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Abstract. In this paper, we investigate the benefit of instruction set extensions for software implementations of all
five SHA-3 candidates. To this end, we start from optimized assembly code for a common 16-bit microcontroller
instruction set architecture. By themselves, these implementations provide reference for complexity of the algo-
rithms on 16-bit architectures, commonly used in embedded systems. For each algorithm, we then propose suitable
instruction set extensions and implement the modified processor core. We assess the gains in throughput, mem-
ory consumption, and the area overhead. Our results show that with less than 10% additional area, it is possible
to increase the execution speed on average by almost 40%, while reducing memory requirements on average by
more than 40%. In particular, the Grøstl algorithm, which was one of the slowest algorithms in previous reference
implementations, ends up being the fastest implementation by some margin, once minor (but dedicated) instruction
set extensions are taken into account.
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1 Introduction

In 2007, the U.S. National Institute of Standards and Technology (NIST) started a public competition aiming at the
selection of a new standard for cryptographic hashing [13]. The cryptographic community was asked to propose new
hash functions and to evaluate the security level of other candidates. In 2008, 51 functions were accepted to the first
round, the second round (2009) reduced this number to 14, and for the final, third round (2010) the field has been
further reduced to five candidates: BLAKE, Grøstl, JH, Keccak, and Skein. Following the third SHA-3 candidate
conference, a winner algorithm is expected to be announced in 2012.

Potential applications of SHA-3 standard range from multi-gigabit data transmission protocols with high per-
formance requirements to radio-frequency identification (RFID) tags, which typically have to operate with severely
constrained resources. As a result, the organizers are not only interested in the cryptographic strength of the candidates,
but also in the evaluation of the performance of the algorithm implemented on different platforms.

Following the success of the public AES selection process, the SHA-3 evaluation has attracted many contributions
comparing the performance of candidate algorithms on different platforms. Extensive results have been published for
software [2] [14], and hardware [8] [5] [9] implementations of SHA-3 candidates.

In recent years the performance of microprocessors has continued its exponential growth. Modern microprocessors
have become increasingly complex structures, consisting of several levels of on-chip cache memory and in most cases
multiple parallel cores and execution units. Some recent CPUs even include instructions to execute AES round opera-
tions on 128-bit wide registers. At the same time, small and simple microcontroller units (MCU) have become popular
for embedded applications. MCUs are regularly integrated together with other components to form Systems-on-Chips
(SoC) that combine the flexibility of programmable components with the cost benefits of increased integration densi-
ties and the performance due to modern manufacturing technology nodes below 100nm feature size.

Despite the use of advanced process technologies, MCU implementations in embedded systems are still severely
constrained by resources such as total code size and required data memory. Furthermore, achieving a given throughput



with the least possible complexity (number of instructions) is critical due to constraints on execution speed and energy
consumption. A study by Wenzel-Benner and Gräf has compared the performance of SHA-3 candidates on several
MCU platforms [18]. Thomas Pornin [14] has also published a library (sphlib) containing implementations of SHA-3
candidates geared towards MCUs with constrained resources. Unfortunately, many of the available resources provide
only little reference on the performance of carefully hand-crafted assembly implementations on 16-bit MCU, which
are most frequently used in many embedded applications.

An additional important point about embedded MCUs is that, in many applications, the MCU would be integrated
in a custom SoC, where it can be customized with instruction set extensions to the application. The basic idea behind
such extensions is to enhance the datapath of an MCU so that an application can be executed with fewer number
of instructions increasing operation speed, reducing energy consumption, and saving resources (RAM and ROM).
Such new additions could add some overhead (increased circuit size, or reduced maximum operating speed due to
additions to the datapath), but in many cases could still offer significant advantages. Most IP vendors already offer
a wide variety of options for their embedded MCUs. Once an algorithm has been selected as a standard, processors
and MCUs with specifically tailored instruction set extensions are expected to appear as IP blocks or stand-alone
components, similar to the case of AES in modern CPUs. Furthermore, many companies offer solutions [16] that
facilitate design of application specific processors and the customization of commonly used MCUs. Starting from a
high-level description, such solutions allow changes to be made to a processor architecture, and not only produce the
corresponding hardware description for integration into a SoC, but also to generate the tool chain (compiler, assembler,
linker) that will support this enhanced processor, allowing it to be used with relative ease.

Contributions In this paper, we compare the five remaining SHA-3 candidates with respect to their suitability for
software implementation on present and future MCUs and embedded SoCs. To this end, we start from a small, general
purpose 16-bit MCU, based on the PIC24 series of microcontrollers, and evaluate the performance of all five SHA-3
candidates. To match the requirements of resource constrained embedded systems, we consider only hand-crafted as-
sembly implementations of the corresponding kernels, which are expected to become available as library components
for the different MCUs once a winner has been selected. Then, for each candidate we examine this reference imple-
mentation and identify promising instruction set extensions. We report the performance gain, the memory reduction,
and the overhead associated with these extensions. In this way, we aim to uncover if some of the SHA-3 candidates
could achieve a better performance when instruction set extensions are used.

Outline The paper is organized as follows: In section 2 we describe the reference MCU used throughout this evalua-
tion. Section 3 defines the performance metrics used in this study. The design and evaluation flow used to determine the
instruction set extension for each candidate algorithm, how they were added to the base MCU is explained in section 4.
The following section 5 contains details of the implementation for each candidate algorithm. The combined results ob-
tained from this study are presented and compared with results from other publications in section 6 and the sources
of errors in this work are briefly described in section 7. Finally section 8 provides concluding remarks. Appendix A
contains the tables with the detailed implementation results of the five individual candidates.

2 The Embedded Microcontroller, PIC24

In this work we use our custom implementation of the Microchip PIC24 16-bit architecture [12], as reference imple-
mentation. This microcontroller was selected because of its common features for 16-bit MCU architectures, and due
to the fact that a functionally verified description was available through an earlier unrelated project.

