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Abstract

Motivated by applications in large storage systems, we initiate the study of incremental
deterministic public-key encryption. Deterministic public-key encryption, introduced by Bellare,
Boldyreva, and O’Neill (CRYPTO ’07), provides a realistic alternative to randomized public-key
encryption in various scenarios where the latter exhibits inherent drawbacks. A deterministic
encryption algorithm, however, cannot satisfy any meaningful notion of security for low-entropy
plaintexts distributions, and Bellare et al. demonstrated that a strong notion of security can in
fact be realized for relatively high-entropy plaintext distributions.

In order to achieve a meaningful level of security, a deterministic encryption algorithm should
be typically used for encrypting rather long plaintexts for ensuring a sufficient amount of entropy.
This requirement may be at odds with efficiency constraints, such as communication complexity
and computation complexity in the presence of small updates. Thus, a highly desirable property
of deterministic encryption algorithms is incrementality: small changes in the plaintext translate
into small changes in the corresponding ciphertext.

We present a framework for modeling the incrementality of deterministic public-key encryp-
tion. Within our framework we propose two schemes, which we prove to enjoy an optimal tradeoff
between their security and incrementality up to small polylogarithmic factors. Our first scheme is
a generic method which can be based on any deterministic public-key encryption scheme, and in
particular, can be instantiated with any semantically-secure (randomized) public-key encryption
scheme in the random oracle model. Our second scheme is based on the Decisional Diffie-Hellman
assumption in the standard model.

The approach underpinning our schemes is inspired by the fundamental “sample-then-extract”
technique due to Nisan and Zuckerman (JCSS ’96) and refined by Vadhan (J. Cryptology ’04), and
by the closely related notion of “locally-computable extractors” due to Vadhan. Most notably,
whereas Vadhan used such extractors to construct private-key encryption schemes in the bounded-
storage model, we show that techniques along these lines can also be used to construct incremental
public-key encryption schemes.
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1 Introduction

The fundamental notion of semantic security for public-key encryption schemes was introduced
by Goldwasser and Micali [GM84]. While semantic security provides strong privacy guarantees,
it inherently requires a randomized encryption algorithm. Unfortunately, randomized encryption
breaks several assumptions of large storage systems that are crucial in efficient implementation of
search (and, more generally, of indexing) and de-duplication [BCG+00, QD02]. Further, random-
ized encryption necessarily expands the length of the plaintext, which may be undesirable in some
applications, such as legacy code or in-place encryption.

Deterministic encryption. To deal with these and other drawbacks, Bellare, Boldyreva, and
O’Neill [BBO07] initiated the study of deterministic public-key encryption schemes. These are
public-key encryption schemes where the encryption algorithm is deterministic. Bellare et al. for-
mulate meaningful, and essentially “best possible”, security requirements for such schemes which
are inspired by and very close to semantic security. Clearly, in this setting, no meaningful notion
of security can be achieved if the space of plaintexts is small. Therefore, Bellare et al. [BBO07]
required security to hold only when the plaintexts are drawn from a high min-entropy distribution.

Deterministic encryption already alleviates many of the above mentioned problems when dealing
with large data volumes. For example, since the encryption algorithm is deterministic, we can
now do indexing and perform fast search on encrypted data. Further, schemes that have length-
preserving ciphertexts are possible as well [BBO07]. Also, unlike randomized encryption, there is no
fundamental reason that precludes noticeable savings in storage by using de-duplication techniques
(which can be as large as 97% [ZLP08]); although one may not get the same amount of savings as
with usual plaintext.

We emphasize that security of deterministic encryption is contingent on a very strong assump-
tion about the underlying data distribution, namely that the plaintext has high min-entropy from
the adversary’s point of view. One possibility for improving security margin is to encrypt longer
plaintexts whenever possible, for example, by not cutting files into smaller pieces or using larger
blocks for in-place encryption. If, however, changing the plaintext requires re-computation of the
ciphertext, doing that for any update may quickly negate all efficiency gains from using deterministic
encryption. For a remedy we turn to incremental cryptography, explained below.

Incremental cryptography. Given that we are dealing with large plaintexts, computing the
ciphertext from scratch for the modified plaintext can be quite an expensive operation. One such
example is maintaining an (encrypted) daily back-up of your hard-disk on an untrusted server.
The disk may contain gigabytes of data, most of which is likely to remain unchanged between two
successive back-ups. The problem is further intensified in various client-server settings where all of
previous plaintext might not be available when the modification request is made. In such settings
where plaintext is really large, downloading old data can be a serious problem. This issue is clearly
not specific to (deterministic) encryption, and is of very general interest.

To address this issue, Bellare, Goldreich and Goldwasser [BGG94] introduced and developed the
notion of incremental cryptography, first in application to digital signatures. The idea is that, once
we have signed a document M , signing new versions of M should be rather quick. For example,
if we only flip a single bit of M , we should be able to update the signature in time polynomial
in log |M | (instead of |M |) and the security parameter λ. Clearly, incrementality is an attractive
feature to have for any cryptographic primitive such as encryption, signatures, hash functions, and
so on [BGG95, Mic97, Fis97a, BM97, BKY01].

It is clear from our discussion that when dealing with deterministic encryption over large
databases, where we are forced to encrypt rather long plaintexts for ensuring their min-entropy,
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what we really need is an incremental encryption scheme. That is, the scheme should allow quickly
updating the ciphertexts to reflect small changes. In light of the observation that deterministic
encryption is most desirable when dealing with large data volumes, perhaps it is not exaggerating to
suggest that incrementality should be an important design goal for deterministic encryption rather
than merely a “nice to have” feature.

1.1 Our Contributions

In this work we formalize the notion of incremental deterministic public-key encryption. We view
incrementality and security as two orthogonal objectives, which together have a great potential in
improving the deployment of deterministic encryption schemes with provable security properties in
real-world applications.

Modeling incremental updates. Intuitively, a deterministic public-key encryption scheme is
incremental if any small modification of a plaintext m resulting in a plaintext m′ can be efficiently
carried over for updating the encryption c = Encpk(m) of m to the encryption c′ = Encpk(m

′) of
m′. For capturing the efficiency of such an update operation we consider two natural complexity
measures: (1) input locality (i.e., the number of ciphertexts bits that are affected when flipping
a single plaintext bit), and (2) query complexity (i.e., the number of public-key, plaintext, and
ciphertext bits that have to be read in order to update the ciphertext).

We note that modeling updates for deterministic public-key encryption is slightly different than
for other primitives. For example, suppose that we allow “replacements” as considered by [BGG94].
These are queries of the form (j, b) that replace the j-th bit of a given plaintext m by b ∈ {0, 1}.
Then, if there exists a public algorithm Update for updating the ciphertext, then one can recover
the entire plaintext from the ciphertext1. Therefore, we focus on the bit flipping operation instead.
This operation is specified by an index j, and sets the current value of m[j] to ¬m[j].

For capturing the above measures of efficiency we model the update operation as a probabilistic
polynomial-time algorithm Update that receives as input the index i∗ of a plaintext bit to be flipped,
and has oracle access to the individual bits of the public key pk, the plaintext m to be modified,
and to its encryption c = Encpk(m). That is, the algorithm Update can submit queries of the form
(pk, i), (m, i) or (c, i), which are answered with the ith bit of pk, m, or c, respectively. We refer
the reader to Section 3 for the formal description of our model, which considers also update in a
“private” fashion in which the update algorithm can access the secret key but not the plaintext.

Locality lower bound. An important insight is that deterministic encryption cannot have very
small incrementality. Deterministic encryption schemes require high min-entropy messages to pro-
vide any meaningful guarantee, and we show that any scheme with low incrementality can be secure
only for messages with much higher entropy. Specifically, we show that for every deterministic
public-key encryption scheme that satisfies the minimal notion of PRIV1-IND security for plaintext
distributions of min-entropy k, plaintext length n, and ciphertext length t, the incrementality ∆ of
the scheme must satisfy:

∆ ≥ n− 3

k log t
.

Ignoring the lower-order log t factor, our proof shows in particular that the input locality of the
encryption algorithm must be roughly n/k. This should be compared with the case of randomized
encryption, where flipping a single plaintext bit may require to flip only a single ciphertext bit.

