001,10010,10100,11000}

whereas S, S′ are defined accordingly.
A summary information of Alg. 1 execution is presented in

Table I, along with the algebraic degree and nonlinearity of
each function. At the i-th step, a pair (ai, bi) satisfying the
conditions of Corollary 3 is chosen, and a new function with
AIn(fi) = d 52e = 3 is computed according to line 9. At the
end of Alg. 1, both T, T ′ are empty.

Note that the functions obtained by Alg. 1 do not neces-
sarily have the same algebraic degree or nonlinearity. Hence
the proposed construction is quite general, since the derived
functions are not necessarily pairwise affine equivalent.

It should be stressed that modifying the majority functions
with odd number of variables was also studied in [7] (see
Construction 2), but the functions constructed therein do
not cover the whole space of functions obtained by Alg. 1.
Moreover, it should be also pointed out that Alg. 1 provides
all the rotation symmetric Boolean functions of maximum
algebraic immunity constructed by the method described in
[22, Construction 1].

Proposition 9: Let Mn be the number of all functions with
algebraic immunity n+1

2 obtained by Alg. 1. Then,

Mn >

(
n

n+1
2

)(
2

n+1
2 +1 − 2− n+ 1

2

)
Proof: Let k = n+1

2 . The initial sets T, T ′ in Alg. 1
consist of

(
n
k

)
elements. Each vector in T (resp. T ′) has 2k−1

candidate vectors in S′ (resp. S) that can be used to get a new
function. Thus, the number of valid swaps at the first step is

2
(
n

k

)(
2k − 1

)
−
(
n

k

)
k =

(
n

k

)(
2k+1 − 2− k

)
where

(
n
k

)
k is the number of swaps with exactly one element

from T and T ′.
Experimental results for larger values of n show that the

functions constructed via Alg. 1 may achieve nonlinearity
greater than the nonlinearity of the majority function, which
is equal to 2n−1−

(
n−1
bn/2c

)
[13]; an upper bound though on the

maximum nonlinearity that can be attained still remains to be

proved. However, let us recall that the functions derived in [7,
Construction 2] constitute a proper subset of those obtained
via Alg. 1. It is proved in [7] that the nonlinearity of functions
constructed therein is 2n−1−

(
n−1
bn/2c

)
+∆(n), where ∆(n) is a

function increasing rapidly with n; hence, such nonlinearities
are also achievable by Alg. 1.

B. The even case

We subsequenly prove that specific swaps between supp(f)
and supp(f + 1) for a function f with even number of
variables, similar to the swaps described previously for the
odd case, suffice to ensure maximum algebraic immunity.

Theorem 5: Let f ∈ Bn with n even and AIn(f) = n
2 .

Suppose there exists a ∈ min�(f) such that wt(a) ≥ n
2 and

AIn(f + xa) = n
2 . Then

AIn(f + xa + xb) =
n

2
∀ b ≺ a.

Proof: First note that f(a) = 1, f(b) = 0 by hypothesis.
Moreover, the function f +xa +xb does not have annihilator
of degree less than n

2 due to Lemma 1. Suppose there exists
u ∈ AN(f + xa + xb + 1) with deg(u) < n

2 . Then it
necessarily holds u(b) = 1 (since, otherwise, u would also
be annihilator of f + xa + 1, resulting in deg(u) ≥ n

2 ).
Moreover, it holds u(v) = 0 ∀v � a (and v 6= b) ,
since (f + xa + xb + 1)(v) = 1 by hypothesis (recall that
a ∈ min�(f)). Consequently, considering the ANF of u
described in (1), we have that cv =

∑
µ�v u(µ) and, thus,

ca = 1, contradicting the fact that deg(u) < n
2 ; hence, we

finally get that AIn(f + xa + xb) = n
2 .

Theorem 6: Let f ∈ Bn with n even and AIn(f) = n
2 .