2.1 Instruction Set Architecture Summary

The chosen reference MCU is a 16-bit Harvard architecture with a total of 87 base instructions encoded in a 24-bit
instruction word [11]. The majority of the instructions allow for a variety of different addressing schemes and operand



modes, resulting in 190 different effective instructions. All operands and destinations can be either addressed in byte or
word mode, for most instructions. Word mode represents native 16 bit data addressing, while byte mode only operates
on the least significant byte of the corresponding data word. This feature is not necessarily supported by all 16-bit MCU
architectures, and can be an important factor for the overall performance of an algorithm implementation (cf. Grøstl).
The ALU uses a 16-entry general purpose register array named W0-W15, with a stack pointer assigned to register
W15. In addition there are several status and control registers, and a 16-bit repeat loop counter used in conjunction
with the REPEAT instruction. This command repeats the following instruction as often as specified, allowing for very
simple hardware loops, thus reducing the program size.

2.2 Micro Architecture Summary

The micro architecture of our PIC24 implementation is inspired by and hence very similar to that of the original
PIC24. It comprises three pipeline stages and executes almost all instructions in a single cycle. However, a slightly
more advanced form of data bypassing is implemented in our design. The commercial implementation issues stalls
if a data dependency stems from a register, which is used with a register indirect addressing mode in the subsequent
instruction. Our implementation, on the contrary, employs full data bypassing which leads to a cycle count reduction of
10-30% for an average application. As in the commercial device, the data memory is realized as a dual-port memory,
which enables a read- and a write-access in the same clock cycle.

3 Performance Metrics

Throughout this paper, we report four main performance metrics when presenting our results. In this section we
describe these metrics, and explain how they were calculated.

3.1 Cycle count

The cycle count is a measure for the complexity and also for the energy consumption of an implementation on a specific
processor. It is also inversely proportional to the throughput which describes how fast the hash algorithm works for
a given clock frequency. Every hash algorithm has a defined message block length. For all SHA-3 candidates this
is 512-bits, except for Keccak which uses 1088-bit message blocks. The input message, which, according to SHA-
3 specifications, can be arbitrary long up to 264− 1 bits, is first padded to a multiple of the message block length,
and then the hash algorithm processes each message block sequentially. As soon as the last message block has been
processed an output digest is produced. For SHA-3 the output digest size can be 224, 256, 384, or 512 bits. Some
SHA-3 candidate algorithms use an additional finalization step when processing the final message block, increasing
the run time for the final block slightly.

In this paper, we measure the number of clock cycles used for processing one message block on our microcontroller
architecture. However, only four SHA-3 candidates use 512-bit message blocks while Keccak uses 1088-bit message
blocks. To normalize for this difference we report complexity in cycles/byte.

3.2 Data Memory

The microcontroller used in this work uses 16-bit wide data memory, realized as a Static Random Access Memory
(SRAM). In a microcontroller, the total amount of SRAM available for all applications is a scarce resource due to the
fact that SRAMs occupy significant circuit area for practical memory sizes. The data memory utilization is always
expressed in number of bytes throughout this paper.



3.3 Program Memory

The PIC24 microcontroller is based on the Harvard architecture that is common for small microcontrollers. In this
architecture, data and program memory are separated. This allows each memory to have a different bit-width. The
PIC24 microcontroller uses a 24-bit wide program memory.

In practice, the program memory could be implemented as a read-only memory (ROM) or a one-time programmable
(OTP) memory, both of which have less hardware overhead than an SRAM as used for the data memory. While still a
significant burden, program memory is therefore often not as expensive as data memory.

All PIC24 instructions are either one or two instruction words long, and can therefore be stored as three or six bytes
respectively. The overall comparison tables always list the total number of bytes. Some tables use instructions when
reporting the complexity of individual functions for clarity. The word Text is frequently used to distinguish program
in the memory from data. We continue this tradition and refer to the program memory in tables as Text as well. Static
initialization data (e.g. hash chain init values) is normally used once per execution of an algorithm. It can therefore in
practice be stored in sections linked to the less expensive program memory, and is hence also accounted for as Text.

3.4 Area

A hardware implementation always involves a compromise between operation speed, power and energy used, and the
circuit area. In this study, all microcontroller descriptions are synthesized using a standard-cell-based design flow using
a 90 nm CMOS technology (see section 4 for details). We have kept the operation speed for all of the implementations
the same. All microcontroller instances reported in this study have been optimized for 200 MHz clock speed. At
this constant operation speed, the change in circuit area is reported as the overhead of the suggested instruction set
extensions with respect to the original implementation without extensions.

Area is expressed in terms of kilo Gate Equivalents (kGEs), in order to get technology independent area numbers.
For one GE we have taken the area of a 2-input NAND gate with a standard driving strength (1x). The results are all
synthesis results, and do not include post-layout parasitic effects.

The total area of the microcontroller comprises of the data memory, program memory, and the actual microcon-
troller core. In a typical implementation, the two memories would be implemented as large SRAM macros. Even if
very modest sizes were to be selected for these memories (i.e., 6 Kbyte for instruction memory, 2 Kbyte for data
memory), these memories would occupy at least two thirds of the total area. Since the memory overhead is so large
and finding a fair size of the memory is not straightforward, we report only the change in the core area.

4 Design Flow

The design flow used in our implementation and evaluation process comprises a hardware implementation path and a
software development, optimization and verification path.

On the hardware side, the instruction set architecture (ISA) and the microarchitecture of the PIC24 processor are
first described in LISA, a language tailored to the design of application specific processors [10,15]. This description is
then automatically translated into a register transfer-level (RTL) VHDL description that can be synthesized into gates
using RTL synthesis tools to evaluate silicon area and performance. In addition to the hardware description, Processor
Designer [16] generates the basic software tool chain (assembler and linker) and a fully cycle-accurate instruction set
simulator (ISS).

On the software side, the algorithm specifications for the five SHA-3 candidates provide the starting point for an
initial implementation in the native assembly language of the PIC24 ISA. Multiple iterations of profiling and software-
optimization are carried out to reduce code and memory size and to reduce cycle counts. All implementations are al-
ways verified against the provided test patterns to guarantee full compliance with the original algorithm specifications.
At the point, where no further gains are achieved using the standard ISA of the PIC24 microcontroller, the code of the
different algorithms is analyzed manually, with the use of profiling tools provided by the ISS, to identify performance
and memory bottlenecks. For each candidate, we identify custom instructions that promise an improvement in terms



of memory footprint and/or cycle count, while being compatible with the general architecture of the core with only
minor modifications3. These instructions are incorporated into the LISA model and in the assembly descriptions of
the SHA-3 kernels. Instruction set extensions are again fine tuned through multiple iterations of hardware/architecture
and code adjustments followed by benchmarking of gains in terms memory utilization and cycle count.

