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Abstract
Private Set Intersection (PSI) is a useful cryptographic primitive that allows two parties (client and

server) to interact based on their respective (private) input sets, in such a way that client obtains nothing
other than the set intersection, while server learns nothing beyond client set size. This paper considers
one PSI construct from [DT10] and reports on its optimized implementation and performance evalua-
tion. Several key implementation choices that significantly impact real-life performance are identified
and a comprehensive experimental analysis (including micro-benchmarking, with various input sizes) is
presented. Finally, it is shown that our optimized implementation of this RSA-OPRF-based PSI protocol
markedly outperforms the one presented in [HEK12].

1 Introduction

Private Set Intersection (PSI) is a primitive that allow two parties (client and server), to interact on their
respective input sets, such that client only obtains the intersection of the two sets, whereas, server learns
nothing beyond the size of client input set. PSI is appealing in many real-world settings: common application
examples include national security/law enforcement [DT10], Intelligence Community systems [DJL+10],
healthcare and genomic applications [BBD+11], collaborative botnet detection techniques [NMH+10], lo-
cation sharing [NTL+11] as well as cheating prevention in online gaming [BLHB11]. Motivated by prac-
tical relevance of the problem, the research community has considered PSI quite extensively and devised a
number of techniques that vary in costs, security assumptions and adversarial models, e.g., [FNP04, KS05,
HL08, JL09, DSMRY09, DT10, HN10, JL10, DKT10, ADT11]. (Notable PSI protocols are reviewed in
Appendix A.)

In this paper, we focus on a specific RSA-OPRF-based PSI protocol from [DT10] that currently offers
the most efficient operation. It achieves linear computational and communication complexity and improves
overall efficiency (over prior work) by reducing the total cost of underlying cryptographic operations. Al-
though [DT10] actually presents two PSI protocols, this paper focuses on the second – RSA-OPRF-based,
in Figure 4 of [DT10] – which is the more efficient of the two. Hereafter, it is referred to as DT10-v4.

Objectives: We discuss our implementation of DT10-v4 and experimentally assess its performance. Our
goal is twofold: (1) Identify implementation choices that impact overall protocol performance, and (2)
Provide a comprehensive performance evaluation.

Organization: Next section overviews DT10-v4. Then, Section 3 and Section 4 describe, respectively, its
implementation and performance evaluation. Finally, performance analysis of our optimized implementation
is contrasted with that in [HEK12].
∗A shorter version of this report, titled Experimenting with Fast Private Set Intersection, appears in the 5th Intl. Conference on

Trust&Trustworthy Computing (TRUST 2012) [DT12]. This report include work-in-progress and may be occasionally updated.
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2 The DT10-v4 PSI Protocol

We now review the PSI protocol presented in Figure 4 in [DT10], from here on denoted as DT10-v4.
First, we introduce some notation, present actual construction, and, finally, discuss settings where (server-
side) precomputation is possible/recommended.

2.1 Notation

Notation used in the rest of this paper is reflected in Table 1 below:

a← A variable a is chosen uniformly at random from set A
τ, τ ′ security parameters
p, q safe primes

N = pq, e, d RSA modulus, public and private exponents
H(·) full-domain hash function H : {0, 1}∗ → Z∗N
H ′(·) cryptographic hash function H ′ : {0, 1}τ1 → {0, 1}τ

′

C,S client’s and server’s sets, respectively
v, w sizes of C and S, respectively

i ∈ [1, v], j ∈ [1, w] indices of elements of C and S, respectively
ci, sj i-th and j-th elements of C and S, respectively

hci, hsj H(ci) and H(sj), respectively

Table 1: Notation

2.2 Protocol Specification

Figure 1 shows the operation of DT10-v4 below.

Client, Server,
on input C = {c1, . . . , cv} on input p, q, d,S = {s1, . . . , sw}

∀i = 1, . . . , v : ∀j = 1, . . . , w :

(1) ri ← ZN (1) ksj = (hsj)
d mod N

(2) µi = hci · rie mod N (2) tsj = H ′(ksj)

(3)
{µ1, . . . , µv}

// (3)

∀i = 1, . . . , v :

(4) µ′i = (µi)
d mod N

(4)
{ts1, . . . , tsw}

{µ′1, . . . , µ′v}
oo

∀i = 1, . . . , v :

(5) kci = µ′i/ri mod N

(6) tci = H ′(kci)

(7) If ∃j s.t. tci = tsj output ci ∈ C ∩ S

Figure 1: DT10-v4 executes on common input: N, e,H(·), H ′(·).

Correctness: If ci ∈ C ∩ S , then ∃j s.t.: kci = µ′i/ri = (hci · rie)d/ri = hsj
d = ksj =⇒ tci = tsj .

Security: DT10-v4 is proven secure in the presence of semi-honest adversaries, under the One-More-
RSA assumption [BNPS03] in the Random Oracle Model (ROM) – see [DT10] for details. The proof
in Appendix B of [DT10] actually achieves one-side (adaptive) simulation in the ideal-world/real-world
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paradigm.1 Thus, security of DT10-v4 may actually hold in the presence of a malicious client and a semi-
honest server. Further, security against a malicious server also seems easy to obtain: RSA signatures have
the desirable property of verifiability, thus, client can easily verify server’s adherence to the protocol with
respect to the computation of µ′i = (µi)d mod N . Also, client’s message to server (i.e., the first round) does
not depend on any information from latter, which, in fact, produces no output. However, server would need
to prove that its RSA parameters are generated correctly, and it could do so using, for example, techniques
from [CM99] or [HMRT11]. Nonetheless, we leave as part of future work formal proofs for malicious
security of DT10-v4.

Communication Complexity: DT10-v4 communication complexity amounts to 2v group elements and w
hash outputs. Specifically, in the first round, client sends v elements in ZN , whereas, in the second, server
transfers v elements in ZN and w outputs of H ′(·). For 80-bit security, SHA-1, which has 160-bit outputs,
may suffice.