Suppose there exists a ∈ max�(f) such that wt(a) ≤ n
2 and

AIn(f + xa) = n
2 . Then

AIn(f + xa + xb) =
n

2
∀ b � a,wt(b) ≥ n

2
.

Proof: Note that f(a) = 1, f(b) = 0 by hypothesis.
Moreover, the function f +xa +xb does not have annihilator
of degree less than n

2 due to Lemma 1. Working as in Theorem
5, we derive that if there exists u ∈ AN(f + xa + xb +
1) with deg(u) < n

2 , then it holds u(b) = 1. Moreover, it
holds u(v) = 0 ∀v � a (and v 6= b), since (f + xa + xb +
1)(v) = 1 by hypothesis (recall that a ∈ max�(f)). Let us
set u′(x) = u(x) (where it holds deg(u) = deg(u′)). Then
u′(v) = 0 ∀v � a (and v 6= b), whereas u′(b) = 1 (note that
b ≺ a). Hence, the claim follows by using the same arguments
as those used in Theorem 5.

Clearly, Theorems 5 and 6, which refer to functions of even
number of variables, resemble Theorems 2 and 3 respectively
(that were proved for the odd case).

1) Construction of an iterative algorithm: As in the odd
case, the majority function can be also used as a starting point
to construct new functions of maximum algebraic immunity
via Theorems 5 and 6. Note that the majority function f ∈ Bn,
n even, satisfies AIn(f + xa) = n

2 ∀a ∈ Fn2 with wt(a) = n
2

[13]. Hence, by recursively applying Theorems 5 and 6 for
proper choices of vectors, we again obtain Alg. 1; hence, this
algorithm is independent from the parity on n (and, if n is
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even, the input majority function f may have arbitrary value
at any a ∈ Fn2 with wt(a) = n

2 ).
It should be pointed out that if Alg. 1 is restricted to the

even case, then it coincides with the construction given in
[7, Construction 1] which appropriately modifies the majority
function with even number of variables (the nonlinearities
of some classes of functions obtained via this construction
are also discussed therein); however, note that Theorems 5
and 6 are more general and can be possibly applied to other
functions.

V. FURTHER CONSTRUCTIONS OF FUNCTIONS WITH
MAXIMUM ALGEBRAIC IMMUNITY

In this section we further elaborate the analysis given in
[21], [25] to provide new functions in odd number of variables
of maximum algebraic immunity. Again, our analysis is based
on proper modifications of functions with maximum algebraic
immunity; in the subsequent analysis though, each element in
the support of a function f ∈ Bn is represented as a power of
a primitive element over F2n (and not as a vector over Fn2 ).

First note that, given a balanced function f in odd number
of variables n, the sub-matrix R

1f
n+1

2 ,n−1
given in Section II

is square and, due to Theorem 1, AIn(f) = n+1
2 if and only

if it has full rank. Hence, for odd n, the function f with

supp(f) = {1, α, . . . , α2n−1−1}

has maximum algebraic immunity; in this case, the matrix
R

1f
n+1

2 ,n−1
is upper-triangular. More precisely, this function is

explicitly constructed in [21] (see Proposition 3, where, for
odd n, we have dn = 2n−1). Similarly, the function h with

supp(h) = (α2n−1−1 α2n−1
. . . α2n−2)

has also maximum algebraic immunity; in this case, the matrix
R1h

n+1
2 ,n−1

is lower-triangular.
More recently, Zeng et al. in [25, Construction 1] proved

that the aforementioned f can be properly modified by
swapping αi ∈ supp(f) and αj ∈ supp(f + 1) such that
the corresponding matrix R

1f′
n+1

2 ,n−1
of the new function f ′

remains upper-triangular; similarly, the function h can be
appropriately modified such us to ensure that the resulting
R

1h′
n+1

2 ,n−1
matrix is lower-triangular (see [25, Construction

2]).
Before we recall the above constructions, we shall first

introduce some notation; since there is a direct association
between the non-zero elements of F2n and the columns
of Rn+1

2 ,n−1, we write the m-th column of Rn+1
2 ,n−1 as

vm = (vm0 ,v
m
1 , . . . ,v

m
2n−1−1)T , that is:

vm =

{
(rm rm−1 . . . r0 0 . . . 0)T , 0 ≤ m ≤ 2n−1 − 1
(0 . . . 0 rE rE−1 . . . rm−E)T , 2n−1 ≤ m ≤ 2n − 2

where the elements ri, i = 0, . . . , E, are determined by (3)
and E = 2n−1 − 1.