1The encryption algorithm is deterministic, and hence the ciphertext for every message is unique. The operation
Update(j, 0) changes the ciphertext if and only if the jth bit of m is 1.
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Indeed, consider encrypting a plaintext m as the pair (Encpk(r), r ⊕ m) for a randomly chosen
mask r. Flipping a single bit of m requires flipping only a single bit of the ciphertext.

Constructions with optimal incrementality. We construct two deterministic public-key en-
cryption schemes with optimal incrementality (up to lower-order polylogarithmic factors). Our first
construction is a general transformation from any deterministic encryption scheme to an incremental
one. Following the terminology developed in [BBO07, BFO+08a, BFO08b], the resulting scheme
from this approach is PRIV1-IND secure if the underlying scheme is PRIV-IND secure. As a result,
using the construction of Bellare et al. [BBO07] in the random oracle model, we can instantiate our
approach in the random oracle model based on any semantically-secure (randomized) public-key
encryption scheme, and obtain a deterministic scheme with optimal incrementality.

Our second, more direct construction, avoids the random oracle model. It is based on the
Decisional Diffie-Hellman assumption in the standard model, and enjoys optimal incrementality. The
scheme relies on the notion of smooth trapdoor functions that we introduce (and was implicitly used
by Boldyreva et al. [BFO08b]), and realize it in an incremental manner based on the Decisional Diffie-
Hellman assumption. Both of our constructions guarantee PRIV1-IND security when encrypting
n-bit plaintexts with min-entropy k ≥ nϵ, where ϵ > 0 is any pre-specified constant.

1.2 Related Work

The problem of composing public-key encryption and de-duplication was addressed by Doucer et
al. [DAB+02] via the concept of convergent encryption, in which files are encrypted using their own
hash values as keys. Security of the scheme is argued in the random-oracle model and under implicit
assumption of the plaintext’s high min-entropy. The formal goal of leveraging entropy of the source
to achieve information-theoretic security with a short symmetric key was articulated by Russell and
Wang [RW02], followed by Dodis and Smith [DS05].

The notion of public-key deterministic encryption was introduced by Bellare, Boldyreva, and
O’Neill [BBO07], and then further studied by Bellare, Fischlin, O’Neill, and Ristenpart [BFO+08a],
Boldyreva, Fehr, and O’Neill [BFO08b], Brakerski and Segev [BS11], Wee [Wee12], and Fuller,
O’Neill and Reyzin [FOR12]. Bellare et al. [BBO07] proved their constructions in the random oracle
model; subsequent papers demonstrated schemes secure in the standard model based on trapdoor
permutations [BFO+08a] and lossy trapdoor functions [BFO08b]. Brakerski and Segev [BS11] and
Wee [Wee12] address the question of security of public-key deterministic encryption in the presence
of auxiliary input. Fuller et al. [FOR12] presented a construction based on any trapdoor function
that admits a large number of simultaneous hardcore bits, and a construction that is secure for a
bounded number of possibly related plaintexts.

Constructions of deterministic public-key encryption found an intriguing application in “hedged”
public-key encryptions [BBN+09]. These schemes remain secure even if the randomness used during
the encryption process is not perfect (controlled by or leaked to the adversary) as long as the joint
distribution of plaintext-randomness has sufficient min-entropy.

The concept of incremental cryptography started with the work of Bellare, Goldreich, and Gold-
wasser [BGG94], who considered the case of hashing and signing. They also provided discrete-
logarithm based constructions for incremental collision-resistant hash and signatures, that support
block replacement operation. Constructions supporting block insertion and deletion were first de-
veloped in [BGG95], with further refinements and new issues concerning incrementality such as
tamper-proof updates, privacy of updates, and incrementality in symmetric encryption. In subse-
quent work, Fischlin presented an incremental signature schemes supporting insertion/deletion of
blocks, and tamper-proof updates [Fis97a], and proved a Ω(

√
n) lower bound on the signature size of

schemes that support substitution and replacement operations (the bound can be improved to Ω(n)
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in certain special cases) [Fis97b]. Bellare and Micciancio [BM97] revisited the case of hashing, and
provided new constructions for the same based on discrete logarithms and lattices. Buonanno, Katz,
and Yung [BKY01] considered the issue of incrementality in symmetric unforgeable encryption and
suggested three modes of operations for AES achieving this notion.

The goal of incremental cryptography, i.e., input locality, can be contrasted with the dual question
of placing cryptography in the NC0 complexity class, i.e., identifying cryptographic primitives with
constant output locality. This problem has essentially been resolved for public-key encryption in the
positive by Applebaum, Ishai, and Kushilevitz [AIK06], who construct schemes based on standard
number-theoretic assumptions and lattice problems where each bit of the encryption operation
depends on at most four bits of the input. Applebaum et al. also argue impossibility of semantically-
secure public-key encryption scheme with constant input locality [AIK06, Section C.1].

1.3 Overview of Our Approach

In this section we present a high-level overview of our two constructions. First, we describe the well-
known “sample-then-extract” approach [NZ96, Vad04] that serves as our inspiration for constructing
incremental schemes. Then, we describe the main ideas underlying our schemes, each of which is
based on a different realization of the “sample-then-extract” approach.

“Sample-then-extract”. A fundamental fact in the theory of pseudorandomness is that a random
sample of bits from a string of high min-entropy essentially preserves the min-entropy rate. This was
initially proved by Nisan and Zuckerman [NZ96] and then refined by Vadhan [Vad04] that captured
the optimal parameters. Intuitively, the “sample-then-extract” lemma states that if X ∈ {0, 1}n has
min-entropy rate δ, and XS ∈ {0, 1}t is the projection of X onto a random set S ⊆ [n] of t positions,
then XS is statistically-close to a source with min-entropy rate δ′ = Ω(δ).

This lemma serves as a fundamental tool in the design of randomness extractors. Moreover, in
the cryptographic setting, it was used by Vadhan [Vad04] to construct locally-computable extractors,
which allow to compute their output by examining a small number of input bits. Such extractors
were used by Vadhan to design private-key encryption schemes in the bounded-storage model. In this
work we demonstrate for the first time that the “sample-then-extract” approach can be leveraged
to design not only private-key encryption schemes, but also public-key encryption schemes.

A generic construction via random partitioning. In the setting of randomized encryption, a
promising approach for ensuring incrementality is to divide each plaintext m into consecutive and
rather small blocks m = m1|| · · · ||mℓ, and to separately encrypt each block mi. Thus, changing a
single bit of m affects only a single block of the ciphertext. Moreover, the notion of semantic security
is sufficiently powerful to even allow each block mi to be as small as a single bit. In the setting of
deterministic encryption, however, security can hold only when each encrypted block has a sufficient
amount of min-entropy. At this point we note that even if a plaintext m = m1|| · · · ||mℓ has high
min-entropy, it may clearly be the case that some of its small blocks have very low min-entropy (or
even fixed). Thus, this approach seems to fail for deterministic encryption.

As an alternative, however, we propose the following approach: instead of dividing the plaintext
m into fixed blocks, we project it onto a uniformly chosen partition S1, . . . , Sℓ of the plaintext
positions to sets of equal sizes, and then separately encrypt each of the projections mS1 , . . . ,mSℓ

using an underlying (possibly non-incremental) deterministic encryption scheme2. By the fact that
we use a partition of the plaintext positions we ensure on the one hand that the plaintext m can
be fully recovered, and on the other that each plaintext position appears in only one set (and thus

2A minor technical detail is that we would also like to ensure that we always encrypt distinct values, and therefore
we concatenate the block number i to each projection mSi .
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the scheme is incremental). In terms of security, since we use a uniformly chosen partition, the
distribution of each individual set Si is uniform, and therefore by carefully choosing the size of the
sets the “sample-and-extract” lemma guarantees that with overwhelming probability each projection
mSi preserves the min-entropy rate of m. Therefore, the scheme is secure as long as the underlying
scheme guarantees PRIV-IND security (see Section 2.2 for the notions of security for deterministic
encryption).

By instantiating this approach with the constructions of Bellare et al. [BBO07] in the random
oracle model, we obtain as a corollary a deterministic public-key encryption scheme with optimal
incrementality based either on any semantically-secure (randomized) public-key encryption scheme,
or on RSA-OAEP which yields a length-preserving incremental scheme.