5 Implementation

In this section, we consider the implementation of the five SHA-3 final round candidates individually in alphabetical
order. For each candidate, we first provide a brief introduction of the algorithm. Then we describe our implementation
on the reference 16-bit PIC24 architecture and comment on the corresponding implementation issues and bottlenecks.
Next, we introduce our instruction set extensions and explain how they are used to improve the respective algorithm
implementation.

To settle on a common characteristic regarding internal state sizes and to limit the amount of code to develop and
benchmark, only the SHA-3 candidate versions proposed as the replacements for SHA-256 were implemented. These
versions were chosen, since they are most suited for use in the context of embedded systems.

Every implementation is fully functional as a standalone application, performing two invocations of the algorithm
code (one for single block, one for multi block), followed by an automatic check of the message digest, to verify the
correctness of the implementation. All implementations include code written for initialization and preparation of mes-
sage blocks, however these have not been included for performance evaluation, i.e., only long message performance
values are given in this paper. This choice, to focus only on the algorithm kernels was made, since the code for message
block preparation (e.g., padding) is similar for all candidates, and only executed once per block, making it the least
relevant code regarding any possible optimizations.

As a general remark regarding the implementation of the instruction set extensions for all candidates: If an in-
struction relies on the information during which round it is executed (e.g., to adjust which constant to choose from
a table), this information is generally read from a dedicated fixed working register (W14 has been chosen for this
purpose), always containing the current round number during execution of the whole algorithm kernel. The number of
the register providing the round information is therefore not explicitly encoded into the instruction word, or syntax of
the assembler instruction, for that matter.

The syntax of the presented instructions uses the following nomenclature:

– Ws: source register
– Wd: destination register
– Wm: register holding a memory (base) address (e.g., to point to state data)
– #lit: literal (number constant)

5.1 BLAKE

BLAKE [1] uses an internal state that is arranged as a 4x4 matrix. For output sizes up to 256 bit, each element of the
state is 32 bits wide and the core algorithm is applied for 14 rounds. One round of BLAKE consists of 8 calls to a
G function, each of which operates on a different permutation of 4 elements of the state. At the end of all 14 round
calculations, a short finalization step generates the hash output by combining the current hash value with the previous
value and a salt value. The G function is the only computational kernel, which performs data transformation in the
BLAKE hash algorithm. The G function uses a combination of 32-bit additions, XOR functions and four different
32-bit right rotate operations by 7, 8, 12 and 16 bits. The function makes use of sixteen 32-bit constants, which are
applied in a different order depending on the round. This schedule is known as the Sigma Permutation. The input
message block data is also selected for each round using this permutation schedule.

3 The extended implementations remain fully backward compatible and no changes are made to key components such as the
register file, the memory interfaces, the pipeline stages, or the instruction formats



Reference Implementation BLAKE is shown to be one of the fastest implementations with the smallest memory
footprint in various studies. Table 5 shows the breakdown of the memory resources in our assembler implementation.
The core of the implementation is the G function, which operates on four 32-bit words and transforms them. To
this end, the corresponding words of the internal state are first loaded into four register pairs using the appropriate
permutation pattern. After the transformation through the G function, they are stored back to their original positions.
The G function performs a lookup of the indices needed during this round in the Sigma Permutation table and uses
those indices to address the correct words in the message data block, as well as the round constants data table. The
32-bit rotations by 7, 8 and 12 bits are emulated with 6 instructions each, utilizing the OR, left shift, and right shift
instructions of the reference ISA.

Instruction Set Extensions We have developed three dedicated, new instructions for BLAKE.

– S3_XCST Wm
During the initialization phase, the first eight 32-bit constants are XOR’ed onto the internal state (Wm). This in-
struction performs this operation efficiently while iterating over 16 cycles in conjunction with a preceding REPEAT
#15 statement. In each repetition the MCU treats 16-bit of the state and derives the necessary constant and the
memory address offset for reading and writing back the modified state from the MCUs internal rcount register
(loaded by the REPEAT statement).

– S3_RROT_7/8/12 Ws, Wd
Rotations are among the most time consuming operations of the reference implementation. This family of three
instructions performs a 32-bit right rotate by a specific amount of either 7, 8 or 12 bits, as required in the BLAKE
algorithm, avoiding the need for a full barrel-shifter in the MCU. The input data is provided in a register pair (Ws)
and the result is written to another register pair (Wd), using the MCU’s double writeback feature, to perform the
complete operation in one cycle. The fourth rotation needed by BLAKE is by 16 bits and can directly be performed
efficiently using existing MOV instructions.

– S3_CXM Wm, Wd
This instruction calculates the term combining constant data and message block data (Wm) by an XOR, used
twice per G function call (with reversed indices). The instruction directly generates the lookup data from the
Sigma Permutation table as a memory address offset, as well as the corresponding constant. This avoids costly
memory accesses with very little area overhead for implementing the constant tables inside the processor. Since the
algorithm operates on 32-bit words, the instruction needs two cycles to complete to be able to fetch the message
block data word from memory.

Implementation with Instruction Set Extensions The instruction set extensions developed for BLAKE reduce the
program memory by 20% (cf. Table 5), the data memory by 59% and reduce the cycle count by 34%, making an
already fast and small implementation even faster and smaller. Memory for Text is saved by a compact way to describe
the addition of constants without the need for unrolling, the automated Sigma Permutation, and the compaction of the
rotation operations. Data is saved by placing all lookup tables into the processor. Throughput is mainly gained by a
speedup of the rotations by a factor of 6, and efficient Sigma Permutation access, which eliminate additional memory
accesses for the purpose of fetching indicies and constants data. The additional instructions have no noticeable impact
on the core area compared to the reference implementation as they do not add new computational units, but modify
only register and memory accesses for existing operations.

