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Abstract

Inspired by developments in attribute based encryption and signatures, there has recently been a spurt
of progress in the direction of threshold attribute based signatures (t-ABS). In this work we propose a
novel approach to construct threshold attribute based signatures inspired by ring signatures. Threshold
attribute based signatures, defined by a (t, n∗) threshold predicate, ensure that the signer holds atleast
t out of a specified set of n∗ attributes to pass the verification. Another way to look at this would be
that, the signer has atleast 1 out of the

(
n∗

t

)
combination of attribute sets. Thus, a new approach to

t-ABS would be to let the signer pick some n′ sets of t attributes each, from the
(
n∗

t

)
possible sets, and

prove that (s)he has atleast one of the n′ sets in his/her possession. In this work, we provide a flexible
threshold-ABS scheme that realizes this approach. We also prove our scheme to be secure with the help
of random oracles.
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1 Introduction

Attribute based signatures(ABS) is a cryptographic primitive in which users produce signatures based on
some predicate of attributes, using keys issued by one or more attribute authorities. ABS has largely been
inspired by attribute based encryption schemes [6, 1, 18]. Attribute based systems are applicable in settings
where there is a need for a complex policy to govern the access of a document or provide authentication.
These systems are also privacy-friendly since they deal with the attributes of a user and not with any
direct identity that is associated with the signer. In this sense, ABS is similar to signature variants like
Group signatures [3], Ring signatures [15] and Mesh signatures [2]. The dominant idea of all these signature
primitives is that they allow the signer fine-grained control over the amount of personal information exposed.
However, it is important to note that a valid ABS signature guarantees that only a person possessing the
required attributes to satisfy the predicate can produce the signature.

A notable feature of ABS is that, unlike other signature schemes attribute based systems are capable of
supporting complex predicate policies. For instance, some permissions can be approved only by a person
who is:

(
((Major) AND (in Army OR Navy)) OR (Captain AND in Operation-Star) OR (Commander AND

in Operation-X)
)
. Moreover, a valid signature based on the above predicate would only indicate one of the

four possibilities for the signer: a) Major in Army or b) Major in Navy or c) Captain in Operation-Star or
d) Commander in Operation-X; but it would not reveal which of these the signer actually is. Also, a person
who is not any of the four would not be able to produce a valid signature.

Collusion resistance is an important property of attribute based systems. This essentially means that
multiple parties cannot collude and combine all their attributes to produce a valid signature if any one party
could not do it individually. For example, a commander in the airforce and a captain in operation-X should
not be able to somehow combine their attributes to produce a valid signature for the example predicate.

Threshold ABS is an attribute based signature where the predicate (or the signing policy) is given as
a (t, n∗)-threshold over a verification attribute set of cardinality n. The verification of the signature ensures
that the signer has a threshold number of, atleast t, attributes in common with the verification attribute set.

1.1 Related work

Work on attribute based signatures was influenced primarily by attribute based encryption primitives. At-
tribute based encryption took its form from Sahai and Waters work in [16], and was later formalized by
Goyal et al. in [6] in 2006. The first formal notion of attribute based signatures was presented in 2008 in the
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work of Maji et al. in [13]. Since then there are many ABS schemes that have come into literature. Maji
et al.’s ABS scheme supported predicates having AND, OR and threshold gates, but the security of their
scheme is in the generic group model. Earlier, Khader in [9, 8] introduced attribute based group signatures,
which find applicability in settings where one might want additional credentials from a member of a group
and also insist on collusion resistance.

Li and Kim in [12] introduced the notion of attribute based ring signatures. They have developed two
schemes which they have shown to be secure based on the standard computational Diffie-Hellman assumption.
However, their scheme is restricted to the selective unforgeability model. In addition, their ABS schemes
support only those predicates with conjunctions, i.e. an (n,n) threshold, therefore, even though the signer’s
identity remains concealed, the exact attributes of the signer are exposed. Shahandashti and Safavi-Naini
more concretely formalized the notions of threshold-ABS and its properties in [17]. Here, they not only
gave the definitions and features of t-ABS schemes but they made several improvements on [12] and gave
ABS schemes supporting a (k,n) threshold. Here k indicates the threshold and n the number of attributes
in the verification attribute set. Although this scheme was more expressive, it was not efficient since the
message was signed separately using each and every secret attribute possessed by the user. More recently,
Li et al. in [11] propose two new and efficient threshold ABS schemes, one claimed to be secure in the
random oracle model and the other in the standard model. The work in [11] is extended by Kumar et al. in
[10] to construct a bounded multi-level threshold ABS scheme. Also, another recent work of Maji et al. in
[14] gives a general framework for the construction of ABS schemes and some practical instantiations based
on standard assumptions. Their scheme uses monotone span programs to incorporate the access structure
and also make use of non-interactive witness indistinguishability (NIWI) to add to the anonymity of the
signer. The authors also introduce a new generic primitive called credential bundle which is used in the key
generating phase to bundle the attributes of the signer; this helps in making their scheme collusion resistant.

1.2 Our Contribution

This work provides a new perspective to threshold attribute based signatures using the ring concept. Any
threshold attribute based signature ensures that the signer possesses atleast t out of the specified signing
attributes, say n∗ in number. From an other perspective, this is equivalent to saying that the signer has
atleast 1 out of the

(
n∗

t

)
combination of the attribute sets. So, in our scheme we let the signer pick some n′

sets of t attributes each from the
(
n∗

t

)
possible sets, and prove, using a ring signature, that (s)he has atleast

one of the n′ sets in his/her possession. Our scheme is proved secure by reduction to the modified CBDH
assumption with the help of random oracles. We show both, unforgeability of the signature as well as the
anonymity of the attribute-set used in signing.