A construction based on smooth trapdoor functions. Although our first construction is
a rather generic one, constructions of PRIV-IND-secure schemes are known only in the random
oracle model. In the standard model, Boldyreva et al. [BFO08b] introduced the slightly weaker
notion of PRIV1-IND security, which considers plaintexts that have high min-entropy even when
conditioned on other plaintexts, and showed that it can be realized by composing any lossy trapdoor
function with a pairwise independent permutation. This approach, however, does not seem useful
for constructing incremental schemes, since pairwise independence is inherently non-incremental. A
simple observation, however, shows that the approach of Boldyreva et al. [BFO08b] requires in fact
trapdoor functions with weaker properties, that we refer to as smooth trapdoor functions (this is
implicit in [BFO08b]).

Informally, a collection of smooth trapdoor functions consists of two families of functions. Func-
tions in one family are injective and can be efficiently inverted using a trapdoor. Functions in the
other family are “smooth” in the sense that their output distribution on any source of input with
high min-entropy is statistically close to their output distribution on a uniformly sampled input.
The only security requirement is that a description of a randomly chosen function from the family
of injective functions is computationally indistinguishable from a description of a randomly chosen
function from the family of smooth functions. We show that any collection of smooth trapdoor func-
tions is a PRIV1-IND-secure deterministic encryption scheme (again, this is implicit in [BFO08b]).

Next, we construct a collection of incremental smooth trapdoor functions based on the Decisional
Diffie-Hellman (DDH) assumption, by significantly refining the DDH-based lossy trapdoor functions
of Freeman et al. [FGK+10] (which in turned generalized those of Peikert and Waters [PW08]). Our
collection is parameterized by a group G of prime order p that is generated by an element g ∈ G.
A public key is of the form gA, where A ∈ Zn×n is sampled from one distribution for injective keys,
and from a different distribution for smooth keys3. Evaluating a function on an input x ∈ {0, 1}n is
done by computing gAx ∈ Gn and inversion for injective keys is done using the secret key A−1.

The key point in our scheme is the distribution of the matrix A for injective and smooth keys.
For smooth keys the matrix A is generated to satisfy two properties. The first is that each of its
first ℓ rows has t randomly chosen entries with values that are chosen uniformly from Zp, and all
other n− t entries are zeros (where ℓ and t are carefully chosen depending on the min-entropy rate).
Looking ahead, when computing the inner product of such a sparse row with a source of min-entropy
larger than log p, the “sample-then-extract” lemma guarantees that the output is statistically close
to uniform. In a sense, this is a realization of a locally-computable extractor that is embedded in
our functions. The second property, is that each of its last n − ℓ rows are linear combinations of
the first ℓ rows, and therefore the image of its corresponding linear map is determined by the first
ℓ rows. This way, we can argue that smooth keys hide essentially all information on the underlying
input distribution.

3For any matrix A = {aij}i∈[n],j∈[n] ∈ Zn×n
p we denote by gA ∈ Gn×n the matrix {gaij}i∈[n],j∈[n].
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For injective keys, we sample a matrix A from the distribution of smooth keys, and then re-
sample all its non-zero entries with independently and uniformly distributed elements of Zp. A
subtle complication arises since such a matrix is not necessarily invertible, as required for injective
keys, but this is easily resolved (without hurting the smooth keys – see Section 5 for more details).
Observing that for injective keys each column of A contains roughly t non-zero entries, this yields a
PRIV1-IND-secure scheme with optimal incrementality.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we introduce the notation, tools,
and computational assumptions that are used in this paper. In Section 3 we present a framework for
modeling the incrementality of deterministic public-key encryption schemes. In Section 4 we present
our generic construction, and in Section 5 we present we present our DDH-based construction.
Finally, in Section 6 we present the lower bound.

2 Preliminaries

In this section we present the basic notions, definitions, and tools that are used in this paper.

2.1 Probability Distributions

For a distribution X we denote by x ← X the process of sampling a value x according to X .
Similarly, for a set Ω we denote by ω ← Ω the process of sampling a value ω from the uniform
distribution over Ω. If X is a distribution and f is a function defined over its support, then f(X )
denotes the outcome of the experiment where f(x) is evaluated on x sampled from X . For any
n ∈ N we denote by Un the uniform distribution over the set {0, 1}n.

The min-entropy of a distribution X that is defined over a set Ω is defined as H∞(X ) =
minω∈Ω log (1/Pr[X = ω]). A k-source is distribution X with H∞(X ) ≥ k, and the min-entropy
rate of a k-source over the set {0, 1}n is k/n. The statistical distance between two distributions X
and Y over a set Ω is defined as SD(X ,Y) = maxS⊆Ω |Pr[X ∈ S]− Pr[Y ∈ S]|. A distribution X is
ϵ-close to a k-source if there exists a k-source Y such that SD(X ,Y) ≤ ϵ. The following standard
lemma (see, for example, [DOR+08]) essentially states that revealing r bits of information on a
random variable may reduce its min-entropy by roughly r.

Lemma 2.1. Let Z be a distribution over at most 2r values, then for any distribution X and for
any ϵ > 0 it holds that

Prz←Z[H∞(X|Z = z) ≥ H∞(X )− r − log(1/ϵ)] ≥ 1− ϵ .

We say that two families of distributions X = {Xλ}λ∈N and Y = {Yλ}λ∈N are statistically
close, denoted by X ≈ Y, if there exists a negligible function ν(λ) such that SD(X ,Y) ≤ ν(λ)
for all sufficiently large λ ∈ N. Two families of distributions X = {Xλ}λ∈N and Y = {Yλ}λ∈N
are computationally indistinguishable, denoted by X c≈ Y, if for any probabilistic polynomial-time
algorithm A there exists a negligible function ν(λ) such that∣∣∣Prx←Xλ

[
A(1λ, x) = 1

]
− Pry←Yλ

[
A(1λ, y) = 1

]∣∣∣ ≤ ν(λ)

for all sufficiently large λ ∈ N.
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The “sample-then-extract” lemma. The following lemma due to Vadhan [Vad04] plays a major
role in our constructions. This is a refinement of the fundamental “sample-then-extract” lemma that
was originally proved by Nisan and Zuckerman [NZ96], stating that a random of sample of bits from
a string essentially preserves its min-entropy rate. Vadhan’s refinement shows that the min-entropy
rate is in fact preserved up to an arbitrarily small additive loss, whereas the original lemma loses a
logarithmic factor. Intuitively, the lemma states that if X ∈ {0, 1}n is a δn-source, and XS ∈ {0, 1}t
is the projection of X onto a random set S ⊆ [n] of t positions, then, with high probability, XS

is statistically-close to a δ′t-source, where δ′ = Ω(δ). Whereas Nisan and Zuckerman [NZ96] and
Vadhan [Vad04] were concerned with the amount of randomness that is required for sampling the
t positions, in our case we can allow ourselves to sample the set S uniformly at random, and this
leads to the following simplified form of the lemma:

Lemma 2.2 ([Vad04] – simplified). Let X be a δn-source over {0, 1}n, let t ∈ [n], and let S denote
the uniform distribution over sets S ⊆ [n] of size t. Then, there exists a distribution W over {0, 1}t,
jointly distributed with S, such that the following hold:

1. (S,XS) is 2−Ω(δt/ log(1/δ))-close to (S,W).

2. For any set S ⊆ [n] of size t it holds that W|S=S is a δ′t-source for δ′ = δ/4.

2.2 Deterministic Public-Key Encryption

A deterministic public-key encryption scheme is almost identical to a (randomized) public-key en-
cryption scheme, where the only difference is that the encryption algorithm is deterministic. More
specifically, a deterministic public-key encryption scheme is a triple of polynomial-time algorithms
Π = (KG,Enc,Dec). The key-generation algorithm KG is a randomized algorithm which takes as
input the security parameter 1λ, where λ ∈ N, and outputs a pair (pk, sk) of a public key pk and
a secret key sk. The encryption algorithm Enc takes as input the security parameter 1λ, a public
key pk, and a plaintext m ∈ {0, 1}n(λ), and outputs a ciphertext c ∈ {0, 1}t(λ). The (possibly deter-
ministic) decryption algorithm Dec takes as input the security parameter 1λ, a secret key sk, and
a ciphertext c ∈ {0, 1}t(λ), and outputs either a plaintext m ∈ {0, 1}n(λ) or the special symbol ⊥.
For succinctness, we will always assume 1λ as an implicit input to all algorithms and refrain from
explicitly specifying it.