Computational Complexity: We note that server workload can be dramatically reduced if exponentiations
(·)d mod N are optimized using the Chinese Remainder Theorem (CRT)2, since server knows factorization
of N . Specifically, DT10-v4’s computational complexity is as follows. Server computes: w full-domain
hashes; 2w+2v modular exponentiations with (|N |/2)-bit exponents and (|N |/2)-bit moduli (using CRT);
w invocations of H ′(·). Client computes: v full-domain hashes; v exponentiations with |e|-bit exponent
and |N |-bit modulus (in practice, one can select e = 3); v modular inverses of |N |-bit integers modulo
|N | bits; 2v modular multiplications of |N |-bit integers modulo |N | bits; v invocations of H ′(·). Thus, on
server side, computational complexity is dominated by O(w + v) CRT exponentiations, whereas, client’s
computation is dominated by O(v) modular multiplications and inverses. Since client does not perform any
expensive cryptographic operation (i.e., no modular exponentiations), DT10-v4 is particularly suited for
scenarios where client runs on a resource-poor device, e.g., a smart-phone.

2.3 Precomputation

One beneficial feature of DT10-v4, as well as some other PSI techniques in [HL08], [JL09], [JL10], is
that server computation over its own input does not depend on any client input. Therefore:

1. Server does not need to wait for client to perform itsw exponentiations to compute ksj = H(hsj)d mod
N (for j = 1, . . . , w). These operations can be done as soon as server set is available. In the absolute
worst case, server can perform these operations in parallel with receiving client’s first message.

2. Results of server computation over its own set can be re-used in multiple protocol instances. Thus,
unless server’s set changes frequently, the overhead is negligible.

In light of the above, [DT10] suggests to divide the protocol into two phases: off-line and on-line. This way,
computational complexity of the latter is dominated by O(v) CRT exponentiations, while off-line phase
overhead amounts to O(w) CRT exponentiations. This makes DT10-v4 particularly appealing for scenarios
where server input set is not “very dynamic”.

3 Implementing DT10-v4

This section presents our implementation of DT10-v4 PSI construction from [DT10]. We discuss some
design choices that may affect overall performance, present our prototype implementation, and discuss

1Specifically, the proof constructs of an (adaptive) ideal world simulator SIMc from a malicious real-world client C∗, and
shows that the views of C∗ in the real game with the real-world server and in the interaction with SIMc are indistinguishable.

2See items 14.71 and 14.75 in [MVOV97] for more details on CRT-based exponentiation.
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additional techniques to optimize performance.

3.1 Important Design Choices

We now identify and discuss some factors that significantly affect overall performance of DT10-v4
implementation. We begin with straightforward issues and then turn to some less trivial strategies. (Note:
for the sake of generality, we assume below that server does NOT perform precomputation.)

1. Small RSA public exponent: Recall from Section 2.2, that the only modular exponentiations per-
formed by client are those in step (2), specifically, raising random values ri-s to the e-th power
(mod N ). Therefore, the choice of RSA public exponent e directly influences client run-time. Com-
mon choices of e are: 3, 17, and 216+1 = 65537. The cryptography research community has often
raised concerns related to possible attacks when using e = 3 for RSA encryption [Bon98, FKJM+06].
However, although further careful consideration is needed, such concerns do not seem to apply in this
setting, since ri-s are generated anew, at random.

2. Chinese Remainder Theorem: On server side, the most computation-intensive operations are expo-
nentiations (·)d mod N – in steps (1) and (4). As discussed in Section 2.2, these can be optimized
using (CRT). Specifically, it is well known that using CRT can make exponentiations 4 times faster.

3. Pipelining: While we describe DT10-v4 as a sequence of steps, pipelining can be used to maximize
overall efficiency by minimizing wait times. A good start is to implement computation and communi-
cation in separate threads, such that independent operations can be performed in parallel. (Note that
this does not presume that underlying hardware has multiple cores). Specifically:

a) Server can compute tsj = H ′((hsj)d mod N), j = 1, . . . , w (i.e., steps (1)-(2)), as soon as (sj’s)
are available, i.e., even before starting interaction with client, or, in the worst case, as soon as
client starts transmitting. This is as simple as implementing server’s steps (1)-(2) in a dedicated
thread.

b) Server does not need to wait for µi+1, . . . , µv to arrive in order to compute µ′i = (µi)d mod N .
To minimize waiting, we simply need to implement exponentiations in a separate thread drawing
input from a shared buffer, where the thread listening on the channel pushes received values.

c) Similarly, client can compute ri−1 (needed to compute µi/ri mod N ) in step (5) in parallel with
steps (2)-(4).

d) Finally, client does not need to wait for µ′i+1, . . . , µv to arrive to compute tci = H ′(µ′i/ri mod
N), i.e., steps (5)-(6).

4. Threading in Multi-Core Settings: Structuring the code in multiple threads allows us to further im-
prove overall performance. For example, on server side, we can create two threads for step (1) and
step (4), respectively. Thus, if multiple cores are available (or the computing architecture using ag-
gressive pipelining), these operations are performed in parallel, thus, lowering overall run-time. Once
again, we note that parallel thread execution is transparent to application developers and normally
incurs no extra costs.

5. Fast Cryptographic Library: The choice of the cryptographic library is a crucial factor affecting over-
all performance. Efficiency of modular exponentiations varies widely across cryptographic libraris.
For example, Table 2 shows modular exponentiations measured on a 64-bit desktop with an Intel Xeon
CPU E31225 at 3.10GHz (running Ubuntu 11.10), using increasingly large exponents and moduli.
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1024-bit 2048-bit 3072-bit
C/GMP 0.60ms 4.44ms 14.08ms
C/OpenSSL 0.81ms 6.12ms 20.89ms
Java (v1.6.0 23) 3.33ms 24.47ms 76.91ms
Ratio Java/GMP 5.55 5.51 5.46

Table 2: Benchmarking of modular exponentiations with increasingly large moduli.

3.2 Prototype Implementation

We now report on the design of a prototype implementation for the DT10-v4 PSI protocol. It is imple-
mented in C, using the GMP library for large integer arithmetic and OpenSSL for key generation and hash
function implementation. Motivated by the design choices above, we use multi-threading and the GMP
library for operations on large integers, e.g., modular exponentiations, multiplications, and inverses.