5.2 Grøstl

Grøstl [6] consists of a series of f Compression functions, followed by an Output Transformation that is derived from
this f function. The f function is based on two operations, P and Q, which have a similar construction but use different
parameters for two of its four sub operations. P and Q are each applied for 10 rounds per f function call for output
sizes up to 256 bit. The Output Transformation consists of 10 rounds of the P operation.



The state in Grøstl consists of an 8x8 array of 8-bit data elements for output sizes up to 256 bits (8x16 array
for larger output widths). Both P and Q operations consist of four sub-operations that are very similar to AES. Ad-
dRoundConstant XORs the current state with a round based constant (different for P and Q), SubBytes applies the 8-bit
substitution table used for AES to the state, ShiftBytes performs a row based permutation of the data words (offsets
different for P and Q), and finally MixBytes transforms each column of the state by multiplying the state in F256 with
a constant matrix.

Reference Implementation Grøstl implementations in small microcontrollers have always been considered to be slow
and large. Table 6 provides a breakdown of the memory footprint of our implementations. In terms of throughput our
reference implementation requires almost 30,000 cycles per block (462 cycles/byte), making it one of the slowest
algorithms.

It is important to note that due to the organization of the state matrix into byte elements that are used in row as well
as column order, byte mode support of the MCU architecture is imperative to avoid even costlier implementations in
terms of cycles and code size. The byte mode feature is particularly important for addressing single elements in byte
increments in the data memory which is commonly organized in more coarse-grained word sizes. The instructions
underlying the four sub-operations of P and Q can be reduced to simple XORs and memory moves combined with
the use of three lookup tables (LUT). The first LUT is the AES S-Box, which maps every 8-bit value of the state to
another 8-bit value. The remaining two LUTs hold precomputed results for the multiplications of any 8-bit value by
either 2 or 4 in the finite field of F256 as used in AES.

Instruction Set Extensions Since all four sub-operations of P and Q are very modular and each transforms the complete
64 byte state in memory, without performing too complex arithmetic per state element, it was possible to develop
four instructions for Grøstl, each replacing exactly one of the sub-operations. All these instructions are memory-to-
memory instructions, i.e., they modify the state matrix in place, sometimes utilizing a set of work registers during their
operation.

– S3_CST_P/Q Wm
This instruction replaces the AddRoundConstant kernel, which XORs the current round number with the entries
of a fixed constant matrix onto the entries of the state matrix (Wm). The corresponding operations are performed
in a hardware-loop, using the MCU’s REPEAT instruction and the internal rcount register as a state. The P version
of the operation has mostly zero-entries in the constant matrix, which allows the use of REPEAT #7, to perform
the complete transformation in 8 cycles. The Q version on the other hand has to transform every element of the
state, requiring the use of REPEAT #31.

– S3_SBOX Wm
This instruction adds the logic for the AES S-Box lookup table into the processor core (in form of a synthesized
LUT) and executes two parallel 8-bit AES SubBytes table lookups per cycle. Therefore the complete state matrix
(Wm) can by substituted in 32 cycles, using a REPEAT #31 instruction, followed by a single S3_SBOX instruction.

– S3_SHIFT_P/Q Wm
This instruction performs the ShiftBytes operation, and exists in both P and Q variants. The instruction is used in
conjunction with REPEAT #35, performing the complete shift of all state rows (Wm) in 36 cycles. It operates on
pairs of state elements from two adjacent rows, since the state matrix is addressed column-wise in memory. Two
pairs of elements are combined in each repetition (cycle), normally one pair from memory and one pair from the
register file, to form a new pair, which is the main computational extension of this instruction. The complexity
of the instruction lies in providing the correct memory addressing schedule from the rcount register state, i.e.,
when to load which pair of elements to perform the entire transformation in the minimum amount of repetitions
(cycles). The instruction uses registers W0-W7 as temporary work registers to buffer values that have already been
overwritten in memory.

– S3_MIX Wm
Most of the performance gain can be attributed to this instruction that performs the MixBytes operation. The
instruction is used together with REPEAT #79 and is able to multiply the entire state matrix (Wm) in F256 with the



constant matrix in only 80 cycles. This is achieved by processing the state elements in pairs (subsequent entries of
the same column of the state matrix). Each pair is multiplied with all corresponding fields of the constant matrix
in two cycles. The 16 extra cycles stem from phases during the instruction where only results can be written
back to the memory. The multiplication is performed by a new functional unit that calculates for each input byte
the multiplication results for all factors (1, 2, 3, 4, 5 and 7) by using shifts and XORs on 8-bit values only. The
instruction uses W0-W3 as accumulator registers for the temporary results of the new column values.

Implementation with Instruction Set Extensions The S3_MIX instruction has been instrumental in reducing the cycle
count for Grøstl. However, the corresponding instruction does not add complex new components to the datapath. The
matrix multiplication is performed by a series of conventional XOR operations. The Instruction merely adjusts the
source and destination of such elementary instructions based on the rcount register state. In effect the operational flow
of the algorithm has been moved from programmed instructions to the instruction decoder and implemented as an
FSM, controlled by the repeat counter. This move was possible due to the very modular structure of the operations,
and their low complexity.

As the results show (cf. Table 2), it was possible to reduce the cycle-count by more than 87% with these additions,
making the ISE modified implementation of Grøstl by far the fastest of the implementations. Furthermore data memory
is reduced by 75%, due to cutting of the LUTs originally required for the MixBytes multiplication and the move of
the S-Box LUT to the core. Instruction memory is also drastically reduced by 69%, since all four sub-operations are
replaced by single instructions. The core area overhead for these ISEs is only 10% (2 kGE). Note that this overhead
only refers to the MCU core itself, which is one of the smallest elements already in a real system, which also includes
memory blocks of considerable area.

5.3 JH

JH [19] uses a 1024-bit internal state, independent of the output size. The message block is XOR’ed to parts of the
present state and transformed over 42 rounds. At the end of the rounds the message is once again XOR’ed with the
state to produce the next state. The JH function consists of three main steps. For each round a different round constant
is used. Depending on the bits of this constant for each four-bit tuple of the state one of two different 4-bit substitution
tables (SBox) is applied. Note that the four state bits are spread out over the entire state block. As a second step, a
linear transformation L defined over 8 bits is applied. This is concluded by a permutation function swap that shuffles
the state.