In terms of security, in this paper we follow the standard approach for formalizing the security of
deterministic public-key encryption schemes introduced by Bellare, Boldyreva and O’Neill [BBO07]
and further studied by Bellare, Fischlin, O’Neill and Ristenpart [BFO+08a] and by Boldyreva,
Fehr and O’Neill [BFO08b]. Specifically, we consider the PRIV-IND notion of security asking that
any efficient algorithm has only a negligible advantage in distinguishing between encryptions of
different sequences of plaintexts as long as each plaintext is sampled from high-entropy sources.
We also consider the PRIV1-IND notion of security that focuses on a single plaintext, and asks
that any efficient algorithm has only a negligible advantage in distinguishing between encryptions of
different plaintexts that are sampled from high-entropy sources. This notion of security was shown
by Boldyreva, Fehr and O’Neill [BFO08b] to guarantee security for block-sources of messages (that
is, for sequences of messages where each message has high-entropy even when conditioned on the
previous messages).

For defining these notions of security we rely on the following notation. We denote by m =
(m1, . . . ,mℓ) a sequence of plaintexts, and by c = Encpk(m) the sequence of their encryptions
(Encpk(m1), . . . ,Encpk(mℓ)) under a public key pk.

Definition 2.3 (k-source ℓ-message adversary). Let A = (A1, A2) be a probabilistic polynomial-time
algorithm, and let k = k(λ) and ℓ = ℓ(λ) be functions of the security parameter λ ∈ N. For any
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λ ∈ N denote by (M(0)
λ ,M(1)

λ ,ST AT Eλ) the distribution corresponding to the output of A1(1
λ).

Then, A is a k-source ℓ-message adversary if the following properties hold:

1. M(b)
λ =

(
M(b)

1,λ, . . . ,M
(b)
ℓ,λ

)
is a distribution over sequences of ℓ plaintexts for each b ∈ {0, 1}.

2. For any λ ∈ N, i, j ∈ [ℓ], and for every triplet
((

m
(0)
1 , . . . ,m

(0)
ℓ

)
,
(
m

(1)
1 , . . . ,m

(1)
ℓ

)
, state

)
that

is produced by A1(1
λ) it holds that m

(0)
i = m

(0)
j if and only if m

(1)
i = m

(1)
j .

3. For any λ ∈ N, b ∈ {0, 1}, i ∈ [ℓ], and state ∈ {0, 1}∗ it holds that M(b)
i,λ|ST AT Eλ=state is a

k(λ)-source.

Definition 2.4 (PRIV-IND). A deterministic public-key encryption scheme Π = (KG,Enc,Dec) is
PRIV-IND-secure for k(λ)-source ℓ(λ)-message adversaries if for any probabilistic polynomial-time
k(λ)-source ℓ(λ)-message adversary A = (A1, A2) there exists a negligible function ν(λ) such that

AdvPRIV−INDΠ,A,λ
def
=

∣∣∣Pr[ExptPRIV−INDΠ,A,λ (0) = 1
]
− Pr

[
ExptPRIV−IND

Π,A,λ (1) = 1
]∣∣∣ ≤ ν(λ)

for all sufficiently large λ ∈ N, where ExptPRIV−INDΠ,A,λ (b) is defined as follows:

1. (pk, sk)← KG(1λ).

2. (m0,m1, state)← A1(1
λ).

3. c← Encpk(mb).

4. Output A2(1
λ, pk, c, state).

Definition 2.5 (PRIV1-IND). A deterministic public-key encryption scheme Π = (KG,Enc,Dec) is
PRIV1-IND-secure for k(λ)-source adversaries if for any probabilistic polynomial-time k(λ)-source
1-message adversary A = (A1, A2) there exists a negligible function ν(λ) such that

AdvPRIV1−IND
Π,A,λ

def
=

∣∣∣Pr[ExptPRIV1−INDΠ,A,λ (0) = 1
]
− Pr

[
ExptPRIV1−IND

Π,A,λ (1) = 1
]∣∣∣ ≤ ν(λ)

for all sufficiently large λ ∈ N, where ExptPRIV1−INDΠ,A,λ (b) is defined as follows:

1. (pk, sk)← KG(1λ).

2. (m0,m1, state)← A1(1
λ).

3. c← Encpk(mb).

4. Output A2(1
λ, pk, c, state).

2.3 The Decisional Diffie-Hellman Assumption

Let GroupGen be a probabilistic polynomial-time algorithm that takes as input a security parameter
1λ, and outputs a triplet (G, p, g) where G is a group of prime order p that is generated by g ∈ G,
and p is a λ-bit prime number. The Decisional Diffie-Hellman (DDH) assumption is that the en-
sembles {(G, g1, g2, g

r
1, g

r
2)}λ∈N and {(G, g1, g2, g

r1
1 , gr22 )}λ∈N are computationally indistinguishable,

where (G, p, g)← GroupGen(1λ), and the elements g1, g2 ∈ G and r, r1, r2 ∈ Zp are chosen indepen-
dently and uniformly at random.

3 Modeling Incremental Deterministic Public-Key Encryption

In this section we present a framework for modeling the incrementality of deterministic public-key
encryption schemes. Intuitively, a deterministic public-key encryption scheme is incremental if any

8



small modification of a plaintext m resulting in a plaintext m′ can be efficiently carried over for
updating the encryption c = Encpk(m) of m to the encryption c′ = Encpk(m

′) of m′. For capturing
the efficiency of such an update operation we consider two natural complexity measures4:

• Input locality: The number of ciphertexts bits that are affected when flipping a single plaintext
bit.

• Query complexity: The number of public-key, plaintext, and ciphertext bits that have to be
read in order to update the ciphertext when flipping a single plaintext bit.

For capturing the above measures of efficiency we model the update operation as a probabilistic
polynomial-time algorithm Update that receives as input the index i∗ of a plaintext bit to be flipped,
and has oracle access to the individual bits of the public key pk, the plaintext m to be modified,
and to its encryption c = Encpk(m). That is, the algorithm Update can submit queries of the form
(pk, i), (m, i) or (c, i), which are answered with the ith bit of pk, m, or c, respectively.

More formally, let Π = (KG,Enc,Dec) be a deterministic public-key encryption scheme with
message space {0, 1}n and ciphertext space {0, 1}t (where n = n(λ) and t = t(λ) are functions of
the security parameter λ ∈ N), and let Update be its corresponding update algorithm. We denote
by S ← Updatepk,m,c(1λ, i∗) the process in which the update algorithm with input i∗ ∈ [n] and
oracle access to the individual bits of the public key pk, the plaintext m to be modified, and to its
encryption c = Encpk(m), outputs a set S ⊆ [t] of positions indicating which bits of the ciphertext
c have to be flipped.

Definition 3.1 (Incremental deterministic PKE). Let Π = (KG,Enc,Dec) be a deterministic public-
key encryption scheme with message space {0, 1}n and ciphertext space {0, 1}t, where n = n(λ) and
t = t(λ) are functions of the security parameter λ ∈ N. The scheme Π is ∆(λ)-incremental is there
exists a probabilistic polynomial-time algorithm Update satisfying the following requirements:

1. Correctness: There exists a negligible function ν(λ) such that for all sufficiently large λ ∈ N,
for any plaintext m ∈ {0, 1}n and for any index i∗ ∈ [n] it holds that

Pr

c′ = Encpk(m
′)

∣∣∣∣∣∣
c = Encpk(m), S ← Updatepk,m,c(1λ, i∗)

m′[i∗] = ¬m[i∗] and m′[i] = m[i] for all i ∈ [n] \ {i∗}
c′[j] = ¬c[j] for all j ∈ S and c′[j] = c[j] for all j ∈ [t] \ S

 ≥ 1− ν(λ),

where the probability is taken over the internal coin tosses of KG and Update.

2. Efficiency: For all sufficiently large λ ∈ N the algorithm Update(·)(1λ, ·) issues at most ∆(λ)
oracle queries and outputs sets of size at most ∆(λ).

Access to the plaintext. When providing the update algorithm with oracle access to the bits of
the plaintext m ∈ {0, 1}n we can assume without loss of generality that the only update operations
are to flip the ith bit of m for i ∈ [n]. That is, one can also consider the operation of setting the ith
bit of m to 0 or 1, but this can be handled by first querying the ith bit of m and then flipping it if it
is different than the required value. We note, however, that for supporting only flipping operations
it is not clear that access to the plaintext must be provided.