Remark: The reported pseudo-code does not describe by any means a working implementation. Our goal
is to outline an intuition of our prototype design following the discussion in Section 3.1. Nonetheless, it
mirrors the software used in our experiments, presented in Section 4, which can be obtained upon request
from the authors.

Pseudo-code: Figure 12 and Figure 13 overview DT10-v4 PSI server software. The client side is only
sketched, in Figure 14, and detailed subroutines are not outlined to ease presentation. Figure 15 describes
some of the auxiliary functions used by our prototype. (Figures appear at the end of the report).

3.3 Additional Performance-optimizing techniques

Besides design choices discussed in Section 3.1 above – all of which can be easily adopted – there
are some less obvious aspects that can help us further optimize implementation of DT10-v4. Although
we discuss them below, we defer their implementation to the next version of the prototype, since these
optimizations appeal to specific settings. Whereas, this paper focuses on the general PSI scenario.

1. Bottleneck identification: In settings where the PSI protocol is executed over the Internet and com-
munication takes place over slow links, communication overhead is likely to become the bottleneck.
For instance, consider a scenario, where server runs on an Intel Xeon CPU at 3.10GHz. Using
GMP, it takes, on average, 0.15ms to perform (·)d mod N exponentiations, with 1024-bit moduli,
using CRT. Therefore, one can estimate the link speed at which the bottleneck becomes transmis-
sion of the {µi}vi=1 and {tsj}wj=1 values, respectively. Specifically, if network speed is lower than:
|µ′i|
time = 1024 bits

0.15ms = 7.31Mbps, it takes longer to transmit µ′i than to compute it. Whereas, if network

speed is lower than: |tsj |time = 160 bits
0.15ms = 1.14Mbps then it takes longer to send tsj than to compute it.

These estimates could be useful for further protocol optimizations; see below.

2. Exploiting parallelism: Many modern desktops and laptops have multiple cores. Thus, if the bottle-
neck is computation of (·)d exponentiations, the server-side thread in charge of receiving {µi}vi=1 will
push them into the buffer faster than the thread computing {(µi)d}vi=1 can pull them. With multiple
cores, exponentiations of multiple values in the buffer could be done in parallel. Similarly, computa-
tion of {(hsj)d}wi=j does not depend on any other information; thus, it could be parallelized too.

3. Minimizing transmission: If the bottleneck is transmission time, then we can optimize software by,
for example, using UDP instead of TCP, or choosing socket options geared for transmission of many
tiny packets.
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4 Performance Evaluation

We now present a detailed performance evaluation of our DT10-v4 implementation.

Experimental Setup. Experiments are performed on the following testbed: PSI server ran on a Linux
computer, equipped with an Intel Xeon E31225 CPU (running at 3.10GHz). PSI client ran on a Mid-2011
13-inch Apple Macbook Air, with an Intel Core i5 (running at 1.7GHz). Server and client are connected
through a 100Mbps Ethernet LAN. The code was written in C using the GMP library for modular arithmetic
operations and OpenSSL for other cryptographic operations (such as, random numbers and key generation,
hash function invocations). Finally, note that we used 1024-bit, 2048-bit, or 3072-bit RSA moduli and
SHA-1 to instantiate the H ′(·) function.

4.1 Protocol Total Running Time

In Figures 2 and 3, we report total run-times for DT10-v4 protocol running on, respectively, small (100
to 1000) and medium (1000 to 10000) sets, using 1024-bit moduli.3 Next, Figures 4, 5, 6, and 7, respectively,
report total run-time for small and medium sets, using 2048-bit and 3072-bit moduli, respectively.

Time is measured as the difference between system time read when the protocol starts and time read
when the protocol ends. Specifically, we consider the protocol as started whenever client initiates protocol
execution (i.e., it opens a connection on server’s listening socket), whereas, the protocol ends whenever
client outputs the intersection (if any). In other words, we do not perform precomputation and, on a con-
servative stance, we do not allow the server to start computation of {(hsj)d mod N}wj=1 (its step (1)) until
client establishes a connection on the listening socket.

The only cryptographic operation performed ahead of time (thus, not included in run-time) is RSA key
generation, since server executes it only once for all possible clients and all executions. Finally, protocol
execution time does not count time spent by server waiting for an incoming connection, since the listening
socket is created only once, for all possible clients and all protocol executions.

4.2 Micro-benchmarking

We now analyze performance of specific operations performed by client and server during DT10-v4
protocol execution. We start with Client. In Figure 8 (resp., Figure 10), we measure the time spent by the
process executing DT10-v4 client, using 1024-bit (resp., 2048-bit) moduli, for the following operations:

1. Label ‘Receive’ corresponds to the time spent to wait/receive the {µ′i}vi=1 and {tsj}wj=1 values from
server.

2. Label ‘Cli-1’ corresponds to the time needed to compute {µi = hci · rie mod N}vi=1.

3. Label ‘Inverse’ corresponds to the time to compute {r−1
i mod N}vi=1.

4. Label ‘Cli-2’ corresponds to the time needed to compute {tci = H ′(µ′i/ri mod N)}vi=1.

Next, we look at Server. In Figure 9, (resp., Figure 11)), we measure the time spent by the process executing
DT10-v4 server, using 1024-bit (resp., 2048-bit) moduli, for the following operations:

1. Label ‘Receive’ corresponds to the time spent to wait/receive the {µi}vi=1 values from client.

2. Label ‘BlindSig’ corresponds to the time to compute {µ′i = (µi)d mod N}vi=1.

3We also ran experiments with even large sets (in the order of hundreds of thousands). We do not include them here as they
simply grow linearly for increasing set sizes, thus, one can obtain an estimation of them, for essentially any input size, by looking
at Figures 2–7.
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Figure 2: DT10-v4 total run-time for small sets (100 to 1000 items), using 1024-bit moduli.
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Figure 3: DT10-v4 total run-time for medium sets (1000 to 10000 items), using 1024-bit moduli.
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Figure 4: DT10-v4 total run-time for small sets (100 to 1000 items), using 2048-bit moduli.
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Figure 5: DT10-v4 total run-time for medium sets (1000 to 10000 items), using 2048-bit moduli.
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Figure 6: DT10-v4 total run-time for small sets (100 to 1000 items), using 3072-bit moduli.
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Figure 7: DT10-v4 total run-time for medium sets (1000 to 10000 items), using 3072-bit moduli.