Reference Implementation While this initial description is suitable for hardware implementations, a so called bit-
sliced implementation [19] can be used in software to improve efficiency. In bit-sliced implementations, instead of
using many operations with small bit-widths (i.e., for 4-bit SBox functions), large words are formed by combining
the same binary digit of multiple inputs. Since the PIC24 is a 16-bit architecture, we have implemented a bit-sliced
implementation tailored to a data word size of 16 bit. Operations in JH can be transformed so that 16-bit words can
be formed by combining the bits of 16 separate words. To store the precomputed round constants for this bit-sliced
implementation, 42x16x16 bits = 1344 bytes are required, which accounts for the majority of the Data segment as can
be observed in Table 7. This contribution also renders JH the algorithm with the largest memory footprint in terms of
Data size for the reference implementation (cf. Table 4).

The bit-sliced implementation changes the described SBox lookups into an operation using bit-slice instructions
only (on four 16-bit values and a constant), namely AND, NOT, and XOR. This is followed by the L/MDS transforma-
tion, which only uses XORs on 8 different values. The swap operation on 8 values each, is performed by either using
bit-masks combined with left and right shifts and logic ORs for small shift/interleave values (1, 2 and 4), or simple
MOV instructions for larger values (8, 16, 32 and 64).

Instruction Set Extensions The following two instructions were added to the instruction set to improve performance
of interleaving state data during the swap operation, as well as to remove the large round constants LUT from data
memory.



– S3_CST_ACXM/AMXC #index, Ws, [Wm], Wd
This instruction performs a lookup using a LUT built into the processors datapath, holding all round constants,
depending on the current round number and a position (0..15) index passed as a literal (#index). This constant
is then used in a combined AND-then-XOR operation, using additionally one source register (Ws) and one data
word read from memory (Wm). The result is stored in a register (Wd). The instruction has two different modes,
both used once in each SBox call, effectively exchanging the order of the constant and the data word from memory
during execution.

– S3_SWAP Wm
This instruction is used in conjunction with REPEAT #31 to carry out the swap operation in 32 repetitions. The
parameter of the swap (the size of the bit-tuples to be swapped, 1, 2, 4, 8, 16, 32 or 64) is thereby derived from the
round counter value which is taken from a fixed register.

Implementation with Instruction Set Extensions Our implementation results with ISEs show a reduction of cycles/byte
of 17%, mostly due to the improved swap operation. However, the main benefit comes from the reduction of costly
data memory by 87% since the LUT containing the round constants has been moved into a hardwired LUT in the core,
where it only generates an area overhead of about 10% (2 kGE). Text is reduced by 53% due to the simplification of
the different flavours of the swap operation into a single instruction.

5.4 Keccak

Keccak [3] uses a so called sponge function where the input message is absorbed (XOR’ed) into a 1600 bit wide state,
using a message block size of 1088 bit. Both, state and message block size are therefore uncommon compared to the
other algorithms. The state is organized as a 5x5 array. Each entry of this array is called a lane, and consists of a 64-bit
word. One message block is processed in 24 rounds, and each round consists of 5 functions called θ, ρ, π, χ, and ι

(Theta, Rho, Pi, Chi and Iota). Iota adds a round constant, while Rho, Pi and Theta are linear transformations used for
diffusion. The non-linearity required for the hash function is provided by the Chi operation, which is applied to each
row of the state.

Reference Implementation The Theta operation performs a series of XOR combinations on state elements, including
a single bit rotation. The Rho step performs a 64-bit rotation on a state element, using a different rotation constant for
each element of the 5x5 state matrix, depending on position. The Pi step permutes the elements of the state matrix and
is combined with the Rho step in our reference implementation. A state element is loaded from memory, rotated and
then directly written to its new destination, according to the permutation table defined by Pi. This permutation can be
chained, so that only one element has to be buffered for the complete state to be rotated and permuted in place. The
next transformation is Chi, it applies a combination of logical operations of AND, NOT and XOR. The final step Iota
XORs the constant depending on the current round onto the state element (0,0).

Instruction Set Extensions The main bottleneck of the algorithm on a 16-bit architecture are the 64-bit rotations,
which need 12 cycles per rotation for the generic case in the reference implementation. Hence, this operation is the
main focus of the ISEs. Furthermore LUTs were moved into the core where possible to reduce Text as shown in Table 8.
Eventually, the following three ISEs were chosen:

– S3_LROT1 Ws, Wd
This instruction performs a 64-bit left rotate by a fixed amount of 1 bit in 2 cycles, using a set of four registers as
source (Ws) and a set of four other registers as destination (wd). The instruction utilizes the double writeback (to
register file) capabilities of the architecture.

– S3_LROTM_A/B #rot, #coord, Wm
This instruction implements a generic 64-bit left rotation by an arbitrary number of bits (#rot). The operation works
on a set of four source registers and writes the result to a memory location (Wm) defined by coordinates in the
5x5 state matrix, given as a literal (#coord). Execution takes 4 cycles and the instruction performs the additional



function of saving the data located at the destination memory address to another set of registers, before writing
the rotation result to memory. The instruction exists in two variants, differing only in the set of registers used for
rotation and for backup storage (W0-W3 and W4-W7). Using these two variants in alternating order allows to
effectively store the result of the currently rotated element, while at the same time already pre-loading the next
element of the chain, combining the Rho + Pi operations (rotations + permutations) over all 25 elements of the
state matrix.

– S3_XCST Wm
This instruction XORs the current round constant onto the internal state element at (0,0) (Wm). Execution time
varies between one and three cycles, depending on the constant value, since possible zero bytes are not applied.

Implementation with Instruction Set Extensions The results show a reduction of the number of cycles by 30%, which
can mainly be attributed to the improved efficiency of the 64-bit rotation, as well to the fact that it is now combined
into the element chaining of the Pi state permutation. The Data size is reduced by 21%, by placing the round constant
table into the core. The Text size is lowered by 31%, through compact description of the combined Rho + Pi operation
in a single instruction.