We also show that our approach to t-ABS provides an interesting way for the signer to control privacy
in situations where the signing policy (threshold predicate) is determined by an authority other than the
signer. Additionally, our scheme can provide a constant-size signature if the signer chooses to show the exact
attribute set (s)he uses for the signature. However, if attribute privacy is a strongly desired property then
our scheme can be used to give signatures that can provide a balance between signer’s attribute privacy and
the size (and number of components) in the signature.

Organization of the paper. We begin with the preliminaries in the next section. Then, in Section 3, we
present the construction of a t-ABS scheme in the novel approach we have just mentioned. This is followed
by the proof of security of the scheme in the random oracle model.

2 Preliminaries

In this section we present some of the preliminaries required and also the construction of the efficient threshold
ABS scheme by Li et al [11].

2.1 Bilinear Pairing

Let G1, G2, GT be multiplicative groups of prime order p. The elements g1 ∈ G1 and g2 ∈ G2 are generators
of G1 and G2 respectively. A bilinear pairing is a map e : G1 × G2 → GT with the following properties:

1. Bilinear: e(g1
a, g2

b) = e(g1, g2)ab for all g1 ∈ G1,g2 ∈ G2, where a, b ∈ Zp.

2. Non-degenerate: There exists g1 ∈ G1 and g2 ∈ G2 such that e(g1, g2) 6= 1; in other words, the map
does not send all pairs in G1 ×G2 to the identity in GT .

3. Computability: There is an efficient algorithm to compute e(g1, g2) for all g1 ∈ G1 and g2 ∈ G2.
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2.2 Lagrange Interpolation

Let q(x) be a d− 1 degree polynomial with each co-efficients in Zp . Then, given any set of d points on the
polynomial {q(i) : i ∈ S}, where S is a set of indices such that |S| = d, we can use Lagrange’s interpolation
to find q(j) for any j ∈ Zp as follows: (∆i,S(j) is termed the Lagrange coefficient)

q(j) =
∑
i∈S

q(i)∆i,S(j) , where ∆i,S(j) =
∏

j′∈S,j′ 6=i

j − j′

i− j′

2.3 Modified Computational Bilinear Diffie-Hellman Assumption.

We’ll state the modified computational bilinear Diffie-Hellman problem [5], as we use it, to prove the security
of our scheme.

Let e : G × G → GT be an efficiently computable bilinear map, where G has prime order p. The
modified computational bilinear diffie-hellman(m-CBDH) assumption is said to hold in G if, given elements
{P, aP, bP, cP, a−1P}, then no probabilistic polynomial-time adversary can compute e(P, P )abc with non-
negligible advantage, where a, b, c ∈R Z∗p and generator P ∈ G are chosen independently and uniformly at
random.

2.4 Forking Lemma

We make use of the forking lemma to give the proof of unforgeability of the threshold attribute based
signature that we propose in Section3. Here, we will first present the conditions that are necessary for a
ring signature to be considered generic and then define the forking lemma for generic ring signatures. The
definitions are borrowed from those given by Herranz et al. in [7].

Generic Ring Signature. We denote by H(·), a cryptographic hash function that outputs k bits, where k
is the security parameter. Consider a group of n ring members. Now, given the input message m, a generic
ring signature scheme produces a tuple (m,R1, · · · , Rn, h1, · · · , hn, σ), where R1, · · · , Rn (randomness) take
their values randomly in a large set G in such a way that Ri 6= Rj for all i 6= j, hi is the hash value of
(m,Ri), for 1 ≤ i ≤ n, and the value σ is fully determined by R1, · · · , Rn, h1, · · · , hn and the message m.

Another required condition is that no Ri can appear with probability greater than 2/2k , where k is the
security parameter. This condition can be achieved by choosing the set G as large as necessary.

Theorem 2.1 (Forking lemma) The forking lemma for adaptive chosen message attacks with respect to
generic ring signature schemes, as given in [7] is as follows. Let A be a probabilistic polynomial time Turing
machine whose input only consists of public data. We denote by qh and qs, the number of queries that A
can ask to the random oracle and to some real signers of the ring, respectively; we also denote by Pqh,n the
number of n-permutations of qh elements, i.e Pqh,n = qh(qh − 1) · · · (qh − n + 1). Assume that, within time
bound T, A produces with non-negligible probability ε, a valid ring signature (m,R1, R2, · · · , Rn, h1, · · ·hn, σ).
Suppose, the valid ring signature can be simulated with a polynomially indistinguishable distribution of prob-
ability, without knowing any of the secret keys of the ring , within a time bound of Ts. Then there exists
another probabilistic polynomial time Turing machine which can, by a replay of attacker A where the inter-
actions with the signer are simulated, produce two valid ring signatures (m,R1, R2, · · · , Rn, h1, · · ·hn, σ) and
(m,R1, R2, · · · , Rn, h′1, · · ·h′n, σ′) such that hj 6= h′j, for some j ∈ {1, · · · , n} and hi = h′i for all i = 1, · · · , n
such that i 6= j, in expected time T′ ≤ 144823(Pqh,n)(T+qsTs)

ε with non-negligible probability.

2.5 Attribute-Based Signature

Attribute based signature schemes consist of four algorithms: setup, key generation, signing and verification
algorithms, defined as follows:

Setup is run by a central authority. It takes as input the security parameter (d), and gives as output the
set of public parameters denoted by params and a master secret key, msk.