The constructions of [25] can be described as follows.

Proposition 10: Let us consider the following sets:

W ⊂ {0, 1, . . . , 2n−1 − 1}
Y ⊂ {2n−1, . . . , 2n − 2}
Ŵ ⊂ {2n−1 − 1, . . . , 2n − 2}
Ŷ ⊂ {0, 1, . . . , 2n−1 − 2}

with |W | = |Y | and
∣∣∣Ŵ ∣∣∣ =

∣∣∣Ŷ ∣∣∣, satisfying the following:

1) For each w ∈ W there exists unique y ∈ Y such that
for an integer i it holds

vwi = vyi = 1,
vwi+` = vyi+` = 0 ∀ 1 ≤ ` ≤ 2n−1 − 1− i.

2) For each ŵ ∈ Ŵ there exists unique ŷ ∈ Ŷ such that
for an integer j it holds

vŵj = vŷj = 1,

vŵj−` = vŷj−` = 0 ∀ 1 ≤ ` ≤ j.

Then both the functions f1, f2 ∈ Bn, n odd, with

supp(f1) = {αi|i ∈ ({0, 1, . . . , 2n−1 − 1} \W ) ∪ Y }
supp(f2) = {αi|i ∈ ({2n−1 − 1, . . . , 2n − 2} \ Ŵ ) ∪ Ŷ }

have maximum algebraic immunity n+1
2 .

Next we will further generalize the above constructions, by
proving proper modifications of these functions to guarantee
maximum algebraic immunity. To achieve this goal, we prove
the following result which characterizes the annihilator u ∈
AN(f + xa) described in Corollary 1.

Theorem 7: Let f ∈ Bn, n odd, with AIn(f) = n+1
2 and

supp(f) = (αi1 αi2 . . . αi2n−1 ). Let also u be the unique
annihilator of f + 1 + xαm , where αm ∈ supp(f + 1), with
degree n−1

2 . Then it holds u(αik) = 1, 1 ≤ k ≤ 2n−1, if and
only if the solution z of the linear system

R
1f
n+1

2 ,n−1
zT = vm (6)

satisfies zj = 1, where j is such that the j-th column of
R

1f
n+1

2 ,n−1
is vik .

Proof: First note that (6) has a unique solution, since
R

1f
n+1

2 ,n−1
is of full rank. Hence, if supp(z) = (j1 j2 . . . jq),

then we get that the sum of the j1-th, . . ., jq-th columns
of R

1f
n+1

2 ,n−1
give rise to vm (and this is the only linear

combination of columns of R
1f
n+1

2 ,n−1
having this property).

Therefore, replacing any of these q columns in R
1f
n+1

2 ,n−1
with

vm, we get another matrix having also full rank (and, clearly,
changing any other column of R

1f
n+1

2 ,n−1
with vm would not

lead to a full-rank matrix). The claim follows by recalling the
properties of the function u described in Lemma 2.