An important observation is that when access to the plaintext is not provided (i.e., when the
update algorithm can query only the public key and the ciphertext), it is impossible to support the
operation of setting a bit to 0 and 1 while providing PRIV1-IND security. That is, any such update

4For simplicity we focus on the case where both plaintexts and ciphertexts are represented as bit strings. We note,
however, that our approach easily generalizes to arbitrary message and ciphertext spaces.
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algorithm can be used to attack the PRIV1-IND security of the scheme by distinguishing between
encryptions of high-entropy messages (and this holds for any level of incrementality)5.

Privately-incremental schemes. In various scenarios it may be natural to provide the update
algorithm with access not to the plaintext m but rather to the secret key sk (and thus indirect access
to the plaintext which may be less efficient in terms of query complexity). Consider for example,
a scenario in which a client stores an encrypted version F̄ of a file F on a remote and untrusted
server. In this the client does not have direct access to the file F , but only indirect access by using
its secret key to recover parts of the file. In such a scenario it is required to capture the efficiency
of the client by considering its query complexity to the secret key (and ciphertext) and not to the
plaintext. This leads to a natural variant of Definition 3.1 in which the update algorithm is given
oracle access to the public key pk, the secret key sk, and the ciphertext c (but no direct access to
the plaintext).

Definition 3.2 (Privately-incremental deterministic PKE). Let Π = (KG,Enc,Dec) be a determin-
istic public-key encryption scheme with message space {0, 1}n and ciphertext space {0, 1}t, where
n = n(λ) and t = t(λ) are functions of the security parameter λ ∈ N. The scheme Π is ∆(λ)-
privately-incremental is there exists a probabilistic polynomial-time algorithm Update satisfying the
following requirements:

1. Correctness: There exists a negligible function ν(λ) such that for all sufficiently large λ ∈ N,
for any plaintext m ∈ {0, 1}n and for any index i∗ ∈ [n] it holds that

Pr

c′ = Encpk(m
′)

∣∣∣∣∣∣
c = Encpk(m), S ← Updatepk,sk,c(1λ, i∗)

m′[i∗] = ¬m[i∗] and m′[i] = m[i] for all i ∈ [n] \ {i∗}
c′[j] = ¬c[j] for all j ∈ S and c′[j] = c[j] for all j ∈ [t] \ S

 ≥ 1− ν(λ),

where the probability is taken over the internal coin tosses of KG and Update.

2. Efficiency: For all sufficiently large λ ∈ N the algorithm Update(·)(1λ, ·) issues at most ∆(λ)
oracle queries and outputs sets of size at most ∆(λ).

4 A Generic Construction via Random Partitioning

In this section we present a generic construction of an incremental PRIV1-IND-secure determin-
istic public-key encryption scheme from any PRIV-IND-secure deterministic public-key encryption
scheme. As discussed in Section 1.3 our approach is a “randomized” alternative to the commonly-
used approach of dividing the plaintext into small blocks and encrypting each block. Instead of
dividing an n-bit plaintext m into fixed blocks, we project it onto a uniformly chosen partition
S1, . . . , Sn/t of the plaintext positions {1, . . . , n} to sets of size t each, and then separately encrypt
each of the projections mS1 , . . . ,mSn/t

using the underlying encryption scheme. Thus, when flip-
ping a single bit of m we only need to update the encryption of the projection mSi for which
the corresponding position belongs to the set Si. Therefore, the resulting scheme enjoys the same
incrementality that the underlying scheme has for small blocks. A more formal description follows.

5Consider the adversary A = (A1, A2) that is defined as follows. The algorithm A1 outputs (m0,m1, state) where
m0 ← Uk||0n−k and m1 ← Un are sampled independently at random, and state = ⊥. That is, m0 is a distributed
uniformly conditioned on ending with 0n−k, andm1 is distributed uniformly. The algorithm A2 on input c = Encpk(mb)
invokes the update algorithm to set the leftmost k bits of the plaintext corresponding to c to 0, and then compares
the resulting ciphertext to Encpk(0

n). Note that if b = 0 then the two ciphertexts are always equal, and if b = 1 then
they are equal only with probability 2−(n−k).
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The scheme. Let Π′ = (KG′,Enc′,Dec′) be a deterministic public-key encryption scheme for n′-bit
plaintexts that is IND-PRIV-secure for k′-source ℓ′-message adversaries, where n′ = n′(λ), k′ = k′(λ)
and ℓ′ = ℓ′(λ) are functions of the security parameter λ ∈ N. We construct a deterministic public-key
encryption scheme Π = (KG,Enc,Dec) for n-bit plaintexts that is PRIV1-IND-secure for k-source
adversaries, where n = n(λ) and k = k(λ) are functions of the security parameter λ ∈ N as follows:

• The algorithm KG on input the security parameter 1λ samples (pk′, sk′) ← KG′(1λ) together
with a uniformly chosen partition S1, . . . , Sn/t of [n], where each set in the partition is of size
t = Θ(nk · k

′). It then outputs pk = (pk′, S1, . . . , Sn/t) and sk = sk′.6

• The algorithm Encpk(·) on input a plaintextm ∈ {0, 1}n outputs the ciphertext (Enc′pk′(1||mS1),
. . . ,Enc′pk′(n/t||mSn/t

)).

• The algorithm Decsk(·) on input a ciphertext (c1, . . . , cn/t) computes mSi = Dec′sk′(ci) for
every i ∈ [n/t], and outputs the plaintext m defined by the projections mS1 , . . . ,mSn/t

.

The incrementality of the scheme. When flipping a single bit of a plaintext m we only need
to apply the update algorithm of the underlying scheme Π′ to update a single output block ci =
Enc′pk′(mSi). The underlying scheme might have trivial incrementality and require to re-encrypt
the whole block (which is significantly shorter than the length of the plaintext m), and in this case
the update complexity is inherited from the efficiency of the encryption algorithm Enc′ (below we
discuss specific instantiations).

The security of the scheme. The main idea underlying the proof of security is that for a plaintext
m that has min-entropy k, the “sample-and-extract” together with our choice of t = Θ(nk · k

′), and
the fact that each set Si is individually uniform imply that each of the encrypted strings i||mSi is
statistically-close to having min-entropy k′. The PRIV-IND security of Π′ then immediately yields
the PRIV1-IND security of Π. This enables us to prove the following theorem:

Theorem 4.1. Assuming that Π′ encrypts n′-bit plaintexts, for n′ = t+log(n/t), and is IND-PRIV-
secure for k′-source ℓ′-message adversaries, for some k′ = ω(log2 n) and for ℓ′ = n/t, the scheme Π
is PRIV1-IND-secure for k-sources.

Proof. For any k-source adversary A = (A1, A2) against PRIV1-IND security of the scheme Π we
show that there exists an adversary A′ = (A′1, A

′
2) that is statistically close to a k′-source n/t-message

adversary against the PRIV-IND security of the scheme Π′ and has the same advantage.

The algorithm A′
1. On input 1λ the algorithm A′1 samples

(
m(0),m(1), state

)
← A1(1

λ) and
a uniformly chosen partition S1, . . . , Sn/t of [n], where each set in the partition is of size

t = Θ(nk ·k
′). Then, it outputs (m0,m1, state

′), where mb =
(
1||m(b)

S1
, . . . , n/t||m(b)

Sn/t

)
for each

b ∈ {0, 1}, and state′ = (state, S1, . . . , Sn/t).

The algorithm A′
2. On input (1λ, pk′, c, state′) the algorithm A′2 first parses state′ as state′ =

(state, S1, . . . , Sn/t) and defines pk = (pk′, S1, . . . , Sn/t). Then, it outputs A2(1
λ, pk, c, state).

Note that A′ provides a perfect simulation of the ExptPRIV−IND
Π,A,λ (0) and ExptPRIV−IND

Π,A,λ (1) to A, and
therefore we only need to prove that A′ is statistically close to a k′-source n/t-message adversary.