Key-Gen (or Extract) is run by the key generating authority. It takes as input msk and a set of attributes
(from the user/signer) to produce D, a corresponding set of private keys for the signer.

Sign algorithm takes the signer’s private keys D, a predicate Υ, and a message m to produce a signature
σ.

Verify algorithm ensures that, a signature σ on a message m is pronounced as valid if and only if the
signer possesses attributes that satisfy the predicate Υ.
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2.6 Threshold Attribute-Based Signature

Inorder to realize threshold-attribute signatures in this new setting, we propose the following model and
security game.

Definition: This scheme consists of the following four algorithms:

Setup is run by a central authority. It takes as input the security parameter (d), and gives as output the
set of public parameters denoted by params and a master secret key, msk.

Key-Gen (or Extract) is run by the key generating authority. It takes as input msk and a set of signer
attributes (Uβ) to produce a corresponding set of private keys, D, for the signer.

Sign algorithm takes the signer’s private keys D, a fixed threshold t (integer), an attribute subset U∗, and
a message m to produce a signature σ. The Sign algorithm also outputs (as part of the signature), a

set T consisting of n′ subsets (1 ≤ n′ ≤
(
n∗

t

)
) of attributes Ti (T = {T1, T2, · · · , Tn′}) such that each

Ti satisfies |Ti| = t and Ti ⊆ U∗ i.e. every subset Ti has threshold number of attributes and all of these
attributes are present in U∗ .

Verify algorithm is run by a verifier. It outputs 1 when a signature σ on a message m is valid i.e if one of
the attribute subsets Ti was used in obtaining the signature.

Correctness: A threshold-ABS scheme must satisfy the correctness property, i.e. a signature generated
by a signer with attribute set Uβ must pass the verification test for the given U∗ and t if |Uβ ∩U∗| ≥ t. More
precisely, there exists an attribute subset Tj ∈ T such that Tj ⊆ Uβ . (and by definition |Tj | = t and hence
|Uβ ∩ U∗| ≥ t)

Unforgeablility: It is required for the above threshold attribute based signature scheme to be existentially
unforgeable under chosen attribute and message attacks as follows:

Setup phase: The challenger C runs the Setup algorithm and gives the common public parameters params
to adversary A.

Query phase: Adversary can perform polynomially bounded number of queries in an adaptive manner
(interactively) as described below.

- Hash. Adversary is allowed to query all the hash functions.

- KeyGen. A is allowed to query the keys for any set of attributes Uβ .

- Sign. A requests for the signature of a signer with (any) attribute set Uβ on any message m by
specifying a threshold t′ on an n−element attribute set U∗.

Forgery phase: At the end of the game, A outputs a forgery σ with respect to the set of attributes U∗,
threshold t′′ and message m′ where σ contains n′ attribute subsets Ti i.e.T1, T2, · · · , Tn′ such that
∀Ti, |Ti| = t′′, Ti ⊆ U ′ and 1 ≤ n′ ≤

(
n∗

t

)
.

A wins the game if the following hold:

1. σ is a valid signature with respect to U∗, t′′,m′.

2. for all KeyGen queries on attribute set Uβ , we have |Uβ ∩ U∗| < t′′.

3. for all Sign queries on message m using signer attributes Uβ , m 6= m′ or |Uβ ∩ U∗| < t′′.

If no polynomial adversary has a considerable advantage in the above game, we say that the threshold-ARBS
scheme is existentially unforgeable against chosen attribute and message attacks.

Collusion-resistance. Note here that the above game ensures the property collusion resistance. This is
because the adversary could have queried for the secret keys of all elements in U ′ from KeyGen with different
attribute sets Uβ as input, such that U ′ ⊆

⋃
∀β Uβ . Thus, the game guarantees that no colluding group of

users can create a signature that could not have been created by any one of the colluders independently.
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Weak signer attribute privacy. This is an additional property that some threshold-ABS schemes pro-
vide. It says that the threshold attribute based signature does not reveal any information about the attributes
of the signer other than saying the signer has t of the attributes in U∗. In our t-ARBS scheme, we define
the scheme to have weak signer attribute privacy if the threshold attribute based signature does not reveal
any information about the attributes of the signer except those attributes that the signer chooses to reveal
in the n′ chosen subsets (of the signing policy attribute set U∗) . To be more specific, given the n′ subsets
of attributes, the verifier must be unable to deduce which subset was used by the signer in order to give the
signature.

3 New t-ABS Scheme

In this section we propose a novel scheme for threshold attribute based signatures which is conceptually
based on ring signatures. Here is a brief sketch of the idea before we actually present the scheme.

Intuition. Any threshold attribute based signature ensures that the signer possesses atleast t out of the
specified signing attributes, say n∗ in number. Another way to look at this would be that, the signer has
atleast 1 out of the

(
n∗

t

)
combination of the attribute sets. Thus, a new approach to the same would be,

for the signer to pick some n′ sets of t attributes each from the
(
n∗

t

)
possible sets, and prove that she has

atleast one of the n′ sets in her possession. Note here that 1 ≤ n′ ≤
(
n∗

t

)
. If n′ ≥ 2, it would be sufficient

to prove that the signature is valid and the signer has the specified attributes, moreover it would also give
a reasonable degree of anonymity and not reveal the exact credentials of the signer. If the actual predicate
is an AND, then t = n∗, which means n′ = 1 and the signer can prove the possession of the complete set of
attributes. On the other hand, if the predicate is a simple OR, then t = 1 and again the signer can choose an
appropriate n′ depending on the amount of privacy she wishes to have and then produce a signature. With
this intuition, we are ready to see the details of the scheme.