From the above we directly conclude that, for any given
function f with maximum algebraic immunity, a pair of
vectors a ∈ supp(f) and b ∈ supp(f + 1) such that
AIn(f + xa + xb) = n+1

2 can be found (even for fixed a
or b) by solving a linear system of the form of (6). However,
since the dimension of the system is 2n−1, we get that the
overall computational complexity of solving such a system is
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Algorithm 2 Generate Functions of Maximum AI
input: odd n, f ∈ Bn constructed via [21] or [25]
input: supp(f) = {αj0 , . . . , αj2n−1−1}, αm /∈ supp(f)
initialization: S ← {}

1: z ← 0 \\all-zero vector of length 2n−1

2: i← 2n−1 − 1
3: while (i ≥ 0) do
4: zi ← vmi
5: if i 6= 2n−1 − 1 then
6: for r = (i+ 1)→ 2n−1 − 1 do
7: zi ← zi + vjri ∗ zr
8: end for
9: end if

10: if zi = 1 then
11: S ← S ∪ αji
12: end if
13: i← i− 1
14: end

output: fjr ← f + xαm + xαjr , αjr ∈ S

O(23n) [10] and, thus, this approach is feasible only for very
small values of n.

Remark 1: It is proved in [14] that a Boolean function with
maximum algebraic immunity can be computed by identifying
an invertible submatrix of a given 2n−1×2n−1 matrix, whereas
the construction in [15] also nessecitates the computation
of an inverse matrix of dimension 2n−1. Hence, the above
observation regarding the matrix R

1f
n+1

2 ,n−1
(which is not

considered in [14], [15]) lies in the same context.
The above situation though is greatly simplified by consider-

ing the constuctions in [21], [25]. For the functions obtained
therein, the matrix R

1f
n+1

2 ,n−1
is upper-triangular (or lower-

triangular); hence, the corresponding linear system can be
efficiently solved by a backward substitution (or forward sub-
stitution respectively) approach (see e.g. [10]), thus reducing
the overall computational complexity to O(22n). Moreover, it
should be stressed that, towards constructing new functions of
maximum algebraic immunity, we do not necessarily need to
fully solve the linear system (6); we simply need to find out
a non-zero entry of z, as Theorem 7 implies.

The aforementioned procedure is illustrated in Alg. 2. In
order to simplify our analysis, we assume that the matrix
R

1f
n+1

2 ,n−1
is upper-triangular (the case of lower-triangular

matrix can be similarly treated). Alg. 2 implements the
backward substitution procedure, to solve the linear system
R

1f
n+1

2 ,n−1
zT = vm, whereas the support of z constitute the

output of the algorithm (elements of the set S), indicating
the candidates elements from supp(f) for swapping with
αm ∈ supp(f + 1).

Alg. 2 proceeds by fully solving the corresponding linear
system (that is it computes all the possible candidate elements
for swapping). Recalling the above discussion though, it
should be pointed out that this full execution is not necessary;
we may stop whenever at least one entry zj is found such that
zj = 1. Hence, if the outer while loop (Line 3) is executed
only k times (where k may be significantly smaller than 2n−1),
then the computational complexity of the algorithm is O(k2).

Similarly to Corollary 2, we next show that the maximum
possible algebraic degree (i.e. n − 1) can be always attained
via modifications as those describe above; the following result
has been proved in [25, Proposition 1] for the special case
of the modifications described in Proposition 10 but, as it
can be readily verified, it also holds for our more general
modifications.

Corollary 4: Let f ∈ Bn, n odd, constructed via either
the methods of [21] or [25]. Then, for any a ∈ supp(f),
b ∈ supp(f + 1), the balanced function h = f + xa + xb

satisfies deg(h) = n− 1 if and only if
∑

c∈supp(h) h(c) 6= 0.
Finally, note that the nonlinearity of functions constructed

in [21], [25] is expected to be - in general - high (see [25,
Theorem 2], where a specific family of the derived functions is
examined); hence, our approach may also lead to functions of
high nonlinearity (clearly, at the worst case, the nonlinearity of
functions obtained via Alg. 2 is decreased only by 2 compared
to the nonlinearity of the input functions). However, there is
still room for further research.

A. The special case of the function constructed in [21]

Next we confine ourserlves to the function f constructed in
[21] (that is supp(f) = {1, α, . . . , α2n−1−1}). In this case,
the following result further facilitates the analysis.