First, observe that in any vector of plaintexts mb =
(
1||m(b)

S1
, . . . , n/t||m(b)

Sn/t

)
that is produced by

A1 it always holds that all plaintexts are distinct (and this holds for both b = 0 and b = 1). Second,

6Without loss of generality we can assume that t divides n, as otherwise we can pad plaintexts with at most t zeros,
and for our choice of parameters this would only have a minor effect on the min-entropy rate.
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the fact that A is a k-source adversary means that for each b = 0 the plaintexts m(b) is sampled
from a source with min-entropy at least k over {0, 1}n, even when conditioned on state. In turn, the
“sample-then-extract” lemma (see Lemma 2.2) that for each b ∈ {0, 1} and i ∈ [n/t] the projection

m
(b)
Si

is 2−Ω(δt/ log(1/δ))-close to a source with min-entropy δ′t over {0, 1}t, where δ′ = k/(4n). Our

choice of t = Θ(nk · k
′) and the requirement k′ = ω(log2 n) in the statement of the theorem imply

that m
(b)
Si

is 2−ω(logn)-close to a source with min-entropy k′.

Specific instantiations. By instantiating our generic construction with the two PRIV-IND-secure
schemes of Bellare at el. [BBO07] in the random oracle model, we obtain schemes with essentially
optimal incrementality ∆ = O(t) = O(nk · log

3 n). Their first scheme is based on any semantically-
secure (randomized) public-key encryption scheme, and their second scheme is length-preserving
based on RSA-OAEP. We note that when instantiating our generic construction with their length-
preserving scheme there is in fact no need to concatenate the block number i to each projection mSi

(for ensuring that we always encrypt distinct values), but only to use the block number as a prefix
for the random oracle when encrypting mSi . Therefore in this case the resulting scheme is still a
length-preserving one.

5 A Construction Based on the Decisional Diffie-Hellman Assumption

In this section we construct a deterministic public-key encryption scheme that enjoys essentially
optimal incrementality, and guarantees PRIV1-IND security based on the Decisional Diffie-Hellman
(DDH) assumption. We begin by introducing rather standard notation and then describe the scheme.

Notation. Let G be a group of prime order p that is generated by g ∈ G. For any matrix
A = {aij}i∈[n],j∈[n] ∈ Zn×n

p we denote by gA ∈ Gn×n the matrix {gaij}i∈[n],j∈[n]. In addition, for a

column vector m = (m1, . . . ,mn)
T ∈ Zn

p and a matrix A = {aij}i∈[n],j∈[n] ∈ Zn×n
p we define

A⊙ gm
def
= gA ⊙m

def
= gAm = (g

∑
i a1,imi , . . . , g

∑
i an,imi)T ∈ Gn .

The scheme. Let GroupGen be a probabilistic polynomial-time algorithm that takes as input the
security parameter 1λ, and outputs a triplet (G, p, g) where G is a group of prime order p that is
generated by g ∈ G, and p is a λ-bit prime number. The scheme is parameterized by the security
parameter λ, the message length n = n(λ), and the min-entropy k = k(λ) for which the scheme is
secure. Both n and k are polynomials in the security parameter. The scheme Π = (KG,Enc,Dec) is
defined as follows:

• Key generation. The algorithm KG on input the security parameter 1λ samples (G, p, g)←
GroupGen(1λ), and a matrix A ← An,k,p, where An,k,p is a distribution over Zn×n

p which is

defined below. It then outputs pk = (G, p, g, gA) and sk = A−1.

• Encryption. The algorithm Encpk(·) on input a plaintext m ∈ {0, 1}n outputs the ciphertext
gA ⊙m = gAm ∈ Gn.

• Decryption. The algorithm Decsk(·) on input a ciphertext gc = (gc1 , . . . , gcn) ∈ Gn first
computes w = A−1 ⊙ gc = gA

−1c ∈ Gn, and lets w = (gm1 , . . . , gmn). If m = (m1, . . . ,mn) ∈
{0, 1}n (note that this test can be computed efficiently) then it outputs m, and otherwise it
outputs ⊥.

The distribution An,k,p. For completing the description of our scheme it remains to specify the
distribution An,k,p that is defined over Zn×n

p . Looking ahead this distribution will be used to define
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the distribution of injective keys in our collection of smooth trapdoor functions. In fact, we find
it convenient to first specify the distribution Ãn,k,p that will be used to define the distribution of
smooth keys. These two distributions rely on the following distributions as building block:

• Rn,k,p: sparse random ℓ × n matrices. The distribution Rn,k,p is defined as a random
sample from Zℓ×n

p matrices that have exactly t = Θ(nk · log
3 n) non-zero entries in each row,

where ℓ = Θ(k/ log p).

• Dn,k,p: diagonally-striped ℓ × n matrices. The distribution Dn,k,p is defined as a random
sample from Zℓ×n

p matrices whose elements dij are non-zero if and only if i ≡ j (mod ℓ) (for
simplicity we assume that n is divisible by ℓ).

The distribution Ãn,k,p over Zn×n
p is defined as matrices Ã obtained by independently sampling

R←Rn,k,p, D1 ← Dn,k,p, and D2 ← Dn,k,p, and letting Ã
def
= DT

2 × (R+D1). Then, the distribution

An,k,p is defined as matrices A obtained by sampling a matrix Ã← Ãn,k,p and then re-sampling all
its non-zero entries from Zp independently and uniformly at random. In other words, the resulting

matrix A preserves zeroes of the matrix Ã, while randomizing all other elements (and thus linear de-
pendencies between rows) of the original matrix. See Figure 1 for an illustration of the distributions
Rn,k,p, Dn,k,p and Ãn,k,p.

Intuitively, the matrix D1 is only meant to ensure that such the resulting matrix A is invertible.
Indeed, the matrix D1 guarantees that with an overwhelming probability all the elements on the
main diagonal of A are non-zeros. Now, ignoring the matrix D1, the matrix Ã is generated to
satisfy two properties. The first is that each of its first ℓ rows has t randomly chosen entries with
values that are chosen uniformly from Zp, and all other n − t entries are zeros. Looking ahead,
when computing the inner product of such a row with a source of min-entropy larger than log p, the
“sample-then-extract” lemma (see Lemma 2.2) guarantees that the output is statistically close to
uniform. The second property, is that each of its last n− ℓ rows are linear combinations of the first
ℓ rows, and therefore the image of its corresponding linear map is determined by the first ℓ rows.

+

=

R D1

D
T

2

× (R +D1)

n

ℓ

n

ℓ

n

ℓ

n

n

Figure 1: The distributions Rn,k,p, Dn,k,p and Ãn,k,p.

The incrementality of the scheme. When naturally storing the public-key element gA as a
sparse matrix, listing only the entries corresponding to the non-zero entries of A, the incrementality
of the scheme corresponds to the maximal number of non-zero entries in the columns of A (up to
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a multiplicative log p factor that needs to be taken into account since we measure incrementality
by bit operations). It is easy to see that for our choice of t = Θ(nk · log

3 n) and ℓ = Θ(k/ log p),
each column of the matrix A has at most O(t+ n/ℓ) = O(nk · log

3 n) non-zero entries with all but a
negligible probability.

The security of the scheme. As discussed in Section 1.3, the security of our scheme is based on
the notion of smooth trapdoor functions which we formalize in Section 5.1, and then in Section 5.2
we show that our scheme is in fact a collection of smooth trapdoor functions. This enables us to
prove the following theorem:

Theorem 5.1. Under the Decisional Diffie-Hellman assumption the scheme Π is PRIV1-IND-secure
for k-sources.

5.1 Smooth Trapdoor Functions

A collection of smooth trapdoor functions consists of two families of functions. Functions in one
family are injective and can be efficiently inverted using a trapdoor. Functions in the other family
are “smooth” in the sense that their output distribution on any source of input with high min-
entropy is statistically close to their output distribution on a uniformly sampled input. The only
security requirement is that a description of a randomly chosen function from the family of injective
functions is computationally indistinguishable from a description of a randomly chosen function
from the family of smooth functions.

Definition 5.2 (Smooth trapdoor functions). Let n = n(λ) and k = k(λ) be functions of the security
parameter λ ∈ N. A collection of (n, k)-smooth trapdoor functions is a 4-tuple of probabilistic
polynomial-time algorithms (KGInj,KGSmooth,F,F

−1) such that:

1. Injectivity: With overwhelming probability over the choice of (pk, sk) ← KGInj(1
λ), for every

x ∈ {0, 1}n it holds that F−1sk (Fpk(x)) = x.