3.1 Construction

We present the construction for our scheme which is based on the ring signature proposed in [4]. Here,
for each set of attributes in the chosen n′, we aggregate the attributes by summing them up and form n′

components, one for each set. One of these components has the signer’s private key embedded in it, making
it a ring signature. During the verification phase the signer’s component also takes care of eliminating all
the attribute sets except the one which is actually used for signing, thus proving the possession of one among
the chosen n′ attribute sets. Our construction also allows the key-generating authority to revoke anonymity
if required.

3.1.1 Setup

Let U = {A1, A2, · · · , An} denote the universe of attributes (attributes are denoted as Ai). Let t denote the
threshold that a user needs to satisfy and U∗ denote the set of attributes in the predicate. If |U∗| = n∗ then,
a user must have atleast t out of the n∗ attributes to be able to produce a valid signature on a message. Let
G1 denote a cyclic additive group of prime order p on which the bilinear function is efficiently computable.
Let e(·, ·) be the bilinear function, e : G1 × G1 → G2. Let, H1, H2, H3, and H4 be four hash functions
defined by, H1 : {0, 1}∗ → {0, 1}∗, H2 : {0, 1}∗ → G1, H3 : {0, 1}∗ → G1, and H4 : {0, 1}∗ → Z∗p. Let the
generator of the group be P ∈R G1, secret key be α ∈R Z∗p, and denote γ = e(P, P ) ∈ G2. The master secret
key (msk) is α and Ppub = αP . The public parameters of the system,

params = (e,G1,G2, H1(·), H2(·), H3(·), H4(·), P, Ppub)

3.1.2 Key Generation

D ← KeyGen(Uβ , ID,msk). Let, Uβ be the set of attributes that a user β has. Let D denote the set of
keys given to the user. Say, |Uβ | = nβ . Here, the attribute authority picks a rβ ∈R Z∗p and then computes
the following:

1. Set D̄0 = rβP and D̄1 = r−1β P

2. ω = H1(Uβ , ID)

3. Choose w ∈R Z∗p and set W = wcP

4. Set D̄2 = r−1β W

5. Then, Qi = H2(Ai) and Di = rβ · α ·Qi (∀Ai ∈ Uβ)

The private key returned is, D =
{
{Di}i∈{1,··· ,nβ}, D̄0, D̄1, D̄2, ω

}
.
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Key verification

The user, who on receiving the private keys corresponding to his/her attributes can verify the keys as follows:

e(D̄0, D̄1)
?
= γ

e(D̄0, D̄2)
?
= e(P,H3(H1(Uβ , ID)))

e(Di, D̄1)
?
= e(Qi, Ppub)

3.1.3 Sign

σ ← Sign(U∗, t,D,m, params). The signer who possesses atleast t of the attributes in U∗ must be able
to produce a valid signature on a message m. Let Tβ be the t-element subset of attributes of U∗, that
the user chooses inorder to generate the signature. i.e Tβ ⊆ U∗ ∩ Uβ such that, |Tβ | = t. Let T be a
collection of n′ subsets of attributes from U∗ such that each of these subsets has a cardinality of exactly
t and no two of them are equivalent. Let us assume that the sets in T are indexed by values from 1
to n′; and Ti denotes the subsets of U∗ that constitute T . So, the signer chooses {Ti}i∈{1,··· ,n′} where

Ti ⊆ U∗ , |Ti| = t , Ti 6= Tj and 2 ≤ n′ ≤
(
n∗

t

)
. Without loss of generality, we can assume that the set Tβ

is present in T and is at a random index s where 1 ≤ s ≤ n′. Thus, we refer to Tβ as Ts in our subsequent
discussions. Hence, Ts is the set used for generating the signature, and the remaining (n′ − 1) sets are used
to form the ring (to provide anonymity). Then, the signer does the following computations to generate the
signature:

The signer first picks n′ random values, ri ∈R Z∗p for i = {1, · · · , n′}, and an r∗ ∈R Z∗p and then proceeds
to generate the signature on m as follows:

1. Set V̄0 = r∗D̄0, V̄1 = r∗−1D̄1 and V̄2 = r∗−1D̄2

2. Ui ∈R G1, for i = {1, · · · , n′}\s

3. hi = H4(m,Ui, Ti, V̄0, V̄1, V̄2), for all i ∈ {1, · · · , n′}\s.

4. Us =

(
rs ·

∑
Aj∈Ts

Qj

)
−

 n′∑
i=1;i6=s

Ui + (hi
∑

Aj∈Ti
Qj)


5. We define, hs = H4(m,Us, Ts, V̄0, V̄1), in a manner consistent to that of the definition of the hi values.

6. We set, V = r∗(rs + hs)
∑
Ai∈Ts Di

The final signature σ is given as:

σ =
{
{Ti}i={1,··· ,n′} , {Ui}i={1,··· ,n′} , V , V̄0 , V̄1 , V̄2, ω

}
It is important to note in the algorithm that the size of the signature is independent of the number of

attributes, but depends more on the degree of privacy that the signer prefers. This is because, n′ is a factor
that the signer chooses, depending on the amount of information the signer wishes to reveal and does not
depend on the size of U∗ or t.