All three extensions cause virtually no core area overhead, since they contain no large LUTs and do not add
considerably to the datapath. The round constant lookup table can be stored in the core in an even more compressed
way compared to the standard implementation, only utilizing 24x11 bits = 33 bytes. For a more detailed discussion
of the 64-bit rotation and its resource requirements, please see the corresponding paragraph in the Skein subsection,
which also utilizes a very similar instruction, but implements it in a slightly different way.

5.5 Skein

The Skein algorithm [4] constructs a hash function out of a tweakable block cipher called ThreeFish. The Skein
algorithm that we have implemented uses a 512-bit state, with 256-bit output. The main idea behind Skein is to keep
the round structure simple, while using a large number of rounds to obtain security. In total there are 72 ThreeFish
rounds, each of which is made up of a Mix operation defined over 128 bits, and a permutation. The Mix function has
a simple construction, and consists of 64-bit addition, XOR and rotation functions. For every four ThreeFish rounds
a subkey is XOR’ed onto the state. These subkeys are generated from a tweak value and the round counter using a
KeySchedule.

Reference Implementation The computational core of Skein is the Mix function of ThreeFish. This Mix function
consists of simple arithmetic operations on 64-bit words, some of which are well supported by the standard ISA,
through the use of addition with carry and standard XOR. The problematic operation is the left rotation over 64-bit
words, which has to be emulated using 12 instructions per rotation in the generic case. The cases for rotations by a
multiple of 16 can be performed in 4 cycles using MOV instructions.

Instruction Set Extensions Profiling of the reference implementation showed that large gains can be achieved by
removing every unnecessary cycle from the Mix function core. This lead to the addition of one instruction, performing
the rotation in an efficient way, providing a general speedup of 6 for the rotation function.

– S3_LROT #rot, Ws, Wd
This instruction performs a generic 64-bit left rotate by an arbitrary amount of bits (given as a literal #rot) in
two cycles, using a set of four registers as source (Ws) and a set of four other registers as destination (Wd). The
instruction utilizes the double writeback (to the register file) capability of the architecture. Since the instruction
uses two cycles to produce the result, in each cycle using three specific input values, the added logic corresponds
to two 16-bit barrel shifters, instead of a real 64-bit barrel shifter, and is therefore very small.



Implementation with Instruction Set Extensions Skein did not receive any additional ISE, since the building block of
the Mix function is already very basic and well supported by the standard ISA. The algorithm also does not utilize any
sort of LUT that could be moved into the core. Furthermore the address arithmetic needed for performing the permu-
tations and selection of state words is quite straightforward and does not warrant any special supporting instructions,
since possible performance gains would be minimal.

Nevertheless, with a single carefully chosen instruction set extension the results show an improvement in through-
put of 29%, with virtually no core area overhead. The Text size is reduced by 18%, but still the largest implementation,
because of unrolling of the complete key injection schedule for all 9 cases (mainly caused by the round cycle size of
9, which is not a power of 2). The Data size did not change, but is already small due to the lack of LUTs, as can be
seen in Table 9.

6 Results

Embedded systems and particularly performance and/or resource constrained small microcontrollers have been iden-
tified as an important application for future SHA-3 implementations. Authors of nearly all algorithms have also pub-
lished performance results and/or estimations for specific small microcontrollers on their webpages. The most im-
portant study has been done by Christian Wenzel-Benner and Jens Gräf [17]. They maintain a webpage [18], where
their results are published. These results have also been included in the eBASH website [2]. Thomas Pornin [14] has
developed a library (sphlib) which uses standard C, and therefore could easily be ported to a variety of platforms. The
library includes comparisons on several platforms, but does not necessarily reflect the results that are achievable with
hand-crafted assembly kernels.

While large general purpose microprocessors share a similar instruction set architecture, small microcontrollers
come in many different variations. They differ in their structure (Harvard, von Neumann), width of their datapath
(4-32 bits), and provide differing resources (number of registers, multipliers etc). This makes a general comparison
between microcontrollers extremely difficult.

6.1 16-bit MCU reference implementation results

In this work, we have used the PIC24 microcontroller as a representative for the variety of available 16-bit microcon-
trollers, which complements other published results which so far have focused on 8-bit and 32-bit MCU architectures
only. In Table 1 we list our implementation results together with other published results.

Table 1. Comparison of throughput numbers [cycles/byte] of published microcontroller implementations. Numbers in parentheses
show performance normalized to BLAKE performance.

This work [14] [14] [18] [18] [7]
Architecture PIC24 PIC24+ISE ARM-M3 ARM920T ARMv5TE ATmega128 8051
Datapath 16-bit 16-bit 32-bit 32-bit 32-bit 8-bit 8-bit
Specification third third third third third third second

BLAKE 155 (1.00) 103 (1.00) 89 (1.00) 54 (1.00) 87 (1.00) 1241 (1.00) 643 (1.00)
Grøstl 462 (2.98) 58 (0.56) 455 (5.11) 313 (5.79) 216 (2.48) 11198 (9.02) 1327 (2.06)
JH 464 (2.99) 384 (3.72) 370 (4.16) 395 (7.31) 361 (4.15) 3829 (3.06) -
Keccak 188 (1.21) 132 (1.28) 192 (2.16) 197 (3.65) - 1115 (0.89) 1745 (2.71)
Skein 158 (1.02) 113 (1.10) 128 (1.44) 129 (2.39) 184 (2.11) 1444 (1.16) 1944 (3.02)

It can be seen, that BLAKE is consistently fast throughout all published works. The ranking is not so clear for
other candidates, however Grøstl and JH are mostly ranked among the slower implementations. It can be seen that our
PIC24 reference implementations ranks quite favorably when compared to other implementations. In particular, our



Keccak realization outperforms all published results for microcontrollers, even those for 32-bit architectures. This is
partially attributed to the fact that we use hand-crafted assembly, rather than compiled C-code.