2. Smoothness: For every k-source X = {Xλ}λ∈N over {0, 1}n the statistical distance between the
distributions {Fpk(x) : pk ← KGSmooth(1

λ), x← Xλ}λ∈N and {Fpk(x) : pk ← KGSmooth(1
λ), x←

Un}λ∈N is negligible in λ.

3. Indistinguishability: The two distributions {pk : (pk, sk) ← KGInj(1
λ)}λ∈N and {pk : pk ←

KGSmooth(1
λ)}λ∈N are computationally indistinguishable.

We note that the definition of a hidden universal-mode encryption of Boldyreva, Fehr and O’Neill
[BFO08b] is stronger than our definition of smooth trapdoor functions, as evident from our con-
struction in this section which is not universal in its smooth mode (that would interfere with the
incrementality requirement). In addition, Boldyreva et al. showed that the composition of any lossy
trapdoor function with a pairwise independent permutation is a hidden universal-mode encryption,
and thus a collection of smooth trapdoor functions. The pairwise independent permutation, however,
again contradicts the incrementality property that we require.

The following theorem states that any collection of smooth trapdoor functions is also a PRIV1-
IND-secure deterministic public-key encryption scheme. The theorem was implicitly proved by
Boldyreva et al. [BFO08b, Theorem 5.1], and here we provide its proof for completeness in light of
our new notion of smooth trapdoor functions.

Theorem 5.3. Let n = n(λ) and k = k(λ) be functions of the security parameter λ ∈ N, and let
(KGInj,KGSmooth,F,F

−1) be a collection of (n, k)-smooth trapdoor functions. Then Π = (KGInj,F,
F−1) is a deterministic public-key encryption scheme that is PRIV1-IND-secure for k-sources.
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Proof. Let A = (A1, A2) be a k-source adversary. For any λ ∈ N and b ∈ {0, 1} we denote by

Ẽxpt
PRIV1−IND

Π,A,λ (b) the experiment that is obtained from the experiment ExptPRIV1−IND
Π,A,λ (b) by sampling

the public key pk using KGSmooth(1
λ) instead of KGInj(1

λ). Then,

AdvPRIV1−INDΠ,A,λ =
∣∣∣Pr[ExptPRIV1−INDΠ,A,λ (0) = 1

]
− Pr

[
ExptPRIV1−IND

Π,A,λ (1) = 1
]∣∣∣

≤
∣∣∣Pr[ExptPRIV1−INDΠ,A,λ (0) = 1

]
− Pr

[
Ẽxpt

PRIV1−IND

Π,A,λ (0) = 1
]∣∣∣ (5.1)

+
∣∣∣Pr[ẼxptPRIV1−INDΠ,A,λ (0) = 1

]
− Pr

[
Ẽxpt

PRIV1−IND

Π,A,λ (1) = 1
]∣∣∣ (5.2)

+
∣∣∣Pr[ẼxptPRIV1−INDΠ,A,λ (1) = 1

]
− Pr

[
ExptPRIV1−IND

Π,A,λ (1) = 1
]∣∣∣ . (5.3)

By definition for any b ∈ {0, 1} the experiments ExptPRIV1−IND
Π,A,λ (b) and Ẽxpt

PRIV1−IND

Π,A,λ (b) differ only on
the distribution of the public key pk. Therefore, the indistinguishability property of the collection
(KGInj,KGSmooth,F,F

−1) between public keys that are “injective” and “smooth” directly guarantees
that the terms in Equations (5.1) and (5.3) are negligible.

In addition, the smoothness property of the collection (KGInj,KGSmooth,F,F
−1) and the fact that

A is a k-source adversary guarantee that in the experiments Ẽxpt
PRIV1−IND

Π,A,λ (0) and Ẽxpt
PRIV1−IND

Π,A,λ (1)
the ciphertext c = Encpk(mb) is statistically-close to the encryption of a uniformly distributed
message from A’s point of view. This implies that also the term in Equation (5.2) is negligible, and
concludes the proof of the theorem.

5.2 Proof of Security

The description of our encryption scheme naturally defines a 4-tuple (KGInj,KGSmooth,F,F
−1), which

we show here to be a collection of smooth trapdoor functions. Specifically, the algorithms KGInj,
F, and F−1 are the key-generation, encryption and decryption algorithms of our encryption scheme,
respectively, and the algorithm KGSmooth is the key-generation algorithm that uses the distribution
Ãn,k,p (instead of An,k,p). The security of our encryption scheme (i.e., Theorem 5.1) then follows as
a corollary by putting together Theorem 5.3 and the following theorem:

Theorem 5.4. Under the Decisional Diffie-Hellman assumption, (KGInj,KGSmooth,F,F
−1) is a col-

lection of (n, k)-smooth trapdoor functions.

Proof. We prove the theorem using the following three lemmas, establishing the required properties
of injectivity, smoothness, and indistinguishability.

Lemma 5.5 (Injectivity). With overwhelming probability over the choice of (pk, sk) ← KGInj(1
λ),

for every x ∈ {0, 1}n it holds that F−1sk (Fpk(x)) = x.

Proof of Lemma 5.5. We prove the lemma by showing that a matrix drawn from An,k,p is in-
vertible except with probability O(n/p). Consider the intermediate steps of drawing a matrix A
from An,k,p. First R, D1 and D2 are sampled from Rn,k,p, Dn,k,p, and Dn,k,p respectively. Then the

matrix Ã is computed as A = DT
2 × (R +D1), and the matrix A is produced by re-sampling all its

non-zero entries. We show that A is invertible by arguing that all elements on its main diagonal are
non-zero, except with probability O(n/p).7

7This is well-known to imply invertibility: Express detA as a function of formal variables corresponding to the
non-zero elements of A. The total degree of this polynomial is n, and since the main diagonal of A is non-zero, the
polynomial is not identically zero. By the Schwartz-Zippel lemma, the probability that this polynomial evaluates to
zero (and thus the matrix is rank-deficient) is O(n/p).
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Call the elements of an ℓ × n matrix with coordinates (u, v), where u ≡ v (mod ℓ), pseudo-
diagonal. The pseudodiagonal elements of D2 are non-zero by construction. There are exactly n
pseudodiagonal elements chosen at random in D1, and with probability O(n/p) one of them is zero.
The probability that any of the pseudodiagonal elements of D1 is canceled after summing it with R
is O(n/p). Conditioning on these events not happening, i.e., all pseudodiagonal elements of D1 +R
are not zero, all elements on the main diagonal of M that are products of two pseudodiagonal
elements from D1 +R and D2, are thus also non-zero.

It means that when the non-zero entries of the matrix Ã are re-sampled to produce A, all elements
on the main diagonal of A will be assigned fresh random values from Zp, and thus they will all be
non-zero except with probability O(n/p).

Lemma 5.6 (Smoothness). For every k-source X = {Xλ}λ∈N over {0, 1}n the statistical dis-
tance between the distributions {Fpk(x) : pk ← KGSmooth(1

λ), x ← Xλ}λ∈N and {Fpk(x) : pk ←
KGSmooth(1

λ), x← Un}λ∈N is negligible in λ.

Proof of Lemma 5.6. Fix λ ∈ N, and let Ã← Ãn,k,p, x← Xλ, and y = Ax. The first observation

is that any matrix Ã sampled from Ãn,k,p has rank ℓ as a product of two matrices, each having

rank at most ℓ. Further, for a given Ã, the first ℓ entries of y determine the rest of y. Indeed, if i
and j are two coordinates and i ≡ j (mod ℓ), then yi/yj is exactly the ratio of the corresponding
(non-zero) elements of D2 with coordinates (i mod ℓ, i) and (j mod ℓ, j) (identifying rows 0 and ℓ of
D2).

Therefore, it is sufficient to consider the distribution of y = Ax over the first ℓ coordinates of
the result, denoted as Y1, . . . ,Yℓ. We shall prove that Y1, . . . ,Yℓ is statistically close to the uniform
distribution over Zℓ

p (i.e., independent of X , and thus the lemma easily follows). Specifically, for
every i ∈ [ℓ] we prove that with an overwhelming probability over the choice of (y1, . . . , yi−1) ←
(Y1, . . . ,Yi−1), it holds that the distribution of Yi when conditioned on Y1 = y1, . . . ,Yi−1 = yi−1
is statistically close to the uniform distribution over Zp. A standard hybrid argument implies the
claim about the joint distribution of Y1, . . . ,Yℓ.