3. Label ‘Sig’ corresponds to the time to compute {tsj = H ′((hsj)d mod N)}wj=1.

It is interesting to observe that, using 1024-bit moduli, client actually spends less time to receive all
the values from server than vice versa, despite the former actually needs to receive more. This is a good
opportunity to see multi-threading in action: client’s thread responsible to send the {µi} values has to
wait for them to be available, thus, causing some waiting time to server’s thread that receives them. In
other words, by looking at the micro-benchmarking one can identify different “bottlenecks” in the different
settings.

5 Comparison to [HEK12]

In this section, we focus on the performance evaluation of the DT10-v4 PSI protocol presented in [HEK12].
The work in [HEK12] presents a few novel Private Set Intersection constructions based on garbled

circuits [Yao82]: the main intuition is that, by leveraging the Oblivious Transfer (OT) extension [IKNP03],
the complexity of such protocols is essentially tied to a number of OTs (thus, public-key operations) equal
to the security parameter k. In fact, OT extension achieves an unlimited number of OTs at the cost of
(essentially) k OTs. Therefore, for very large security parameters, the number of public-key operations
with this technique may grow more gracefully than with custom protocols. Finally, [HEK12] compares the
efficiency of newly proposed constructions to an implementation of “custom” PSI protocols from [DT10].

Note that we do not examine the proposals and the experimental methodology of [HEK12]. Rather,
we observe that the implementation of DT10-v4 presented in this paper achieves a remarkable speed up
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Figure 8: Micro-benchmarking client’s operations in DT10-v4 (small sets), using 1024-bit moduli.
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Figure 9: Micro-benchmarking server’s operations in DT10-v4 (small sets), using 1024-bit moduli.
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Figure 10: Micro-benchmarking client’s operations in DT10-v4 (small sets), using 2048-bit moduli.
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Figure 11: Micro-benchmarking server’s operations in DT10-v4 (small sets), using 2048-bit moduli.
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compared to performance results presented in [HEK12] for same protocols. Finally, we highlight some
open questions regarding comparison between techniques in [HEK12] and those in [DT10].

5.1 Performance Comparison

We start by noticing that the run-time of the PSI protocol in [DT10] is reported to be around 10 seconds
in a setting where |S| = |C| = 1024, the security parameter is 80-bit (thus, RSA moduli are 1024-bit), no
precomputation is allowed at server, and communication between server and client is over a 100Mbps LAN.
It is not clear whether this measure is the sum of server and client execution time or represents the time for
the protocol to complete. On a conservative stance, we assume the former. On a comparable hardware,4

and using the parameters discussed above, our measure for DT10-v4 protocol never exceeded 1 seconds
(and DT10-v4 is actually not reported as the fastest protocol – see Section 5.2). Similarly, evaluation
in [HEK12] reports 62 seconds (resp., 126 seconds) using 2048-bit (resp., 3072-bit) moduli; whereas, our
implementation of DT10-v4 never exceeds 2 seconds (resp., 5 seconds).

In Table 3 below, we summarize running times for DT10-v4 as per our implementation, and compare to
those for garbled-circuit based techniques presented in [HEK12] and reported in Fig. 11 of [HEK12]. We
argue that our implementation of DT10-v4 markedly outperforms PSI protocols based on garbled circuits,
in all the three security-parameter settings that we consider (and that are realistic today), in stark contrast to
what has been claimed in [HEK12].

80-bit 112-bit 128-bit
DT10-v4 as per

< 1s < 2s < 5s
our implementation
Best Custom-protocol PSI as

10.9s 62.4s 126s
per [HEK12]’s experiments
Garbled-circuit based

51.5s 57.1s 61.5s
PSI in [HEK12]

Table 3: Summary of PSI running times (with |S| = |C| = 1024).

5.2 The choice of protocols from [DT10]

Authors of [HEK12] argue that the protocol in Figure 3 of [DT10], based on the One-More-DH as-
sumption, is more efficient than that in Figure 4 (based on the One-More-RSA assumption and denoted as
DT10-v4) in scenarios where server-side precomputation is not possible. Our analysis below shows that
this is wrong.

In the following, aiming at 80-bit security, we use: a 1024-bit RSA modulusN , an RSA public exponent
e = 3, CRT-optimized exponentiations, a 1024-bit prime p, a 160-bit prime q, and SHA-1 hash function.
Also recall that w = |S| and v = |C|. We also use m to denote a modular multiplication of 1024-bit
integers. Consequently, we say that exponentiations modulo 1024 bits require, on average,O(1.5·|exp|)·m,
where |exp| denotes exponent size. Modular exponentiations with 512-bit moduli count for approximately
O(1.5 · |exp|) · m/4. As we discussed earlier in the paper, the computational complexity of protocol in
Figure 4 in [DT10] (DT10-v4) is clearly determined by 2w + 2v exponentiations with 512-bit exponents
and moduli, thus, (2w+2v)(1.5 ·512)m/4, i.e., (384w+384v) ·m. Whereas, the computational complexity
of protocol in Figure 3 of [DT10] comes down to w+ 3v exponentiations with 160-bit exponents and 1024-
bit moduli, thus, (w + 3v) · (1.5 · 160) ·m, i.e., (240w + 720v) ·m.