3.1.4 Verify

Any user can verify the signature by performing the following computations:

e(V̄0 , V̄1)
?
= γ

e(V̄0 , V̄2)
?
= e(P,H3(ω))

e(V , V̄1)
?
= e

 n′∑
i=1

(Ui + hi
∑

Aj∈Ti
Qj) , Ppub


The signature is valid only if all the three checks are satisfied, in all other cases it’s considered to be invalid.
Correctness of the above three checks can be found in Appendix(A).

4 Security

We will show that our threshold attribute based signature scheme is existentially unforgeable with respect to
the chosen attribute and message attack as defined in Section 2.6. Then, we will also show that our scheme
satisfies the weak signer attribute privacy property.
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4.1 Unforgeability

Theorem 4.1 (Unforgeability) In the random oracle model, if there exists an algorithm A that can
win the existentially unforgeable chosen attribute and message attack game, with non-negligible probabil-
ity ε, and create a valid ABS in polynomial time T, by making at most qH1

, qH2
, qH3

, qH4
queries to the

random oracles H2, H4, H1, H3, and, qk and qs Key-Generation and Sign queries respectively. Then the
modified-computational bilinear Diffie-Hellman (m-CBDH) problem can be solved within expected time T′ ≤
144823(PQ,n(T+qsTs)

ε (where Q = qH1 + qH2 + qH3 + qH4 + qk).

Proof: The proof for the unforgeability (refer Theorem(4.1)) of our threshold attribute based signature
follows, to some extent, that given by Chow et al. in [4]. In the subsequent discussion we will show the
reduction of our scheme to solving the CBDH problem.

Inorder to solve the m-CBDH problem, the challenger C receives the instance {P, aP, bP, cP, a−1P} and
has to finally produce e(P, P )abc as the output. The challenger will run A as a subroutine in the existential
unforgeability game. As defined in the game, A can make queries to the hash functions; although the hash
outputs will be random, the challenger C will maintain separate lists of the query and response of each oracle
in order to simulate proper collision-resistant hash functions and avoid inconsistencies. Also, in the proof,
we make the assumption that all the H2(Ai) queries are made before they are used in any further oracle
queries.

Setting. First, the challenger C sets the system public-key as Ppub = aP and master secret as α = a. Note
that C does not know a, b or c, but it will simulate those values during its responses to A, with the help of
aP , bP , cP and a−1P .

H1 queries. Queries to the H1 oracle are answered by the challenger as follows. C picks an ω ∈ Z∗p
uniformly at random, and then checks if this value is present in the list L1. If it is present, then C re-picks
ω repeating the process until it gets a new value. Then the tuple < Uβ , ID, ω > is added to list L1.

H2 queries. When A makes queries to the hash function H2(·) with input as some attribute Ai, C does
the following. If Ai was already queried before, the hash value will be in the list L2 and C will search and
give the value stored in the list. Otherwise, C first picks an si ∈ Z∗p uniformly at random, and then checks if
this value is present in the list L2. If it is present C re-picks si repeating the process until it gets a new value.
Then, it sets Qi = H2(Ai) = si(bP ). After each response, C makes sure to save the tuple < Ai, si, Qi > in
the list L2, if it was not already present.

H3 queries. List L3 is used to maintain the queries and responses of this oracle. When an input ω is
queried for its hash, the list L3 is looked up to see if a matching entry already exists, if it is found the
corresponding value is returned. In all other cases, an w ∈R Z∗p is picked uniformly at random and W is set
to be W = wcP . The tuple of, < ω,W,w > is added to the list, L3.

Key-Gen queries. Adversary A is allowed to request for the private keys on any set of attributes Uβ .
When the challenger gets a query, C first picks an rγ ∈R Z∗p, at random. Assume, rβ = rγ/a. Then, the rest
of the values are set as follows:

1. Set, D̄0 = rβP = (rγa
−1)P = rγ(a−1P ) and D̄1 = r−1β P = (rγa

−1)−1P = (r−1γ a)P = r−1γ (aP )

2. Now, ω = H1(Uβ , ID)

3. W = H3(ω), this is set as W = wP (w ∈R Z∗p )

4. Tuple < Uβ , ID, ω > is added to L1 and tuple < ω,w,W > is added to L3.

5. Compute, D̄2 = r−1β W = r−1γ a(wP ) = r−1γ w(aP )

6. ∀Ai ∈ Uβ , Di = rβ · α ·Qi = rγa
−1a(sibP ) = rγsi(bP )

The final key is given as, D =
{
{Di}i∈{1,··· ,nβ}, D̄0, D̄1, D̄2, ω

}
.

In each of the hash oracle queries, all the intermediate random values that have been chosen by the
challenger are added to the respective lists along with the computed components and final responses.

H4 queries. Whenever queries to H4(·) are made, C first looks up entries in L4 to see if the same query
was made previously. If a matching entry is found, it gives the corresponding saved hash value, otherwise,
it just picks a random value from Z∗p and gives it as output, storing the input and response as a tuple in L4.
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Sign. Signature requests are answered by C as follows:
It picks a Ts at random first. Then selects n′ random values, ri ∈R Z∗p for i = {1, · · · , n′}, and computes

the following:

1. V0 = (r∗)−1D̄0 = (r∗)
−1

(rβ′)P ,

V̄1 = (r∗)
−1
D̄1 = (r∗rβ′)

−1P,

V̄2 = (r∗)
−1
D̄2 = (r∗rβ′)

−1H3(ω)

2. Add the values rβ , Uβ , D̄0, D̄1, D̄2, Ts to the sign oracle list.

3. Picks z ∈R Z∗p and sets1, V = r∗rβ′ · z · (aP )

4. For i ∈ {1, · · · , n′}\s

- Selects Ui ∈R G1

- Gets hi = H4(m,Ui, Ti, V̄0, V̄1, V̄2) and saves hi in list L4

5. Us = zP −

(
h′s ·

∑
Aj∈Ts

Qj

)
−

∑
i 6=s

Ui + (hi
∑

Aj∈Ti
Qj)


6. V = r∗−1rβ′z(aP )

7. Save the tuple < h′s, Us, Ts, V̄0, V̄1, V̄2, V > in L4.

8. σ =
{
{Ti}i={1,··· ,n′} , {Ui}i={1,··· ,n′} , V , V̄0 , V̄1 , V̄2 , ω

}
Proof for the correctness of this signature can be found in Appendix (B).