Proposition 11: Let 0 ≤ i0 < i1 < . . . < ij < 2n−1 − 1 be
such that

j∑
k=0

vik = vm,

where m satisfies 2n−1 < m < 2n − 2, then
j∑

k=0

vik+1 = vm+1.

Proof: Since the matrix Rn+1
2 ,n−1 is circulant of full

rank, it generates a (N, k) cyclic code C, where N = 2n − 1
and k = 2n−1. Equivalently, Rn+1

2 ,n−1 may be considered as
a parity-check matrix of the (N, k − 1) dual code C⊥ which
is also cyclic. Hence, our hypothesis implies that the vector
a = (a0 a1 . . . a2n−1) satisfying

ai =

{
1, if i ∈ {i0, . . . , ij ,m}
0, elsewhere

is a codeword of C⊥, since aRT
n+1

2 ,n−1
= 0. Hence, the

shifted vector a′ = (a2n−1 a0 a1 . . . a2n−1) is also a
codeword of C⊥ and, thus, a′RT

n+1
2 ,n−1

= 0, which in turn
leads to the desired result.

Example 4: Let us consider the function f constructed in
[21] with n = 7, namely supp(f) = {1, α, . . . , α63}, where
α is a primitive element over F27 . By executing Alg. 2 for
any element αm ∈ {α64, . . . , α126} lying in supp(f + 1),
we get all the possible swaps that may take place in order to
preserve the maximum algebraic immunity; these swaps are
illustrated in Table II (where the exponents of the correspond-
ing elements are shown). The missing entries in the Table II
(for m = 66, 67, 68, 70, 71 etc.) can be directly obtained by
applying Proposition 11, without executing Alg. 2; hence, for
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TABLE II
ALL THE APPROPRIATE SWAPS ON THE FUNCTION
f : supp(f) = {1, α, . . . , α2n−1−1}, n = 7

m Candidates for swapping
64 63 62 61 60 58 53 51 49 48 47 46 45 43 38 37 34 33 32 31 30 26 24 23 21 16 15 12 11 10 9 8 6 5 2 0

65 60 59 58 54 53 52 51 50 45 44 43 39 37 35 30 27 26 25 23 22 21 17 15 13 8 7 5 3 2 1 0

69 61 60 57 56 55 54 53 51 46 45 41 39 38 37 33 32 29 27 25 24 23 19 17 16 15 10 8 7 4 2 0

72 62 61 59 57 56 54 53 51 47 46 45 44 43 42 41 40 38 37 36 35 34 33 31 28 27 24 23 22 21 20

19 18 16 15 13 12 9 8 7 6 3 2 0

74 62 60 59 56 55 51 44 42 40 39 36 35 34 32 31 29 25 22 20 18 17 16 14 12 6 4 0

76 63 60 57 51 49 48 47 45 44 43 42 41 36 32 30 27 26 23 22 21 20 19 18 15 14 12 11 10 9 5 0

77 63 62 60 53 52 51 50 47 44 42 38 34 32 30 28 27 26 22 20 19 13 9 8 5 2 1 0

78 62 60 58 54 52 49 47 46 39 38 37 35 34 32 30 29 28 27 26 24 20 16 15 14 12 11 8 5 3 1 0

80 63 61 58 56 54 53 47 46 45 43 41 40 39 38 36 33 29 28 24 23 22 21 18 17 15 14 13 12 11 9 8 7 6 3 0

81 63 61 60 59 58 57 55 54 53 51 49 45 44 43 42 41 40 39 38 33 32 31 29 26 25 22 21 19 18 14

13 11 7 6 5 4 2 1 0

82 63 59 56 55 54 53 52 51 50 49 48 47 44 42 41 40 39 38 37 31 27 24 22 21 20 19 16 14 11 10 9 7 3 1 0

83 63 62 61 58 57 56 55 54 52 50 47 46 42 41 40 39 37 34 33 31 30 28 26 25 24 22 20 17 16 9 6 5 4 1 0

84 61 60 59 57 56 55 49 46 45 42 41 40 37 35 33 30 29 27 25 24 18 17 16 15 12 11 9 8 7 1 0