6.2 Implementation results with instruction set extensions

By developing instruction set extensions for the PIC24 platform we were able to increase the performance of indi-
vidual implementations by almost 40%. Table 2 shows these results in detail and compares the area overhead that the
instruction set extensions incurred to the reference microcontroller with a core area of 23 kGE. It must be noted that in
the best case, the core area represents one third of the total area of the overall MCU subsystem. The other two thirds
are used by data and instruction memory. As such, the net overhead due to the instruction set extension will be even
much smaller.

It can be seen that for three out of five candidates, the instruction set extensions did not result in any noticeable
core area overhead, while still providing significant improvements, in both cycle-count (around 30%) (Table 2) and
memory requirements (Table 4). This is due to two factors: First, some instruction set extensions did not actually add
datapath components, but provided small finite state machines, that are able to resolve complex but regular addressing
schemes to fetch operands for already present datapath components (XOR, AND, ADD). Second, the digital design
flow is known to produce results that vary as much as±5%, so changes smaller than 5% can not reliably be presented.
In fact for two out of five candidates, the core area for the processor actually decreased slightly when instruction set
extensions were added.

The smallest speed up that was obtained through the instruction set extensions was for JH at 17.3%, whereas the
largest improvement 87.5% was obtained for Grøstl. Interestingly, these two implementations both resulted in about
10% area overhead, which is still negligible.

Table 2. Improvement of long message hashing speed by using instruction set extensions for all SHA-3 candidates, and overhead
of instruction set extensions on the core area of the PIC24 microcontroller.

Cycles Cycles/byte Area Overhead
PIC24 +ISE PIC24 +ISE Reduction

BLAKE 9,933 6,583 155.2 102.9 -33.7% ∼0%
Grøstl 29,585 3,685 462.3 57.6 -87.5% +10%
JH 29,683 24,541 463.8 383.5 -17.3% +10%
Keccak 25,613 17,908 188.3 131.7 -30.1% ∼0%
Skein 10,084 7,204 157.6 112.6 -28.6% ∼0%

One important parameter when determining how much faster an algorithm can be implemented is the number
of memory accesses (read/write) required for the algorithm. Since the memory bandwidth for the given architecture
will not change with additional instructions, the program will always be limited by these numbers. Part of the speed
up is achieved by eliminating memory accesses, mostly by embedding operational constants into the instruction set
extensions. In Table 3 we list the number of read and write memory accesses for all candidate algorithms. When
comparing the memory accesses to the total number of cycles listed in Table 2, note that the PIC24 architecture allows
concurrent read and write operations to the data memory within the same cycle. It can be seen that only for Grøstl
a significant improvement could be made. This also explains the relatively high performance gain for this algorithm.
For Skein, on the other hand, we could not find any instructions that would be able to reduce the number of memory
accesses.

As mentioned earlier, in the best case, around two thirds of an embedded processor consist of program and data
memory. From a system designers point of view, more often than not the amount of memory used by an algorithm
is even more important than its outright execution speed. Generally the Data Memory is more expensive for small
microcontrollers, as they have to be realized using costly SRAMs, while program memory can often be implemented



Table 3. Change in the number of memory accesses during the processing of one message block for all SHA-3 candidates.

Read Write
PIC24 +ISE Change PIC24 +ISE Change

BLAKE 2,370 1,682 -29% 1,187 1,187 0%
Grøstl 16,566 3,126 -81% 13,271 2,391 -82%
JH 11,836 9,874 -17% 4,141 4,099 -1%
Keccak 14,660 14,779 0% 7,345 7,416 +1%
Skein 5,264 5,264 0% 3,289 3,289 0%

using more efficient ROMs. We have listed the total data and program (text) memory used by all candidate algorithms
listed separately for both the standard and the enhanced instruction set implementation of PIC24 in Table 4. It can be
seen that the largest improvement was achieved for JH (61.5% total reduction) and Grøstl (71.3% total reduction).
Whereas the smallest improvement was achieved for Skein (17.7% total reduction).

Table 4. Reduction of instruction and data memory by using instruction set instructions for all SHA-3 candidates.

Data [byte] Text [byte]
PIC24 +ISE Reduction PIC24 +ISE Reduction

BLAKE 488 200 -59.0% 1,028 818 -20.4%
Grøstl 982 214 -78.2% 2,619 819 -68.7%
JH 1,550 206 -86.7% 4,649 2,183 -53.0%
Keccak 448 352 -21.4% 3,480 2,415 -30.6%
Skein 242 242 0.0% 5,734 4,678 -18.4%

7 Sources of Error

Although we have tried to minimize the sources of errors, there are several factors that may have influenced the results.
In this section we try to outline the possible sources of error in our results, and explain what we have done to address
them.

7.1 Choice of the MCU

All our results are given on a particular MCU. This MCU was chosen mainly because a suitable description (for
LISA) was available to us at the beginning of the project. It is fair to say that, this MCU is not the most widely used
embedded processor. However we believe that it is not a bad choice as a generalized 16-bit MCU, it has a simple
Harvard architecture, a relatively large number of single cycle instructions which makes it easy to implement. We do
not think that the results presented here would differ significantly if another processor were to be used, however we
can not exclude this possibility. We are also not aware of a universally approved representative processor/architecture
for such comparisons, as a results all such studies are bound to have errors in this regard.

7.2 Designer experience

During this work, several critical parts have been performed manually. The design flow used in this project required all
candidate algorithms to be implemented in assembly language. This was done manually. In the later stages, potential



instruction set extensions have been determined by manually analyzing the first implementations. And finally, the
optimized implementations utilizing the instruction set extensions have been coded in assembly language manually as
well. Even though we believe that we have tried our best to implement all these steps equally well, it is possible that
some of the implementations were better than the others, and/or some optimization possibilities were overlooked in
the process.

7.3 Reporting overhead

Enhancing the processor datapath will have two consequences. First of all, in most cases, additional logic will be
added to the datapath, increasing the overall area of the processor. In some cases, the additions may also increase the
critical path of the processor. Most synthesizers would be able to exploit various techniques to trade-off speed versus
area, and could compensate for the increased delay by increasing the area further. However, in some cases the increase
is simply too much to be compensated, resulting in a circuit that is not only larger than the original, but also slower.