Forgery. Finally, A will output σ =
{
{Ti, Ui}i={1,··· ,n′} , V , V̄0 , V̄1 , V̄2 , ω

}
, the forged signature on the

message m.

Solving CBDH. From the forking lemma for generic ring signature schemes [7] it follows that, if with
non-negligible probability, A can give a valid forged signature in the above interaction within time TA,
then we can construct another algorithm A′ which within time 2TA can output two signatures, σ ={
{Ti, Ui}i={1,··· ,n′}, V , V̄0,V̄1,V̄2, ω

}
; and σ′ =

{
{Ti, Ui}i={1,··· ,n′}, V ′, V̄ ′0 ,V̄ ′1 ,V̄ ′2 , ω

}
also with non-negligible

probability. It also follows from the lemma that with non-negligible probability, we can have hi = h′i, for all
i ∈ {1, · · · , n′}\s. Using this C can solve for e(P, P )abc as:

[(
e(V, V̄2)

e(V ′, V̄ ′2)

)w−1(hs−h′s)
−1]( ∑

Ai∈Ts
si)
−1

Now, given A′ derived from A, C can solve for e(P, P )abc.
A more detailed derivation, showing the computations involved in extracting the solution for CBDH can

be found in the Appendix(B.1).

4.2 Signer Attribute Privacy

In this section we will define what privacy is and prove that our scheme provides privacy( or anonymity) to
the signer’s attribute subset used in the signature.

We define signer ambiguity for our scheme in a manner similar to the one given in [4] for ring signatures.
An attribute-based signature scheme, using the ring approach as defined by us, for the threshold access
structure, is said to have unconditional signer attribute-set ambiguity if for any group of n′ attribute subsets
{T}, where T =

⋃
Ti , ∀1 ≤ i ≤ n′ , Ti ⊆ U∗ and |Ti| = t , any message m and any signature σ, where

σ = Sign(m, t, U∗); any verifier A even with unbounded computing resources, cannot identify the actual
attribute subset of the signer (used in the signature) with probability better than a random guess. That is,
A can output the actual signer’s chosen attribute subset (indexed by Ts) with probability no better than
1/n′.

Theorem 4.2 (Weak signer attribute privacy) Our threshold attribute-based signature has weak signer
attribute privacy property.

1Note: This cannot be done by a normal signer since rβ′ will only be available to the attribute authority.
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Proof: We first claim that all the Ui’s are uniformly distributed. This is because, each Ui (including Us)
is obtained via multiplying the components with a value ri, that is chosen uniformly at random. So, we can
say that the Ui’s by themselves (as independent entities) don’t leak any information. Another component of
the signature, ω, is a hash of the attributes of the user, but since it’s a hash and is created even before Ts
is chosen, it cannot reveal anything about Ts. Also, the other values, V̄0, V̄1 and V̄2 are unrelated to Ts. So,
it remains to be seen if V gives away any information about Ts with the help of the bilinear map function
along with any of the given components and public values.

So, we will consider if V = r∗(rs + hs)
∑
Ai∈Ts Di, leaks anything about Ts. Let us focus on V −

r∗hs
∑
Ai∈Ts Di = r∗rs

∑
Ai∈Ts Di. The hs component can be obtained publicly since it is a hash. We’ll

see if this component gives away information related to Ts when considered along with V̄1 = r∗−1r−1β P , in
the bilinear map. If we manage to get r∗rs

∑
Ai∈Ts Di, then we can do the following verification test:

check e(r∗rs
∑
Ai∈Ts Di, V̄1) = e(rs

∑
Ai∈Ts Qi, Ppub)? To do this, any user who suspects that the set

Tk was used in signing of the message will only need to check if, e(Uk +
∑
i 6=k

(Ui + hi
∑

Aj∈Ti
Qj), Ppub)

?
=

e(V, V̄1)/e(hk
∑

Aj∈Tk
Qj , Ppub).

We will now show that, although the above equality is valid for k = s, it is equally valid for any of the
other attribute subsets in T i.e the check is symmetric with respect to any attribute subset and hence does
not reveal anything about Ts. To see that, consider:

Uk +
∑
i 6=k

(Ui + hi
∑

Aj∈Ti
Qj) = Us +

∑
i 6=s(Ui) +

∑
i 6=k

(hi
∑

Aj∈Ti
Qj

=

(
rs ·

∑
Aj∈Ts

Qj

)
−

∑
i6=s

Ui + (hi
∑

Aj∈Ti
Qj)


+
∑
i6=s

(Ui) +
∑
i 6=k

(hi
∑

Aj∈Ti
Qj)

= rs ·
∑

Aj∈Ts
Qj − hk

∑
Aj∈Tk

Qj + hs
∑

Aj∈Ts
Qj

= (V )r
∗−1r−1

β α−1

− hk
∑

Aj∈Tk
Qj

Thus,

e(Uk +
∑
i 6=k

(Ui + hi
∑

Aj∈Ti
Qj), Ppub)

= e(V, V̄1)/e(hk
∑

Aj∈Tk
Qj , Ppub)

This proves that the check is symmetric with all attribute subsets in T =
⋃
Ti , ∀1 ≤ i ≤ n′. So, the

signature components are independent and uniformly distributed irrespective of the attribute subset being
used. Thus, our scheme is signer attribute-set anonymous and hence satisfies weak signer atribute privacy.