87 61 59 53 52 51 47 46 44 40 37 36 34 31 28 27 26 24 23 20 19 18 16 14 9 8 6 5 4 3 2 0

90 63 61 60 58 56 55 54 53 51 50 48 46 45 40 39 38 33 32 29 27 24 22 19 17 16 15 10 7 3 2 0

91 63 60 59 58 57 56 55 54 53 52 48 45 43 41 40 39 38 37 32 31 28 26 25 24 21 20 18 17 15

12 10 9 6 5 4 3 2 1 0

92 63 62 59 57 56 55 54 51 48 47 45 44 43 42 41 40 39 37 34 31 30 29 27 25 24 23 22 19 18 15

13 12 9 8 7 4 3 1 0

93 62 61 57 56 55 53 52 51 47 44 42 41 40 37 35 34 33 28 25 21 20 19 15 14 13 12 11 6 4 1 0

95 62 61 60 59 57 55 54 51 48 47 45 44 42 39 38 36 35 34 33 32 31 27 26 24 22 17 14 13 12 11 10 9 5 3 0

97 60 59 58 57 56 51 50 48 45 44 43 41 40 36 35 32 31 30 29 28 23 21 19 14 13 10 9 8 7 6 0

101 58 55 54 53 52 51 46 44 43 40 39 38 37 36 35 31 30 27 26 25 24 21 18 17 16 15 14 13 9 8 6 5 4 2 0

107 63 62 59 57 53 52 51 50 48 47 44 42 41 38 36 34 27 26 22 20 19 16 14 9 5 2 0

108 62 61 54 52 47 46 42 39 38 35 34 33 32 31 30 28 27 26 24 20 17 16 12 11 9 8 5 3 2 1 0

110 62 61 60 58 56 54 53 51 47 46 45 44 43 41 40 38 36 35 31 29 28 24 23 22 21 19 18 16 15 14 13

12 9 8 7 6 4 3 0

112 61 56 55 51 42 40 34 32 25 20 18 17 14 12 0

115 63 62 61 60 59 54 53 51 49 48 47 46 38 35 34 33 32 31 30 28 26 24 20 17 16 12 11 10 9 8 6 5 3 2 0

116 58 55 54 53 52 51 50 46 45 43 39 38 37 36 35 30 29 27 26 25 24 23 18 17 16 15 13 8 7 5 4 3 2 1 0

122 63 62 59 57 56 53 52 48 47 46 44 42 41 38 37 36 35 34 29 26 22 19 16 15 14 13 12 7 5 2 0

123 62 61 57 54 51 46 42 39 36 35 34 33 32 31 27 26 24 21 20 17 14 13 12 11 10 9 5 3 2 1 0

125 62 61 60 59 58 56 51 49 47 46 45 44 43 41 36 35 32 31 30 29 28 24 22 21 19 14 13 10 9 8 7 6 4 3 0

e.g. m = 113, the corresponding entries in the Table would
be (62, 57, 56, 52, 43, 41, 35, 33, 26, 21, 19, 18, 15, 13, 1) (ob-
tained via an increment by one of the corresponding entries
for m = 112).

The bold numbers indicate that the corresponding swaps
also preserve the nonlinarity of f (being equal to 54), accord-
ing to computer computations; all the others swaps result in
functions with decreased nonlinearity by 2.

VI. CONCLUSIONS

The algebraic immunity of Boolean functions was studied
in this paper. The behavior of functions of maximum alge-
braic immunity when they are slightly modified is examined,
identifying proper modifications that ensure maximum alge-
braic immunity of the resulting functions. Applications to
known constructions yield new constructions of functions with
maximum algebraic immunity, thus generalizing the previous
ones; more precisely, the proposed Alg. 1 stands as a direct
generalization of the construction of [7], since it also fully
covers the odd case, whereas the proposed Alg. 2 further
extends the constructions given in [21], [25].
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