If one allows precomputation, then protocol in Figure 4 (DT10-v4) is straightforwardly more efficient
than the Figure 3 counterpart, since online complexity goes down to (384v) ·m. But if one does not allow

4In [HEK12] both server and client run on 3GHz CPU, whereas, in our experiments, server runs on a 3.1GHz CPU and client
on a 1.7GHz CPU.
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precomputation (as in [HEK12]), then it would seem that Figure 3 protocol would outperform DT10-v4
for settings where approximately v

w < 4
10 — a setting that is anyway never tested in [HEK12], which

always assumes w = v. Nonetheless, when precomputation is not possible, then the analysis of Figure
3’s complexity should actually account for w + v additional exponentiations needed to evaluate the H(·)
function, which is of the hash-into-the-group kind, i.e., H(x) = x

( p−1
q

) mod p, thus, protocol in Figure 3
appears to be always slower than Figure 4 (i.e., DT10-v4.) Therefore, the protocol in [DT10]’s Figure 4 is
always more computational efficient than the one in Figure 3.

5.3 Evaluation Criteria

Once again, note that it is out of the scope of this paper to provide a definite explanation as to why
our implementation of DT10-v4 achieves run-times several times lower than those reported by [HEK12]
(see section 7 thereof). Similarly, we do not analyze the validity of the conclusions drawn by the authors
of [HEK12] regarding whether or not DT10-v4 PSI protocol is more efficient than garbled circuits-based
constructions in all settings. However, we make some observations regarding implementation of DT10-v4
by Huang et al. [HEK12] and also argue that a comprehensive comparison should take into account several
settings (we sketch those below and leave the task of addressing them as an interesting open problem).

1. As discussed earlier, several design factors (e.g., pipelining, CRT, etc.) significantly impact overall
performance of custom PSI protocols (see Section 3.1) and it is unclear whether they were taken into
account in [HEK12].

2. [HEK12] implements techniques from [DT10] and in [HEK12] in Java. Java usually offers slower
performance than other programming languages (such as C/C++). Nonetheless, this choice might
seem irrelevant, since both techniques are implemented in Java. However, we believe it remains
to be seen if the use of Java penalizes techniques from [DT10] that perform a higher number of
public-key operations. For instance, as mentioned earlier, a CRT-based RSA exponentiation takes
5.55 times longer in Java than in C/GMP. Does this slowdown occur, in the same measure for all Java
operations (e.g., symmetric-key)? If not, then the choice of Java might not be fair, as constructions
in [HEK12] heavily rely on symmetric-key operations.5 Also, it would also be interesting to measure
memory overhead for increasing set sizes incurred by all techniques. We believe that performance
and scalability could be tremendously affected by, for example, inability to keep an entire circuit in
memory.

3. [HEK12] employs techniques that are fundamentally and markedly different from those used by cus-
tom protocols. Thus, a different choice of parameters can significantly favor one while penalizing the
other. We mention just a few:

a) Techniques in [HEK12] are tested in settings where |S| = |C|. As a result, we believe that a
more thorough comparison would include scenarios where |S| 6= |C|. Also, comparisons in
[HEK12] are given only for |S| = |C| = 1024. It remains unclear how performance of protocols
in [HEK12] would scale for higher set sizes, since at least some of them involve non-linear
complexities, as opposed to their counterparts in [DT10].

b) Some protocols in [HEK12] incur higher communication complexity than protocols in [DT10].
Therefore, we argue that a more thorough comparison must include (realistic) settings where the
subject protocol is executed on the Internet, and not only over fast 100Mbps LANs. (Complexity

5To encrypt 1 million 64-byte strings with AES-CBC, using C/OpenSSL, it takes, on average 0.60 and 0.83 seconds, with,
respectively, 128-bit and 256-bit keys. Whereas, in Java, it takes 1.22 and 1.58 seconds. Therefore, the slowdown factor here is
only 2.03 for 128-bit keys and 1.90 for 256-bit keys (versus about 5.5 for modular exponentiations).

11



is not analyzed asymptotically but authors of [HEK12] report, on page 13, that the SCS-WN
protocol consumes more bandwidth: 147–470MB, depending on the security level, versus 0.4–
2.0MB.)

c) Experiments in [HEK12] measure run-times as a total execution time. However, we believe that
more details – ideally, a benchmark of sub-operations – should also be provided to better un-
derstand if the testing setting and implementation choices penalize one technique while favoring
another.

Finally, while research on custom PSI protocols reached the point where malicious security can be
achieved efficiently – at the same asymptotic complexity as semi-honest security [HN10, JL10, DKT10] –
efficiency of garbled-circuit-based techniques secure in the malicious model remains unclear.

6 Conclusion

This paper presented an optimized implementation and performance evaluation of the currently fastes
PSI protocol from [DT10]. We analyzed implementation choices that impact overall performance and
presented an experimental analysis, including micro-benchmarking, with different set sizes. We showed that
resulting run-times appreciably outperform those reported in [HEK12]. Achieved speed up is significantly
higher than what one would obtain by simply porting [HEK12] implementation of DT10-v4 from Java to
C. Finally, we identified some open questions with respect to comparisons of custom PSI protocols with
generic garbled-circuit based constructions.

Acknowledgments. We gratefully acknowledge Yanbin Lu, Paolo Gasti, Simon Barber, and Xavier Boyen
for their help and suggestions. We would also like to thank the authors of [HEK12] for their valuable
feedback.
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A Survey of PSI Techniques

In this appendix, we survey research work on Private Set Intersection (PSI). This appendix is organized
in chronological order: we first overview work prior to [DT10], then, after discussing the work in [DT10],
we present recent results.

A.1 Work prior to [DT10]

Once again, recall that PSI is a protocol involving a server and a client, on inputs S = {s1, . . . , sw} and
C = {c1, . . . , cv}, respectively, that results in client obtaining S ∩C. As a result of running PSI, set sizes are
reciprocally disclosed to both server and client. In the variant called PSI with Data Transfer (PSI-DT), each
item in server set has an associated data record, i.e., server’s input is S = {(s1, data1), · · · , (sw, dataw)},
and client’s output is defined as {(sj , dataj) ∈ S | ∃ci ∈ C s.t. ci = sj}.

We distinguish between two classes of PSI protocols: one based on Oblivious Polynomial Evaluations
(OPE) [NP06], and the other based on Oblivious Pseudo-Random Functions (OPRF-s) [FIPR05].