5 Conclusion

5.1 Advantages of the new approach.

Controlled privacy. The proposed threshold scheme has a new property that we can call controlled
attribute privacy which is not known to be present (to the best of the our knowledge) in any of the previous
threshold attribute based signature schemes. This is a feature that would allow the signers to control the
privacy/anonymity of therir attributes even if the signing policy is not determined by them. We will illustrate
this feature with an example. Let us say Alice is signing a document which wants the signer to satisfy a
threshold predicate, and she has sufficient attributes to satisfy the predicate. Say, one of the attributes of
the signing policy is CIA officer. Now, Alice being a CIA officer among other things wishes to highlight
this particular fact in her signature (although it may not be necessary). She can choose all the n′ attribute
sets {Ti}i∈{1,··· ,n′} with CIA officer being one of the attributes in each of these sets. By doing this, she
has control over which of her attributes she wants to reveal. But if Alice does not wish to reveal anything
about her credentials except that they satisfy the necessary threshold, then she will have to give all the(
n∗

t

)
possible sets. If on the other-hand, Alice is completely indifferent about revealing all of her attributes,

then she can give a signature and include a single subset of attributes. And that set should contain just the
exact set of attributes used in the signature inorder to satisfy the given policy. Note that this will also be a
constant size signature, since it will have only one Ti and Ui.
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Size-Privacy balance. The power that this feature gives is that, even if the signing policy is specified
by a different authority, the signer can choose to reveal more in the signature than what other schemes
would normally allow. In a way, our approach allows the signer control over the signature size and privacy,
although he/she may not have had the freedom to set the signing policy. If a signer does not care about
privacy, then she can go for a constant size signature. On the other-hand if the size of the signature
components is immaterial, then signer can choose to get complete privacy by choosing all the subsets of
attributes satisfying the policy to be a part of the signature.

Multi-level threshold attribute based signature. We believe that this scheme can be extended to a
multi-level threshold attribute based signature provided each attribute is present only once in the predicate.
However, it would be interesting to see if it can extended for a general multi-level threshold ABS.

5.2 Summary.

In this work we presented a new approach to t-ABS based on ring signatures. We have also given a scheme
and shown it to be existentially unforgeable with respect to chosen attribute and message attack using the
random oracle model. In addition, the scheme has also been proved to provide the weak signer attribute
privacy property. We believe that this new approach to t-ABS gives the signer greater power to control
his/her anonymity even if (s)he does not get to determine the signing policy.
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Appendix

A New scheme’s Sign algorithm correctness

We argue here that, if the steps of the algorithm are followed without deviation then, the signature given is
valid. We will show a proof of the correctness mathematically. Let’s first consider e(V̄0 , V̄1):

e(V̄0 , V̄1) = e(r∗D̄0 , r∗−1D̄1)

= e(r∗rβP , r∗−1r−1β P )

= e(P , P )

= γ

Next we check e(V̄0 , V̄2):

e(V̄0 , V̄2) = e(r∗D̄0 , r∗−1D̄2)

= e(r∗rβP , r∗−1r−1β H3(ω))

= e(P , H3(ω))

Now, we will see if the third verification is also valid. i.e Check if,

e(V , V̄1) = e

 n′∑
i=1

(Ui + hi
∑

Aj∈Ti
Qj) , Ppub

 is correct for a valid signature. We look at the L.H.S and the

R.H.S components separately in showing the proof.
Consider the L.H.S:

e
(
V , V̄1

)
= e

(
r∗(rs + hs)

∑
Ai∈Ts

Di , r∗−1D̄1

)

= e

(
(rs + hs)

∑
Ai∈Ts

Di , r−1β P

)

= e

(
(rs + hs) · rβ · α

∑
Ai∈Ts

Qi , r−1β P

)

= e

(
(rs + hs) ·

∑
Ai∈Ts

Qi , Ppub

)
(1)

Now, for the R.H.S:

e

 n′∑
i=1

(Ui + hi
∑

Aj∈Ti
Qj) , Ppub


We’ll consider the first component

n′∑
i=1

(Ui + hi
∑

Aj∈Ti
Qj) and simplify it before we compute the mapping.
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n′∑
i=1

(Ui + hi
∑

Aj∈Ti
Qj) =

n′∑
i=1

Ui +

n′∑
i=1

(hi ·
∑

Aj∈Ti
Qj)

= Us +

n′∑
i=1;i6=s

Ui + (hs ·
∑

Aj∈Ts
Qj) +

n′∑
i=1;i 6=s

(hi ·
∑

Aj∈Ti
Qj)

=

(
rs ·

∑
Aj∈Ts

Qj

)
−

∑
i6=s

Ui + (hi
∑

Aj∈Ti
Qj)


+ (hs ·

∑
Aj∈Ts

Qj) +

n′∑
i=1;i 6=s

Ui +

n′∑
i=1;i 6=s

(hi ·
∑

Aj∈Ti
Qj)