Recall that X is a source of min-entropy k. Lemma 2.1 guarantees that with probability 1 −
2− log2 λ over the choice of (y1, . . . , yi−1)← (Y1, . . . ,Yi−1), the min-entropy of X is at least k − (i−
1) log p − log2 λ. Consider the evaluation of yi = ⟨Ã(i), x⟩ for i ≤ ℓ, where Ã(i) is the ith row of Ã.

By construction, Ã(i) = di(R
(i) +D

(i)
1 )T, where di is a pseudodiagonal element of D2. Let S be the

set of t non-zero entries of R(i) (the ith row of R).
By Lemma 2.2, the projection of X onto S, denoted as XS , is 2−Ω(δt/ log(1/δ))-close to a k′/4-

source on t bits W , where δ = k′/n. The action of Ã
(i)
S on W is the scalar product of a k′/4-source

with a random vector (we account for the entries of Ã
(i)
S being non-zero by adding another t/p term

to the statistical distance), which is a universal hash function from {0, 1}t to Zp. By the leftover
hash lemma, noting that k′ > k− ℓ log p− log2 λ > k/2 > 2 log p the statistical distance between W
and the uniform distribution on Zp given S, y1, . . . , yi−1 is negligible.

Lemma 5.7 (Indistinguishability). Under the Decisional Diffie-Hellman assumption, the distribu-
tions {pk : (pk, sk)← KGInj(1

λ)}λ∈N and {pk : pk ← KGSmooth(1
λ)}λ∈N are computationally indistin-

guishable.

Proof of Lemma 5.7. Consider a sample from the distribution Ãn,k,p. It is obtained by sampling
a sparse ℓ× n matrix (from the distribution Rn,k,p +Dn,k,p), and then replicating every row of this
matrix n/ℓ times multiplying it with a random non-zero field element each time. The distribution
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An,k,p is sampled by drawing a matrix from Ãn,k,p and re-sampling all its non-zero elements. There-
fore, matrix minors defined as all non-zero elements of rows congruent modulo ℓ have rank 1 if the
matrix is drawn from Ãn,k,p and rank n/ℓ if it comes from An,k,p.

We use this observation together with the matrix-DDH assumption to prove the lemma. The
matrix-DDH assumption, due to Boneh, Halevi, Hamburg, and Ostrovsky [BHH+08], asserts that

gA
c≈ gB, where distributions A and B are random matrices from Za×b

p of ranks r1 and r2 respectively
and 1 < r1 < r2 ≤ min(a, b). Boneh et al. prove that the DDH assumption implies matrix-
DDH [BHH+08, Lemma 3.3].

Consider hybrid distributions H0,. . . ,Hℓ, where H0 = gÃn,k,p and Hℓ = gAn,k,p . Each intermedi-
ate distribution Hi is obtained by drawing a matrix from Ãn,k,p and re-sampling all rows congruent
to an element of the set {0, . . . , i− 1} modulo ℓ (if i = 0, no rows are re-sampled).

The difference between Hi and Hi+1 is in the distribution of rows congruent to i modulo ℓ.
We now change the procedure for sampling from Hi and Hi+1 by embedding an instance of the
matrix-DDH problem. Draw a matrix from Hi. Let the number of entries not equal to 1 in the ith

row be r. Sample a random rank-1 matrix A from Zn/ℓ×r
p . Replace the minor of Hi corresponding

to the entries not equal to 1 in the rows congruent to i modulo ℓ with gA. Analogously, change
the distribution Hi+1 by replacing the similarly defined minor with the matrix gB, where B is a
random n/ℓ-rank matrix of size n/ℓ × r. It is easy to check that except with probability O(n2/p)
(to account for a possibility of zero elements in A or B) the new sampling procedures do not change
the distributions Hi and Hi+1.

By the matrix-DDH assumption the resulting distributions are computationally indistinguish-
able. Applying the hybrid argument to the sequence H0,. . . ,Hℓ, we complete the proof.

This settles the proof of Theorem 5.4.

6 The Lower Bound

In this section we prove a lower bound on the incrementality of deterministic public-key encryption
schemes. More specifically, we prove a lower bound on the input locality of the encryption algorithm
(recall that our notion of incrementality in Definition 3.1 considers in particular input locality).
Recall that the input locality of a function f : {0, 1}n → {0, 1}t is the maximal number of output
bits on which an input bit of f has influence8. We prove the following theorem:

Theorem 6.1. Let n = n(λ), t = t(λ), and k = k(λ) be functions of the security parameter λ ∈ N,
and let Π = (KG,Enc,Dec) be a deterministic public-key encryption scheme with plaintext space
{0, 1}n and ciphertext space {0, 1}t. If Π is PRIV1-IND-secure for k-sources then for all sufficiently
large λ ∈ N the function Encpk : {0, 1}n → {0, 1}t has input locality at least n−3

k log t with probability at
least 1/2 over the choice of the public key pk.

Proof. Assume towards a contradiction that for infinitely many λ ∈ N there exists a set Pλ of
public keys such that: (1) Pr(pk,sk)←KG(1λ)[pk ∈ Pλ] > 1/2, and (2) Encpk has input locality ∆(λ) <

n(λ)−3
k(λ) log t(λ) for any pk ∈ Pλ.

Consider the adversary A = (A1, A2) that is defined as follows. The algorithm A1 on input 1λ

outputs (m0,m1, state) where m0 ← Uk||0n−k and m1 ← Un are sampled independently at random,
and state = ⊥. That is, m0 is a distributed uniformly conditioned on ending with 0n−k, and m1 is

8We say that the ith input bit of f influences the jth output bit if there exists an assignment to the input bits
such that flipping the ith input bit changes the value of the jth output bit.
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distributed uniformly. The algorithm A2 on input a public key pk and a ciphertext c = Encpk(mb)
first computes c∗ = Encpk(0

n). Then, if the Hamming distance between c and c∗ is at most k∆ then
it outputs 0, and otherwise it outputs 1. We now analyze the advantage of A by considering the
cases b = 0 and b = 1.

The case b = 0. In this case the Hamming distance between m0 and 0n is at most k. For any
pk ∈ Pλ each plaintext bit may affect at most ∆ ciphertext bits, and therefore the Hamming
distance between c = Encpk(m0) and c∗ = Encpk(0

n) is at most k∆. Thus, for any pk ∈ Pλ the
adversary A will always output 0. This implies that for infinitely many λ ∈ N it holds that

Pr
[
ExptPRIV1−INDΠ,A,λ (0) = 1

]
≤ Pr(pk,sk)←KG(1λ)[pk /∈ Pλ] < 1/2 . (6.1)

The case b = 1. In this case we prove an upper bound on the probability that the Hamming
distance between c = Encpk(m1) and c∗ = Encpk(0

n) is at most k∆. The encryption algorithm
outputs t-bit ciphertexts, and note that the number of t-bit strings that are within Hamming
distance k∆ to c∗ is at most

2k∆
(

t

k∆

)
≤ (2t)k∆ .

As a result, the number of n-bit plaintexts whose ciphertext under pk is within Hamming
distance k∆ to c∗ is also at most (2t)k∆. The plaintext m1 is sampled uniformly at random
from {0, 1}n, and therefore

Pr
[
ExptPRIV1−IND

Π,A,λ (1) = 1
]
≥ 1− (2t)k∆

2n
. (6.2)

This implies that on one hand, by combining Equations (6.1) and (6.2), for infinitely many λ ∈ N
it holds that

AdvPRIV1−INDΠ,A,λ =
∣∣∣Pr[ExptPRIV1−INDΠ,A,λ (0) = 1

]
− Pr

[
ExptPRIV1−IND

Π,A,λ (1) = 1
]∣∣∣ > 1

2
− (2t)k∆

2n
.

On the other hand, however, the PRIV1-IND security of the scheme guarantees that there is a
negligible function ν = ν(λ) (corresponding to the adversary A) such that AdvPRIV1−IND

Π,A,λ ≤ ν for all
sufficiently large λ ∈ N. Therefore,

1

2
− (2t)k∆

2n
≤ ν ,

which implies that

∆ ≥ n− 3

k log t
.

and yields a contradiction.
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