Freedman, Nissim, and Pinkas [FNP04] introduce the concept of Private Set Intersection and and pro-
pose a protocol based on OPE. They represent a set as a polynomial, and elements of the set as its roots.
A client encodes elements in its private set C as the roots of a v-degree polynomial over a ring R, i.e.,
f =

∏v
i=1(x − ci) =

∑k
i=0 αix

i. Then, assuming pkC is client’s public key for any additively homo-
morphic cryptosystem (such as Paillier’s [Pai99]), client encrypts the coefficients with pkC , and sends them
to server. The latter homomorphically evaluates f at each sj ∈ S. Note that f(sj) = 0 if and only if
sj ∈ C ∩ S. For each sj ∈ S, returns uj = E(rjf(sj) + sj) to client (where rj is chosen at random and
E(·) denotes additively homomorphic encryption under pkC). If sj ∈ C ∩ S then client learns sj upon
decrypting. If sj /∈ C ∩ S then uj decrypts to a random value. To enable data transfer, server can return
E(rjf(sj) + (sj ||dataj)), for each sj in its private set S. The protocol in [FNP04] incurs the following
complexities: The number of server operations depends on the evaluation of client’s encrypted polynomial
with v coefficients onw points (in S). Using Paillier cryptosystem [Pai99] and a 1024-bit modulus, this costs
O(vw) of 1024-bit mod 2048-bit exponentiations.6 On the other hand, client computesO(v+w) of 1024-bit
mod 2048-bit exponentiations. However, server computation can be reduced to O(w log log v) using: (1)
Horner’s rule for polynomial evaluations, and (2) a hashing-to-bins method (see [FNP04] for more details).
If one does not need data transfer, it is more efficient to use the Exponential ElGamal cryptosystem [ElG85]
(i.e., an ElGamal variant that provides additively homomorphism).7 Such a cryptosystem does not provide
efficient decryption, however, it allows client to test whether a ciphertext is an encryption of “0”, thus, to
learn that the corresponding element belongs to the set intersection. As a result, efficiency is improved,
since in ElGamal the computation may make use of: (1) very short random exponents (e.g., 160-bit) and
(2) shorter moduli in exponentiations (1024-bit). The PSI protocol in [FNP04] is secure against honest-but-
curious adversaries in the standard model, and can be extended to malicious in the Random Oracle Model
(ROM), at an increased cost.

6Encryption and decryption in the Paillier cryptosystem [Pai99] involve exponentiations mod n2: if |n| = 1024 bits, then
|n2| = 2048 bits (where n is the public modulus).

7In the Exponential ElGamal variant, encryption of messagem is computed asEg,y(m) = (gr, yr ·gm) instead of (gr,m·yr),
for random r and public key y.
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Hazay and Nissim [HN10] present an improved construction of [FNP04], in the presence of malicious
adversaries without ROM, using zero-knowledge proofs to let client demonstrate that encrypted polynomials
are correctly produced. Perfectly hiding commitments, along with an Oblivious Pseudo-Random Function
evaluation protocol, are used to prevent server from deviating from the protocol. The protocol in [HN10]
incurs O(v + w(log log v +m)) computational and O(v + w ·m) communication complexity, where m is
the number of bits needed to represent a set element.

Kissner and Song [KS05] also propose OPE-based protocols involving (potentially) more than two
players. They present one technique secure in the standard model against semi-honest and one – against
malicious adversaries. The former incurs quadratic – O(vw) – computation (but linear communication)
overhead. The latter uses expensive generic zero-knowledge proofs to prevent parties from deviating to the
protocol. Also, it is not clear how to enable data transfer.

Dachman-Soled, et al. [DSMRY09] also present an OPE-based PSI construction, improving on [KS05].
Their protocol incorporates a secret sharing of polynomial inputs: specifically, as Shamir’s secret shar-
ing [Sha79] implies Reed-Solomon codes [RS60], generic (i.e., expensive) zero-knowledge proofs can be
avoided. Complexity of resulting protocol amounts toO(wk2 log2(v)) in communication andO(wvk log(v)+
wk2 log2(v)) in computation, where k is a security parameter.

Other techniques rely on Oblivious Pseudo-Random Functions (OPRF-s), introduced in [FIPR05]. An
OPRF is a two-party protocol that securely computes a pseudo-random function fk(·) on key k contributed
by the sender and input x contributed by the receiver, such that the former learns nothing from the interaction
and the latter learns only the value fk(x). Most prominent OPRF-based protocols are presented below. The
intuition behind OPRF-based PSI protocols is as follows: server and client interact in v parallel execution
of the OPRF fk(·), on input k and ci, ∀ ci ∈ C, respectively. As server transfers Ts:j = fk(sj),∀ sj ∈ S and
client obtains Tc:i = fk(ci), ∀ ci ∈ C, client learns the set intersection by finding matching (Ts:j , Tc:i) pairs,
while it learns nothing about values sl ∈ S \ S ∩ C, since fk(sl) is indistinguishable from random, if fk(·)
is a pseudo-random function.8

Hazay and Lindell [HL08] propose the first PSI construction based on OPRF-s. In it, server generates
a secret random key k, then, for each sj ∈ S, computes uj = fk(sj), and sends client the set U =
{u1, · · · , uw}. Next, client and server engage in an OPRF computation of fk(ci) for each ci ∈ C. Finally,
client learns that ci ∈ C ∩ S if (and only if) fk(ci) ∈ U . [HL08] introduces two constructions: one secure
in the presence of malicious adversaries with one-sided simulatability, the other – in the presence of covert
adversaries [AL07].