For this paper, we have first determined the performance limits of our PIC24 architecture for the 90 nm CMOS
technology we have available. This was determined to be slightly above 250 MHz clock speed using typical conditions.
We have decided to add some margin and synthesized all the implementations so that they achieve 200 MHz clock
speed. The difference in core area is attributed to the overhead due to the instruction set extensions, and this overhead
figure has been reported in the paper.

Our experience is that synthesis results have an accuracy of roughly ±10% depending on many factors. All num-
bers used are generated using only front-end design data and do not accurately reflect the parasitic effects from place-
ment and routing. However, we have significant experience with back-end design, and do not believe that the relative
performances would be much affected during the post-layout phase.

8 Conclusions

It is well known that instruction set extensions can increase the performance of an application on a given micro-
processor. In this work, the question we had asked was, Would all SHA-3 candidate algorithms benefit equally from
instruction set extensions?. Our results clearly show that some algorithms could potentially benefit much more from
instruction set extensions than others. In particular, we were able to improve the execution speed of Grøstl by more
than 85%, and reduced its memory footprint by more than 70%. This has moved Grøstl from being one of the slowest
implementations (about 3 times slower) to the fastest implementation by some margin (1.75 times faster than the next
algorithm). In this case the instruction set extensions have increased the core area for the processor by a modest 10%.

We have presented a detailed analysis of all implementations, and for each algorithm have explained what type of
new instructions were developed. In three out of 5 cases, the instruction set extensions had no measurable impact on
the core area of the microcontroller, in the two other cases, the overhead was limited to 10%, whereas the excution
speed improved by nearly 40% on average over five candidates.

It was shown that most improvements were made by instructions that took advantage of data in the register file.
Rather than adding datapath units, to calculate complete functions, especially beneficial were instructions that handled
complex (but regular) memory accesses as a result of constant permutation templates. Furthermore, moving constant
lookup tables from data memory into the processors datapath turned out to be highly beneficial in reducing memory
footprint at negligible core-area overhead.

Furthermore, our reference implementations of the five candidate algorithms on a standard PIC24 instruction set
architecture provides insight into the performance of the SHA-3 finalists on 16-bit microcontrollers. The comparison
shows that BLAKE, Keccak, and Skein achieve a similar number of cycles per byte, which is about one third of that
of JH and Grøstl. In terms of program memory footprint (Text), the algorithms are ranked as follows (best to worst):
BLAKE, Grøstl, JH, Keccak, and Skein with a factor of more than four between the best and the worst. With respect to
the data memory, the order is different: Skein, Keccak, BLAKE, Grøstl, and JH, with a factor of almost seven between
the best and the worst.
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A Detailed Implementation Results

Table 5. Memory resource breakdown of the standard implementation of the BLAKE algorithm on the PIC24 architecture, and the
changes due to Instruction Set Extensions.

Description Reference ∆ ISE PIC24 PIC24+ISE

Data 488 bytes 200 bytes
Hash State 32 bytes
Salt 16 bytes
Counter 8 bytes
Message Block 64 bytes
Internal State 64 bytes
Misc. Variables 4 bytes
Stack 12 bytes

Constants (Pi) 64 bytes -64 bytes
Sigma Permutations 224 bytes -224 bytes

Text 1028 bytes 818 bytes
CompressBlock() 274 instr -39 instr
RoundFuncG() 58 instr -31 instr

Initial State 32 bytes

Table 6. Memory resource breakdown of the standard implementation of the Grøstl algorithm on the PIC24 architecture, and the
changes due to Instruction Set Extensions.

Description Reference ∆ ISE PIC24 PIC24+ISE

Data 982 bytes 214 bytes
Hash State 64 bytes
Message Block 64 bytes
Internal State 64 bytes
Misc. Variables 6 bytes
Stack 16 bytes

S-Box 256 bytes -256 bytes
Mult 2 LUT 256 bytes -256 bytes
Mult 4 LUT 256 bytes -256 bytes

Text 2619 bytes 819 bytes
CompressBlock() 173 instr
PermutationPQ() 26 instr
AddRoundConstPQ() 70 instr -70 instr
SubBytes() 134 instr -134 instr
ShiftBytesPQ() 246 instr -246 instr
MixBytes() 150 instr -150 instr
OutputTransform() 74 instr



Table 7. Memory resource breakdown of the standard implementation of the JH algorithm on the PIC24 architecture, and the
changes due to Instruction Set Extensions.

Description Reference ∆ ISE PIC24 PIC24+ISE

Data 1550 bytes 206 bytes
Hash State 128 bytes
Message Block 64 bytes
Misc. Variables 4 bytes
Stack 10 bytes

Round Constants 1344 bytes -1344 bytes

Text 4649 bytes 2183 bytes
CompressBlock() 144 instr
SBox() 432 instr -37 instr
L/MDS() 144 instr
Swap 787 instr -785 instr

Initial State 128 bytes

Table 8. Memory resource breakdown of the standard implementation of the Keccak algorithm on the PIC24 architecture, and the
changes due to Instruction Set Extensions.

Description Reference ∆ ISE PIC24 PIC24+ISE

Data 448 bytes 352 bytes
Hash State 200 bytes
Message Block 136 bytes
Misc. Variables 4 bytes
Stack 12 bytes

Round Constants 96 bytes -96 bytes

Text 3480 bytes 2415 bytes
CompressBlock() 147 instr
Theta() 307 instr -20 instr
RhoPi() 349 instr -324 instr
Chi() 345 instr
Iota() 12 instr -11 instr



Table 9. Memory resource breakdown of the standard implementation of the Skein algorithm on the PIC24 architecture, and the
changes due to Instruction Set Extensions.

Description Reference ∆ ISE PIC24 PIC24+ISE

Data 242 bytes 242 bytes
Hash State 64 bytes
Key Schedule 72 bytes
Tweak 24 bytes
Message Block 64 bytes
Misc. Variables 2 bytes
Stack 16 bytes

Text 5734 bytes 4678 bytes
CompressBlock() 75 instr
KeyscheduleGen() 83 instr
ThreeFishRounds() 876 instr -352 instr
InjectKey() 844 instr
OutputTransform() 12 instr

Initial State 64 bytes