=

(
rs ·

∑
Aj∈Ts

Qj

)
−

n′∑
i=1;i 6=s

Ui −
n′∑

i=1;i 6=s

(hi ·
∑

Aj∈Ti
Qj)

+ (hs ·
∑

Aj∈Ts
Qj) +

n′∑
i=1;i 6=s

Ui +

n′∑
i=1;i 6=s

(hi ·
∑

Aj∈Ti
Qj)

= (rs + hs) ·
∑

Ai∈Ts
Qi (2)

Using the above we get R.H.S to be,

e

 n′∑
i=1

(Ui + hi
∑

Aj∈Ti
Qj) , Ppub

 = e

(
(rs + hs) ·

∑
Ai∈Ts

Qi , Ppub

)
(3)

Thus, from equations (1), (2) and (3) we can see that the verification holds and can be performed using
the public values.

B Sign Oracle Correctness

We will show the proof for the verification of the signature generated by the oracle while showing the security
of the scheme (from Section 4.1).
The signature components generated by the sign oracle are as follows:

1. V0 = r∗D̄0 = r∗−1rβ′P, V̄1 = r∗−1D̄1 = r∗−1r−1β′ P

V̄2 = r∗−1D̄2 = r∗−1r−1β′ H3(ω)

2. V = r∗rβ′ · z · (aP )

3. For i ∈ {1, · · · , n′}\s

- Sets Ui ∈R G1

- Gets hi = H4(m,Ui, Ti, V̄0, V̄1, V̄2)

4. Us = zP −

(
h′s ·

∑
Aj∈Ts

Qj

)
−

∑
i 6=s

Ui + (hi
∑

Aj∈Ti
Qj)


5. V = r∗−1rβ′z(aP )

6. σ =
{
{Ti}i={1,··· ,n′} , {Ui}i={1,··· ,n′} , V , V̄0 , V̄1 , V̄2, , ω

}
Now, the verification has to satisfy the following three equations:

e(V̄0 , V̄1)
?
= γ

e(V̄0 , V̄2)
?
= e(P,H3(ω))

e(V , V̄1)
?
= e

 n′∑
i=1

(Ui + hi
∑

Aj∈Ti
Qj) , Ppub


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B.1 Verification analysis

Let’s first consider e(V̄0 , V̄1):

e(V̄0 , V̄1) = e(D̄0 , D̄1) = e(rβP , r−1β P ) = e(P , P ) = γ

Similarly, for e(V̄0 , V̄2):

e(V̄0 , V̄2) = e(D̄0 , D̄2) = e(r∗rβP , r∗−1r−1β H3(ω)) = e(P , H3(ω))

Now, we will see if e(V , V̄1) = e

 n′∑
i=1

(Ui + hi
∑

Aj∈Ti
Qj) , Ppub

 will hold true.

Consider the L.H.S:

e
(
V , V̄1

)
= e

(
rβ′ · z · (aP ) , r−1β P

)
= e (z · (aP ) , P )

= e (zP , Ppub) (4)

Now, for the R.H.S:

e

 n′∑
i=1

(Ui + hi
∑

Aj∈Ti
Qj) , Ppub


Let’s just consider the first component:

n′∑
i=1

(Ui + hi
∑

Aj∈Ti
Qj) =

n′∑
i=1

Ui +

n′∑
i=1

(hi ·
∑

Aj∈Ti
Qj)

= Us +

n′∑
i=1;i 6=s

Ui + (h′s ·
∑

Aj∈Ts
Qj) +

n′∑
i=1;i6=s

(hi ·
∑

Aj∈Ti
Qj)

= zP −

(
h′s ·

∑
Aj∈Ts

Qj

)
−

 n′∑
i=1;i 6=s

Ui + (hi
∑

Aj∈Ti
Qj)


+ (h′s ·

∑
Aj∈Ts

Qj) +

n′∑
i=1;i 6=s

Ui +

n′∑
i=1;i 6=s

(hi ·
∑

Aj∈Ti
Qj)

= zP (5)

Thus, R.H.S also reduces to,

e

 n′∑
i=1

(Ui + hi
∑

Aj∈Ti
Qj) , Ppub

 = e(zP, Ppub) (6)

From equations (4), (5) and (6) we can see that the verification holds for the constructed signature.

Correctness of Solving CBDH After using the forking lemma (refer Section 4.1), let us say we have
two signatures σ and σ′ which have the following components:

V = r∗1(rs + hs)
∑
Ai∈Ts

Di V ′ = r∗2(rs + h′s)
∑
Ai∈Ts

Di

V̄2 = r∗1
−1rβ1

−1wcP V̄ ′2 = r∗2
−1rβ2

−1wcP

V = r∗rβ1(rs + hs)(a
∑
Ai∈TS

Qi)

= r∗rβ1(rs + hs)(ab(
∑
Ai∈TS

si)P )

W1 = e(V, V̄2)

= e(P, P )
(rs+hs)(ab(

∑
Ai∈TS

si))(wc)

X1 = Ww−1

1 = γ(rs+hs)(abc
∑
si) (7)
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Similarly, set W2 = e(V ′, V̄ ′2) and get X2 as follows:

X2 = Ww−1

2 = γ(rs+h
′
s)(abc

∑
si)

Now, we do the following,

Y1 =
X1

X2
= γ(hs−h

′
s)(abc

∑
si)

Y = Y
(hs−h′s)

−1

1 = γ(abc
∑
si)

Z = (Y )(
∑
si)
−1

= γabc = e(P, P )abc (8)
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