Jarecki and Liu [JL09] improve on [HL08] by constructing a protocol secure in the standard model
against both malicious parties, based on the Decisional q-Diffie-Hellman Inversion assumption, in the Com-
mon Reference String (CRS) model, where a safe RSA modulus must be pre-generated by a trusted party.
The OPRF in [JL09] is built using the Camenisch-Shoup additively homomorphic cryptosystem [CS03] (CS
for short). However, this technique can be optimized, leading to the work by Belenkiy, et al. [BCC+09].
In fact, the OPRF construction could work in groups of 160-bit prime order, unrelated to the RSA mod-
ulus, instead of (more expensive) composite order groups [JL09]. Thus improved, the protocol in [JL09]
incurs the following computational complexity: server needs to performO(w) PRF evaluations, specifically,
O(w) modular exponentiations ofm-bit exponents mod n2, wherem the number of bits needed to represent
set items and n2 is typically 2048-bit long. The client needs to compute O(v) CS encryptions, i.e., O(v)
m-bit exponentiations mod 2048 bits, plus O(v) 1024-bit exponentiations mod 1024 bits. The server also
computes O(v) 1024-bit exponentiations mod 1024 bits and O(v) CS decryptions – i.e., O(v) 1024-bit
exponentiations mod 2048 bits. Complexity in malicious model grows by a factor of 2. The input domain
size of the pseudo-random function in [JL09] is limited to be polynomial in the security parameter, since the
security proof requires the ability to exhaustively search over input domain.

8For more details on pseudo-random functions, we refer to [KL08, GGM86].
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A.2 Protocols in [DT10]

The work in [DT10] presented two linear-complexity PSI protocols, both secure in the Random Oracle
Model in the presence of semi-honest adversaries. Specifically, in [DT10], they present:

1. One protocol (Figure 3) secure under the One-More-Gap-DH assumption [BNPS03]. It imposes
O(w + v) short exponentiations on server, and O(v) – on client. Note that the term “short” exponen-
tiation refers to the fact that exponentiations can be of 160-bit exponents modulo 1024 bits (for 80-bit
security).

2. Another protocol (Figure 4) secure under the One-More-RSA assumption [BNPS03], whose imple-
mentation we have presented and analyzed in this paper. Recall that, in this protocol, server computa-
tional overhead amounts to O(w + v) RSA signatures using CRT optimization (i.e., 512 bits modulo
512 bits exponentiations for 80-bit security). Whereas, client complexity is dominated by O(v) RSA
encryptions, i.e., in practice, O(v) modular multiplications if a short RSA public exponent is selected.

Both protocols incur the following communication overhead: client and server need to send and receive
O(v) group elements (i.e., 1024-bit); additionally, server sends clientO(w) hash outputs (e.g., 160-bit using
SHA-1).

A.3 Recent results

Shortly after [DT10], Jarecki and Liu [JL10] also propose a PSI protocol with linear complexity and
fast exponentiations. (Remark that some of the proofs in [DT10] are based on that of Jarecki and Liu.) This
protocol is based on a concept related to OPRFs, i.e., Unpredictable Functions (UPFs). One specific UPF,
fk(x) = H(x)k, is used as a basis for two-party computation (in ROM), with server contributing the key
k and client – the argument x. The client picks a random exponent α and sends y = H(x)α to server, that
replies with z = yk, such that client recovers fk(x) = z1/α. By using a zero-knowledge discrete-log proofs
of knowledge, the protocol in [JL10] can obtain malicious security and implement secure computation
of (Adaptive) Set Intersection, under the One-More-Gap-DH assumption in ROM [BNPS03]. Therefore,
the computational complexity of the UPF-based PSI in [JL10] also amounts to O(w + v) exponentiations
with short exponents at server side and O(v) at client side (e.g., 160-bit mod 1024-bit). Communication
complexity is also linear is input set size, i.e., O(w + v).

De Cristofaro, et al. [DKT10] present another linear-complexity short-exponent PSI construction secure
in ROM in the presence of malicious adversaries. However, compared to [JL10], its security relies on a
weaker assumption – DDH vs One-More-Gap-DH. Then, Ateniese, et al. [ADT11] introduce the concept of
Size-Hiding Private Set Intersection (SHI-PSI). Besides the standard privacy features guaranteed by the PSI
primitive, SHI-PSI additionally provides unconditional (i.e., not padding-based) hiding of client’s set size.
The security of this novel protocol is under the RSA assumption in ROM, in the presence of semi-honest
adversaries. Server’s computational complexity amounts to only O(w) exponentiations in the RSA setting,
thus, it is independent of size of client’s input. Whereas, client’s overhead is in the order of O(v · log v)
exponentiations. Communication complexity is limited toO(w), i.e., it is also independent of size of client’s
input.

Finally, Huang, et al. [HEK12] present novel PSI constructions based on garbled circuits [Yao82]. The
main intuition is that, by leveraging the Oblivious Transfer (OT) extension [IKNP03], the complexity of
such protocols is tied to a number of OTs (thus, public-key operations) equal to the security parameter k.
In fact, OT extension achieves an unlimited number of OTs at the cost of (essentially) k OTs. Therefore,
for increasing security parameters, the number of public-key operations with their technique grows more
gracefully than with custom protocols.
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/* Include header files */
#include ...

/* Global variables */
int sockfd, newsockfd, w, v;
RSA_params *rsa;
...

int main(int argc, char *argv[])
{

/* Declare variables */
pthread_t t1, t2, t3, t4, t5;
int portno;
socklen_t clilen;
struct sockaddr_in serv_addr, cli_addr;
...

/* Invoke socket(), bind(), listen() */
if( (sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

printf("ERROR opening socket\n");
exit(-1);

}
..

/* Load RSA keypair from storage */
load_keys(rsa);

/* Accept incoming connections */
if( (newsockfd = accept(sockfd,(struct sockaddr *) &cli_addr,&clilen))< 0) {

printf("ERROR on accept\n");
exit(-1);

}

/* If supporting pre-computation the following
instruction can be moved before the accept() */

/* Compute ts_j values */
pthread_create(&t1, NULL, (void *)compute_tags, NULL);

/* Read \mu_i values from socket */
pthread_create(&t2, NULL, (void *)receive_from_client, NULL);

/* Compute \mu’_i=\mu_iˆd */
pthread_create(&t3, NULL, (void *)blind_sign, NULL);

/* Wait for t2 to complete before start sending on the channel
(conservative choice if channel not duplex) */

pthread_join(t2, NULL);

/* Send \mu’_i values to client */
pthread_create(&t4, NULL, (void *)send_bsig, NULL);

/* Wait for t4 to complete */
pthread_join(t4, NULL);

/* Send \ts_j values to client */
pthread_create(&t5, NULL, (void *)send_tags, NULL); //compute mu_i-s

/* That’s all, folks! */
pthread_join(t1, NULL);
pthread_join(t3, NULL);
pthread_join(t5, NULL);

close(newsockfd);
close(sockfd);
sleep(1);

}

Figure 12: DT10-v4 PSI server software.
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void receive_from_client(){
int i;
char buffer[N_size];

/* Read \mu_i values from socket */
for(i=0;i<v;i++) {

if(!read_from_socket(newsockfd,N_size,buffer)) {
printf("Error reading from socket\n");
exit(-1);

}
/* Put \mu_i values into a shared buffer for blind_sign()

thread to process them, e.g., write them to a pipe */
write_to_pipe(pipe1[1], buffer, strlen(buffer));
}

}

void blind_sign() {
int i;
mpz_t mu_i, mup_i; //mpz_t is GMP big-integer type
char buffer[N_size];

for(i=0;i<v;i++) {
mpz_init(mup_i);
mpz_init(mu_i);
bzero(buffer,N_size);

/* Get \mu_i read in receive_from_client() */
read_from_pipe(pipe1[0], buffer, N_size);
mpz_set_str(&mu_i, buffer, base); //transform into mpz_t

/* Compute \mu’_i=\mu_iˆd mod N, using CRT in GMP */
sig_crt_gmp(mup_i,mu_i,rsa);

/* Put \mu’_i values in a shared buffer for send_bsig() */
...

}
}

void compute_tags() {
int j;
mpz_t ks_j;
mpz_t hs_j;
char buffer[max_size];

for (j=0; j<w;j++) {
/* Obtain s_j */
...

/* Compute ts_j=H’(H(s_j)ˆd mod N) */
FDH(s_j, strlen(s_j), &hs_j);
sig_crt_gmp(ks_j,hsj,rsa);
ts_j = SHA-1(ks_j);

/* Put ts_j values in a shared buffer for send_tags() */
...

}
}

void send_bsig(){
..

/* Get \mu’_i from shared buffer and send to the client */
for(i=0;i<v;i++) {

write_to_socket(newsockfd, ...)
}
...

}

void send_tags(){
...

/* Get \ts_j from shared buffer and send to the client */
for(j=0;i<w;j++) {

write_to_socket(newsockfd, ...)
}

...
}

Figure 13: DT10-v4 PSI server software (continued).
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/* Include header files */
#include ...

/* Global variables */
int sockfd, w, v;
RSA_params *rsa;
...

int main(int argc, char *argv[])
{

/* Declare variables */
pthread_t t1, t2, t3, t4, t5, t6, final;
int portno;
socklen_t clilen;
struct sockaddr_in serv_addr, cli_addr;
...

/* Open Socket */
if( (sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

printf("ERROR opening socket\n");
exit(-1);

}

...

/* Connect to server socket */
if (connect(sockfd,(struct sockaddr *) &serv_addr,sizeof(serv_addr)) < 0) {

printf("ERROR connecting\n");
exit(-1);

}

load_pub_key(rsa);

/* Read client items */
pthread_create(&t1, NULL, (void *)read_ci, NULL);

/* Compute \mu_i=H(c_i)*r_iˆe mod N */
pthread_create(&t2, NULL, (void *)compute_mui, NULL);

/* Send \mu_i values to the server */
pthread_create(&t3, NULL, (void *)send_mui, NULL);

/* Compute modular inverse of r_i values */
pthread_create(&t4, NULL, (void *)invert_ri, NULL); //send mu_i-s

/* Wait to finish using the socket */
pthread_join(t1, NULL);
pthread_join(t2, NULL);
pthread_join(t3, NULL);
pthread_join(t4, NULL);

/* Receive \mu’_i values from the server */
pthread_create(&t5, NULL, (void *)receive_mupi, NULL);

/* Proces \mu’_i values */
pthread_create(&t6, NULL, (void *)process_mupi, NULL);

/* Wait to finish receiving \mu’_i */
pthread_join(t5, NULL);
pthread_join(t6, NULL);

/* Receive ts_j values and output intersection */
pthread_create(&final, NULL, (void *)finalize, NULL);

/* That’s all folks! */
pthread_join(final, NULL);
close(sockfd);

}

Figure 14: DT10-v4 PSI client software.
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void FDH(const unsigned char *input, int len, mpz_t *output){

int i, nbits=rsa_key_length;
int repss = (nbits + hash_size - 1) / hash_size;
unsigned char out[rsa_key_length/8*2], ibuf[len*2];
sprintf(out,"");

for (i = 0; i < reps; i++) {
sprintf(ibuf,"%s||%d",input,i);
strcat(out, SHA1((const unsigned char*)ibuf, strlen(ibuf), NULL));

}
mpz_import(*output, strlen(out), 1, sizeof(char), 0, 0,

(const unsigned char *)out);
}

int sign_crt_gmp(mpz_t sig, mpz_t msg, RSA_params *rsa) {
mpz_t m1, m2, tmp, hq;
mpz_init(m1);mpz_init(m2);mpz_init(tmp);mpz_init(hq);
mpz_powm(m1, msg, rsa->dmp1, rsa->p); //dmp1=d mod p-1
mpz_powm(m2, msg, rsa->dmq1, rsa->q); //dmq1=d mod q-1
mpz_add(tmp, m1, rsa->p);
mpz_sub(tmp, tmp, m2);
mpz_mod(tmp, tmp, rsa->p);
mpz_mul(hq, rsa->iqmp, tmp);
mpz_mod(hq, hq, rsa->p);
mpz_mul(hq, hq, rsa->q);
mpz_add(sig, m2, hq);

}

Figure 15: Implementation of (some) auxiliary functions: Full-Domain Hash and CRT-based RSA signature.
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